WO2023243238A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2023243238A1
WO2023243238A1 PCT/JP2023/016666 JP2023016666W WO2023243238A1 WO 2023243238 A1 WO2023243238 A1 WO 2023243238A1 JP 2023016666 W JP2023016666 W JP 2023016666W WO 2023243238 A1 WO2023243238 A1 WO 2023243238A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
conversion device
power conversion
sealing surface
circuit board
Prior art date
Application number
PCT/JP2023/016666
Other languages
English (en)
French (fr)
Inventor
亨太 浅井
明博 難波
典男 石塚
健 徳山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023243238A1 publication Critical patent/WO2023243238A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device, and particularly to a power conversion device that supplies alternating current to a drive motor of a hybrid vehicle or an electric vehicle.
  • a power module of a power conversion device includes one phase of upper arm circuit or lower arm circuit as one module and provides three phases, six modules need to be provided. Therefore, it is important to improve the manufacturability of power modules.
  • the power conversion device described in Patent Document 1 includes a metal base, an insulating substrate disposed on the upper surface of the metal base excluding a peripheral area, a semiconductor element mounted on the upper surface of the insulating substrate, and a semiconductor element mounted on the upper surface of the metal base.
  • the semiconductor device includes a resin case that is bonded to the peripheral edge with an adhesive and surrounds the side surface of the semiconductor element, and a sealing resin that is filled in the resin case and seals the semiconductor element.
  • a groove filled with adhesive is formed in the peripheral edge of the upper surface of the metal base. According to such a configuration, even when the resin case is thin, leakage of the sealing resin and occurrence of insulation defects can be suppressed.
  • the sealing resin that seals the semiconductor element is covered with a metal base and a resin case, and the rigidity of these prevents warping that occurs when the sealing resin hardens at room temperature. It's suppressed.
  • this structure employs single-sided cooling in which the lower surface of the power module is used as a cooling surface, there is a problem in that the cooling performance is lower than that in double-sided cooling in which both the upper and lower surfaces of the power module are cooled.
  • An object of the present invention is to improve cooling performance by cooling both sides of a power module, and to suppress warping that occurs when the sealing resin is cured at room temperature.
  • a power conversion device includes a plurality of power modules that convert DC power to AC power, a DC wiring that transmits DC power to the plurality of power modules, and a plurality of the power modules, and A circuit board on which DC wiring is mounted, and a molded resin that covers and seals the plurality of power modules and the circuit board, the molded resin having a sealing surface portion around the plurality of power modules. , the thickness of the sealing surface portion is thinner than the thickness of a region sealing the plurality of power modules.
  • cooling performance can be improved by cooling both sides of the power module, and warping that occurs when the sealing resin is cured at room temperature can be suppressed.
  • FIG. 1 is a schematic plan view showing a power conversion device according to a first embodiment of the present invention, with a flow path forming body omitted.
  • FIG. 1 is a schematic cross-sectional view showing a power conversion device according to a first embodiment of the present invention taken along line AA in FIG. 1;
  • 1 is a schematic plan view showing a power conversion device according to a first embodiment of the present invention, with mold resin omitted.
  • FIG. It is a schematic top view showing the 1st power module concerning a 1st embodiment of the present invention.
  • FIG. 1 is a schematic perspective view showing a first power module according to a first embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a first power module according to a first embodiment of the present invention.
  • FIG. 7 is a schematic plan view showing a power conversion device according to a second embodiment of the present invention, with a flow path forming body omitted.
  • FIG. 2 is a schematic cross-sectional view taken along line AA in FIG. 1 of a power conversion device according to a third embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line AA in FIG. 1 of a power conversion device according to a fourth embodiment of the present invention.
  • the present invention is not limited to the embodiments described below, and the technical idea of the present invention may be realized by combining other known components.
  • the same elements are denoted by the same reference numerals, and overlapping explanations will be omitted.
  • the U direction is the upward direction
  • the D direction is the downward direction
  • the F direction is the front direction
  • the B direction is the back direction
  • the R direction is the right direction
  • the L direction is the left direction. It is.
  • FIG. 1 is a schematic plan view showing a power conversion device 100 according to this embodiment. Note that in FIG. 1, illustration of the flow path forming body 25 (see FIG. 2) is omitted.
  • FIG. 2 is a schematic cross-sectional view showing the power conversion device 100 according to the present embodiment taken along line AA in FIG.
  • FIG. 3 is a schematic plan view showing the power conversion device 100 according to this embodiment. Note that in FIG. 3, illustration of the mold resin 23 (see FIG. 2) is omitted.
  • the power conversion device 100 converts DC power from a battery or the like into AC power that is supplied to an electric motor.
  • the power conversion device 100 configures an upper arm circuit and a lower arm circuit for three phases.
  • the power conversion device 100 has three phases of circuits for one phase each including a first power module 201 forming an upper arm circuit and a second power module 202 forming a lower arm circuit.
  • the power converter 100 includes DC wiring 22 that transmits DC power to the first power module 201 and the second power module 202, an AC output terminal conductor 33, and a capacitor 40 that smoothes the voltage applied to the power converter 100. , a control circuit 50 for transmitting control signals, and a circuit board 30 such as a printed circuit board on which all of these are mounted.
  • the first power module 201, the second power module 202, and the circuit board 30 are covered and sealed with a mold resin 23. That is, the mold resin 23 covers and seals the first power module 201, the second power module 202, and the circuit board 30 on the upper and lower sides of the circuit board 30. This eliminates the need for complex-shaped busbars, improving productivity.
  • Six first power modules 201 and six second power modules 202 are arranged in parallel when viewed from the direction in which the DC wiring 22 extends in the left direction L and right direction R in FIG.
  • the DC wiring 22 includes a positive power supply terminal conductor 31 through which current flows into a one-phase circuit composed of the first power module 201 and the second power module 202, and a positive power supply terminal conductor 31, which is connected to the first power module 201 and the second power module 202. It has a negative power supply terminal conductor 32 through which a current flowing out from the configured one-phase circuit flows.
  • the positive power terminal conductor 31 and the negative power terminal conductor 32 are stacked from the upper direction U to the lower direction D.
  • the first power module 201 is connected to a positive power terminal conductor 31 having a positive power terminal 311 and an AC output terminal conductor 33 having an AC output terminal 331.
  • the second power module 202 is connected to a negative power terminal conductor 32 having a negative power terminal 321 and an AC output terminal conductor 33.
  • the electrical energy necessary to drive the electric motor from the battery is supplied to the first power module 201 and the second power module 202, and the AC power is output from the AC output terminal 331 provided on the AC output terminal conductor 33. control.
  • the first power module 201 and the second power module 202 form a circuit for one phase, and this set is mounted on the circuit board 30 with three phases. This eliminates the need for complex-shaped busbars, improving productivity.
  • the circuit board 30 includes a plurality of conductor layers made of a copper material or the like, and other parts are made of an insulating material such as a glass epoxy resin.
  • the conductor layer of the circuit board 30 has a four-layer structure, the main current path of the positive power terminal conductor 31 provided with the positive power terminal 311 is the upper surface of the circuit board 30 and the third inner layer, and the circuit board 30 is connected to a first power module 201 connected to the upper surface of the power module 30.
  • the negative power supply terminal conductor 32 provided with the negative power supply terminal 321 has a main current path through the second inner layer and the bottom surface of the circuit board 30; It is connected to the second power module 202 via a via 301 near the connection part with the second power module 202 .
  • the AC output terminal conductor 33 is formed in each layer via vias (not shown), and has an AC output terminal 331 that outputs AC power to the motor. This expands the cross-sectional area of the conductor and reduces inductance.
  • a capacitor 40 having a positive terminal 401 and a negative terminal 402 is mounted on the DC wiring 22 outside the flow path forming body 25.
  • the positive electrode terminal 401 and the negative electrode terminal 402 are arranged in parallel when viewed from the first power module 201 and the second power module 202.
  • the capacitor 40 is composed of a film capacitor or the like, and is mounted between the first power module 201 and the second power module 202, and the positive power terminal 311 and the negative power terminal 321.
