WO2024002227A1 - 一种基于不锈钢金属的复合式柔性电路基板的设置方法 - Google Patents
一种基于不锈钢金属的复合式柔性电路基板的设置方法 Download PDFInfo
- Publication number
- WO2024002227A1 WO2024002227A1 PCT/CN2023/103773 CN2023103773W WO2024002227A1 WO 2024002227 A1 WO2024002227 A1 WO 2024002227A1 CN 2023103773 W CN2023103773 W CN 2023103773W WO 2024002227 A1 WO2024002227 A1 WO 2024002227A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- stainless steel
- steel metal
- copper foil
- insulating
- Prior art date
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 142
- 239000010935 stainless steel Substances 0.000 title claims abstract description 138
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 122
- 239000002184 metal Substances 0.000 title claims abstract description 122
- 239000000758 substrate Substances 0.000 title claims abstract description 82
- 239000002131 composite material Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 47
- 239000010410 layer Substances 0.000 claims abstract description 242
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 97
- 239000011889 copper foil Substances 0.000 claims abstract description 89
- 239000012790 adhesive layer Substances 0.000 claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 claims abstract description 42
- 238000000576 coating method Methods 0.000 claims abstract description 39
- 239000000463 material Substances 0.000 claims abstract description 36
- 239000011248 coating agent Substances 0.000 claims abstract description 28
- 238000004381 surface treatment Methods 0.000 claims abstract description 28
- 238000005304 joining Methods 0.000 claims abstract description 9
- 230000003746 surface roughness Effects 0.000 claims abstract description 8
- 229920005989 resin Polymers 0.000 claims description 55
- 239000011347 resin Substances 0.000 claims description 55
- 239000004642 Polyimide Substances 0.000 claims description 23
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 23
- 229920001721 polyimide Polymers 0.000 claims description 23
- 239000003292 glue Substances 0.000 claims description 22
- 230000017525 heat dissipation Effects 0.000 claims description 22
- 239000011888 foil Substances 0.000 claims description 19
- 229920000728 polyester Polymers 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 7
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 claims description 7
- 239000000853 adhesive Substances 0.000 claims description 7
- 150000002148 esters Chemical class 0.000 claims description 7
- 238000004080 punching Methods 0.000 claims description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 238000005452 bending Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims 1
- 238000009413 insulation Methods 0.000 description 24
- 230000008602 contraction Effects 0.000 description 11
- 239000000306 component Substances 0.000 description 9
- 238000013461 design Methods 0.000 description 7
- 238000007731 hot pressing Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010329 laser etching Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000004831 Hot glue Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 230000001595 contractor effect Effects 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000013039 cover film Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/05—Insulated conductive substrates, e.g. insulated metal substrate
- H05K1/056—Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0203—Cooling of mounted components
- H05K1/0207—Cooling of mounted components using internal conductor planes parallel to the surface for thermal conduction, e.g. power planes
Definitions
- the present invention relates to the field of electronic manufacturing, and in particular to a method of arranging a composite flexible circuit substrate based on stainless steel metal.
- a good substrate must have material properties such as high thermal conductivity, high dimensional stability, high color shielding effect, high heat dissipation, high heat resistance and low thermal expansion coefficient.
- the substrates for electronic products mainly include the following two methods.
- Flexible copper-clad laminate substrates using polyimide (PI) materials After chemical etching, cleaning, and baking processes, the PI material itself has a high expansion and contraction rate, resulting in a thin and large size.
- the relative offset of the circuit board pads is large, and the corresponding insulating film mold needs to be designed based on the measured offset size.
- the copper plate material expands and contracts again, and the steel mesh for welding components needs to be designed and produced again according to the measured dimensions of the circuit board to facilitate subsequent precise position welding of components. The above process leads to poor production stability and consistency, and low product yield.
- Ultra-thin rigid copper-clad laminate base material using BT resin substrate material The low expansion and contraction of BT resin substrate material can In order to achieve relatively stable production, there is no need to consider the dimensional shrinkage issue too much, but it cannot use the roll material process, and the material cost is very expensive, and basically all are imported materials. At the same time, circuit boards processed using ultra-thin rigid circuit board base materials using BT resin substrate materials are very brittle and can easily lead to loss during assembly.
- the embodiment of the present application provides a method for setting up a composite flexible circuit substrate based on stainless steel metal, which solves the problem of large expansion and contraction of material size, high cost, large assembly loss, and complicated production process in the current substrate production of electronic products.
- the embodiment of the present application provides a method for setting up a composite flexible circuit substrate based on stainless steel metal, including:
- An insulating layer is coated on the copper foil layer by an ultra-thin coating method to form a resin-coated copper foil layer, so that the thickness of the insulating layer in the resin-coated copper foil layer reaches 5um to 100um; Apply the insulating adhesive layer using a thin coating method so that the thickness of the insulating adhesive layer reaches 5um to 50um;
- the surface of the stainless steel metal base layer after surface treatment is bonded to the insulating adhesive layer to form a composite flexible circuit substrate based on stainless steel metal.
- the above-mentioned setting method may also include: after using laser etching to generate one or more thermal conductive parts of the columnar cavity structure on the insulating layer and the insulating adhesive layer of the composite flexible circuit substrate, passing through the columnar thermal conductive parts.
- the cavity is filled with thermally conductive metal material to form a thermally conductive column, so that one end of the thermally conductive column is in contact with the contact position of the copper foil layer and the heat source; the other end of the thermally conductive column is bonded to the stainless steel metal base layer and insulation
- the contact positions of the agent layer are in contact.
- the above setting method may also include: the thermally conductive metal material includes silver, copper or aluminum.
- the above arrangement method may also include: further arranging a thermally conductive structural component on the stainless steel metal base layer so that the thermally conductive structural component does not come into contact with the resin-coated copper foil layer.
- the above setting method may also include the step of coating an insulating layer on the copper foil layer through ultra-thin coating to form a resin-coated copper foil layer, and also include curing the resin-coated copper foil layer.
- the above-mentioned setting method may also include: after the step of applying an insulating adhesive layer on the insulating layer of the resin-coated copper foil layer after the curing operation by an ultra-thin coating method, it may also include applying the insulating adhesive layer.
- the resin-coated copper foil layer of the adhesive layer is baked to make the insulating adhesive layer reach a semi-fluid and semi-solidified state.
- the above setting method may also include: the material of the coated insulating layer includes: polyimide solution, polyester solution, polynaphthyl ester solution or liquid crystal polymer solution;
- the copper foil layer includes: rolled copper foil, electrolytic copper foil or high ductility copper foil; the thickness of the copper foil layer is 3um to 70um;
- the material of the coated insulating adhesive layer includes: epoxy resin glue, acrylic glue, polyester glue, polyurethane glue or polyimide glue.
- the above setting method may also include: after the step of surface treatment of the stainless steel metal base layer, it may also include: coating an insulating layer on the surface of the stainless steel metal base layer without surface treatment by ultra-thin coating.
- the resin layer makes the thickness of the insulating resin layer reach 5um to 100um; wherein the material of the coated insulating resin layer includes: polyimide solution, polyester solution, polynaphthyl ester solution or liquid crystal polymer solution;
- the stainless steel metal base layer includes ferritic stainless steel foil with a heat dissipation coefficient higher than 16W or austenitic stainless steel foil with a heat dissipation coefficient higher than 16W.
