WO2023210099A1 - パワーモジュール、及び電力変換装置 - Google Patents

パワーモジュール、及び電力変換装置 Download PDF

Info

Publication number
WO2023210099A1
WO2023210099A1 PCT/JP2023/004097 JP2023004097W WO2023210099A1 WO 2023210099 A1 WO2023210099 A1 WO 2023210099A1 JP 2023004097 W JP2023004097 W JP 2023004097W WO 2023210099 A1 WO2023210099 A1 WO 2023210099A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
conductor
power
main
capacitor
Prior art date
Application number
PCT/JP2023/004097
Other languages
English (en)
French (fr)
Inventor
匡彦 江積
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023210099A1 publication Critical patent/WO2023210099A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power module and a power conversion device.
  • This application claims priority to Japanese Patent Application No. 2022-75437 filed in Japan on April 28, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses a power semiconductor module (power module) in which a groove is formed between terminal block parts in which main circuit terminals are arranged.
  • the grooves ensure a creepage distance between the main circuit terminals, and as a result, the module can be made more compact while ensuring an insulation distance that complies with international standards.
  • Insulation distance consists of two components: creepage distance and clearance distance.
  • the power module may become larger.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a power module and a power conversion device that can suppress enlargement.
  • a power module includes a first conductor having a P terminal at one end having a first main surface and a first back surface facing opposite to the first main surface; has an N terminal at one end having a second main surface facing in the same direction as the first main surface and a second back surface facing opposite to the second main surface, and is connected to the capacitor together with the first conductor; a main terminal portion having a first conductor and a second conductor arranged in parallel with a gap therebetween; a circuit board having a power semiconductor element that converts a DC voltage from the main terminal portion into an AC voltage; and a circuit board having the power semiconductor element.
  • a base plate that is fixed and has a surface that faces the first back surface and the second back surface; and a housing space that is fixed to the surface of the base plate and accommodates the P terminal, the N terminal, and the pair of fastening parts.
  • a first insulator disposed in the housing space and covering the first main surface, the second main surface, and the pair of fastening parts from the side opposite to the base plate while filling the gap; It is equipped with a section and a section.
  • the power conversion device includes the power module, the capacitor, and the positive terminal and the negative terminal extending from the first insulating part, and the power converter is integrally formed with the power module, the capacitor, and the positive terminal and the negative terminal.
  • a second insulating part that covers the terminal from the outside.
  • FIG. 1 is a perspective view showing a schematic configuration of a power conversion device according to an embodiment of the present disclosure.
  • FIG. 1 is a plan view of a power module according to a first embodiment of the present disclosure.
  • 3 is a cross-sectional view taken along line III-III shown in FIG. 2.
  • FIG. 4 is a cross-sectional view of a power module according to a second embodiment of the present disclosure, and is a diagram corresponding to the portion shown in FIG. 3.
  • FIG. 5 is a cross-sectional view of a power module according to a third embodiment of the present disclosure, and is a diagram corresponding to the portion shown in FIG. 4.
  • FIG. Further, it is a sectional view taken along the line VV shown in FIG. 6. It is a plan view of a power module according to a third embodiment of the present disclosure.
  • a power converter is a device that converts DC power into three-phase AC power or the like.
  • the power conversion device of this embodiment includes, for example, an inverter used in a system such as a power plant, an inverter used to drive a motor of an electric vehicle, etc.
  • the power conversion device 100 includes a casing 1, an external input conductor 2, a capacitor 3, a power conversion section 4, an external output conductor 5, and a cooling device 6.
  • the casing 1 forms the outer shell of the power converter 100.
  • the casing 1 in this embodiment is made of metal such as aluminum or synthetic resin, and has a rectangular parallelepiped shape.
  • the casing 1 has two side surfaces arranged back to back to each other. Hereinafter, of these two side surfaces, the side facing one side will be referred to as the "input side side 1a", and the side facing the other side will be referred to as the "output side side 1b".
  • An external input conductor 2 for inputting DC power is drawn out from the input side surface 1a.
  • the external input conductors 2 are a pair of electric conductors (bus bars) that supply DC power supplied from a power system or the like external to the power converter 100 to the capacitor.
  • the external input conductor 2 in this embodiment is made of metal containing copper or the like.
  • One end of the external input conductor 2 is connected to the capacitor 3, and the other end of the external input conductor 2 extends in a direction intersecting the input side surface 1a of the casing 1.
  • the capacitor 3 is a smoothing capacitor that stores charges input from the external input conductor 2 and suppresses voltage fluctuations associated with power conversion.
  • the DC voltage input from the external input conductor 2 is supplied to the power converter 4 via the capacitor 3.
  • the capacitor 3 has a main body portion 3a and a connecting conductor 3b.
  • the main body portion 3a is a portion that mainly functions as the smoothing capacitor described above.
  • the connecting conductor 3b is an electric conductor (bus bar) for transmitting power from the main body 3a to the power converter 4.
  • the connection conductor 3b is made of metal such as copper.
  • the connecting conductor 3b has a positive terminal 3p and a negative terminal 3n.
  • the positive terminal 3p constitutes the positive electrode of the capacitor 3, and is a current path connecting the main body 3a and the positive electrode of the power module 400.
  • the negative terminal 3n constitutes the negative electrode of the capacitor 3, and is a current path connecting the main body 3a and the negative electrode of the power module 400.
  • positive terminals 3p and negative terminals 3n are arranged side by side with an interval between them.
  • One end of each of the positive terminal 3p and the negative terminal 3n is connected to the main body 3a. Note that detailed illustration of the connection state between the positive terminal 3p and the negative terminal 3n and the main body portion 3a is omitted.
  • the other ends of the positive terminal 3p and the negative terminal 3n are connected to the power module 400.
  • fastening holes h1 are formed in the positive terminal 3p and the negative terminal 3n.
  • the space created between the positive terminal 3p and the negative terminal 3n when they are arranged side by side will be referred to as a gap G1.
  • the negative terminal 3n and the positive terminal 3p are arranged in parallel with the gap G1 interposed therebetween.
  • a spatial distance is ensured in the gap G1 so that electric discharge does not occur between the positive terminal 3p and the negative terminal 3n due to the potential difference generated between the positive terminal 3p and the negative terminal 3n.
  • the spatial distance in this embodiment is preferably, for example, 1 mm or more and 10 mm or less.
  • the power converter 4 converts the voltage input from the capacitor 3.
  • the power converter 4 in this embodiment includes three power modules 400 each responsible for outputting U-phase, V-phase, and W-phase output in order to output three-phase AC power. Therefore, the power conversion device 100 in this embodiment is a three-phase inverter including three power modules 400. The configuration of power module 400 will be detailed later.
  • the external output conductor 5 is an electric conductor (bus bar) that supplies the AC power converted by the power conversion unit 4 to a device provided outside the power conversion device 100.
  • the power conversion device 100 in this embodiment includes three external output conductors 5 for U phase, V phase, and W phase, and one of these external output conductors 5 is provided in each power module 400. There is.
  • the external output conductor 5 in this embodiment is made of metal containing copper or the like. One end of each external output conductor 5 is connected to the power module 400, and the other end of each external output conductor 5 extends in a direction intersecting the output side surface 1b of the casing 1. As shown in FIGS. 2 and 3, a fastening hole h2 is formed at one end side (power module 400 side) of the external output conductor 5. Note that the other end of the external output conductor 5 is connected to, for example, a current output wiring, a terminal, or the like (not shown). This makes it possible to output AC power to the outside of the power conversion device 100.
  • the cooling device 6 is a device that mainly cools the power module 400 of the power conversion section 4.
  • the cooling device 6 is provided so as to be stacked on the casing 1, and is fixed and integrated with the casing 1.
  • a liquid refrigerant such as water is introduced into the cooling device 6 from the outside. This liquid refrigerant exchanges heat with the power module 400 and is warmed, thereby cooling the power module 400.
  • the power module 400 is a device that converts input power and outputs the converted power.
  • the power module 400 in this embodiment constitutes a part of the power conversion section 4.
  • the power module 400 includes a base plate 10, a circuit board 20, a main terminal section 30, a main terminal side fastening section 40 (a pair of fastening sections), an output terminal section 50, It includes an output side fastening section 60, a case 70, a first insulating section 80, and a bonding wire Wb.
  • the base plate 10 is a flat member.
  • the base plate 10 has a front surface 10a and a back surface 10b located on the back side of the front surface 10a. That is, the front surface 10a and the back surface 10b of the base plate 10 are parallel to each other and are placed back to back.
  • the back surface 10b of the base plate 10 is fixed to, for example, the cooling device 6 (see FIG. 1) via a bonding material or the like (not shown).
  • a bonding material or the like for example, copper is used for the base plate 10 in this embodiment.
  • the base plate 10 may be made of metal such as aluminum.
  • the circuit board 20 has an insulating plate 21, a front pattern 22, a power semiconductor element 23, and a back pattern 24.
  • the insulating plate 21 has a flat plate shape.
  • the insulating plate 21 has a first surface 21a and a second surface 21b located on the back side of the first surface 21a. That is, the first surface 21a and the second surface 21b of the insulating plate 21 are parallel to each other and are placed back to back.
  • the insulating plate 21 in this embodiment is made of an insulating material such as ceramic. Note that as the insulating material forming the insulating plate 21, in addition to ceramics, paper phenol, paper epoxy, glass composite, glass epoxy, glass polyimide, fluororesin, etc. can be used.
  • the surface pattern 22 is a pattern of copper foil or the like that is formed on the first surface 21a of the insulating plate 21 and spreads in a plane.
  • the surface pattern 22 is formed, for example, by being fixed to the first surface 21a of the insulating plate 21 by bonding or the like and then etching or the like.
  • a plurality of surface patterns 22 are arranged on the first surface 21a of the insulating plate 21. These plurality of surface patterns 22 are arranged adjacent to each other with a gap in the direction in which the insulating plate 21 spreads. In this embodiment, a case will be described as an example in which three surface patterns 22 are arranged on the first surface 21a. Hereinafter, as shown in FIG. 2, for convenience of explanation, these three surface patterns 22 will be referred to as a first surface pattern 221, a second surface pattern 222, and a third surface pattern 223.