  • the current path flowing from the capacitor 40 to the first power module 201 and the current path flowing from the second power module 202 to the capacitor 40 can be made uniform, and inductance can be reduced.
  • the control circuit 50 is connected to a control signal generation circuit (not shown), and is connected to the first power module 201 and the second power module 202 via a control signal wiring 51 such as wire bonding and an in-board control signal wiring 52, They are placed adjacent to each other.
  • the first power module 201 and the second power module 202 are installed in a power module installation hole 302 in the circuit board 30 and are sealed with a molded resin 23.
  • the power conversion device 100 includes flow path forming bodies 25 that form a flow path between the circuit board 30 and the upper and lower sides of the first power module 201 and the second power module 202, respectively. Cooled by refrigerant.
  • the first power module 201 and the second power module 202 have a first heat radiation surface 233 on the upper surface and a second heat radiation surface 234 on the lower surface.
  • the first heat dissipation surface 233 is a surface in contact with the refrigerant, and is constituted by the mold resin 23 and the upper surface of the conductor plate.
  • the second heat dissipation surface 234 is a surface in contact with the refrigerant, and is constituted by the mold resin 23 and the lower surface of the conductive plate.
  • Radiation fins 24 are arranged on the first radiation surface 233 and the second radiation surface 234 .
  • the upper channel forming body 25 is arranged to cover the first heat radiation surface 233.
  • the lower flow path forming body 25 is arranged to cover the second heat radiation surface 234.
  • FIG. 4 is a schematic top view showing the first power module 201 according to this embodiment.
  • FIG. 5 is a schematic perspective view showing the first power module 201 according to this embodiment.
  • FIG. 6 is a schematic cross-sectional view showing the first power module 201 according to this embodiment.
  • the first power module 201 constitutes an upper arm circuit for one phase in the power conversion device 100 that converts DC power to AC power.
  • the first power module 201 includes an IGBT 10, a diode 11, a first collector conductor plate 211 disposed below the IGBT 10 and the diode 11, and a first emitter conductor plate 221 disposed above the IGBT 10 and the diode 11. It is made up of.
  • the first collector conductor plate 211 and the first emitter conductor plate 221 are provided with one or less bent portions 230.
  • the first collector conductor plate 211 and the first emitter conductor plate 221 are connected to the DC wiring 22 on the upper part of the circuit board 30. More specifically, the first collector conductor plate 211 extends straight from the portion of the first collector conductor plate 211 that protrudes above the circuit board 30 without any bends, and is connected to the DC wiring 22 on the upper part of the circuit board 30. .
  • the first emitter conductor plate 221 extends in the left direction L from a portion of the first emitter conductor plate 221 that protrudes above the circuit board 30, and then is bent in the downward direction D through one bending portion 230 to form the upper part of the circuit board 30. It is connected to the DC wiring 22 of.
  • the IGBT 10 has a plate shape and includes a main electrode 101 and a control electrode 102 that controls the main current flowing through the main electrode 101.
  • the IGBT 10 and the diode 11 are sandwiched between a first collector conductor plate 211 and a first emitter conductor plate 221 from both sides.
  • the IGBT 10 and the diode 11 are connected to a first collector conductor plate 211 and a first emitter conductor plate 221 via a metal bonding material 12 such as solder.
  • the first collector conductor plate 211 and the first emitter conductor plate 221 are made of copper material.
  • FIG. 7 is a schematic top view showing the second power module 202 according to this embodiment.
  • FIG. 8 is a schematic perspective view showing the second power module 202 according to this embodiment.
  • FIG. 9 is a schematic cross-sectional view showing the second power module 202 according to this embodiment.
  • the second power module 202 constitutes a lower arm circuit for one phase in the power conversion device 100 that converts DC power to AC power.
  • the second power module 202 includes an IGBT 10, a diode 11, a second collector conductor plate 212 disposed below the IGBT 10 and the diode 11, and a second emitter conductor plate 222 disposed above the IGBT 10 and the diode 11. It is made up of.
  • the second collector conductor plate 212 and the second emitter conductor plate 222 are provided with one or less bent portions 230.
  • the second collector conductor plate 212 and the second emitter conductor plate 222 are connected to the DC wiring 22 on the upper part of the circuit board 30. More specifically, the second collector conductor plate 212 extends straight from a portion of the second collector conductor plate 212 that projects above the circuit board 30 without any bends, and is connected to the DC wiring 22 on the upper part of the circuit board 30. .
  • the second emitter conductor plate 222 extends in the back direction B from a portion of the second emitter conductor plate 222 that protrudes above the circuit board 30, and then is bent in the downward direction D via one bending portion 230 to form the upper part of the circuit board 30. It is connected to the DC wiring 22 of.
  • the IGBT 10 and the diode 11 are sandwiched from both sides by a second collector conductor plate 212 and a second emitter conductor plate 222, respectively.
  • the IGBT 10 and the diode 11 are connected to a second collector conductor plate 212 and a second emitter conductor plate 222 via a metal bonding material 12 such as solder.
  • the second collector conductor plate 212 and the second emitter conductor plate 222 are made of copper material.
  • the second emitter conductor plate 222 extends horizontally from a portion of the second emitter conductor plate 222 that protrudes above the circuit board 30, and is then bent in a downward direction D through one bending portion to provide direct current to the upper part of the circuit board 30. It is connected to the wiring 22.
  • the mold resin 23 has a first sealing surface portion 231 formed on the upper side of the circuit board 30 so as to surround all of the three first power modules 201 and the three second power modules 202. , has a second sealing surface portion 232 formed to surround all of the three first power modules 201 and the three second power modules 202 on the lower side of the circuit board 30 .
  • the sealing surface of the upper flow path forming body 25 is brought into contact with the first sealing surface 231 formed around the plurality of power modules 201 and 202.
  • the sealing surface portion of the lower flow path forming body 25 is brought into contact with the second sealing surface portion 232 formed around the plurality of power modules 201 and 202 .
  • a sealing groove is formed in the sealing surface portion of the upper channel forming body 25, and an O-ring 26, which is a sealing member that seals between the upper channel forming body 25 and the first sealing surface portion 231, is inserted into this sealing groove. It is located.
  • a seal groove is formed in the seal surface portion of the lower flow path forming body 25, and a sealing member for sealing between the lower flow path forming body 25 and the second seal surface portion 232 is formed in this seal groove.
  • An O-ring 26 is located.
  • the thickness of the first seal surface portion 231 and the second seal surface portion 232 of the mold resin is thinner than the thickness of the region of the mold resin 23 that seals the first power module 201 and the second power module 202. Further, the thickness of the first sealing surface portion 231 is formed to be thinner than a portion of the molded resin 23 where the first heat radiation surface 233 is formed. The thickness of the second sealing surface portion 232 is approximately equal to the thickness of the portion of the molded resin 23 where the second heat radiation surface 234 is formed.
  • the first sealing surface portion 231 is formed on the upper part of the circuit board 30.
  • the second sealing surface portion 232 is formed on the opposite side of the circuit board 30 from the first sealing surface portion 231 .
  • the first sealing surface portion 231 and the second sealing surface portion 232 are formed in the same shape so as to overlap with the circuit board 30 in the thickness direction. Therefore, since the first sealing surface portion 231 and the second sealing surface portion 232 have the same thickness with respect to the circuit board 30, the first sealing surface portion 231 and the second sealing surface portion 232 are formed with the same volume.
  • the first sealing surface portion 231 and the second sealing surface portion 232 are located on both sides of the direction in which all six first power modules 201 and six second power modules 202 are arranged in parallel (left direction L and right direction R in FIG. 1). and protrude from the circuit board 30, respectively.
  • the volume of the molded resin 23 can be made uniform in the first sealing surface portion 231 and the second sealing surface portion 232 at the periphery of the molding resin 23 where the first power module 201 and the second power module 202 are not arranged. Therefore, the amount of shrinkage of the mold resin 23 during curing at room temperature can be made uniform, and warpage can be suppressed. As a result, the polishing process for the first sealing surface portion 231 and the second sealing surface portion 232 is reduced, and manufacturability is improved.