- the above setting method may also include: the step of joining the surface of the stainless steel metal base layer after the surface treatment operation with the insulating adhesive layer, and also includes:
- the surface of the stainless steel metal base layer after surface treatment is bonded to the insulating adhesive layer; a stainless steel metal base layer is provided, and one or two The resin-coated copper foil layer and the insulating adhesive layer are joined to form a composite flexible circuit substrate based on stainless steel metal.
- the above setting method may also include: the step of joining the surface of the stainless steel metal base layer after the surface treatment operation with the insulating adhesive layer, and also includes:
- the same invention purpose can be achieved by using an aluminum metal base layer as the base.
- a method for setting up a composite flexible circuit substrate based on aluminum metal including: setting an aluminum metal base layer with a thermal expansion coefficient less than 16*10 -6 m/mk as a base, and performing a surface treatment operation on the aluminum metal base layer, so that after surface treatment
- the surface roughness Ra value of the aluminum metal base layer is greater than or equal to 50um
- an insulating layer is coated on the copper foil layer through ultra-thin coating to form a resin-coated copper foil layer, so that the thickness of the insulating layer in the resin-coated copper foil layer reaches 5um to 100um
- the aluminum metal base layer after surface treatment The surface is bonded with an insulating adhesive layer to form a composite flexible circuit substrate based on aluminum metal.
- the aluminum metal base layer is used as the base, and the materials of the coated insulating layer, copper foil layer and coated insulating adhesive layer are consistent with the stainless steel base layer.
- the material of the coated insulating layer includes: polyimide solution, polyester solution, polynaphthyl ester solution or liquid crystal polymer solution;
- the copper foil layer includes: rolled copper foil, electrolytic copper foil or high ductility copper foil; the thickness of the copper foil layer is 3um to 70um;
- the material of the coated insulating adhesive layer includes: epoxy resin glue, acrylic glue, polyester glue, polyurethane glue or polyimide glue.
- the composite flexible circuit substrate based on stainless steel metal has the following advantages:
- Thin and light can be rolled for flexible production and has good hardness and rigidity, making it easy to produce in large quantities and reduce costs;
- Flexible structural combination it can realize a single-sided composite flexible circuit substrate based on stainless steel metal, or a double-sided composite flexible circuit substrate based on stainless steel metal; it can also be used as the core material of multi-layer boards.
- Figure 1 is a flow chart of a method for setting up a composite flexible circuit substrate based on stainless steel metal according to the present application
- Figure 2 is a schematic structural diagram of a stainless steel metal-based composite flexible circuit substrate provided in an exemplary embodiment
- FIG. 3 is a schematic structural diagram of a composite flexible circuit substrate including a thermal conductive part and a thermal conductive structural member according to an exemplary embodiment.
- the installation method of a composite flexible circuit substrate based on stainless steel metal in this application includes the following steps:
- the step of surface treatment of the stainless steel metal base layer also includes: coating an insulating resin layer on the surface of the stainless steel metal base layer without surface treatment by ultra-thin coating, so that the thickness of the insulating resin layer reaches 5um to 100um.
- the material of the coated insulating resin layer includes: polyimide solution, polyester solution, polynaphthyl ester solution or liquid crystal polymer solution.
- Polyimide solution is preferred, as the product is mature and the cost is low; at the same time, the thickness of the insulating resin layer of the present application can be set to adapt the insulating resin layer to be coated on the stainless steel metal base layer in an online coating manner, which is convenient for large-scale use. production, greatly improving the efficiency of production.
- the insulating resin layer is cured to prevent it from adhering to each other during winding, and the components are reacted and cured through the subsequent baking process.
- static electricity can be prevented from damaging the composite flexible circuit substrate through the stainless steel metal base layer, thereby extending the life of the composite flexible circuit substrate and bringing a good user experience.
- Step 120 After the insulating layer is coated on the copper foil layer by ultra-thin coating to form the resin-coated copper foil layer, the resin-coated copper foil layer is cured so that the thickness of the insulating layer in the resin-coated copper foil layer reaches 5um. to 100um; apply an insulating adhesive layer on the insulating layer of the resin-coated copper foil layer through ultra-thin coating so that the thickness of the insulating adhesive layer reaches 5um to 50um, and then apply the insulating adhesive layer to The resin-coated copper foil layer is baked to make the insulating adhesive layer reach a semi-fluid and semi-solidified state;
- the resin-coated copper foil layer is cured to prevent them from adhering to each other during winding, and the components are reacted and solidified through a subsequent baking process to form a resin-coated copper foil layer.
- the resin-coated copper foil layer coated with the insulating adhesive layer is baked to make the insulating adhesive layer reach a semi-fluid and semi-cured state, which can ensure that the surface of the stainless steel metal base layer in the next step is in contact with the insulating adhesive layer. Perform good joining operations.
- the surface of the stainless steel metal base layer after surface treatment is bonded to the insulating adhesive layer; a stainless steel metal base layer is provided, which is bonded to the insulating adhesive of one or two resin-coated copper foil layers.
- the bonding layers are joined to form a composite flexible circuit substrate based on stainless steel metal.
- the composite flexible circuit substrate based on stainless steel metal in this application is light and thin, so it can be produced in a rollable and flexible manner.
- the composite flexible circuit substrate also has good hardness and rigidity, making it easy to produce in large quantities and reduce costs.
- the composite flexible circuit substrate based on stainless steel metal in this application has flexible structure combinations, and can realize either a single-sided stainless steel metal-based composite flexible circuit substrate or a double-sided stainless steel metal-based composite flexible circuit substrate; It can also be used as the core material of multi-layer boards, suitable for a variety of scenarios, further improving the competitiveness of the product.
- the step of joining the surface of the stainless steel metal base layer after surface treatment to the insulating adhesive layer also includes:
- FIG. 2 is a schematic structural diagram of a composite flexible circuit substrate based on stainless steel provided in an exemplary embodiment.
- a composite flexible circuit substrate based on stainless steel includes: stainless steel metal joined to each other The base layer 10 and the resin-coated copper foil layer 20, wherein,
- the resin-coated copper foil layer 20 includes a copper foil layer 201 and an insulating layer 202 joined to each other, wherein the insulating layer 202 of the resin-coated copper foil layer 20 is in contact with the stainless steel metal base layer 10 through the insulating adhesive layer 12;
- a stainless steel metal base layer is joined to one or two resin-coated copper foil layers; the surface roughness Ra value of the side of the stainless steel metal base layer in contact with the insulating adhesive layer is greater than or equal to 50um, and the thermal expansion of the stainless steel metal base layer The coefficient is less than 16*10 -6 m/mk.
- this application processed the surface of one side of the stainless steel metal base layer in contact with the insulating adhesive layer, so that the surface roughness Ra value of the side of the stainless steel metal base layer in contact with the insulating adhesive layer was Greater than or equal to 50 ⁇ m, it is more conducive to the joining of the stainless steel metal base layer and the resin-coated copper foil layer, and can be adapted to the hot pressing method, improving the product yield.
- this application can adapt the stainless steel metal base to hot pressing by using a stainless steel metal base layer with a thermal expansion coefficient less than 16*10-6m/mk. It ensures the rigidity of the composite flexible circuit substrate, and can realize an 8um ultra-thin PI insulation layer and a 10um ultra-thin insulation adhesive layer through ultra-thin coating process, which greatly reduces the shrinkage of the PI insulation layer and insulation adhesive layer.
- the expansion and contraction caused by the insulation layer makes the insulation layer and the insulation adhesive layer reach close thermal expansion coefficients, combining the stainless steel metal base layer and the resin-coated copper foil layer into an integrated material, thereby forming an integrated, extremely low-size Flexible circuit board material with shrinkage ratio.