  • the first surface pattern 221 and the second surface pattern 222 are patterns for exchanging input and output of DC current with the capacitor 3, and correspond to an inlet portion or an outlet portion of a loop between PNs formed in the surface pattern 22. .
  • An external output conductor 5 is connected to the third surface pattern 223 for outputting the alternating current converted by the power semiconductor element 23 to a load (not shown) provided outside the power conversion device 100.
  • the power semiconductor element 23 is a circuit element that converts power through a switching operation that turns voltage and current on and off.
  • the power semiconductor element 23 is, for example, a switching element such as an IGBT or a MOSFET. When using an IGBT, it is necessary to place a diode in parallel with the IGBT that causes current to flow in the opposite direction, but in this embodiment, as an example, a case where a MOSFET is applied to the power semiconductor is shown, and four power semiconductor elements are used. 23 is connected to the surface pattern 22 of the circuit board 20.
  • the four power semiconductor elements 23 in this embodiment are composed of two first power semiconductor elements 231 and two second power semiconductor elements 232.
  • the first power semiconductor element 231 is connected to the first surface pattern 221.
  • the second power semiconductor element 232 is connected to the third surface pattern 223.
  • the power semiconductor element 23 When the power semiconductor element 23 is a MOSFET, the power semiconductor element 23 has an input surface on which an input terminal (not shown) corresponding to a drain is formed, and an output surface on which an output terminal (not shown) corresponding to a source is formed. and a gate corresponding to a control signal input terminal for controlling switching of the power semiconductor element 23.
  • the input surface of the power semiconductor element 23 is electrically connected to the surface pattern 22 via a bonding material.
  • One end of a bonding wire Wb serving as a conducting wire is electrically connected to the output surface of the power semiconductor element 23.
  • the bonding wire Wb is made of metal such as aluminum. That is, the surface patterns 22 formed on the first surface 21a are electrically connected to each other by wire bonding.
  • the input surface of the first power semiconductor element 231 is connected to the first surface pattern 221.
  • One end of the bonding wire Wb is connected to the output surface of the first power semiconductor element 231 , and the other end of the bonding wire Wb is connected to the third surface pattern 223 .
  • the input surface of the second power semiconductor element 232 is connected to the third surface pattern 223.
  • One end of the bonding wire Wb is connected to the output surface of the second power semiconductor element 232 , and the other end of the bonding wire Wb is connected to the second surface pattern 222 .
  • DC power is input to the first power semiconductor element 231 via the first surface pattern 221, and the second power semiconductor element 232 has a second surface pattern 222 and a second surface pattern 222 and a second power semiconductor.
  • DC power is input through the bonding wire Wb that connects the element 232.
  • the first power semiconductor element 231 and the second power semiconductor element 232 perform a switching operation, the above-mentioned DC power is converted into AC power and output to the third surface pattern 223.
  • a control signal generated by a control section (not shown) provided outside the circuit board 20 is input to the power semiconductor element 23.
  • the power semiconductor element 23 performs switching according to this control signal.
  • the power semiconductor element 23 is an IGBT
  • the power semiconductor element 23 has an input surface corresponding to a collector, an output surface corresponding to an emitter, and a gate corresponding to a control signal input terminal.
  • the main terminal section 30 is an electrical conductor (bus bar) that exchanges DC power between the capacitor 3 and the circuit board 20.
  • the main terminal portion 30 is made of metal such as copper.
  • the main terminal portion 30 has a first conductor 31 as a positive electrode and a second conductor 32 as a negative electrode.
  • the first conductor 31 and the second conductor 32 are arranged side by side with a gap G2 in between.
  • the second conductor 32 is arranged in parallel with the first conductor 31 with the gap G2 interposed therebetween.
  • the first conductor 31 includes a P terminal 310 connected to the positive terminal 3p of the capacitor 3, and a first connecting portion 311 extending from the P terminal 310 integrally with the P terminal 310 and connected to the first surface pattern 221. have. Therefore, the first conductor 31 has a P terminal 310 at one end.
  • the P terminal 310 has a flat plate shape.
  • the P terminal 310 has a first main surface 310a and a first back surface (not shown due to paper limitations) facing opposite to the first main surface 310a.
  • a fastening hole is formed in the P terminal 310, passing through the P terminal 310 and opening in each of the first main surface 310a and the first back surface.
  • the P terminal 310 is arranged so that the fastening hole overlaps the hole h1 formed in the positive terminal 3p. Therefore, the P terminal 310 is arranged to overlap the positive terminal 3p.
  • the first back surface of the P terminal 310 faces the front surface 10a of the base plate 10.
  • the second conductor 32 includes an N terminal 320 connected to the negative terminal 3n of the capacitor 3, and a second connection portion 321 that extends from the N terminal 320 integrally with the N terminal 320 and is connected to the second surface pattern 222. have. Therefore, the second conductor 32 has an N terminal 320 at one end.
  • the N terminal 320 has a flat plate shape.
  • the N terminal 320 has a second main surface 320a facing in the same direction as the first main surface 310a of the P terminal 310, and a second back surface 320b facing opposite to the second main surface 320a.
  • the N terminal 320 is formed with a fastening hole h3 that penetrates the N terminal 320 and opens on each of the second main surface 320a and the second back surface 320b.
  • the N terminal 320 is arranged so that the fastening hole h3 overlaps the hole h1 formed in the negative terminal 3n.
  • a second back surface 320b of the N terminal 320 faces the front surface 10a of the base plate 10.
  • the main terminal-side fastening section 40 is a pair that connects the P terminal 310 of the first conductor 31, the positive terminal 3p of the capacitor 3, the N terminal 320 of the second conductor 32, and the negative terminal 3n of the capacitor 3 to each other. This is a fastening member.
  • the main terminal side fastening portion 40 is formed of metal such as copper.
  • the main terminal side fastening section 40 in this embodiment is composed of a bolt 41 having a head 410 and a threaded section 411 formed integrally with the head 410, and a nut 42.
  • a bolt 41 having a head 410 and a threaded section 411 formed integrally with the head 410, and a nut 42.
  • FIG. 3 of the pair of main terminal side fastening parts 40, the configuration of the main terminal side fastening part 40 that connects the N terminal 320 and the negative electrode side terminal 3n will be explained.
  • the main terminal side fastening section 40 that connects the P terminal 310 and the positive terminal 3p has the same configuration as the main terminal side fastening section 40 that connects the N terminal 320 and the negative terminal 3n, so a description thereof will be omitted.
  • the screw portion 411 is inserted into the hole h1 of the negative terminal 3n and the hole h3 of the N terminal 320, with the head 410 in contact with the negative terminal 3n.
  • the nut 42 is screwed onto the threaded portion 411 of the bolt 41 and abuts the N terminal 320 from the side opposite to the head 410 of the bolt 41 .
  • the negative terminal 3n and the N terminal 320 are integrally fixed.
  • the output terminal section 50 is an electrical conductor (bus bar) that electrically connects the external output conductor 5 and the circuit board 20.
  • the output terminal section 50 is made of metal such as copper.
  • One end of the output terminal section 50 is connected to the third surface pattern 223 on the circuit board 20.
  • a fastening hole h4 is formed at the other end of the output terminal portion 50.
  • the output terminal portion 50 is arranged such that the fastening hole h4 overlaps the hole h2 formed in the external output conductor 5. Therefore, the output terminal section 50 is arranged so as to overlap the external output conductor 5.
  • the output side fastening section 60 is a fastening member that connects the external output conductor 5 and the output terminal section 50.
  • the output side fastening portion 60 is made of metal such as copper.
  • the output side fastening section 60 in this embodiment includes a bolt 61 having a head 610 and a threaded portion 611 formed integrally with the head 610, and a nut 62.
  • the screw portion 611 is inserted into the hole h2 of the external output conductor 5 and the hole h4 of the output terminal portion 50 with the head 610 in contact with the external output conductor 5.
  • the nut 62 is screwed into the threaded portion 611 of the bolt 61 and contacts the output terminal portion 50 from the side opposite to the head 610 of the bolt 61 .
  • the external output conductor 5 and the output terminal portion 50 are fixed integrally.
  • the case 70 is a member that mechanically reinforces the main terminal section 30 and the output terminal section 50 while being fixed to the surface 10a of the base plate 10.
  • the case 70 is made of, for example, a synthetic resin material (insulating material).
  • PPS polyphenylene sulfide
  • the case 70 may be made of a synthetic resin material other than PPS.
  • the case 70 is fixed to the surface 10a of the base plate 10 with, for example, adhesive.
  • the case 70 surrounds the circuit board 20 from the outside while covering the first conductor 31 and the second conductor 32 of the main terminal portion 30 and the output terminal portion 50 from the outside. As shown in FIGS. 2 and 3, the case 70 surrounds the circuit board 20 in a direction along the surface 10a of the base plate 10. Therefore, the case 70 defines a space in which the circuit board 20 is housed together with the base plate 10. In this embodiment, this space in which the circuit board 20 is accommodated is referred to as a "potting space Rp.”
  • the case 70 has a first accommodation space R1 (accommodation space) defined inside that accommodates the P terminal 310 of the first conductor 31, the N terminal 320 of the second conductor 32, and the pair of main terminal side fastening parts 40.
  • a first groove portion 71 is formed, and a second groove portion 72 defines inside a second accommodation space R2 that accommodates the output terminal portion 50 and the output side fastening portion 60. That is, the case 70 has a first accommodation space R1 and a second accommodation space R2.
  • the portion of the first conductor 31 disposed within the first accommodation space R1 is the above-mentioned P terminal 310, and the portion of the second conductor 32 disposed within the first accommodation space R1. is the N terminal 320 mentioned above.
  • the potting space Rp and the first accommodation space R1 and second accommodation space R2 formed in the case 70 are open in the direction away from the surface 10a.
  • the potting space Rp, the first accommodation space R1, and the second accommodation space R2 are separated by the partition wall of the case 70 in the direction in which the surface 10a spreads, and are independent spaces from each other.
  • a first housing groove 71g that can accommodate the threaded part 411 of the bolt 41 in the main terminal side fastening part 40 and the nut 42 is formed in the bottom surface 71b of the first groove part 71. ing.