  • the first sealing surface portion 231 and the second sealing surface portion 232 have a channel forming body holding portion 235 at the peripheral edge.
  • the mold resin 23 is sandwiched between the two flow path forming bodies 25 so as to surround the first power module 201 and the second power module 202.
  • the control signal wiring 51 is also configured inside the flow path forming body 25.
  • the capacitor 40 and the control circuit 50 are not included inside the flow path forming body 25.
  • the two flow path forming bodies 25 having the O-rings 26 are fastened above and below the circuit board 30 by clamping parts such as screws used in the flow path forming body clamping parts 235. Thereby, the flow path forming body 25 can be made smaller compared to the case where a fastening portion is provided on the circuit board 30. Furthermore, it is possible to configure a flow path with high airtightness without being affected by the difference in level caused by the conductor layer of the circuit board 30.
  • the first sealing surface portion 231 and the second sealing surface portion 232 of the mold resin 23 are formed with a glossy surface. This increases the adhesion between the first sealing surface portion 231 and the second sealing surface portion 232 and the O-ring 26, and improves airtightness.
  • the surface of the mold resin 23 other than the sealing surface portion is formed of a matte surface. This makes it easy to remove the mold resin 23 from the mold when it is formed.
  • circuit board 30 no conductor layer is disposed on the adhesive surface with the mold resin 23, and a conductor is connected to the peripheral edge of the mold resin 23 via the wiring within the board. This prevents resin from leaking when forming the mold resin 23 and improves manufacturability.
  • Heat radiation fins 24 are formed on the upper and lower surfaces of the first power module 201 and the second power module 202. Thereby, a heat radiation path can be formed from the semiconductor elements of the first power module 201 and the second power module 202 to the heat radiation fins 24 without using an insulating member. Since the heat radiation fins 24 are directly cooled from the semiconductor elements of the first power module 201 and the second power module 202 by a refrigerant such as oil, it is possible to suppress an increase in thermal resistance and increase the output of the power conversion device. It becomes possible.
  • the capacitor 40 and the control circuit 50 are not included inside the flow path forming body 25, corrosion of electronic components due to contact with the refrigerant can be prevented.
  • the first power module 201, the second power module 202, and the control signal wiring 51 are configured inside the flow path forming body 25.
  • the first power module 201, the second power module 202, and the control signal wiring 51 are not electrically affected by contact with the refrigerant due to the molded resin 23.
  • the control signal wiring 51 is connected to the control circuit 50 via an in-board control signal wiring 52 provided on the circuit board 30.
  • the volume of the mold resin 23 above and below the circuit board 30 is made uniform in the first sealing surface portion 231 and the second sealing surface portion 232 at the peripheral edge of the molding resin 23.
  • the amount of shrinkage of the mold resin 23 during curing at room temperature can be made uniform, and warping can be suppressed.
  • the polishing process for the first sealing surface portion 231 and the second sealing surface portion 232 can be reduced, and the manufacturability of the power converter 100 is improved.
  • first power module 201 and the second power module 202 have heat radiation fins 24 on the upper and lower surfaces, and the heat radiation fins 24 directly cool the semiconductor elements of the first power module 201 and the second power module 202 using a coolant such as oil. cooling performance is improved.
  • FIG. 10 is a schematic plan view showing the power conversion device 100 according to the present embodiment. Note that in FIG. 10, illustration of the flow path forming body 25 is omitted. A slit 236 is formed between each power module 201 and 202 on a first heat radiation surface 233 and a second heat radiation surface 234 of the molded resin 23. This increases the effect of suppressing warpage when the mold resin 23 is cured at room temperature, and improves the manufacturability of the power conversion device 100.
  • FIG. 11 is a schematic cross-sectional view showing the power conversion device 100 according to the present embodiment taken along line AA in FIG. 1.
  • the thickness of the mold resin 23 from the circuit board 30 to the first heat radiation surface 233 and the second heat radiation surface 234 is formed to be the same. Therefore, in this embodiment, the height of the first collector conductor plate 211 of the first power module 201 is higher than in the first embodiment. This increases the effect of suppressing warpage when the mold resin 23 is cured at room temperature, and improves the manufacturability of the power conversion device 100.
  • FIG. 12 is a schematic cross-sectional view showing the power conversion device 100 according to the present embodiment taken along line AA in FIG. 1.
  • the thickness of the molding resin 23 from the IGBT 10 and the diode 11 to the first heat radiation surface 233 and the second heat radiation surface 234 is formed to be uniform. This increases the effect of suppressing warpage when the mold resin 23 is cured at room temperature, and improves the manufacturability of the power conversion device 100.
  • the power conversion device 100 includes a first power module 201 and a second power module 202 that convert DC power to AC power.
  • the power conversion device 100 includes a DC wiring 22 that transmits DC power to a first power module 201 and a second power module 202.
  • the power conversion device 100 includes a circuit board 30 on which a first power module 201 and a second power module 202 are arranged, and on which DC wiring 22 is mounted.
  • the power conversion device 100 includes a molded resin 23 that covers and seals the first power module 201, the second power module 202, and the circuit board 30.
  • the mold resin 23 has a first sealing surface portion 231 and a second sealing surface portion 232 around the first power module 201 and the second power module 202.
  • the thickness of the first sealing surface portion 231 and the second sealing surface portion 232 is thinner than the thickness of the region sealing the first power module 201 and the second power module 202.
  • the volume of the mold resin 23 is reduced above and below the circuit board 30 at the first seal surface portion 231 and the second seal surface portion 232 at the peripheral edge of the mold resin 23 where the first power module 201 and the second power module 202 are not arranged.
  • the amount of shrinkage of the mold resin 23 during curing at room temperature can be made uniform, and warpage can be suppressed.
  • the polishing process for the first sealing surface portion 231 and the second sealing surface portion 232 is reduced, and manufacturability is improved.
  • the first power module 201 and the second power module 202 can be configured to be cooled on both sides. Therefore, cooling performance can be improved by cooling both sides of the first power module 201 and the second power module 202, and warping that occurs when the sealing resin is cured at room temperature can be suppressed.
  • the sealing surface portions 231 and 232 include a first sealing surface portion 231 formed above the circuit board 30 and a second sealing surface portion 232 formed on the opposite side of the circuit board 30 from the first sealing surface portion 231. .
  • the first sealing surface portion 231 and the second sealing surface portion 232 are formed to have the same thickness with respect to the circuit board 30.
  • the plurality of power modules 201 and 202 each have three phases of circuits for one phase each including a first power module 201 constituting an upper arm circuit and a second power module 202 constituting a lower arm circuit.
  • the plurality of power modules 201 and 202 are arranged in parallel when viewed from the direction in which the DC wiring 22 extends.
  • the six power modules 201 and 202 can be aligned, and the sealing surfaces 231 and 232 of the molded resin 23 can be configured in a simple shape.
  • a slit 236 is formed between each power module 201 and 202 on a first heat radiation surface 233 and a second heat radiation surface 234 of the molded resin 23.
  • the power conversion device 100 includes flow path forming bodies 25 above and below the circuit board 30 that form a flow path between the circuit board 30 and cools the upper and lower portions of the plurality of power modules 201 and 202 with a refrigerant. .
  • the power conversion device 100 has a flow path forming body holding part 235 that holds the flow path forming body 25 between the peripheral edges of the sealing surface parts 231 and 232.
  • the flow path forming body 25 can be made smaller in size compared to the case where a fastening portion for fastening the flow path forming body 25 is provided on the circuit board 30.
  • the sealing surface portions 231 and 232 of the mold resin 23 are glossy surfaces.
  • the surface of the mold resin 23 other than the sealing surface portions 231 and 232 is a matte surface.
  • the sealing surface parts 231 and 232 have glossy surfaces, the adhesion between the first sealing surface part 231 and the second sealing surface part 232 and the sealing member such as the O-ring 26 is increased, and airtightness is improved. Since the surfaces other than the sealing surface portions 231 and 232 are satin-finished surfaces, the mold resin 23 can be easily removed from the forming mold during formation.