- the toughness and plasticity of the stainless steel metal base layer can also maintain a three-dimensional structure after punching, enriching the needs of product design and assembly.
- Stainless steel metal base layer mainly stainless steel metal; resin-coated copper foil layer (RCC), including copper foil layer and insulating layer; insulating adhesive layer (the insulating adhesive includes coating type and pressable type insulating adhesive agent).
- the composite flexible circuit substrate based on stainless steel metal of this application has the following advantages:
- thermal conductive part 30 which has a columnar structure; one end of the columnar structure of the thermal conductive part 30 is in contact with the contact position between the copper foil layer 201 and the heat source R; the other end of the columnar structure of the thermal conductive part 30 One end is in contact with the contact position between the stainless steel metal base layer 10 and the insulating adhesive layer 12 .
- the thermal conductive material of the thermal conductive part 30 includes silver, copper or aluminum (the thermal conductive material may include silver, copper or aluminum. This application is not limited to the above thermal conductive materials. Any material with good thermal conductivity effect is suitable for this application. In actual use, Copper plating can be used to fill the cavity of the heat conduction part with copper.
- the stainless steel metal base layer 10 is also provided with a thermally conductive structural member 101.
- the thermally conductive structural member is an independent structure, and the thermally conductive structural member 101 is not in contact with the resin-coated copper foil layer 20.
- the insulating layer and insulating adhesive layer of the composite flexible circuit substrate can be generated by laser etching to form one or more thermally conductive portions of the columnar cavity structure, and then the thermal conductivity can be filled in the columnar cavity of the thermally conductive portion.
- the metal material forms a thermal conductive column, so that one end of the thermal conductive column is in contact with the contact position between the copper foil layer and the heat source; and the other end of the thermal conductive column is in contact with the contact position between the stainless steel metal base layer and the insulating adhesive layer.
- the insulating layer and insulating adhesive layer in the thermal contact area can be etched by laser etching to form a columnar cavity structure, allowing the stainless steel to The metal layer directly passes through the thermal conductive part
- the best heat dissipation effect can be achieved by contacting the contact position between the copper foil layer and the heat source and conducting heat dissipation through the thermally conductive structural parts.
- the heat source can be directly conducted to the stainless steel metal layer at the edge of the heat source device of the stainless steel flexible circuit board by filling the columnar cavity structure of the thermal conductive column with thermally conductive metal material, and then the stainless steel metal layer absorbs and conducts it to the thermally conductive structural parts. Due to the good heat dissipation, the temperature of the composite flexible circuit substrate is greatly reduced, the performance of the equipment using the composite flexible circuit substrate is improved, and the service life of the equipment is extended.
- the miniLED module circuit board is mainly made of rigid boards (PCB), mostly aluminum-based copper-clad laminates. Thermal conductive insulating glue is used to conduct heat from the circuit layer to the aluminum plate layer.
- the aluminum-based copper clad laminate has poor rigidity.
- an aluminum plate with a thickness of at least 1mm is required as a supporting layer. Insulating and thermally conductive adhesive needs to take into account both thermal conductivity and insulation properties, and the thickness cannot be reduced to 30um or even 50um. Circuit boards made of aluminum-based copper-clad laminates cannot be thin and light while ensuring high heat dissipation.
- the composite flexible circuit substrate based on stainless steel in this application uses stainless steel metal foil with high heat dissipation coefficient (higher than 16W) as the base (the thinnest can reach 30um), coupled with precision-coated ultra-thin insulation layer and insulation bonding
- the agent layer total thickness within 20um
- the insulating layer and insulating adhesive layer in the thermal contact area are etched using a laser etching process, so that the stainless steel metal base layer directly contacts the thermally conductive structural parts to achieve the best heat dissipation effect.
- the materials of the coated insulating layer include: polyimide (PI) solution, polyester solution, Polynaphthyl ester solution or liquid crystal polymer solution; the thickness of the insulating layer can be 5um to 100um.
- Polyimide solution is preferred, as the product is mature and the cost is low; at the same time, the thickness setting of the insulating layer in this application can make the insulating layer suitable for coating on the copper foil layer in an online coating manner, which facilitates mass production. Greatly improve production efficiency.
- the copper foil layer includes rolled copper foil, electrolytic copper foil or high ductility copper foil; the thickness of the copper foil layer is 3um to 70um.
- the setting of the thickness of the copper foil layer of the present application can be adapted to roll-type flexible production, which greatly improves the production efficiency.
- the material of the coated insulating adhesive layer includes: epoxy resin glue, acrylate glue, polyester glue, polyurethane glue or polyimide glue, and the thickness of the insulating adhesive layer is 5um to 50um.
- This application achieves a thermal expansion coefficient close to that of the insulating layer and the insulating adhesive layer through the adjustment of the colloidal formula and the rigidity of the stainless steel metal base layer, thereby forming an integral flexible circuit board material with extremely low dimensional expansion and contraction.
- the setting of the thickness of the insulating adhesive layer in this application allows the insulating adhesive layer to be coated on the insulating layer of the resin-coated copper foil layer through online coating, which facilitates mass production and greatly improves production efficiency. efficiency.
- the stainless steel metal base layer includes ferritic stainless steel foil or austenitic stainless steel foil.
- ferritic stainless steel foil is a stainless steel foil with a mainly ferrite structure under use. Its chromium content ranges from 11% to 30% and has a body-centered cubic crystal structure. This type of steel generally does not contain nickel, and sometimes contains a small amount of Mo, Ti, Nb and other elements. This type of steel has a large thermal conductivity. It has the characteristics of small expansion coefficient, good oxidation resistance, and excellent stress corrosion resistance.
- Austenitic stainless steel foil refers to stainless steel foil with an austenitic structure at room temperature. When austenitic stainless steel contains about 18% Cr, 8% to 25% Ni, and about 0.1% C, it has a stable austenite structure. Austenitic stainless steel generally refers to stainless steel containing Cr and Ni, such as 304 steel, 316 steel, etc. This type of stainless steel has lower cost and is conducive to mass production. At the same time, this type of stainless steel is generally non-magnetic, has good corrosion resistance, and cannot be heat treated. Strengthened and processed, it will produce a certain degree of magnetism.
- the stainless steel metal base layer includes: the stainless steel metal base layer is a ferrite stainless steel foil with a heat dissipation coefficient higher than 16W or an austenitic stainless steel foil with a heat dissipation coefficient higher than 16W.
- the composite flexible circuit substrate based on stainless steel metal in this application has high heat dissipation and high heat load characteristics.
- single-sided adhesive-free copper foil substrate copper foil layer, insulating layer coated on one side of the copper foil layer
- laminateable copper foil substrate copper foil layer, insulating layer coated on one side of the copper foil layer, An insulating adhesive layer or a pressable insulating adhesive layer coated on one side of the insulating layer
- stainless steel metal base layer a surface-treated stainless steel metal base layer.
- the composite flexible circuit substrate based on stainless steel metal of this application has extremely low dimensional expansion and contraction rate, high thermal conductivity and three-dimensional plasticity, and can solve the current problem of using PET silver paste for keyboard backlight flexible boards.