  • the first back surface of the P terminal 310 in the first conductor 31 and the second back surface 320b of the N terminal 320 in the second conductor 32 are in contact with the bottom surface 71b of the first groove portion 71.
  • the threaded portion 411 of the bolt 41 and the nut 42 in the main terminal side fastening portion 40 are in contact with the inner surface of the first housing groove 71g.
  • a second housing groove 72g that can accommodate the threaded portion 411 of the bolt 41 in the output side fastening portion 60 and the nut 42 is formed in the bottom surface 72b of the second groove portion 72.
  • the output terminal portion 50 is in contact with the bottom surface 72b of the second groove portion 72.
  • the threaded portion 411 of the bolt 41 and the nut 42 in the output side fastening portion 60 are in contact with the inner surface of the second housing groove 72g.
  • the first insulating section 80 is an insulating member disposed within the potting space Rp, within the first accommodation space R1, and within the second accommodation space R2.
  • the potting space Rp, the first accommodation space R1, and the second accommodation space R2 are filled with liquid potting material from the outside (potting), and each space (the potting space Rp, the first accommodation space R1, and the second accommodation space R2 ) to seal exposed parts.
  • the potting material filled in each space hardens over a predetermined period of time, electrically insulating each member in the space and between each member and the space outside the power module 400.
  • silicon gel or epoxy resin can be used as the potting material in this embodiment.
  • synthetic resins other than silicone gel and epoxy resin may be employed as the potting material. Therefore, the first insulating part 80 is formed of this potting material.
  • the first insulating section 80 in the potting space Rp is arranged so as to cover each surface of the circuit board 20, the bonding wire Wb, the first connecting section 311 in the main terminal section 30, and the output terminal section 50. Therefore, the first insulating part 80 in the potting space Rp is arranged to fill the gap G2 between the first connection part 311 of the first conductor 31 and the second connection part 321 of the second conductor 32.
  • the first insulating part 80 in the first accommodation space R1 fills the gap G2 between the P terminal 310 and the N terminal 320, and the first main surface 310a of the P terminal 310 and the second main surface of the N terminal 320 320a, the positive terminal 3p and negative terminal 3n of the connecting conductor 3b, and the bolt 41 of the main terminal fastening portion 40 are covered from the side opposite to the base plate 10.
  • the first insulating section 80 in the second accommodation space R2 covers the output terminal section 50 and the bolt 41 of the output side fastening section 60 from the side opposite to the base plate 10.
  • the first insulating portion formed by filling and hardening the potting material in each space has upper surfaces 81, 82, and 83 that are the liquid level when filled.
  • the upper surface 81 of the first insulating section 80 disposed in the first space and the upper surface 82 of the first insulating section 80 disposed in the second space are the same as those of the first insulating section 80 disposed in the potting space Rp. It is located further away from the surface 10a of the base plate 10 than the upper surface 83.
  • the first insulating part 80 is arranged so that the gap G2 (spatial distance) in the main terminal part 30 is filled. Therefore, compared to the case where no insulating material is placed between the P terminal 310 and the N terminal 320, the discharge that occurs between the P terminal 310 and the N terminal 320 and the discharge that occurs between the N terminal 320 and the P terminal 310 It is possible to suppress the discharge that occurs between the two. That is, by interposing the first insulating portion 80 between the P terminal 310 and the N terminal 320, it is possible to suppress dielectric breakdown between the P terminal 310 and the N terminal 320. Therefore, the gap G2 between the P terminal 310 and the N terminal 320 can be narrowed, and as a result, it is possible to suppress the power module 400 from increasing in size.
  • the first insulating part 80 covers the first main surface 310a, the second main surface 320a, and the pair of main terminal side fastening parts 40 from the side opposite to the base plate 10, so that the first main surface 310a and the second main surface It is possible to suppress dielectric breakdown between the surfaces 320a.
  • the N terminal 320 is affected by the magnetic flux generated from the P terminal 310.
  • an induced current eddy current
  • the P terminal 310 is affected by the magnetic flux generated from the N terminal 320, and an induced current also flows in the P terminal 310.
  • the first conductor 31 and the second conductor 32 when a large current flows through the main terminal portion 30, the first conductor 31 and the second conductor 32 generate heat, and for example, may thermally expand in the direction in which the surface 10a of the base plate 10 spreads.
  • the first insulating part 80 since the first insulating part 80 is interposed between the P terminal 310 and the N terminal 320, the gap G2 is narrowed due to thermal expansion of the P terminal 310 and the N terminal 320, and as a result, these P terminals There is no possibility of dielectric breakdown between the terminal 310 and the N terminal 320.
  • the case 70a is a member that mechanically reinforces the main terminal section 30 and the output terminal section 50 while being fixed to the surface 10a of the base plate 10.
  • the case 70a defines a first accommodation space R1a (accommodation space) inside which accommodates the P terminal 310 of the first conductor 31, the N terminal 320 of the second conductor 32, and the pair of main terminal side fastening parts 40.
  • the first accommodation space R1a in this embodiment is divided into a main surface side space S1 and a back surface side space S2, with the P terminal 310 and the N terminal 320 in the main terminal section 30 as boundaries.
  • the main surface side space S1 and the back surface side space S2 are communicated through the gap G2 between the P terminal 310 and the N terminal 320, and between the P terminal 310 and the N terminal 320 and the inner surface of the first groove portion 71a. There is. Therefore, when the first accommodation space R1a is filled with the potting material, the potting material spreads to the back side space S2 through the above-mentioned portion that communicates the main side space S1 and the back side space S2.
  • the threaded portion 411 of the bolt 41 and the nut 42 in the main terminal side fastening portion 40 are arranged in the back side space S2.
  • the first back surface of the P terminal 310, the second back surface 320b of the N terminal 320, the threaded portion 411 of the bolt 41, and the nut 42 do not contact the inner surface of the first groove portion 71a.
  • the first insulating portion 80a is an insulating member disposed within the potting space Rp, within the first accommodation space R1a, and within the second accommodation space R2.
  • the first insulating part 80a in the first accommodation space R1a fills the gap G2 between the first conductor 31 and the second conductor 32, and the first main surface 310a and the first back surface of the P terminal 310, the N terminal 320, the positive terminal 3p and negative terminal 3n of the connecting conductor 3b, and the bolt 41 and nut 42 of the main terminal fastening section 40 from the outside.
  • the P terminal 310 and N terminal 320 are insulated from each other within the first accommodation space R1a. That is, the P terminal 310 and the N terminal 320 are solidly insulated by the first insulating portion 80a. Therefore, compared to the configuration described in the first embodiment, conduction between the P terminal 310 and the N terminal 320 can be further suppressed. In other words, the gap G2 between the P terminal 310 and the N terminal 320 can be further narrowed.
  • the power conversion device further includes a second insulating section.
  • the second insulating part 7 is an insulator formed integrally with the positive terminal 3p and the negative terminal 3n so as to extend from the first insulating part 80a toward the main body 3a of the capacitor 3. It is a member.
  • the second insulating portion 7 covers the positive terminal 3p and the negative terminal 3n from the outside, filling the gap G1 between the positive terminal 3p and the negative terminal 3n.
  • the second insulating part 7 in this embodiment is formed of a synthetic resin material different from that of the first insulating part 80a.
  • the positive terminal 3p and the negative terminal 3n of the capacitor 3 are insulated from each other. That is, the positive terminal 3p and the negative terminal 3n are solidly insulated by the second insulating portion 7. That is, it is possible to suppress dielectric breakdown between the positive terminal 3p and the negative terminal 3n. Therefore, the gap G1 between the positive terminal 3p and the negative terminal 3n can be narrowed, and as a result, it is possible to suppress the power converter 100 from increasing in size.
  • the power conversion device 100 may be a device that performs power conversion using the power semiconductor element 23, such as a converter or a combination of an inverter and a converter.
  • the power conversion device 100 is a converter
  • an AC voltage is input from an external input power source (not shown) to the external output conductor 5, and the power semiconductor element 23 on the circuit board 20 converts this AC voltage into a DC voltage, and generates power.
  • the structure may be such that the DC voltage from the semiconductor element 23 is outputted to the outside of the power conversion device through the main terminal portion 30 and the connection conductor 3b.
  • the configuration of the third embodiment described with reference to FIGS. 5 and 6 may be applied to the first embodiment. That is, the power conversion device 100 described in the first embodiment may further include the second insulating section 7 described in the third embodiment.
  • the power module 400 includes a first conductor 31 having at one end a P terminal 310 having a first main surface 310a and a first back surface facing opposite to the first main surface 310a. , has an N terminal 320 at one end having a second main surface 320a facing the same direction as the first main surface 310a, and a second back surface 320b facing opposite to the second main surface 320a, and the first conductor 31 and a second conductor 32 connected to the capacitor 3 and arranged in parallel with the first conductor 31 through a gap G2, and converting the DC voltage from the main terminal part 30 into an AC voltage.
  • the first main surface 310a, the second main surface 320a, and the pair of fastening portions are arranged opposite to the base plate 10 with the cases 70 and 70a arranged in the housing space and filling the gap G2. It includes first insulating parts 80, 80a that cover from the side.
  • the power module 400 according to the second aspect is the power module 400 according to the first aspect, in which the first insulating section 80a is connected to the first back surface, the second back surface 320b, and the pair of The fastening portion may be further covered from the base plate 10 side.
  • the P terminal 310 and the N terminal 320 are insulated from each other within the accommodation space (first accommodation space R1, R1a). That is, the P terminal 310 and the N terminal 320 are solidly insulated by the first insulating portion 80a. Therefore, conduction between the P terminal 310 and the N terminal 320 can be further suppressed.
  • the power conversion device 100 includes the power module 400 according to the first aspect or the second aspect, the capacitor 3, and the positive electrode extending from the first insulating part 80a.
  • a second insulating portion 7 is provided which is integrally formed with the side terminal 3p and the negative electrode side terminal 3n and covers the positive electrode side terminal 3p and the negative electrode side terminal 3n from the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)