  • the DC wiring 22 includes a positive power terminal conductor 31 through which current flows into a one-phase circuit made up of two power modules 201 and 202, and a one-phase circuit made up of two power modules 201 and 202. and a negative power supply terminal conductor 32 through which a current flows.
  • the positive power terminal conductor 31 and the negative power terminal conductor 32 are laminated.
  • the positive power terminal conductor 31 and the negative power terminal conductor 32 have a laminated structure, and the currents flowing through the respective conductor layers face each other to exert a magnetic flux canceling effect, thereby reducing inductance.
  • a capacitor 40 having a positive terminal 401 and a negative terminal 402 is mounted on the DC wiring 22 outside the channel forming body 25 .
  • the positive electrode terminal 401 and the negative electrode terminal 402 are arranged in parallel when viewed from the plurality of power modules 201 and 202.
  • the current path flowing from the capacitor 40 to one power module 201 and the current path flowing from the other paired power module 202 to the capacitor 40 can be made uniform, and the inductance can be reduced. Can be done.
  • the mold resin 23 covers and seals the plurality of power modules 201 and 202 and the circuit board 30 above and below the circuit board 30.
  • the flow path forming bodies 25 can be placed above and below the circuit board 30 covered with the molded resin 23, and the cooling performance can be improved by cooling both sides of each power module 201, 202. Moreover, the upper and lower parts of the circuit board 30 are covered with the mold resin 23, and it is possible to suppress warping that occurs when the sealing resin is cured at room temperature.
  • the first sealing surface portion 231 and the second sealing surface portion 232 are formed in the same shape so as to overlap with the circuit board 30 in the thickness direction.
  • the first sealing surface portion 231 and the second sealing surface portion 232 are formed with the same volume.
  • the amount of shrinkage of the mold resin 23 of the first sealing surface portion 231 and the second sealing surface portion 232 when cured at room temperature is made uniform, and warpage is prevented. Can be suppressed.
  • the mold resin 23 protruding from the circuit board 30 is connected at the top and bottom of the circuit board 30, and the mold resin 23 can be integrated.
  • Each of the plurality of power modules 201 and 202 includes an IGBT 10, a diode 11, collector conductor plates 211 and 212 disposed below the IGBT 10 and the diode 11, and an emitter conductor plate 221 disposed above the IGBT 10 and the diode 11. , 222.
  • the collector conductor plates 211, 212 and the emitter conductor plates 221, 222 are provided with one or less bent portions 230.
  • the collector conductive plates 211 and 212 and the emitter conductive plates 221 and 222 are connected to the DC wiring 22 on the upper part of the circuit board 30.
  • the number of bent portions 230 of the collector conductor plates 211, 212 and the emitter conductor plates 221, 222 is small, improving manufacturability.
  • the collector conductor plates 211 and 212 extend straight from the portions of the collector conductor plates 211 and 212 that protrude above the circuit board 30 without any bends, and are connected to the DC wiring 22 on the circuit board 30.
  • second emitter conductor Plate 230...Bending portion, 231...First sealing surface, 232...Second sealing surface, 233...First heat radiation surface, 234...Second heat radiation surface, 235...Channel formation body holding part, 236...Slit, 301... Via, 302...Power module installation hole, 311...Positive power terminal, 321...Negative power supply terminal, 331...AC output terminal, 401...Positive terminal, 402...Negative terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置(100)は、直流電力を交流電力に変換する複数のパワーモジュール(201)と、複数のパワーモジュール(201)に直流電力を伝達する直流配線(22)と、複数のパワーモジュール(201)を配置し、直流配線(22)を実装した回路基板(30)と、複数のパワーモジュール(201)と回路基板(30)とを覆って封止したモールド樹脂(23)と、を備え、モールド樹脂(23)は、複数のパワーモジュール(201)の周囲にシール面部(231、232)を有し、シール面部(231、232)の厚さは、複数のパワーモジュール(201)を封止する領域の厚さより薄い。

Description

電力変換装置
 本発明は、電力変換装置に関し、特にハイブリッド自動車や電気自動車の駆動用モータに交流電流を供給する電力変換装置に関する。
 近年、電力変換装置では、出力の増大が求められている一方、製造性の向上も要求されている。電力変換装置のパワーモジュールが1相分の上アーム回路又は下アーム回路を1つのモジュールとして、かつ3相分設ける場合には、6個のモジュールを設ける必要がある。そのため、パワーモジュールの製造性の向上が重要になる。