- Technology or the production of flexible copper foil substrates with cover film inks leads to complex production processes, large expansion and contraction of material dimensions, and low product yields.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
- Laminated Bodies (AREA)
Abstract
一种基于不锈钢金属的复合式柔性电路基板的设置方法,包括:设置热膨胀系数为小于16*10 -6m/mk的不锈钢金属基层(10)为基底,对基底进行表面处理,使不锈钢金属基层(10)的表面粗糙度Ra数值为大于等于50um;通过超薄涂布方式在铜箔层(201)上涂覆绝缘层(202),使绝缘层(202)的厚度达到5um至100um;在绝缘层(202)上通过超薄涂布方式涂覆绝缘粘结剂层(12),使绝缘粘结剂层(12)的厚度达到5um至50um;将进行表面处理操作后的不锈钢金属基层(10)的表面与绝缘粘结剂层(12)进行接合操作,形成基于不锈钢金属的复合式柔性电路基板。本发明解决了当前电子产品的基板生产中,材料尺寸涨缩偏大,成本过高,装配损耗大,生产工序复杂,产品的良品率不高的问题。
Description
本发明涉及电子制造领域,尤其涉及一种基于不锈钢金属的复合式柔性电路基板的设置方法。
随着全球电子产业的蓬勃发展,其核心零部件印刷电路板的行业规模已经突破650亿美元,其设计趋势向超细电路板(IC载板或类载板),高可靠性电路板(功率器件基板),三维电路板(可穿戴、超薄电子产品)的需求也不断增加,技术趋势也向轻薄化、高可靠性、高精密化,结构和电子一体化的方向发展。
目前全球电子产业的发展趋势向轻薄短小、高耐热性、多功能性、高密度化、高可靠性且低成本的方向发展,因此电子产品的基板如何选用就成为很重要的影响因素。而良好的基板必须具备高热传导性、高尺寸安定性、高遮色效果、高散热性、高耐热性及低热膨胀系数的材料特性。
当前在电子产品的基板主要包括以下两种方式,使用聚酰亚胺(PI)材料的柔性覆铜板基材:经过化学蚀刻、清洗、烘烤工艺后,PI材料本身高涨缩率导致轻薄大尺寸电路板焊盘相对偏移较大,需要根据测量后的偏移尺寸设计对应的绝缘膜模具,再经过绝缘膜高温压合、表面处理、清洗、烘干后,会导致基于PI材料的柔性覆铜板材料再次涨缩,需要再次根据电路板测量的尺寸,对应去设计和制作焊接元器件的钢网,便于后续元器件精准位置焊接。以上过程导致生产稳定性和一致性差,产品的良品率低。
使用BT树脂基板材料的超薄刚性覆铜板基材:BT树脂基板材料的低涨缩可
以实现相对稳定的生产,无需太多考虑尺寸收缩率问题,但其无法使用卷料工艺,且材料成本非常昂贵,基本全部为进口材料。同时,使用BT树脂基板材料的超薄刚性线路板基材加工完成的电路板非常脆,容易导致装配时的损耗。
因此,需要一种新的柔性电路基板的技术方案来解决当前电子产品的基板生产中,材料尺寸涨缩偏大,成本过高,装配损耗大,生产工序复杂,产品的良品率不高的问题。
发明内容
本申请实施例提供了一种基于不锈钢金属的复合式柔性电路基板的设置方法,解决了当前电子产品的基板生产中,材料尺寸涨缩偏大,成本过高,装配损耗大,生产工序复杂,产品的良品率不高的问题。
本申请实施例提供一种基于不锈钢金属的复合式柔性电路基板的设置方法,包括:
设置热膨胀系数为小于16*10-6m/mk的不锈钢金属基层作为基底,对不锈钢金属基层进行表面处理操作,使表面处理后的不锈钢金属基层的表面粗糙度Ra数值为大于等于50um;
通过超薄涂布方式在铜箔层上涂覆绝缘层形成涂树脂铜箔层,使涂树脂铜箔层中绝缘层的厚度达到5um至100um;在涂树脂铜箔层的绝缘层上通过超薄涂布方式涂覆绝缘粘结剂层,使绝缘粘结剂层的厚度达到5um至50um;
将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作,形成基于不锈钢金属的复合式柔性电路基板。
进一步地,上述设置方法还可包括:对复合式柔性电路基板的绝缘层和绝缘粘结剂层通过激光刻蚀方式生成一个或多个柱状腔体结构的导热部后,通过在导热部的柱状腔体中填实导热金属材料形成导热柱,使导热柱的一端,与铜箔层和热源的接触位置相接触;并使导热柱的另一端,与不锈钢金属基层和绝缘粘结
剂层的接触位置相接触。
进一步地,上述设置方法还可包括:所述导热金属材料包括银、铜或铝。
进一步地,上述设置方法还可包括:在所述不锈钢金属基层还设置导热结构件,使导热结构件不与涂树脂铜箔层接触。
进一步地,上述设置方法还可包括:所述通过超薄涂布方式在铜箔层上涂覆绝缘层形成涂树脂铜箔层的步骤,还包括对涂树脂铜箔层进行固化处理操作。
进一步地,上述设置方法还可包括:所述进行固化操作后的涂树脂铜箔层的绝缘层上通过超薄涂布方式涂覆绝缘粘结剂层的步骤后,还包括对涂覆绝缘粘结剂层的涂树脂铜箔层进行烘烤处理操作,使绝缘粘结剂层达到半流动半固化状态。
进一步地,上述设置方法还可包括:所述涂覆的绝缘层的材料包括:聚酰亚胺溶液、聚酯溶液、聚萘酯溶液或液晶聚合物溶液;
所述铜箔层包括:压延铜箔、电解铜箔或高延展铜箔;铜箔层的厚度为3um至70um;
所述涂覆的绝缘粘结剂层的材料包括:环氧树脂胶水、丙烯酸酯胶水、聚酯胶水、聚氨酯胶水或聚酰亚胺胶水。
进一步地,上述设置方法还可包括:所述对不锈钢金属基层进行表面处理操作的步骤后,还包括:通过超薄涂布方式在未进行表面处理操作的不锈钢金属基层的表面上涂覆一绝缘树脂层,使绝缘树脂层的厚度达到5um至100um;其中,所述涂覆的绝缘树脂层的材料包括:聚酰亚胺溶液、聚酯溶液、聚萘酯溶液或液晶聚合物溶液;所述不锈钢金属基层包括散热系数高于16W的铁素体不锈钢箔或散热系数高于16W的奥氏体不锈钢箔。
进一步地,上述设置方法还可包括:所述将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作的步骤,还包括:
通过可卷式柔性生产方式,将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作;其中设置一个不锈钢金属基层,与一个或两个
涂树脂铜箔层的绝缘粘结剂层相接合,形成基于不锈钢金属的复合式柔性电路基板。
进一步地,上述设置方法还可包括:所述将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作后的步骤,还包括:
通过对不锈钢金属基层与绝缘粘结剂层接合后的复合式柔性电路基板进行一次性冲切及折弯的操作,形成3D结构的基于不锈钢金属的复合式柔性电路基板。
作为不锈钢金属基层的替代方案,以铝金属基层作为基底,可以实现同样的发明目的。