Abstract

本開示のパワーモジュールは、P端子を一端に有する第一導体と、N端子を一端に有し、第一導体とともにコンデンサに接続され、第一導体とギャップを介して並設された第二導体と、を有する主端子部と、主端子部からの直流電圧を交流電圧に変換するパワー半導体素子を有する回路基板と、パワー半導体素子からの交流電圧を出力する出力端子部と、P端子及びコンデンサの正極側端子、並びに、N端子及びコンデンサの負極側端子を互いに接続する一対の締結部と、回路基板が固定されたベースプレートと、ベースプレートの表面に固定され、P端子、N端子、及び一対の締結部を収容する収容空間を有するケースと、収容空間内に配置され、ギャップを埋めた状態で、P端子の第一主面、N端子の第二主面、及び一対の締結部をベースプレートとは反対側から覆う第一絶縁部と、を備える。

Description

パワーモジュール、及び電力変換装置
 本開示は、パワーモジュール、及び電力変換装置に関する。
 本願は、2022年4月28日に日本に出願された特願2022-75437号について優先権を主張し、その内容をここに援用する。
 例えば特許文献1には、主回路端子が配置される端子台部同士の間に溝部が形成されているパワー半導体モジュール(パワーモジュール)が開示されている。当該溝部により、主回路端子間の沿面距離が確保され、その結果、国際規格に準拠した絶縁距離を確保しながらモジュールのコンパクト化が実現されている。絶縁距離は、沿面距離及び空間距離の二つの要素からなる。
特開2012-5301号公報
 ところで、パワーモジュールの分野では、溝部によって端子間の沿面距離が確保されたとしても、端子間では端子にかかる電圧の大きさに応じた空間距離を確保する必要がある。このため、絶縁距離を確保する以上、端子にかかる電圧によっては、空間距離を大きくとる必要がある。その結果、パワーモジュールが大型化してしまう場合がある。
 本開示は、上記課題を解決するためになされたものであって、大型化を抑制することができるパワーモジュール、及び電力変換装置を提供することを目的とする。
 上記課題を解決するために、本開示に係るパワーモジュールは、第一主面、及び該第一主面とは反対側を向く第一裏面を有するP端子を一端に有する第一導体と、前記第一主面と同じ方向を向く第二主面、及び該第二主面とは反対側を向く第二裏面を有するN端子を一端に有し、前記第一導体とともにコンデンサに接続され、前記第一導体とギャップを介して並設された第二導体と、を有する主端子部と、前記主端子部からの直流電圧を交流電圧に変換するパワー半導体素子を有する回路基板と、前記パワー半導体素子からの交流電圧を出力する出力端子部と、前記P端子及び前記コンデンサの正極側端子、並びに、前記N端子及び前記コンデンサの負極側端子を互いに接続する一対の締結部と、前記回路基板が固定され、前記第一裏面及び前記第二裏面に対向する表面を有するベースプレートと、前記ベースプレートの前記表面に固定され、前記P端子、前記N端子、及び一対の前記締結部を収容する収容空間を有するケースと、前記収容空間内に配置され、前記ギャップを埋めた状態で、前記第一主面、前記第二主面、及び一対の前記締結部を前記ベースプレートとは反対側から覆う第一絶縁部と、を備える。
 本開示に係る電力変換装置は、上記のパワーモジュールと、前記コンデンサと、前記第一絶縁部から延びるように前記正極側端子及び前記負極側端子に一体に形成され、これら正極側端子及び負極側端子を外側から覆う第二絶縁部と、を備える。
 本開示によれば、大型化を抑制することができるパワーモジュール、及び電力変換装置を提供することができる。
本開示の実施形態に係る電力変換装置の概略構成を示す斜視図である。 本開示の第一実施形態に係るパワーモジュールを平面視した時の図である。 図2で示したIII-III線方向の断面図である。 本開示の第二実施形態に係るパワーモジュールの断面図であり、図3で示した部分に対応した図である。 本開示の第三実施形態に係るパワーモジュールの断面図であり、図4で示した部分に対応した図である。また、図6で示したV-V線方向の断面図である。 本開示の第三実施形態に係るパワーモジュールを平面視した時の図である。
 以下、添付図面を参照して、本開示による電力変換装置を実施するための形態を説明する。
[第一実施形態]
(電力変換装置)
 電力変換装置は、直流電力を三相交流電力等に変換する装置である。本実施形態の電力変換装置には、例えば、発電所等の系統で用いられるインバータや、電気自動車等の電動機の駆動に用いられるインバータ等が挙げられる。
 図1に示すように、電力変換装置100は、ケーシング1と、外部入力導体2と、コンデンサ3と、電力変換部4と、外部出力導体5と、冷却装置6とを備えている。
(ケーシング)
 ケーシング1は、電力変換装置100の外殻を成すものである。本実施形態におけるケーシング1は、アルミ等の金属又は合成樹脂等により形成されており、直方体状を成している。ケーシング1は、互いに背合わせとなるように配置されている二つの側面を有している。以下、これら二つの側面のうち、一方側を向く側面を「入力側側面1a」と称し、他方側を向く側面を「出力側側面1b」と称する。入力側側面1aからは、直流電力を入力するための外部入力導体2が引き出されている。
(外部入力導体)
 外部入力導体2は、電力変換装置100の外部の電力系統等から供給される直流電力をコンデンサへ供給する一対の電気導体(バスバー)である。本実施形態における外部入力導体2は、銅等を含む金属により形成されている。外部入力導体2の一端は、コンデンサ3に接続されており、外部入力導体2の他端は、ケーシング1の入力側側面1aと交差する方向に延びている。
(コンデンサ)
 コンデンサ3は、外部入力導体2から入力された電荷を蓄えるとともに、電力変換に伴う電圧変動を抑えるための平滑コンデンサである。外部入力導体2から入力された直流電圧は、コンデンサ3を経由して電力変換部4へ供給される。コンデンサ3は、本体部3aと、接続導体3bとを有している。本体部3aは、主として上述した平滑コンデンサの機能を発揮する部分である。
 接続導体3bは、本体部3aから電力変換部4へ電力を伝えるための電気導体(バスバー)である。接続導体3bは、銅等の金属によって形成されている。接続導体3bは、正極側端子3pと、負極側端子3nとを有している。
 正極側端子3pは、コンデンサ3における正極を成しており、本体部3aとパワーモジュール400における正極とを接続する電流経路である。負極側端子3nは、コンデンサ3における負極を成しており、本体部3aとパワーモジュール400における負極とを接続する電流経路である。
 これら正極側端子3p及び負極側端子3nは、間隔をあけて並んで配置されている。正極側端子3p及び負極側端子3nのそれぞれの一端は、本体部3aに接続されている。なお、正極側端子3p及び負極側端子3nと本体部3aとの接続状態の詳細な図示は省略する。正極側端子3p及び負極側端子3nのそれぞれの他端は、パワーモジュール400に接続されている。
 図2及び図3に示すように、正極側端子3p及び負極側端子3nには、締結用の孔h1が形成されている。
 以下、正極側端子3p及び負極側端子3nが並んで配置されることによって両者の間に生じる間隔をギャップG1と称する。言い換えれば、負極側端子3nは、正極側端子3pとギャップG1を介して並設されている。正極側端子3pと負極側端子3nの間に生じる電位差により、正極側端子3pと負極側端子3nの間で放電が発生しないように、ギャップG1には空間距離(絶縁距離)が確保されている。本実施形態における空間距離は、例えば、1mm以上、10mm以下であることが望ましい。
(電力変換部)
 図1に示すように、電力変換部4は、コンデンサ3から入力された電圧を変換する。本実施形態における電力変換部4は、三相交流電力を出力するために、U相、V相、及びW相用の出力をそれぞれ担当する三つのパワーモジュール400を有している。したがって、本実施形態における電力変換装置100は、三つのパワーモジュール400を備える3相インバータである。パワーモジュール400の構成は後に詳述する。
(外部出力導体)
 外部出力導体5は、電力変換部4によって変換された交流電力を、電力変換装置100の外部に設けられている装置へ供給する電気導体(バスバー)である。本実施形態における電力変換装置100は、U相、V相、及びW相用の三つの外部出力導体5を備えており、これら外部出力導体5は、各パワーモジュール400に一つずつ設けられている。
 本実施形態における外部出力導体5は、銅等を含む金属により形成されている。各外部出力導体5の一端は、パワーモジュール400に接続されており、外部出力導体5の他端は、ケーシング1の出力側側面1bと交差する方向に延びている。図2及び図3に示すように、外部出力導体5における一端側(パワーモジュール400側)には、締結用の孔h2が形成されている。なお、外部出力導体5における他端側には、例えば、電流出力用の配線や端子等(図示省略)が接続される。これによって、電力変換装置100の外部へ交流電力を出力することが可能となる。
(冷却装置)
 図1に示すように、冷却装置6は、主として電力変換部4のパワーモジュール400を冷却する装置である。冷却装置6は、ケーシング1に積層されるように設けられており、ケーシング1に固定され一体化されている。冷却装置6には、例えば、外部から水等の液冷媒が導入される。この液冷媒がパワーモジュール400と熱交換して温められることで、パワーモジュール400を冷却する。