 一方で、製造性の向上とともに冷却性能の向上も重要な課題であり、冷却性能が低い場合には、電力変換装置の出力増大の妨げとなってしまう。車載用の電力変換装置は、産業用などと比較すると温度変化の大きい環境で使用される。このため、高温の環境に置かれていながら高い信頼性を維持できる電力変換装置が要求されている。
 特許文献1に記載の電力変換装置は、金属ベースと、金属ベースの上面における周縁部を除く領域に配置された絶縁基板と、絶縁基板の上面に搭載された半導体素子と、金属ベースの上面における周縁部に接着剤により接着され、半導体素子の側面を囲繞する樹脂ケースと、樹脂ケース内に充填され、半導体素子を封止する封止樹脂と、を備える。金属ベースの上面における周縁部には、接着剤を充填する溝部が形成されている。このような構成によれば、樹脂ケースの厚みが薄い場合にも、封止樹脂の漏れと絶縁不良の発生を抑制することができる。
特開2021-111669号公報
 特許文献1に記載のパワーモジュール(半導体装置)では、半導体素子を封止する封止樹脂が金属ベースと樹脂ケースで覆われており、これらの剛性により封止樹脂の常温硬化時に発生する反りを抑制している。しかし、本構造では、パワーモジュールの下面を冷却面として採用する片面冷却であるため、パワーモジュールの上下両面を冷却する両面冷却に比べて冷却性能が低い課題がある。
 本発明の目的は、パワーモジュールの両面冷却によって冷却性能を向上し、かつ、封止樹脂の常温硬化時に発生する反りを抑制することである。
 本発明の一態様による電力変換装置は、直流電力を交流電力に変換する複数のパワーモジュールと、複数の前記パワーモジュールに直流電力を伝達する直流配線と、複数の前記パワーモジュールを配置し、前記直流配線を実装した回路基板と、複数の前記パワーモジュールと前記回路基板とを覆って封止したモールド樹脂と、を備え、前記モールド樹脂は、複数の前記パワーモジュールの周囲にシール面部を有し、前記シール面部の厚さは、複数の前記パワーモジュールを封止する領域の厚さより薄い。
 本発明に係る電力変換装置によれば、パワーモジュールの両面冷却によって冷却性能を向上し、かつ、封止樹脂の常温硬化時に発生する反りを抑制することができる。
本発明の第1実施形態に係る電力変換装置を示す概略平面図であって、流路形成体を省略して示した図である。 本発明の第1実施形態に係る電力変換装置を図1のA-A線からの断面にて示す概略断面図である。 本発明の第1実施形態に係る電力変換装置を示す概略平面図であって、モールド樹脂を省略して示した図である。 本発明の第1実施形態に係る第1パワーモジュールを示す概略上面図である。 本発明の第1実施形態に係る第1パワーモジュールを示す概略斜視図である。 本発明の第1実施形態に係る第1パワーモジュールを示す概略断面図である。 本発明の第1実施形態に係る第2パワーモジュールを示す概略上面図である。 本発明の第1実施形態に係る第2パワーモジュールを示す概略斜視図である。 本発明の第1実施形態に係る第2パワーモジュールを示す概略断面図である。 本発明の第2実施形態に係る電力変換装置を示す概略平面図であって、流路形成体を省略して示した図である。 本発明の第3実施形態に係る電力変換装置を図1のA-A線からの断面にて示す概略断面図である。 本発明の第4実施形態に係る電力変換装置を図1のA-A線からの断面にて示す概略断面図である。
 以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は下記の実施形態に限定解釈されるものではなく、公知の他の構成要素を組み合わせて本発明の技術思想を実現してもよい。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。また、各図においてU方向が上方向であり、D方向が下方向であり、F方向が正面方向であり、B方向が背面方向であり、R方向が右方向であり、L方向が左方向である。
 <第1実施形態>
 図1は、本実施形態に係る電力変換装置100を示す概略平面図である。なお、図1では、流路形成体25(図2参照)の図示が省略されている。図2は、本実施形態に係る電力変換装置100を図1のA-A線からの断面にて示す概略断面図である。図3は、本実施形態に係る電力変換装置100を示す概略平面図である。なお、図3では、モールド樹脂23(図2参照)の図示が省略されている。
 電力変換装置100は、バッテリなどからの直流電力を電動機に供給する交流電力に変換するものである。電力変換装置100は、3相分の上アーム回路及び下アーム回路を構成する。電力変換装置100は、上アーム回路を構成する第1パワーモジュール201と、下アーム回路を構成する第2パワーモジュール202と、で構成された1相分の回路を3相分有する。
 電力変換装置100は、第1パワーモジュール201及び第2パワーモジュール202に直流電力を伝達する直流配線22と、交流出力端子導体33と、電力変換装置100に印加される電圧を平滑化するコンデンサ40と、制御信号を伝達する制御回路50と、これら全てを搭載したプリント回路基板などの回路基板30と、を備える。
 電力変換装置100は、第1パワーモジュール201及び第2パワーモジュール202と回路基板30とをモールド樹脂23によって覆って封止している。つまり、モールド樹脂23は、第1パワーモジュール201及び第2パワーモジュール202と回路基板30とを回路基板30の上下にて覆って封止する。
これにより、複雑な形状のバスバーが不要となり、生産性が向上する。
 第1パワーモジュール201及び第2パワーモジュール202の全ては、直流配線22の図3の左方向Lと右方向Rとに伸びる方向から見た場合に、6つ並列に配置されている。
 直流配線22は、第1パワーモジュール201及び第2パワーモジュール202で構成された1相分の回路に流入する電流が流れる正極電源端子導体31と、第1パワーモジュール201及び第2パワーモジュール202で構成された1相分の回路から流出する電流が流れる負極電源端子導体32と、を有する。正極電源端子導体31及び負極電源端子導体32は、上方向Uから下方向Dに積層されている。
 第1パワーモジュール201は、正極電源端子311を有する正極電源端子導体31と、交流出力端子331を有する交流出力端子導体33と、に接続されている。一方で、第2パワーモジュール202は、負極電源端子321を有する負極電源端子導体32と、交流出力端子導体33と、に接続されている。
 これにより、バッテリからの電動機の駆動に必要な電気エネルギーは、第1パワーモジュール201及び第2パワーモジュール202に供給され、交流出力端子導体33に設けられた交流出力端子331から出力される交流電力を制御する。第1パワーモジュール201及び第2パワーモジュール202が1相分の回路を形成し、この組を3相分備えて回路基板30に搭載される。これにより、複雑な形状のバスバーが不要となり、生産性が向上する。
 回路基板30は、銅材などにより構成された複数の導体層を備え、他の箇所がガラスエポキシ樹脂などの絶縁部材で構成されている。回路基板30の導体層を4層構造で構成する場合には、正極電源端子311が設けられた正極電源端子導体31は、回路基板30の上面と第3内層が主な電流経路となり、回路基板30の上面に接続された第1パワーモジュール201に接続されている。
 一方で、負極電源端子321が設けられた負極電源端子導体32は、回路基板30の第2内層と下面が主な電流経路となるが、回路基板30の上面に接続された第2パワーモジュール202との接続部付近では、ビア301を介して第2パワーモジュール202に接続される。
 このように、正極電源端子導体31と負極電源端子導体32との積層構造により、それぞれの導体を流れる電流が対向し、磁束打ち消し効果によりインダクタンスを低減できる。
 交流出力端子導体33は、図示していないビアを介して各層に形成され、電動機に交流電力を出力する交流出力端子331を有する。これにより、導体の断面積が拡大され、インダクタンスを低減できる。
 直流配線22には、流路形成体25の外部に正極端子401及び負極端子402を有するコンデンサ40が搭載されている。正極端子401及び負極端子402は、第1パワーモジュール201及び第2パワーモジュール202から見た場合に、並列に配置されている。コンデンサ40は、フィルムコンデンサなどで構成され、第1パワーモジュール201及び第2パワーモジュール202と、正極電源端子311及び負極電源端子321と、の間に搭載されている。
 これにより、コンデンサ40から第1パワーモジュール201に流入する電流経路と、第2パワーモジュール202からコンデンサ40に流出する電流経路と、を均一にできインダクタンスを低減できる。
 制御回路50は、図示していない制御信号生成回路に接続され、ワイヤボンディングなどの制御信号配線51及び基板内制御信号配線52を介して第1パワーモジュール201及び第2パワーモジュール202に接続され、それぞれ隣接して配置される。
 これにより、制御信号配線51のインダクタンスを低減し、素子駆動性能の低下を防ぐことで損失増加を防止する。
 第1パワーモジュール201及び第2パワーモジュール202は、回路基板30内にあるパワーモジュール組込孔302に組み込まれ、モールド樹脂23で密閉する構造となる。
 電力変換装置100は、回路基板30の上下に、回路基板30との間にて流路を形成する流路形成体25をそれぞれ備え、第1パワーモジュール201及び第2パワーモジュール202の上下それぞれを冷媒により冷却する。
 第1パワーモジュール201及び第2パワーモジュール202は、上面に第1放熱面233を有し、下面に第2放熱面234を有する。第1放熱面233は、冷媒が接する面であり、モールド樹脂23及び導体板の上面により構成される。第2放熱面234は、冷媒が接する面であり、モールド樹脂23及び導体板の下面により構成される。第1放熱面233及び第2放熱面234には、放熱フィン24が配置されている。上側の流路形成体25は、第1放熱面233を覆うように配置されている。下側の流路形成体25は、第2放熱面234を覆うように配置されている。
 <第1パワーモジュール201>