一种基于铝金属的复合式柔性电路基板的设置方法,包括:设置热膨胀系数为小于16*10-6m/mk的铝金属基层作为基底,对铝金属基层进行表面处理操作,使表面处理后的铝金属基层的表面粗糙度Ra数值为大于等于50um;通过超薄涂布方式在铜箔层上涂覆绝缘层形成涂树脂铜箔层,使涂树脂铜箔层中绝缘层的厚度达到5um至100um;在涂树脂铜箔层的绝缘层上通过超薄涂布方式涂覆绝缘粘结剂层,使绝缘粘结剂层的厚度达到5um至50um;将进行表面处理操作后的铝金属基层的表面与绝缘粘结剂层进行接合操作,形成基于铝金属的复合式柔性电路基板。
用铝金属基层作为基底其涂覆的绝缘层的材料、铜箔层和涂覆的绝缘粘结剂层的材料与不锈钢基层一致。其中,
涂覆的绝缘层的材料包括:聚酰亚胺溶液、聚酯溶液、聚萘酯溶液或液晶聚合物溶液;
所述铜箔层包括:压延铜箔、电解铜箔或高延展铜箔;铜箔层的厚度为3um至70um;
所述涂覆的绝缘粘结剂层的材料包括:环氧树脂胶水、丙烯酸酯胶水、聚酯胶水、聚氨酯胶水或聚酰亚胺胶水。
在本申请实施例中,基于不锈钢金属的复合式柔性电路基板,具有以下优点:
1、极低尺寸涨缩率:因为采用极低膨胀系数(低于万分之一)的不锈钢箔为基底,再通过超薄涂布工艺实现8um超薄PI绝缘层和10um超薄绝缘粘结剂层,极大程度降低了PI绝缘层和绝缘粘结层收缩带来的涨缩影响。使用基于不锈钢金属的复合式柔性电路基板,生产过程中可以保持极佳的尺寸稳定性,保证了电路图形焊盘位置和孔位置的高精密度,大大提高了良品率。
2、高散热性:因为采用高散热系数(高于16W)的不锈钢箔为基底,使得本申请的基于不锈钢金属的复合式柔性电路基板具备高散热性,高热负载的特性。
3、电子与结构一体化:因为采用了具备良好拉伸性,可塑性的不锈钢金属基层为基底,配合高拉伸PI绝缘层和高拉伸绝缘粘结剂,使得基于不锈钢金属的复合式柔性电路基板可以通过冲切弯折工艺,生产出独特的不锈钢基三维电路板,极大的简化了三维电路板的生产工艺,降低了成本。
4、轻薄:可卷式柔性生产,又有良好的硬度和刚性,易大批量生产,降低成本;
5、结构组合灵活:可实现单面的基于不锈钢金属的复合式柔性电路基板,也可实现双面的基于不锈钢金属的复合式柔性电路基板;并可作为多层板芯材使用。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的一种基于不锈钢金属的复合式柔性电路基板的设置方法的流程图;
图2为一示例性实施例提供的一种基于不锈钢金属的复合式柔性电路基板的结构示意图;
图3为一示例性实施例提供的一种包括导热部和导热结构件的复合式柔性电路基板的结构示意图。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
如图1所示,本申请的一种基于不锈钢金属的复合式柔性电路基板的设置方法,包括以下步骤:
步骤110、设置热膨胀系数为小于16*10-6m/mk的不锈钢金属基
层作为基底,对不锈钢金属基层进行表面处理操作,使表面处理后的不锈钢金属基层的表面粗糙度Ra数值为大于等于50um;
所述对不锈钢金属基层进行表面处理操作的步骤后,还包括:通过超薄涂布方式在未进行表面处理操作的不锈钢金属基层的表面上涂覆一绝缘树脂层,使绝缘树脂层的厚度达到5um至100um。其中,所述涂覆的绝缘树脂层的材料包括:聚酰亚胺溶液、聚酯溶液、聚萘酯溶液或液晶聚合物溶液。优选的是聚酰亚胺溶液,产品成熟,成本较低;同时本申请的绝缘树脂层的厚度的设置可使绝缘树脂层适应于在线涂布的方式涂覆在不锈钢金属基层上,便于大规模生产,更大地提高了生产的效率。
对绝缘树脂层进行固化处理操作,以免在收卷时相互粘附,并通过后续的烘烤工艺达到成分反应固化。通过涂覆一绝缘树脂层,可以防止静电通过不锈钢金属基层对复合式柔性电路基板进行损害,延长了复合式柔性电路基板的寿命,带来了良好的用户体验。
步骤120、通过超薄涂布方式在铜箔层上涂覆绝缘层形成涂树脂铜箔层后,对涂树脂铜箔层进行固化处理操作,使涂树脂铜箔层中绝缘层的厚度达到5um至100um;在涂树脂铜箔层的绝缘层上通过超薄涂布方式涂覆绝缘粘结剂层,使绝缘粘结剂层的厚度达到5um至50um,然后对涂覆绝缘粘结剂层的涂树脂铜箔层进行烘烤处理操作,使绝缘粘结剂层达到半流动半固化状态;
对涂树脂铜箔层进行固化处理操作,以免在收卷时相互粘附,并通过后续的烘烤工艺达到成分反应固化,形成涂树脂铜箔层。
对涂覆绝缘粘结剂层的涂树脂铜箔层进行烘烤处理操作,使绝缘粘结剂层达到半流动半固化状态,可以确保下一步进行的不锈钢金属基层的表面与绝缘粘结剂层进行良好的接合操作效果。
步骤130、将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作,形成基于不锈钢金属的复合式柔性电路基板。
所述将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作的步骤,还包括:
通过可卷式柔性生产方式,将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作;其中设置一个不锈钢金属基层,与一个或两个涂树脂铜箔层的绝缘粘结剂层相接合,形成基于不锈钢金属的复合式柔性电路基板。本申请的基于不锈钢金属的复合式柔性电路基板由于轻薄,能够采用可卷式柔性生产,复合式柔性电路基板又有良好的硬度和刚性,易大批量生产,降低成本。同时,本申请的基于不锈钢金属的复合式柔性电路基板结构组合灵活,既可实现单面的基于不锈钢金属的复合式柔性电路基板,也可实现双面的基于不锈钢金属的复合式柔性电路基板;并可作为多层板芯材使用,适合多种场景,进一步提高了产品的竞争力。
本申请的基于不锈钢金属的复合式柔性电路基板因为采用极低膨胀系数(低于万分之一)的不锈钢金属箔为基底,再通过超薄涂布工艺实现8um超薄绝缘层和10um超薄绝缘粘结剂层,极大程度降低
了绝缘层和绝缘粘结剂层收缩带来的涨缩影响。同时基于不锈钢金属的复合式柔性电路基板可以实现卷料方式生产,生产过程中可以保持极佳的尺寸稳定性,保证电路图形焊盘位置和孔位置的高精密度,可以提前设计各类模具,大幅度提高了生产效率和良品率。
所述将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作后的步骤,还包括:
通过对不锈钢金属基层与绝缘粘结剂层接合后的复合式柔性电路基板进行一次性冲切及折弯的操作,形成3D结构的基于不锈钢金属的复合式柔性电路基板。
当前的电子产品的基板生产中多使用贴合工艺和铆合工艺。1、贴合工艺:使用热熔胶热压合工艺将柔性电路板和结构件装配到一起。需要设计专用的热压模具,将热熔胶预先假贴到柔性电路板或结构件上,再通过专用的热压模具固定并加热压合,使得热熔胶将柔性电路板和结构件有效的贴合到一起。模具设计复杂,装配效率低,成本高。2、铆合工艺:使用各种铆钉将柔性电路板和结构件装配到一起。需要预留铆合的孔位,设计专用夹具,铆合的结构空间要求比较大,不符合轻薄化趋势。效率不高,成本高。
本申请的基于不锈钢金属的复合式柔性电路基板因为采用了具备良好拉伸性,可塑性的不锈钢金属箔为基底,配合高拉伸的绝缘层和高拉伸绝缘粘结剂,使得采用基于不锈钢金属的复合式柔性电路基板既可以使用传统柔性电路板生产工艺,也可以使用原有结构件的冲压弯折模具,在最终成型加工时实现一次性冲切及折弯成型,节省了
原有柔性电路板的外形冲切工序,节省了贴合/铆合材料,节省了贴合/铆合使用的专用的模具/夹具,降低了成本,同时提高了生产效率。本申请的基于不锈钢金属的复合式柔性电路基板极大的简化了3D电路板的生产工艺,提升了生产效率,降低了成本。