 以下、本実施形態における電力変換部4が有するパワーモジュール400の構成を説明する。
(パワーモジュール)
 パワーモジュール400は、入力された電力を変換して出力する装置である。本実施形態におけるパワーモジュール400は、電力変換部4の一部を構成している。図2及び図3に示すように、パワーモジュール400は、ベースプレート10と、回路基板20と、主端子部30と、主端子側締結部40(一対の締結部)と、出力端子部50と、出力側締結部60と、ケース70と、第一絶縁部80と、ボンディングワイヤWbとを備えている。
(ベースプレート)
 ベースプレート10は、平板状を成す部材である。ベースプレート10は、表面10aと、この表面10aの裏側に位置する裏面10bを有している。即ち、ベースプレート10の表面10aと裏面10bとは互いに平行をなした状態で背合わせになっている。
 ベースプレート10の裏面10bは、接合材等(図示省略)を介して、例えば冷却装置6(図1参照)に固定されている。本実施形態におけるベースプレート10には、例えば銅が採用される。なお、ベースプレート10には、アルミニウム等の金属が採用されてもよい。
(回路基板)
 回路基板20は、絶縁板21と、表面パターン22と、パワー半導体素子23と、裏面パターン24とを有している。
 絶縁板21は、平板状を成している。絶縁板21は、第一面21aと、この第一面21aの裏側に位置する第二面21bとを有している。即ち、絶縁板21の第一面21aと第二面21bとは互いに平行をなした状態で背合わせになっている。絶縁板21の第二面21bには、銅箔等のパターンである裏面パターン24が一面に形成されている。当該裏面パターン24は、接合材Sを介してベースプレート10の表面10aの中央に固定されている。
 本実施形態における絶縁板21は、例えばセラミック等の絶縁材料により形成されている。なお、絶縁板21を形成する絶縁材料としては、セラミック以外にも、紙フェノール、紙エポキシ、ガラスコンポジット、ガラスエポキシ、ガラスポリイミド、フッ素樹脂等を採用することができる。
 表面パターン22は、絶縁板21の第一面21aに形成された平面状に広がる銅箔等のパターンである。表面パターン22は、例えば、絶縁板21の第一面21aに接合等で固定された後、エッチング等がなされることにより形成される。
 表面パターン22は、絶縁板21の第一面21a上に複数配置されている。これら複数の表面パターン22は、絶縁板21が広がる方向で隙間を介して互いに隣接配置されている。本実施形態では、三つの表面パターン22が第一面21a上に配置されている場合を一例として説明する。以下、図2に示すように、説明の便宜上、これら三つの表面パターン22を第一表面パターン221、第二表面パターン222、及び第三表面パターン223と称する。
 第一表面パターン221及び第二表面パターン222は、コンデンサ3と直流電流の入出力をやり取りするためのパターンであり、表面パターン22に形成されるPN間のループにおける入口部分もしくは出口部分に相当する。第三表面パターン223には、パワー半導体素子23によって変換された交流電流を電力変換装置100の外部に設けられた負荷(図示省略)へ出力するための外部出力導体5が接続されている。
 パワー半導体素子23は、電圧や電流をオンオフするスイッチング動作により電力を変換する回路素子である。パワー半導体素子23は、例えば、IGBTやMOSFET等のスイッチング素子である。IGBTを使用する場合はIGBTと逆方向へ電流を流すダイオードを並列配置する必要があるが、本実施形態では、一例として、パワー半導体にMOSFETを適用した場合を示しており、四つのパワー半導体素子23が回路基板20の表面パターン22に接続されている。
 本実施形態における四つのパワー半導体素子23は、二つの第一パワー半導体素子231と、二つの第二パワー半導体素子232とによって構成されている。第一パワー半導体素子231は、第一表面パターン221に接続されている。第二パワー半導体素子232は、第三表面パターン223に接続されている。
 パワー半導体素子23がMOSFETの場合、パワー半導体素子23は、ドレインに相当する入力用端子(図示省略)が形成された入力面と、ソースに相当する出力用端子(図示省略)が形成された出力面と、パワー半導体素子23のスイッチングを制御するための制御信号入力用端子に相当するゲートとを有する。
 パワー半導体素子23の入力面は、表面パターン22に接合材を介して電気的に接続されている。パワー半導体素子23の出力面には、導線としてのボンディングワイヤWbの一端が電気的に接続されている。ボンディングワイヤWbは、アルミニウム等の金属によって形成されている。即ち、第一面21aに形成された表面パターン22同士は、ワイヤボンディングによって電気的に接続されている。
 第一パワー半導体素子231の入力面は、第一表面パターン221に接続されている。一端が第一パワー半導体素子231の出力面に接続されたボンディングワイヤWbの他端は、第三表面パターン223に接続されている。第二パワー半導体素子232の入力面は、第三表面パターン223に接続されている。一端が第二パワー半導体素子232の出力面に接続されたボンディングワイヤWbの他端は、第二表面パターン222に接続されている。
 第一パワー半導体素子231には、第一表面パターン221を介して直流電力が入力され、第二パワー半導体素子232には、第二表面パターン222、及びこの第二表面パターン222と第二パワー半導体素子232とを接続するボンディングワイヤWbを介して直流電力が入力される。第一パワー半導体素子231と第二パワー半導体素子232とがスイッチング動作を行うことにより、上記の直流電力が交流電力へ変換され第三表面パターン223へ出力される。
 パワー半導体素子23には、回路基板20の外部に設けられた制御部(図示省略)によって生成された制御信号が入力される。パワー半導体素子23は、この制御信号に従ってスイッチングを行う。なお、パワー半導体素子23がIGBTの場合、パワー半導体素子23は、コレクタに相当する入力面と、エミッタに相当する出力面と、制御信号入力用端子に相当するゲートとを有する。
(主端子部)
 図2及び図3に示すように、主端子部30は、コンデンサ3と回路基板20との間で直流電力をやり取りする電気導体(バスバー)である。主端子部30は、銅等の金属によって形成されている。主端子部30は、正極としての第一導体31と、負極としての第二導体32とを有している。
 これら第一導体31及び第二導体32は、ギャップG2を介して並んで配置されている。言い換えれば、第二導体32は、第一導体31とギャップG2を介して並設されている。
 第一導体31は、コンデンサ3の正極側端子3pに接続されたP端子310と、このP端子310と一体にP端子310から延び、第一表面パターン221に接続された第一接続部311とを有している。したがって、第一導体31は、P端子310を一端に有している。
 P端子310は、平板状を成している。P端子310は、第一主面310a、及びこの第一主面310aとは反対側を向く第一裏面(紙面の都合上、図示省略)を有している。P端子310には、このP端子310を貫くとともに第一主面310a及び第一裏面のそれぞれに開口する締結用の孔が形成されている。
 P端子310は、この締結用の孔が、正極側端子3pに形成された孔h1に重なるように配置されている。したがって、P端子310は、正極側端子3pと重なった状態で配置されている。P端子310の第一裏面は、ベースプレート10の表面10aに対向している。
 第二導体32は、コンデンサ3の負極側端子3nに接続されたN端子320と、このN端子320と一体にN端子320から延び、第二表面パターン222に接続された第二接続部321とを有している。したがって、第二導体32は、N端子320を一端に有している。
 N端子320は、平板状を成している。N端子320は、P端子310の第一主面310aと同じ方向を向く第二主面320a、及びこの第二主面320aとは反対側を向く第二裏面320bを有している。図3に示すように、N端子320には、このN端子320を貫くとともに第二主面320a及び第二裏面320bのそれぞれに開口する締結用の孔h3が形成されている。
 N端子320は、この締結用の孔h3が、負極側端子3nに形成された孔h1に重なるように配置されている。N端子320の第二裏面320bは、ベースプレート10の表面10aに対向している。
(主端子側締結部)
 主端子側締結部40は、第一導体31のP端子310、及びコンデンサ3の正極側端子3p、並びに、第二導体32のN端子320、及びコンデンサ3の負極側端子3nを互いに接続する一対の締結部材である。主端子側締結部40は、銅等の金属によって形成されている。
 本実施形態における主端子側締結部40は、頭部410及びこの頭部410と一体に形成されたネジ部411を有するボルト41と、ナット42とによって構成されている。以下、図3に示すように、一対の主端子側締結部40のうち、N端子320及び負極側端子3nを接続する主端子側締結部40の構成を説明する。P端子310及び正極側端子3pを接続する主端子側締結部40は、N端子320及び負極側端子3nを接続する主端子側締結部40と同様の構成であるため、その説明を省略する。
 ネジ部411は、頭部410が負極側端子3nに当接した状態で、負極側端子3nの孔h1及びN端子320の孔h3に挿通されている。ナット42は、ボルト41のネジ部411に螺合した状態で、ボルト41の頭部410とは反対側からN端子320に当接している。これらボルト41及びナット42に挟まれることによって、負極側端子3nとN端子320とは一体に固定されている。