 図4は、本実施形態に係る第1パワーモジュール201を示す概略上面図である。図5は、本実施形態に係る第1パワーモジュール201を示す概略斜視図である。図6は、本実施形態に係る第1パワーモジュール201を示す概略断面図である。
 第1パワーモジュール201は、直流電力を交流電力に変換する電力変換装置100における1相分の上アーム回路を構成する。第1パワーモジュール201は、IGBT10と、ダイオード11と、IGBT10及びダイオード11の下部に配置された第1コレクタ導体板211と、IGBT10及びダイオード11の上部に配置された第1エミッタ導体板221と、によって構成されている。
 第1コレクタ導体板211及び第1エミッタ導体板221には、1以下の屈曲部230が設けられている。第1コレクタ導体板211及び第1エミッタ導体板221は、回路基板30上部の直流配線22に接続されている。より詳しくは、第1コレクタ導体板211は、第1コレクタ導体板211の回路基板30上部に突出した部位から屈曲部無く直線状に延長されて回路基板30上部の直流配線22に接続されている。第1エミッタ導体板221は、第1エミッタ導体板221の回路基板30上部に突出した部位から左方向Lに伸びた後に1つの屈曲部230を介して下方向Dに屈曲されて回路基板30上部の直流配線22に接続されている。
 IGBT10は、板形状で主電極101と当該主電極101に流れる主電流を制御する制御電極102とを有する。IGBT10及びダイオード11は、第1コレクタ導体板211と第1エミッタ導体板221とによって両面からそれぞれ挟まれている。IGBT10及びダイオード11は、はんだなどの金属接合材12を介して第1コレクタ導体板211及び第1エミッタ導体板221に接続される。第1コレクタ導体板211及び第1エミッタ導体板221は、銅材で構成されている。
 <第2パワーモジュール202>
 図7は、本実施形態に係る第2パワーモジュール202を示す概略上面図である。図8は、本実施形態に係る第2パワーモジュール202を示す概略斜視図である。図9は、本実施形態に係る第2パワーモジュール202を示す概略断面図である。
 第2パワーモジュール202は、直流電力を交流電力に変換する電力変換装置100における1相分の下アーム回路を構成する。第2パワーモジュール202は、IGBT10と、ダイオード11と、IGBT10及びダイオード11の下部に配置された第2コレクタ導体板212と、IGBT10及びダイオード11の上部に配置された第2エミッタ導体板222と、によって構成されている。
 第2コレクタ導体板212及び第2エミッタ導体板222には、1以下の屈曲部230が設けられている。第2コレクタ導体板212及び第2エミッタ導体板222は、回路基板30上部の直流配線22に接続されている。より詳しくは、第2コレクタ導体板212は、第2コレクタ導体板212の回路基板30上部に突出した部位から屈曲部無く直線状に延長されて回路基板30上部の直流配線22に接続されている。第2エミッタ導体板222は、第2エミッタ導体板222の回路基板30上部に突出した部位から背面方向Bに伸びた後に1つの屈曲部230を介して下方向Dに屈曲されて回路基板30上部の直流配線22に接続されている。
 IGBT10及びダイオード11は、第2コレクタ導体板212と第2エミッタ導体板222とによって両面からそれぞれ挟まれている。IGBT10及びダイオード11は、はんだなどの金属接合材12を介して第2コレクタ導体板212及び第2エミッタ導体板222に接続される。第2コレクタ導体板212及び第2エミッタ導体板222は、銅材で構成されている。第2エミッタ導体板222は、第2エミッタ導体板222の回路基板30上部に突出した部位から水平方向に伸びた後に1つの屈曲部を介して下方向Dに屈曲されて回路基板30上部の直流配線22に接続されている。
 <モールド樹脂23の特徴>
 図1~図3に戻り、モールド樹脂23は、回路基板30の上側において、3つの第1パワーモジュール201及び3つの第2パワーモジュール202の全てを囲むように形成された第1シール面部231と、回路基板30の下側において、3つの第1パワーモジュール201及び3つの第2パワーモジュール202の全てを囲むように形成された第2シール面部232を有する。
 複数のパワーモジュール201、202の周囲に形成された第1シール面部231には、上側の流路形成体25のシール面部が当接される。複数のパワーモジュール201、202の周囲に形成された第2シール面部232には、下側の流路形成体25のシール面部が当接される。上側の流路形成体25のシール面部にはシール溝が形成され、このシール溝に上側の流路形成体25と第1シール面部231との間を封止するシール部材であるOリング26が配置されている。同様に、下側の流路形成体25のシール面部にはシール溝が形成され、このシール溝に下側の流路形成体25と第2シール面部232との間を封止するシール部材であるOリング26が配置されている。
 モールド樹脂の第1シール面部231及び第2シール面部232の厚さは、第1パワーモジュール201及び第2パワーモジュール202を封止するモールド樹脂23の領域の厚さより薄い。また、第1シール面部231の厚さは、モールド樹脂23において第1放熱面233が形成される部位より薄く形成されている。第2シール面部232の厚さは、モールド樹脂23において第2放熱面234が形成される部位とほぼ等しい厚さに形成されている。
 第1シール面部231は、回路基板30上部に形成されている。第2シール面部232は、第1シール面部231とは回路基板30に対して反対側に形成されている。第1シール面部231の厚みH1及び第2シール面部232の厚みH2は、回路基板30に対して同じ厚み(H1=H2)で形成されている。
 第1シール面部231及び第2シール面部232は、回路基板30に対して厚み方向で重なる同じ形状で形成されている。このため、第1シール面部231及び第2シール面部232は、回路基板30に対して同じ厚みであるから、第1シール面部231及び第2シール面部232は、同じ体積で形成されている。
 第1シール面部231及び第2シール面部232は、第1パワーモジュール201及び第2パワーモジュール202の全てが6つ並列に配置された方向の両側(図1の左方向L及び右方向R)にて、回路基板30からそれぞれはみ出ている。
 これにより、第1パワーモジュール201及び第2パワーモジュール202の配置されていないモールド樹脂23周縁の第1シール面部231及び第2シール面部232においてモールド樹脂23の体積を均一にすることができる。このため、モールド樹脂23の常温硬化時の収縮量を均一にし、反りが抑制できる。この結果、第1シール面部231及び第2シール面部232の研磨プロセスを削減し、製造性が向上する。
 第1シール面部231及び第2シール面部232は、周縁部に流路形成体挟持部235を有する。モールド樹脂23は、第1パワーモジュール201及び第2パワーモジュール202を囲うように2つの流路形成体25により挟持される。また、制御信号配線51も、流路形成体25の内部に構成されている。ここで、コンデンサ40及び制御回路50は、流路形成体25の内部に含まれない。
 流路形成体挟持部235に用いるねじ等の挟持部品によって、Oリング26を有する2つの流路形成体25が回路基板30上下で締結されている。これにより、回路基板30に締結部を設ける場合と比較して流路形成体25の小型化が可能となる。また、回路基板30の導体層による段差に影響されず、気密性の高い流路を構成することが可能となる。
 モールド樹脂23の第1シール面部231及び第2シール面部232は、光沢表面で形成されている。これにより、第1シール面部231及び第2シール面部232とOリング26との密着性が増し、気密性が向上する。
 モールド樹脂23のシール面部以外の表面は、梨地表面で形成されている。これにより、モールド樹脂23の形成時に、形成金型からの取り外しが容易となる。
 回路基板30では、モールド樹脂23との接着面に導体層が配置されず、モールド樹脂23の周縁部には、基板内配線を介して導体が接続されている。これにより、モールド樹脂23形成時に樹脂の漏れを防ぎ、製造性が向上する。
 第1パワーモジュール201及び第2パワーモジュール202の上下面に放熱フィン24が形成される。これにより、第1パワーモジュール201及び第2パワーモジュール202の半導体素子から放熱フィン24まで絶縁部材を介さずに放熱経路を形成できる。そして、油などの冷媒により第1パワーモジュール201及び第2パワーモジュール202の半導体素子から放熱フィン24が直接冷却されるため、熱抵抗の増加を抑制し、電力変換装置の出力増大を図ることが可能となる。
 コンデンサ40及び制御回路50は、流路形成体25の内部に含まれないため、冷媒の接触による電子部品の腐食を防止できる。一方で、第1パワーモジュール201及び第2パワーモジュール202と、制御信号配線51と、は、流路形成体25の内部に構成される。しかし、第1パワーモジュール201及び第2パワーモジュール202と、制御信号配線51と、は、モールド樹脂23により冷媒の接触による電気的影響を受けない。制御信号配線51は、回路基板30に設けられた基板内制御信号配線52を介して制御回路50に接続されている。
 <本実施形態の効果>
 以上の通り、本実施形態においては、モールド樹脂23周縁の第1シール面部231及び第2シール面部232において、回路基板30上下のモールド樹脂23の体積を均一にしている。これにより、モールド樹脂23の常温硬化時の収縮量を均一にし、反りが抑制できる。この結果、第1シール面部231及び第2シール面部232の研磨プロセスを削減でき、電力変換装置100の製造性が向上する。さらに、第1パワーモジュール201及び第2パワーモジュール202の上下面に放熱フィン24を有し、油などの冷媒によって第1パワーモジュール201及び第2パワーモジュール202の半導体素子から放熱フィン24が直接冷却されるため、冷却性能が向上する。
 <第2実施形態>
 本実施形態では、上記実施形態と同一要素については同一の符号を記し、重複する説明は省略する。