图2为一示例性实施例提供的一种基于不锈钢金属的复合式柔性电路基板的结构示意图,如图2所示,一种基于不锈钢金属的复合式柔性电路基板,包括:相互接合的不锈钢金属基层10和涂树脂铜箔层20,其中,
涂树脂铜箔层20包括相互接合的铜箔层201和绝缘层202,其中涂树脂铜箔层20的绝缘层202通过绝缘粘结剂层12与不锈钢金属基层10接触;
其中,一个不锈钢金属基层,与一个或两个涂树脂铜箔层相接合;与绝缘粘结剂层接触的不锈钢金属基层的一侧的表面粗糙度Ra数值为大于等于50um,不锈钢金属基层的热膨胀系数为小于16*10-6m/mk。
在实际测试中,本申请通过对与绝缘粘结剂层接触的不锈钢金属基层的一侧的表面进行处理,使与绝缘粘结剂层接触的不锈钢金属基层的一侧的表面粗糙度Ra数值为大于等于50μm,更利于不锈钢金属基层和涂树脂铜箔层的接合,可以适应热压的方式,提高了产品的良品率。
在实际测试中,本申请通过采用热膨胀系数为小于16*10-6m/mk的不锈钢金属基层,可以使得不锈钢金属基层适应热压的方式,既可
确保了复合式柔性电路基板的刚性,又可通过超薄涂布工艺实现8um超薄PI绝缘层和10um超薄绝缘粘结剂层,极大程度降低了PI绝缘层和绝缘粘结剂层收缩带来的涨缩影响,使绝缘层和绝缘粘结剂层达到接近的热膨胀系数,将不锈钢金属基层和涂树脂铜箔层结合成一体化的材料,从而形成一种整体性的、极低尺寸涨缩率的柔性电路板材料。同时不锈钢金属基层的韧性和可塑性,还可以达到冲型后保持立体的结构,丰富了产品设计和组装的需要。
不锈钢金属基层:主要是不锈钢金属;涂树脂铜箔层(RCC),包括铜箔层和绝缘层;绝缘粘结剂层(其中绝缘粘结剂包括涂布型和可压合型的绝缘粘结剂)。
传统的笔记本背光柔板是使用PET印银浆或者柔性铜箔基板贴合覆盖膜和油墨生产的,生产工序复杂,材料尺寸涨缩偏大,产品的良品率不高,通过基于不锈钢金属的复合式柔性电路基板,可以使得生产工序大大简化,生产效率提升,良率提高;在实际测试中通过胶体配方的调整以及不锈钢金属基层的刚性,达到了绝缘层和绝缘粘结剂层接近的热膨胀系数,从而形成一种整体性的、极低尺寸涨缩率的柔性电路板材料;通过不锈钢金属基层的韧性和可塑性,可以达到冲型后保持立体的结构,丰富了产品设计和组装的需要。
综上所述,本申请的基于不锈钢金属的复合式柔性电路基板具有以下效果优点:
1、通过使用柔性的不锈钢金属基层,减少了生产工序,减薄了产品设计,节约了生产成本;
2、提高产品生产的良品率,扩展了产品的使用范围;
3、极低的尺寸涨缩率、高的导热性以及立体可塑性。
如图3所示,还包括导热部30,导热部30为柱状结构;导热部30的柱状结构的一端,与铜箔层201和热源R的接触位置相接触;导热部30的柱状结构的另一端,与不锈钢金属基层10和绝缘粘结剂层12的接触位置相接触。所述导热部30的导热材料包括银、铜或铝(导热材料可以包括银、铜或铝,本申请并不限于上述导热材料,任何良好导热效果的材料都适应于本申请,实际使用中,可采用镀铜方式将铜填实于导热部的腔体中,这样的方式成本低,便于操作,利于大规模生成),所述导热部30为一个或多个,导热部设置的数量与需要散热的位置的数量相适应,可以更好的便于散热。所述不锈钢金属基层10还设置导热结构件101,导热结构件为独立结构,导热结构件101不与涂树脂铜箔层20接触。
还包括:对复合式柔性电路基板的绝缘层和绝缘粘结剂层可以通过激光刻蚀方式生成一个或多个柱状腔体结构的导热部后,通过在导热部的柱状腔体中填实导热金属材料形成导热柱,使导热柱的一端,与铜箔层和热源的接触位置相接触;并使导热柱的另一端,与不锈钢金属基层和绝缘粘结剂层的接触位置相接触。
在实际测试中,当基于不锈钢金属的复合式柔性电路基板需要导热输出时,可以通过激光刻蚀方式将导热接触区域的绝缘层和绝缘粘结剂层进行刻蚀形成柱状腔体结构,让不锈钢金属层通过导热部直接
接触铜箔层和热源的接触位置,并通过导热结构件传导散热,可以达到最佳的散热效果。同时可以在不锈钢柔性电路板的热源器件边缘通过在导热柱的柱状腔体结构中填实导热金属材料的方式将热源直接传导到不锈钢金属层,再由不锈钢金属层吸收和传导到导热结构件。由于良好的散热,大幅降低了复合式柔性电路基板的温度,提高了采用复合式柔性电路基板的设备的性能,同时延长了设备的使用寿命。
以miniLED模组电路板为例,miniLED模组电路板以刚性板(PCB)为主,多为铝基覆铜板,使用导热绝缘胶将线路层的热量传导到铝板层,铝基覆铜板刚性差,需要至少1mm厚度的铝板作为支撑层。绝缘导热胶需要兼顾导热和绝缘性能,厚度无法减薄,在30um甚至50um以上。以铝基覆铜板制作的电路板无法在保障高散热性的同时实现轻薄化。
本申请的基于不锈钢金属的复合式柔性电路基板因为采用高散热系数(高于16W)的不锈钢金属箔为基底(最薄可以达到30um),加上精密涂布的超薄绝缘层及绝缘粘结剂层(总厚度20um以内),使得基于不锈钢金属的复合式柔性电路基板具备高散热性,高热负载的同时,兼顾了轻薄化;当基于不锈钢金属的复合式柔性电路基板需要导热输出时,可以用激光刻蚀工艺将导热接触区域的绝缘层和绝缘粘结剂层刻蚀,让不锈钢金属基层直接接触导热结构件,达到最佳的散热效果。
所述涂覆的绝缘层的材料包括:聚酰亚胺(PI)溶液、聚酯溶液、
聚萘酯溶液或液晶聚合物溶液;绝缘层的厚度可以为5um至100um。优选的是聚酰亚胺溶液,产品成熟,成本较低;同时本申请的绝缘层的厚度的设置可使绝缘层适应于在线涂布的方式涂覆在铜箔层上,便于大规模生产,更大地提高了生产的效率。
所述铜箔层包括压延铜箔、电解铜箔或高延展铜箔;铜箔层的厚度为铜箔层的厚度为3um至70um。本申请的铜箔层的厚度的设置可适应于可卷式柔性生产,更大地提高了生产的效率。
所述涂覆的绝缘粘结剂层的材料包括:环氧树脂胶水、丙烯酸酯胶水、聚酯胶水、聚氨酯胶水或聚酰亚胺胶水,绝缘粘结剂层的厚度为5um至50um。本申请通过胶体配方的调整以及不锈钢金属基层的刚性,达到了绝缘层和绝缘粘结剂层接近的热膨胀系数,从而形成一种整体性的、极低尺寸涨缩率的柔性电路板材料。同时本申请的绝缘粘结剂层的厚度的设置可使绝缘粘结剂层通过在线涂布的方式涂覆在涂树脂铜箔层的绝缘层上,便于大规模生产,更大地提高了生产的效率。
所述不锈钢金属基层包括铁素体不锈钢箔或奥氏体不锈钢箔。
其中,铁素体不锈钢箔为在使用状态下以铁素体组织为主的不锈钢箔,其含铬量在11%~30%,具有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb等到元素,这类钢具导热系数大,
膨胀系数小、抗氧化性好、抗应力腐蚀优良等特点。
奥氏体不锈钢箔是指在常温下具有奥氏体组织的不锈钢箔。奥氏体不锈钢中含Cr约18%、Ni 8%~25%、C约0.1%时,具有稳定的奥氏体组织。奥氏体不锈钢一般是指含Cr和Ni的不锈钢,如304钢、316钢等,这类不锈钢成本较低,利于大规模生产,同时这类不锈钢一般没有磁性,耐腐蚀性也好,不能热处理强化,加工后会产生一定的磁性。