(出力端子部)
 出力端子部50は、外部出力導体5と回路基板20とを電気的に接続する電気導体(バスバー)である。出力端子部50は、銅等の金属によって形成されている。出力端子部50は、一端が回路基板20における第三表面パターン223に接続されている。出力端子部50における他端側には、締結用の孔h4が形成されている。出力端子部50は、この締結用の孔h4が外部出力導体5に形成された孔h2に重なるように配置されている。したがって、出力端子部50は、外部出力導体5と重なった状態で配置されている。
(出力側締結部)
 出力側締結部60は、外部出力導体5及び出力端子部50を接続する締結部材である。出力側締結部60は、銅等の金属によって形成されている。本実施形態における出力側締結部60は、頭部610及びこの頭部610と一体に形成されたネジ部611を有するボルト61と、ナット62とによって構成されている。
 ネジ部611は、頭部610が外部出力導体5に当接した状態で、外部出力導体5の孔h2及び出力端子部50の孔h4に挿通されている。ナット62は、ボルト61のネジ部611に螺合した状態で、ボルト61の頭部610とは反対側から出力端子部50に当接している。これらボルト61及びナット62に挟まれることによって、外部出力導体5と出力端子部50とは一体に固定されている。
(ケース)
 ケース70は、ベースプレート10の表面10aに固定された状態で、主端子部30及び出力端子部50を機械的に補強する部材である。ケース70は、例えば、合成樹脂材料(絶縁材料)等により形成されている。
 本実施形態におけるケース70を形成する材料には、例えば、PPS(ポリフェニレンサルファイド)を採用することができる。なお、PPS以外の合成樹脂材料を、ケース70に採用してもよい。ケース70は、ベースプレート10の表面10aに、例えば接着剤等によって固定されている。
 ケース70は、主端子部30の第一導体31及び第二導体32、並びに出力端子部50を外側から覆った状態で、回路基板20を外側から囲っている。図2及び図3に示すように、ケース70は、ベースプレート10の表面10aに沿う方向で、回路基板20を周囲から囲むケースを成している。したがって、ケース70は、ベースプレート10とともに回路基板20が収容される空間を画成している。本実施形態では、回路基板20が収容されるこの空間を「ポッティング空間Rp」と称する。
 さらに、ケース70には、第一導体31のP端子310、第二導体32のN端子320、及び一対の主端子側締結部40を収容する第一収容空間R1(収容空間)を内側に画成する第一溝部71と、出力端子部50及び出力側締結部60を収容する第二収容空間R2を内側に画成する第二溝部72と、が形成されている。即ち、ケース70は、第一収容空間R1と第二収容空間R2を有している。
 本実施形態では、第一導体31のうち第一収容空間R1内に配置されている部分が上述したP端子310とされ、第二導体32のうち第一収容空間R1内に配置されている部分が上述したN端子320とされている。
 上記ポッティング空間Rpと、ケース70に形成されたこれら第一収容空間R1及び第二収容空間R2とは、表面10aから離れる方向に向かって開口している。ポッティング空間Rp、第一収容空間R1、及び第二収容空間R2は、ケース70の隔壁によって表面10aが広がる方向で隔絶されており、互いに独立した空間を成している。
 ここで、図3に示すように、第一溝部71における底面71bには、主端子側締結部40におけるボルト41のネジ部411と、ナット42とを収容可能な第一収容溝71gが形成されている。第一導体31におけるP端子310の第一裏面、及び第二導体32におけるN端子320の第二裏面320bは、第一溝部71の底面71bに当接している。また、主端子側締結部40におけるボルト41のネジ部411とナット42とは、第一収容溝71gの内面に当接している。
 第二溝部72における底面72bには、出力側締結部60におけるボルト41のネジ部411と、ナット42とを収容可能な第二収容溝72gが形成されている。出力端子部50は、第二溝部72の底面72bに当接している。また、出力側締結部60におけるボルト41のネジ部411とナット42とは、第二収容溝72gの内面に当接している。
(第一絶縁部)
 第一絶縁部80は、ポッティング空間Rp内、第一収容空間R1内、及び第二収容空間R2内に配置されている絶縁部材である。ポッティング空間Rp、第一収容空間R1、及び第二収容空間R2には、外部から液状のポッティング材が充填され(ポッティング)、各空間(ポッティング空間Rp、第一収容空間R1、第二収容空間R2)内で露出する部材を封止する。
 各空間内に充填されたポッティング材は、所定の時間がかけられることで硬化し、空間内における各部材間、及び各部材とパワーモジュール400外部の空間とを電気的に絶縁する。本実施形態におけるポッティング材には、例えばシリコンゲルやエポキシ樹脂を用いることができる。なお、シリコンゲルやエポキシ樹脂以外の合成樹脂を、ポッティング材として採用してもよい。したがって、第一絶縁部80は、このポッティング材によって形成されている。
 ポッティング空間Rp内における第一絶縁部80は、回路基板20、ボンディングワイヤWb、主端子部30における第一接続部311、出力端子部50のそれぞれの表面を覆うように配置されている。したがって、ポッティング空間Rp内における第一絶縁部80は、第一導体31の第一接続部311及び第二導体32の第二接続部321の間のギャップG2を埋めるように配置されている。
 第一収容空間R1内における第一絶縁部80は、P端子310及びN端子320の間のギャップG2を埋めた状態で、P端子310の第一主面310a、N端子320の第二主面320a、接続導体3bの正極側端子3p及び負極側端子3n、並びに主端子側締結部40のボルト41をベースプレート10とは反対側から覆っている。第二収容空間R2内における第一絶縁部80は、出力端子部50、及び出力側締結部60のボルト41をベースプレート10とは反対側から覆っている。
 ここで、各空間内にポッティング材が充填されるとともに硬化されることで形成された第一絶縁部は、充填された際の液面である上面81,82,83を有している。第一空間内に配置された第一絶縁部80の上面81、及び第二空間内に配置された第一絶縁部80の上面82は、ポッティング空間Rp内に配置された第一絶縁部80の上面83よりもベースプレート10の表面10aから離れた位置にある。
(作用・効果)
 上記構成によれば、主端子部30におけるギャップG2(空間距離)が埋まるように第一絶縁部80が配置される。このため、P端子310とN端子320との間に絶縁材料が配置されない場合と比較して、P端子310とN端子320との間で発生する放電、及び、N端子320とP端子310との間で発生する放電を抑制することができる。つまり、P端子310とN端子320との間に第一絶縁部80が介在することで、P端子310及びN端子320間で絶縁破壊してしまうことを抑制することができる。したがって、P端子310及びN端子320間のギャップG2を狭めることができ、その結果、パワーモジュール400が大型化することを抑制することができる。
 また、第一絶縁部80が第一主面310a、第二主面320a、及び一対の主端子側締結部40をベースプレート10とは反対側から覆うことで、第一主面310a及び第二主面320a間で絶縁破壊してしまうことを抑制することができる。
 また、P端子310内に電流が流れた際、N端子320がP端子310から発生する磁束の影響を受ける。この際、N端子320には、磁束の大きさに応じた誘導電流(渦電流)が流れる。同様に、N端子320内に電流が流れた際、P端子310がN端子320から発生する磁束の影響を受け、P端子310にも誘導電流が流れる。
 これら誘導電流は、P端子310及びN端子320に生じた磁束を打ち消す磁束をP端子310及びN端子320のそれぞれから発生させる。つまり、P端子310及びN端子320間の空間距離を狭めることにより、効果的に磁束を打ち消し合わせることができる。したがって、主端子部30に生じる寄生インダクタンスを低減させることができる。
 また、主端子部30に大電流が流れた際、第一導体31及び第二導体32は発熱し、例えば、ベースプレート10の表面10aが広がる方向に熱膨張する場合がある。上記構成によれば、P端子310とN端子320との間に第一絶縁部80が介在するため、P端子310及びN端子320の熱膨張に伴ってギャップG2が狭まった結果、これらP端子310及びN端子320間で絶縁破壊してしまうことがない。
[第二実施形態]
 次に、本開示に係る電力変換装置の第二実施形態について図4を参照して説明する。なお、以下に説明する第二実施形態では、上記の第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。第二実施形態では、パワーモジュールにおけるケース及び第一絶縁部の構成が、第一実施形態で説明した構成と異なっている。
(ケース)
 ケース70aは、ベースプレート10の表面10aに固定された状態で、主端子部30及び出力端子部50を機械的に補強する部材である。ケース70aには、第一導体31のP端子310、第二導体32のN端子320、及び一対の主端子側締結部40を収容する第一収容空間R1a(収容空間)を内側に画成する第一溝部71aと、出力端子部50及び出力側締結部60を収容する第二収容空間R2を内側に画成する第二溝部72とが形成されている。