 図10は、本実施形態に係る電力変換装置100を示す概略平面図である。なお、図10では、流路形成体25の図示が省略されている。各パワーモジュール201、202の間には、モールド樹脂23の第1放熱面233及び第2放熱面234にスリット236が形成されている。これにより、モールド樹脂23の常温硬化時の反り抑制効果が高まり、電力変換装置100の製造性が向上する。
 <第3実施形態>
 本実施形態では、上記実施形態と同一要素については同一の符号を記し、重複する説明は省略する。
 図11は、本実施形態に係る電力変換装置100を図1のA-A線からの断面にて示す概略断面図である。回路基板30から第1放熱面233及び第2放熱面234までのモールド樹脂23の厚みが同じに形成されている。このため、本実施形態では、第1パワーモジュール201の第1コレクタ導体板211の高さが第1実施形態よりも高くなっている。これにより、モールド樹脂23の常温硬化時の反り抑制効果が高まり、電力変換装置100の製造性が向上する。
 <第4実施形態>
 本実施形態では、上記実施形態と同一要素については同一の符号を記し、重複する説明は省略する。
 図12は、本実施形態に係る電力変換装置100を図1のA-A線からの断面にて示す概略断面図である。IGBT10及びダイオード11から第1放熱面233及び第2放熱面234までのモールド樹脂23の厚みが均一に形成されている。これにより、モールド樹脂23の常温硬化時の反り抑制効果が高まり、電力変換装置100の製造性が向上する。
 <<相違点の効果>>
 (A)
 電力変換装置100は、直流電力を交流電力に変換する第1パワーモジュール201及び第2パワーモジュール202を備える。電力変換装置100は、第1パワーモジュール201及び第2パワーモジュール202に直流電力を伝達する直流配線22を備える。電力変換装置100は、第1パワーモジュール201及び第2パワーモジュール202を配置し、直流配線22を実装した回路基板30を備える。電力変換装置100は、第1パワーモジュール201及び第2パワーモジュール202と回路基板30とを覆って封止したモールド樹脂23を備える。モールド樹脂23は、第1パワーモジュール201及び第2パワーモジュール202の周囲に第1シール面部231及び第2シール面部232を有する。第1シール面部231及び第2シール面部232の厚さは、第1パワーモジュール201及び第2パワーモジュール202を封止する領域の厚さより薄い。
 この構成では、第1パワーモジュール201及び第2パワーモジュール202の配置されていないモールド樹脂23の周縁の第1シール面部231及び第2シール面部232において回路基板30の上下でモールド樹脂23の体積を均一にすることで、モールド樹脂23の常温硬化時の収縮量を均一にし、反りを抑制することができる。この結果、第1シール面部231及び第2シール面部232の研磨プロセスを削減し、製造性が向上する。また、回路基板30の上下でモールド樹脂23に覆われるので、第1パワーモジュール201及び第2パワーモジュール202を両面冷却可能な構造とすることができる。したがって、第1パワーモジュール201及び第2パワーモジュール202の両面冷却によって冷却性能を向上し、かつ、封止樹脂の常温硬化時に発生する反りを抑制することができる。
 (B)
 シール面部231、232は、回路基板30上部に形成された第1シール面部231と、第1シール面部231とは回路基板30に対して反対側に形成された第2シール面部232と、を有する。第1シール面部231及び第2シール面部232は、回路基板30に対して同じ厚みで形成されている。
 この構成では、第1パワーモジュール201及び第2パワーモジュール202の配置されていないモールド樹脂23の周縁の第1シール面部231及び第2シール面部232においてモールド樹脂23の体積を均一にすることで、第1シール面部231及び第2シール面部232のモールド樹脂23の常温硬化時の収縮量を均一にし、反りを抑制することができる。
 (C)
 複数のパワーモジュール201、202は、上アーム回路を構成する第1パワーモジュール201と、下アーム回路を構成する第2パワーモジュール202と、で構成された1相分の回路を3相分有する。複数のパワーモジュール201、202は、直流配線22の伸びる方向から見た場合に、並列に配置されている。
 この構成では、6つのパワーモジュール201、202が整列でき、モールド樹脂23のシール面部231、232を簡易な形状に構成することができる。
 (D)
 各パワーモジュール201、202の間には、モールド樹脂23の第1放熱面233及び第2放熱面234にスリット236が形成されている。
 この構成では、6つのパワーモジュール201、202が整列でき、各パワーモジュール201、202の間の非接触状態を保持することができる。
 電力変換装置100は、回路基板30の上下に、回路基板30との間にて流路を形成する流路形成体25をそれぞれ備え、複数のパワーモジュール201、202の上下それぞれを冷媒により冷却する。
 この構成では、モールド樹脂23に覆われた回路基板30の上下に流路形成体25をそれぞれ備えるので、全部のパワーモジュール201、202を両面冷却可能な構造とすることができる。
 (E)
 電力変換装置100は、シール面部231、232の周縁部に流路形成体25を挟持した流路形成体挟持部235を有する。
 この構成では、回路基板30に流路形成体25を締結する締結部を設ける場合と比較して流路形成体25を小型化することができる。
 (F)
 モールド樹脂23のシール面部231、232は、光沢表面である。モールド樹脂23のシール面部231、232以外の表面は、梨地表面である。
 この構成では、シール面部231、232が光沢表面であることで、第1シール面部231及び第2シール面部232とOリング26などのシール部材との密着性が増し、気密性が向上する。シール面部231、232以外の表面が梨地表面であることで、モールド樹脂23の形成時に、形成金型からの取り外しが容易となる。
 (G)
 直流配線22は、2つのパワーモジュール201、202で構成された1相分の回路に流入する電流が流れる正極電源端子導体31と、2つのパワーモジュール201、202で構成された1相分の回路から流出する電流が流れる負極電源端子導体32と、を有する。正極電源端子導体31及び負極電源端子導体32は、積層されている。
 この構成では、正極電源端子導体31及び負極電源端子導体32が積層構造であり、それぞれの導体層を流れる電流が対向して磁束打ち消し効果を発揮することによって、インダクタンスを低減することができる。
 (H)
 直流配線22には、流路形成体25の外部に正極端子401及び負極端子402を有するコンデンサ40が搭載されている。正極端子401及び負極端子402は、複数のパワーモジュール201、202から見た場合に、並列に配置されている。
 この構成では、コンデンサ40から一方のパワーモジュール201に流入する電流経路と、対になる他方のパワーモジュール202からコンデンサ40に流出する電流経路と、を均一にすることができ、インダクタンスを低減することができる。
 (I)
 モールド樹脂23は、複数のパワーモジュール201、202と回路基板30とを回路基板30の上下にて覆って封止する。
 この構成では、モールド樹脂23に覆われた回路基板30の上下に流路形成体25が配置でき、各パワーモジュール201、202の両面冷却によって冷却性能を向上することができる。また、回路基板30の上下がモールド樹脂23に覆われ、封止樹脂の常温硬化時に発生する反りを抑制することができる。
 (J)
 第1シール面部231及び第2シール面部232は、回路基板30に対して厚み方向で重なる同じ形状で形成されている。
 この構成では、パワーモジュール201、202の配置されていないモールド樹脂23の周縁の第1シール面部231及び第2シール面部232においてモールド樹脂23の形状及び厚みを同じにして体積を均一にすることができる。
 (K)
 第1シール面部231及び第2シール面部232は、同じ体積で形成されている。
 この構成では、第1シール面部231及び第2シール面部232が同じ体積であるので、第1シール面部231及び第2シール面部232のモールド樹脂23の常温硬化時の収縮量を均一にし、反りを抑制することができる。
 (L)
 シール面部231、232は、複数のパワーモジュール201、202が並列に配置された方向の両側にて、回路基板30からそれぞれはみ出ている。
 この構成では、回路基板30からはみ出ているモールド樹脂23が回路基板30の上下で繋がり、モールド樹脂23を一体化することができる。
 (M)
 複数のパワーモジュール201、202のそれぞれは、IGBT10と、ダイオード11と、IGBT10及びダイオード11の下部に配置されたコレクタ導体板211、212と、IGBT10及びダイオード11の上部に配置されたエミッタ導体板221、222と、によって構成されている。コレクタ導体板211、212及びエミッタ導体板221、222には、1以下の屈曲部230が設けられている。コレクタ導体板211、212及びエミッタ導体板221、222は、回路基板30上部の直流配線22に接続されている。
 この構成では、コレクタ導体板211、212及びエミッタ導体板221、222の屈曲部230が少なく、製造性が向上する。
 (N)
 コレクタ導体板211、212は、コレクタ導体板211、212の回路基板30上部に突出した部位から屈曲部無く直線状に延長されて回路基板30上部の直流配線22に接続されている。
 この構成では、コレクタ導体板211、212の屈曲部が無く、製造性が向上する。
 10…IGBT、11…ダイオード、12…金属接合材、22…直流配線、23…モールド樹脂、24…放熱フィン、25…流路形成体、26…Oリング、30…回路基板、31…正極電源端子導体、32…負極電源端子導体、33…交流出力端子導体、40…コンデンサ、50…制御回路、51…制御信号配線、52…基板内制御信号配線、100…電力変換装置、101…主電極、102…制御電極、201…第1パワーモジュール、202…第2パワーモジュール、211…第1コレクタ導体板、212…第2コレクタ導体板、221…第1エミッタ導体板、222…第2エミッタ導体板、230…屈曲部、231…第1シール面、232…第2シール面、233…第1放熱面、234…第2放熱面、235…流路形成体挟持部、236…スリット、301…ビア、302…パワーモジュール組込孔、311…正極電源端子、321…負極電源端子、331…交流出力端子、401…正極端子、402…負極端子