所述不锈钢金属基层包括所述不锈钢金属基层为散热系数高于16W的铁素体不锈钢箔或散热系数高于16W的奥氏体不锈钢箔。采用散热系数高于16W的铁素体不锈钢箔或散热系数高于16W的奥氏体不锈钢箔,使得本申请的基于不锈钢金属的复合式柔性电路基板具备高散热性,高热负载的特性。
下面结合具体实施方式对本申请作进一步说明。
第一具体实施方式:
包括:单面无胶铜箔基板:铜箔层,涂覆于铜箔层一侧的绝缘层;可压合铜箔基材:铜箔层,涂覆于铜箔层一侧的绝缘层,涂覆于绝缘层一侧的绝缘粘结剂层或可压合型绝缘粘结剂层;不锈钢金属基层:经过表面处理的不锈钢金属基层。
具体流程如下:通过有机溶剂来混合溶解所需的各组分,形成绝缘聚合物基层的液态分散体,使用在线涂布生产设备将此液态绝缘聚
合物基层涂覆至铜箔层上,使通过涂布后的绝缘层,经过在线干燥烘箱,除去内含的有机溶剂并达到固化,以免在收卷时相互粘附,并通过后续的烘烤工艺达到成分反应固化,形成单面无胶铜箔基板;
通过有机溶剂来混合所需的各组分,形成绝缘胶层的液态分散体,将此绝缘层的液态分散体使用在线涂布生产设备涂覆于铜箔层的粗糙面一侧,经过在线干燥烘箱的烘烤,去除内含的有机溶剂,并使绝缘胶体达到半流动半固化状态。
使用单面涂胶的铜箔层通过在线涂布或者热压的方式与不锈钢金属基层进行热固结合。
第二具体实施方式,尺寸涨缩率测试结果如下所示:
通过以上测试结果可以看出,本申请的基于不锈钢金属的复合式柔性电路基板具有极低的尺寸涨缩率、高的导热性以及立体可塑性等特性,可以解决当前键盘背光柔板使用PET银浆工艺或者柔性铜箔基板贴合覆盖膜油墨生产,导致生产工序复杂,材料尺寸涨缩偏大,产品的良品率不高的问题。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。应该理解,也可以使用其它实施例,并且可以进行结构或者逻辑上的改变而不背离本申请的范围。因此,以下具体实施方式不应以限制性的意义来理解,并且本申请的范围由所附权利要求来定义。
现在将详细参照各种实施例,附图中示出了这些实施例的一个或多个示例。通过解释的方式提供每个示例,并且所述示例不旨在对本申请加以限制。例如,作为一个实施例的部分的所例示或描述的特征也可以用于其它实施例,或者与其它实施例相结合以得到另一个实施例。旨在使本申请包括这样的修改和变化。使用特定语言描述示例,所述
特定语言不应被视为限制所附权利要求的范围。附图未按比例绘制,并且仅仅为例示性的。为了清晰起见,如未另行加以陈述,则在不同附图中由相同附图标记指示相同的元件或者制造步骤。
Claims (11)
- 一种基于不锈钢金属的复合式柔性电路基板的设置方法,其特征在于,包括:设置热膨胀系数为小于16*10-6m/mk的不锈钢金属基层作为基底,对不锈钢金属基层进行表面处理操作,使表面处理后的不锈钢金属基层的表面粗糙度Ra数值为大于等于50um;通过超薄涂布方式在铜箔层上涂覆绝缘层形成涂树脂铜箔层,使涂树脂铜箔层中绝缘层的厚度达到5um至100um;在涂树脂铜箔层的绝缘层上通过超薄涂布方式涂覆绝缘粘结剂层,使绝缘粘结剂层的厚度达到5um至50um;将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作,形成基于不锈钢金属的复合式柔性电路基板。
- 根据权利要求1所述的设置方法,其特征在于,还包括:对复合式柔性电路基板的绝缘层和绝缘粘结剂层通过激光刻蚀方式生成一个或多个柱状腔体结构的导热部后,通过在导热部的柱状腔体中填实导热金属材料形成导热柱,使导热柱的一端,与铜箔层和热源的接触位置相接触;并使导热柱的另一端,与不锈钢金属基层和绝缘粘结剂层的接触位置相接触。
- 根据权利要求2所述的设置方法,其特征在于,还包括:所述导热金属材料包括银、铜或铝。
- 根据权利要求2或3所述的设置方法,其特征在于,进一步包括:在所述不锈钢金属基层还设置导热结构件,使导热结构件不与涂树脂铜箔层接触。
- 根据权利要求4所述的设置方法,其特征在于,所述通过超薄涂布方式在铜箔层上涂覆绝缘层形成涂树脂铜箔层的步骤,还包括对涂树脂铜箔层进行固化处理操作。
- 根据权利要求5所述的设置方法,其特征在于,所述进行固化操作后的涂树脂铜箔层的绝缘层上通过超薄涂布方式涂覆绝 缘粘结剂层的步骤后,还包括对涂覆绝缘粘结剂层的涂树脂铜箔层进行烘烤处理操作,使绝缘粘结剂层达到半流动半固化状态。
- 根据权利要求4所述的设置方法,其特征在于,还包括:所述涂覆的绝缘层的材料包括:聚酰亚胺溶液、聚酯溶液、聚萘酯溶液或液晶聚合物溶液;所述铜箔层包括:压延铜箔、电解铜箔或高延展铜箔;铜箔层的厚度为3um至70um;所述涂覆的绝缘粘结剂层的材料包括:环氧树脂胶水、丙烯酸酯胶水、聚酯胶水、聚氨酯胶水或聚酰亚胺胶水。
- 根据权利要求7所述的设置方法,其特征在于,所述将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作的步骤,还包括:通过可卷式柔性生产方式,将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作;其中设置一个不锈钢金属基层,与一个或两个涂树脂铜箔层的绝缘粘结剂层相接合,形成基于不锈钢金属的复合式柔性电路基板。
- 根据权利要求7所述的设置方法,其特征在于,所述对不锈钢金属基层进行表面处理操作的步骤后,还包括:通过超薄涂布方式在未进行表面处理操作的不锈钢金属基层的表面上涂覆一绝缘树脂层,使绝缘树脂层的厚度达到5um至100um;其中,所述涂覆的绝缘树脂层的材料包括:聚酰亚胺溶液、聚酯溶液、聚萘酯溶液或液晶聚合物溶液;所述不锈钢金属基层包括散热系数高于16W的铁素体不锈钢箔或散热系数高于16W的奥氏体不锈钢箔。
- 根据权利要求7所述的设置方法,其特征在于,所述将进行表面处理操作后的不锈钢金属基层的表面与绝缘粘结剂层进行接合操作后的步骤,还包括:通过对不锈钢金属基层与绝缘粘结剂层接合后的复合式柔性电路基板进行 一次性冲切及折弯的操作,形成3D结构的基于不锈钢金属的复合式柔性电路基板。
- 根据权利要求1一种基于铝基金属的复合式柔性电路基板的设置方法,其特征在于:包括:设置热膨胀系数为小于16*10-6m/mk的铝金属基层作为基底,对铝金属基层进行表面处理操作,使表面处理后的铝金属基层的表面粗糙度Ra数值为大于等于50um;通过超薄涂布方式在铜箔层上涂覆绝缘层形成涂树脂铜箔层,使涂树脂铜箔层中绝缘层的厚度达到5um至100um;在涂树脂铜箔层的绝缘层上通过超薄涂布方式涂覆绝缘粘结剂层,使绝缘粘结剂层的厚度达到5um至50um;将进行表面处理操作后的铝金属基层的表面与绝缘粘结剂层进行接合操作,形成基于铝金属的复合式柔性电路基板。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210756885.2A CN115334744A (zh) | 2022-06-30 | 2022-06-30 | 一种基于不锈钢金属的复合式柔性电路基板的设置方法 |
CN202210756885.2 | 2022-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024002227A1 true WO2024002227A1 (zh) | 2024-01-04 |