 本実施形態における第一収容空間R1aは、主端子部30におけるP端子310及びN端子320を境に、主面側空間S1と裏面側空間S2とに区画されている。これら主面側空間S1及び裏面側空間S2は、P端子310とN端子320との間のギャップG2や、これらP端子310及びN端子320と第一溝部71aの内面との間を通じて連通されている。したがって、第一収容空間R1a内にポッティング材が充填された際、主面側空間S1と裏面側空間S2とを連通させている上記箇所を通じて裏面側空間S2にポッティング材が行きわたる。
 主端子側締結部40におけるボルト41のネジ部411及びナット42は、裏面側空間S2に配置されている。本実施形態では、P端子310の第一裏面、N端子320の第二裏面320b、ボルト41のネジ部411、及びナット42は、第一溝部71aの内面に当接していない。
(第一絶縁部)
 第一絶縁部80aは、ポッティング空間Rp内、第一収容空間R1a内、及び第二収容空間R2内に配置されている絶縁部材である。第一収容空間R1a内における第一絶縁部80aは、第一導体31及び第二導体32の間のギャップG2を埋めた状態で、P端子310の第一主面310a及び第一裏面、N端子320の第二主面320a及び第二裏面320b、接続導体3bの正極側端子3p及び負極側端子3n、並びに主端子側締結部40のボルト41及びナット42を外側から覆っている。
(作用・効果)
 上記構成によれば、第一絶縁部80aがP端子310の第一裏面、N端子320の第二裏面320b、及び一対の主端子側締結部40をベースプレート10側からも覆うため、P端子310及びN端子320が第一収容空間R1a内で互いに絶縁される。即ち、P端子310及びN端子320が第一絶縁部80aによって固体絶縁される。したがって、第一実施形態で説明した構成と比較して、P端子310及びN端子320間で導通してしまうことをより抑制することができる。つまり、P端子310及びN端子320間のギャップG2をより狭めることができる。
[第三実施形態]
 次に、本開示に係る電力変換装置の第三実施形態について図5及び図6を参照して説明する。なお、以下に説明する第三実施形態では、上記の第一実施形態及び第二実施形態と共通する構成については図中に同符号を付してその説明を省略する。第三実施形態では、電力変換装置が第二絶縁部を更に備えている。
(第二絶縁部)
 第二絶縁部7は、第一絶縁部80aと一体にこの第一絶縁部80aからコンデンサ3の本体部3aに向かって延びるように正極側端子3p及び負極側端子3nに一体に形成された絶縁部材である。第二絶縁部7は、正極側端子3p及び負極側端子3nの間のギャップG1を埋めた状態で、これら正極側端子3p及び負極側端子3nを外側から覆っている。本実施形態における第二絶縁部7は、第一絶縁部80aとは異なる合成樹脂材料によって形成されている。
(作用・効果)
 上記構成によれば、コンデンサ3における正極側端子3p及び負極側端子3nが互いに絶縁される。即ち、正極側端子3p及び負極側端子3nが第二絶縁部7によって固体絶縁される。つまり、正極側端子3p及び負極側端子3n間で絶縁破壊してしまうことを抑制することができる。したがって、正極側端子3p及び負極側端子3n間のギャップG1を狭めることができ、その結果、電力変換装置100が大型化することを抑制することができる。
(その他の実施形態)
 以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成は実施形態の構成に限られるものではなく、本開示の要旨を逸脱しない範囲内での構成の付加、省略、置換、及びその他の変更が可能である。
 なお、上記実施形態では、電力変換装置100としてインバータを一例にして説明したが、電力変換装置100はインバータに限定されることはない。電力変換装置100は、例えば、コンバータや、インバータとコンバータとを組み合わせたもの等、パワー半導体素子23により電力変換を行う装置であってもよい。電力変換装置100がコンバータの場合は、外部の入力電源(図示省略)から外部出力導体5に交流電圧が入力されて回路基板20におけるパワー半導体素子23がこの交流電圧を直流電圧に変換し、パワー半導体素子23からの直流電圧が主端子部30及び接続導体3bを通じて電力変換装置の外部へ出力される構成であってもよい。
 また、図5及び図6を参照して説明した第三実施形態の構成は、第一実施形態に適用してもよい。即ち、第一実施形態で説明した電力変換装置100が、第三実施形態で説明した第二絶縁部7を更に備えている構成であってもよい。
[付記]
 各実施形態に記載のパワーモジュール、及び電力変換装置は、例えば以下のように把握される。
 (1)第1の態様に係るパワーモジュール400は、第一主面310a、及び該第一主面310aとは反対側を向く第一裏面を有するP端子310を一端に有する第一導体31と、前記第一主面310aと同じ方向を向く第二主面320a、及び該第二主面320aとは反対側を向く第二裏面320bを有するN端子320を一端に有し、前記第一導体31とともにコンデンサ3に接続され、前記第一導体31とギャップG2を介して並設された第二導体32と、を有する主端子部30と、前記主端子部30からの直流電圧を交流電圧に変換するパワー半導体素子23を有する回路基板20と、前記パワー半導体素子23からの交流電圧を出力する出力端子部50と、前記P端子310及び前記コンデンサ3の正極側端子3p、並びに、前記N端子320及び前記コンデンサ3の負極側端子3nを互いに接続する一対の締結部(主端子側締結部40)と、前記回路基板20が固定され、前記第一裏面及び前記第二裏面320bに対向する表面10aを有するベースプレート10と、前記ベースプレート10の前記表面10aに固定され、前記P端子310、前記N端子320、及び一対の前記締結部を収容する収容空間(第一収容空間R1,R1a)を有するケース70,70aと、前記収容空間内に配置され、前記ギャップG2を埋めた状態で、前記第一主面310a、前記第二主面320a、及び一対の前記締結部を前記ベースプレート10とは反対側から覆う第一絶縁部80,80aと、を備える。
 これにより、P端子310とN端子320との間に絶縁材料が配置されない場合と比較して、P端子310及びN端子320間で発生する放電を抑制することができる。つまり、P端子310とN端子320との間に第一絶縁部80,80aが介在することで、P端子310及びN端子320間で絶縁破壊してしまうことを抑制することができる。したがって、P端子310及びN端子320間のギャップG2を狭めることができる。
 (2)第2の態様に係るパワーモジュール400は、前記第1の態様に係るパワーモジュール400であって、前記第一絶縁部80aは、前記第一裏面、前記第二裏面320b、及び一対の前記締結部を前記ベースプレート10側から更に覆ってもよい。
 これにより、P端子310及びN端子320が収容空間(第一収容空間R1,R1a)内で互いに絶縁される。即ち、P端子310及びN端子320が第一絶縁部80aによって固体絶縁される。したがって、P端子310及びN端子320間で導通してしまうことをより抑制することができる。
 (3)第3の態様に係る電力変換装置100は、前記第1の態様又は前記第2の態様に係るパワーモジュール400と、前記コンデンサ3と、前記第一絶縁部80aから延びるように前記正極側端子3p及び前記負極側端子3nに一体に形成され、これら正極側端子3p及び負極側端子3nを外側から覆う第二絶縁部7と、を備える。
 これにより、正極側端子3p及び負極側端子3n間で導通してしまうことを抑制することができる。したがって、P端子310に接続される正極側端子3p、及びN端子320に接続される負極側端子3n間のギャップを狭めることができる。
 本開示によれば、大型化を抑制することができるパワーモジュール、及び電力変換装置を提供することができる。
1…ケーシング 1a…入力側側面 1b…出力側側面 2…外部入力導体 3…コンデンサ 3a…本体部 3b…接続導体 3n…負極側端子 3p…正極側端子 4…電力変換部 5…外部出力導体 6…冷却装置 7…第二絶縁部 10…ベースプレート 10a…表面 10b…裏面 20…回路基板 21…絶縁板 21a…第一面 21b…第二面 22…表面パターン 23…パワー半導体素子 24…裏面パターン 30…主端子部 31…第一導体 32…第二導体 40…主端子側締結部 41,61…ボルト 42,62…ナット 50…出力端子部 60…出力側締結部 70,70a…ケース 71,71a…第一溝部 71b,72b…底面 71g…第一収容溝 72…第二溝部 72g…第二収容溝 80,80a…第一絶縁部 81,82,83…上面 100…電力変換装置 221…第一表面パターン 222…第二表面パターン 223…第三表面パターン 231…第一パワー半導体素子 232…第二パワー半導体素子 310…P端子 310a…第一主面 311…第一接続部 320…N端子 320a…第二主面 320b…第二裏面 321…第二接続部 400…パワーモジュール 410,610…頭部 411,611…ネジ部 G1,G2…ギャップ h1,h2,h3,h4…孔 R1,R1a…第一収容空間 R2…第二収容空間 Rp…ポッティング空間 S…接合材 S1…主面側空間 S2…裏面側空間 Wb…ボンディングワイヤ