Claims (15)

  1.  直流電力を交流電力に変換する複数のパワーモジュールと、
     複数の前記パワーモジュールに直流電力を伝達する直流配線と、
     複数の前記パワーモジュールを配置し、前記直流配線を実装した回路基板と、
     複数の前記パワーモジュールと前記回路基板とを覆って封止したモールド樹脂と、
    を備え、
     前記モールド樹脂は、複数の前記パワーモジュールの周囲にシール面部を有し、
     前記シール面部の厚さは、複数の前記パワーモジュールを封止する領域の厚さより薄い
     電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     前記シール面部は、前記回路基板上部に形成された第1シール面部と、前記第1シール面部とは前記回路基板に対して反対側に形成された第2シール面部と、を有し、
     前記第1シール面部及び前記第2シール面部は、前記回路基板に対して同じ厚みで形成されている
     電力変換装置。
  3.  請求項1に記載の電力変換装置であって、
     複数の前記パワーモジュールは、上アーム回路を構成する第1パワーモジュールと、下アーム回路を構成する第2パワーモジュールと、で構成された1相分の回路を3相分有し、
     複数の前記パワーモジュールは、前記直流配線の伸びる方向から見た場合に、並列に配置されている
     電力変換装置。
  4.  請求項3に記載の電力変換装置であって、
     各パワーモジュールの間には、前記モールド樹脂にスリットが形成されている
     電力変換装置。
  5.  請求項1に記載の電力変換装置であって、
     前記回路基板の上下に、前記回路基板との間にて流路を形成する流路形成体をそれぞれ備え、複数の前記パワーモジュールの上下それぞれを冷媒により冷却する
     電力変換装置。
  6.  請求項5に記載の電力変換装置であって、
     前記シール面部の周縁部に前記流路形成体を挟持した流路形成体挟持部を有する
     電力変換装置。
  7.  請求項1に記載の電力変換装置であって、
     前記モールド樹脂の前記シール面部は、光沢表面であり、
     前記モールド樹脂の前記シール面部以外の表面は、梨地表面である
     電力変換装置。
  8.  請求項1に記載の電力変換装置であって、
     前記直流配線は、2つの前記パワーモジュールで構成された1相分の回路に流入する電流が流れる正極電源端子導体と、2つの前記パワーモジュールで構成された1相分の回路から流出する電流が流れる負極電源端子導体と、を有し、
     前記正極電源端子導体及び前記負極電源端子導体は、積層されている
     電力変換装置。
  9.  請求項5に記載の電力変換装置であって、
     前記直流配線には、前記流路形成体の外部に正極端子及び負極端子を有するコンデンサが搭載され、
     前記正極端子及び前記負極端子は、複数の前記パワーモジュールから見た場合に、並列に配置されている
     電力変換装置。
  10.  請求項1に記載の電力変換装置であって、
     前記モールド樹脂は、複数の前記パワーモジュールと前記回路基板とを前記回路基板の上下にて覆って封止する
     電力変換装置。
  11.  請求項2に記載の電力変換装置であって、
     前記第1シール面部及び前記第2シール面部は、前記回路基板に対して厚み方向で重なる同じ形状で形成されている
     電力変換装置。
  12.  請求項11に記載の電力変換装置であって、
     前記第1シール面部及び前記第2シール面部は、同じ体積で形成されている
     電力変換装置。
  13.  請求項3に記載の電力変換装置であって、
     前記シール面部は、複数の前記パワーモジュールが並列に配置された方向の両側にて、前記回路基板からそれぞれはみ出ている
     電力変換装置。
  14.  請求項1に記載の電力変換装置であって、
     複数の前記パワーモジュールのそれぞれは、IGBTと、ダイオードと、前記IGBT及び前記ダイオードの下部に配置されたコレクタ導体板と、前記IGBT及び前記ダイオードの上部に配置されたエミッタ導体板と、によって構成され、
     前記コレクタ導体板及び前記エミッタ導体板には、1以下の屈曲部が設けられ、
     前記コレクタ導体板及び前記エミッタ導体板は、前記回路基板上部の前記直流配線に接続されている
     電力変換装置。
  15.  請求項14に記載の電力変換装置であって、
     前記コレクタ導体板は、前記コレクタ導体板の前記回路基板上部に突出した部位から屈曲部無く直線状に延長されて前記回路基板上部の前記直流配線に接続されている
     電力変換装置。
PCT/JP2023/016666 2022-06-14 2023-04-27 電力変換装置 WO2023243238A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022095867A JP2023182331A (ja) 2022-06-14 2022-06-14 電力変換装置
JP2022-095867 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243238A1 true WO2023243238A1 (ja) 2023-12-21

Family

ID=89190973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016666 WO2023243238A1 (ja) 2022-06-14 2023-04-27 電力変換装置

Country Status (2)

Country Link
JP (1) JP2023182331A (ja)
WO (1) WO2023243238A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128787A1 (ja) * 2012-03-01 2013-09-06 三菱電機株式会社 電力用半導体モジュール及び電力変換装置
JP2019140233A (ja) * 2018-02-09 2019-08-22 三菱電機株式会社 パワーモジュールおよび電力変換装置
JP2021078329A (ja) * 2019-11-13 2021-05-20 富士電機株式会社 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128787A1 (ja) * 2012-03-01 2013-09-06 三菱電機株式会社 電力用半導体モジュール及び電力変換装置
JP2019140233A (ja) * 2018-02-09 2019-08-22 三菱電機株式会社 パワーモジュールおよび電力変換装置
JP2021078329A (ja) * 2019-11-13 2021-05-20 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP2023182331A (ja) 2023-12-26

Similar Documents

Publication Publication Date Title
JP5481148B2 (ja) 半導体装置、およびパワー半導体モジュール、およびパワー半導体モジュールを備えた電力変換装置
US8604608B2 (en) Semiconductor module
WO2012120594A1 (ja) 半導体モジュール、および半導体モジュールの製造方法
JP5486990B2 (ja) パワーモジュール及びそれを用いた電力変換装置
JP5217884B2 (ja) 半導体装置
JP6371001B2 (ja) 電力変換装置
JP6228888B2 (ja) パワー半導体モジュール
JP5664472B2 (ja) 電力変換装置
WO2017056686A1 (ja) 電力変換装置
CN116325135A (zh) 半导体封装、半导体装置以及电力变换装置
JP6767898B2 (ja) パワー半導体装置
US11350517B2 (en) Circuit device and power conversion device
JP3673776B2 (ja) 半導体モジュール及び電力変換装置
WO2023243238A1 (ja) 電力変換装置
US11367671B2 (en) Power semiconductor device
JP5621812B2 (ja) 半導体装置
US20230282589A1 (en) Substrate for power module and method of producing substrate for power module
JP6968967B1 (ja) パワー半導体装置、電力変換装置、および電動システム
JP7345621B2 (ja) 電力変換装置および電力変換装置の製造方法
WO2023276278A1 (ja) パワー半導体装置
WO2021014875A1 (ja) 半導体装置
WO2023100980A1 (ja) 半導体モジュール、電力変換装置および電力変換装置の製造方法
WO2024004267A1 (ja) パワーモジュール用コンデンサ、及びこれを備えている電力変換装置
JP7331497B2 (ja) 電力変換装置
WO2022102412A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823541

Country of ref document: EP

Kind code of ref document: A1