Family
ID=83917954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/103773 WO2024002227A1 (zh) | 2022-06-30 | 2023-06-29 | 一种基于不锈钢金属的复合式柔性电路基板的设置方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115334744A (zh) |
WO (1) | WO2024002227A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115334744A (zh) * | 2022-06-30 | 2022-11-11 | 上海合域电子科技有限公司 | 一种基于不锈钢金属的复合式柔性电路基板的设置方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102529222A (zh) * | 2010-12-15 | 2012-07-04 | 新高电子材料(中山)有限公司 | 一种低热阻高绝缘金属基覆铜板及其制备方法 |
CN104271921A (zh) * | 2012-05-15 | 2015-01-07 | 霍尼韦尔国际公司 | 带有轴颈轴承的涡轮增压器 |
CN106585044A (zh) * | 2016-11-01 | 2017-04-26 | 广东全宝科技股份有限公司 | 一种金属基覆铜箔层压板的制造方法 |
JP2021052025A (ja) * | 2019-09-20 | 2021-04-01 | 富士通株式会社 | 半導体装置、半導体装置の製造方法及び電子装置 |
CN115334744A (zh) * | 2022-06-30 | 2022-11-11 | 上海合域电子科技有限公司 | 一种基于不锈钢金属的复合式柔性电路基板的设置方法 |
CN218163021U (zh) * | 2022-06-30 | 2022-12-27 | 上海合域电子科技有限公司 | 一种基于不锈钢金属的复合式柔性电路基板 |
-
2022
- 2022-06-30 CN CN202210756885.2A patent/CN115334744A/zh active Pending
-
2023
- 2023-06-29 WO PCT/CN2023/103773 patent/WO2024002227A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102529222A (zh) * | 2010-12-15 | 2012-07-04 | 新高电子材料(中山)有限公司 | 一种低热阻高绝缘金属基覆铜板及其制备方法 |
CN104271921A (zh) * | 2012-05-15 | 2015-01-07 | 霍尼韦尔国际公司 | 带有轴颈轴承的涡轮增压器 |
CN106585044A (zh) * | 2016-11-01 | 2017-04-26 | 广东全宝科技股份有限公司 | 一种金属基覆铜箔层压板的制造方法 |
JP2021052025A (ja) * | 2019-09-20 | 2021-04-01 | 富士通株式会社 | 半導体装置、半導体装置の製造方法及び電子装置 |
CN115334744A (zh) * | 2022-06-30 | 2022-11-11 | 上海合域电子科技有限公司 | 一种基于不锈钢金属的复合式柔性电路基板的设置方法 |
CN218163021U (zh) * | 2022-06-30 | 2022-12-27 | 上海合域电子科技有限公司 | 一种基于不锈钢金属的复合式柔性电路基板 |
Also Published As
Publication number | Publication date |
---|---|
CN115334744A (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108859316B (zh) | 复合式lcp高频高速双面铜箔基板及其制备方法 | |
JP4805304B2 (ja) | キャリヤー付き金属箔及び多層コアレス回路基板の製造方法 | |
WO2024002227A1 (zh) | 一种基于不锈钢金属的复合式柔性电路基板的设置方法 | |
CN112822842A (zh) | 一种基于fpc不规则金属基片的补强方法 | |
CN218163021U (zh) | 一种基于不锈钢金属的复合式柔性电路基板 | |
JP5392567B2 (ja) | プリント回路基板の製造方法およびそれによって製造されたプリント回路基板 | |
CN106827716A (zh) | 一种薄型可挠性覆铜板及其制备方法 | |
JP2001036246A (ja) | 配線基板およびこれを用いた多層配線基板 | |
CN218976905U (zh) | 一种基于厚不锈钢金属的MiniLED复合式电路基板 | |
CN115484756A (zh) | 一种基于厚不锈钢金属的MiniLED复合式电路基板的设置方法 | |
CN218998352U (zh) | 一种用于单面焊接的不锈钢金属的MiniLED复合式柔性电路基板 | |
JP2013229640A (ja) | キャリヤー付金属箔 | |
CN218998353U (zh) | 一种用于双面焊接的不锈钢金属的MiniLED复合式柔性电路基板 | |
JP2009177071A (ja) | ポリイミドフィルム回路基板およびその製造方法 | |
CN115460799A (zh) | 单面焊接的不锈钢的MiniLED复合式柔性电路基板的设置方法 | |
CN115500021A (zh) | 双面焊接的不锈钢的MiniLED复合式柔性电路基板的设置方法 | |
EP4395476A1 (en) | Resistor-buried circuit board and processing method | |
CN213733795U (zh) | 覆铜板和覆铜板热压组件 | |
CN113036571B (zh) | 一种连接器的制备方法、连接器及集成器件 | |
JPS589399A (ja) | 金属芯印刷配線板の製造方法 | |
JPS63301593A (ja) | クロスオ−バ−回路付プリント回路板 | |
KR100652158B1 (ko) | 압연 동박 및 그 제조방법 | |
CN207947947U (zh) | 一种替换阻焊压膜结构电路板 | |
CN211378345U (zh) | 一种高精密单面线路板 | |
JP2007223111A (ja) | フレキシブル銅張積層板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23830396 Country of ref document: EP Kind code of ref document: A1 |