Claims (3)

  1.  第一主面、及び該第一主面とは反対側を向く第一裏面を有するP端子を一端に有する第一導体と、
     前記第一主面と同じ方向を向く第二主面、及び該第二主面とは反対側を向く第二裏面を有するN端子を一端に有し、前記第一導体とともにコンデンサに接続され、前記第一導体とギャップを介して並設された第二導体と、
    を有する主端子部と、
     前記主端子部からの直流電圧を交流電圧に変換するパワー半導体素子を有する回路基板と、
     前記パワー半導体素子からの交流電圧を出力する出力端子部と、
     前記P端子及び前記コンデンサの正極側端子、並びに、前記N端子及び前記コンデンサの負極側端子を互いに接続する一対の締結部と、
     前記回路基板が固定され、前記第一裏面及び前記第二裏面に対向する表面を有するベースプレートと、
     前記ベースプレートの前記表面に固定され、前記P端子、前記N端子、及び一対の前記締結部を収容する収容空間を有するケースと、
     前記収容空間内に配置され、前記ギャップを埋めた状態で、前記第一主面、前記第二主面、及び一対の前記締結部を前記ベースプレートとは反対側から覆う第一絶縁部と、
     を備えるパワーモジュール。
  2.  前記第一絶縁部は、前記第一裏面、前記第二裏面、及び一対の前記締結部を前記ベースプレート側から更に覆う
     請求項1に記載のパワーモジュール。
  3.  請求項1又は2に記載のパワーモジュールと、
     前記コンデンサと、
     前記第一絶縁部から延びるように前記正極側端子及び前記負極側端子に一体に形成され、これら正極側端子及び負極側端子を外側から覆う第二絶縁部と、
     を備える電力変換装置。
PCT/JP2023/004097 2022-04-28 2023-02-08 パワーモジュール、及び電力変換装置 WO2023210099A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-075437 2022-04-28
JP2022075437A JP2023164102A (ja) 2022-04-28 2022-04-28 パワーモジュール、及び電力変換装置

Publications (1)

Publication Number Publication Date
WO2023210099A1 true WO2023210099A1 (ja) 2023-11-02

Family

ID=88518341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004097 WO2023210099A1 (ja) 2022-04-28 2023-02-08 パワーモジュール、及び電力変換装置

Country Status (2)

Country Link
JP (1) JP2023164102A (ja)
WO (1) WO2023210099A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157066A1 (ja) * 2012-04-16 2013-10-24 三菱電機株式会社 回転電機
JP2020124071A (ja) * 2019-01-31 2020-08-13 株式会社明電舎 電力変換装置
JP2020143594A (ja) * 2019-03-05 2020-09-10 サンデン・オートモーティブコンポーネント株式会社 電動圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157066A1 (ja) * 2012-04-16 2013-10-24 三菱電機株式会社 回転電機
JP2020124071A (ja) * 2019-01-31 2020-08-13 株式会社明電舎 電力変換装置
JP2020143594A (ja) * 2019-03-05 2020-09-10 サンデン・オートモーティブコンポーネント株式会社 電動圧縮機

Also Published As

Publication number Publication date
JP2023164102A (ja) 2023-11-10

Similar Documents

Publication Publication Date Title
JP5206822B2 (ja) 半導体装置
KR101748639B1 (ko) 전력 변환 장치
JP3793407B2 (ja) 電力変換装置
JP6233507B2 (ja) パワー半導体モジュールおよび複合モジュール
JP3526291B2 (ja) コンデンサモジュールおよびそれを用いた半導体装置
EP3358736B1 (en) Power conversion device
US10027094B2 (en) Power module, power converter and drive arrangement with a power module
TW567513B (en) Switching circuit
JP2020022357A (ja) バスバーデバイスとパワーコンバータハウジングとを備えたシステム、その生産方法、車両用パワーコンバータ、および車両
JP4538474B2 (ja) インバータ装置
US11464141B2 (en) Power converter device for a vehicle, and vehicle
WO2019189450A1 (ja) 電力変換装置
JP3673776B2 (ja) 半導体モジュール及び電力変換装置
US6295201B1 (en) Bus bar having embedded switching device
JP2004335625A (ja) 半導体モジュール及びそれを用いた電力変換装置
WO2023210099A1 (ja) パワーモジュール、及び電力変換装置
JP4038455B2 (ja) 半導体装置
WO2024004259A1 (ja) 電力変換装置
WO2024004266A1 (ja) 電力変換装置
WO2024004267A1 (ja) パワーモジュール用コンデンサ、及びこれを備えている電力変換装置
JP6544222B2 (ja) 半導体モジュール及び半導体モジュールユニット
WO2023210098A1 (ja) 電力変換装置
WO2023053873A1 (ja) パワーモジュール
WO2023286479A1 (ja) 電力変換装置
CN113328605B (zh) 功率转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795847

Country of ref document: EP

Kind code of ref document: A1