WO2024001380A1 - 一种电芯加热系统 - Google Patents

一种电芯加热系统 Download PDF

Info

Publication number
WO2024001380A1
WO2024001380A1 PCT/CN2023/086024 CN2023086024W WO2024001380A1 WO 2024001380 A1 WO2024001380 A1 WO 2024001380A1 CN 2023086024 W CN2023086024 W CN 2023086024W WO 2024001380 A1 WO2024001380 A1 WO 2024001380A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery core
heating
module
heating system
Prior art date
Application number
PCT/CN2023/086024
Other languages
English (en)
French (fr)
Inventor
詹振江
罗自皓
于璐嘉
孙娅丽
廖方俊
王小明
Original Assignee
珠海冠宇电源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221680359.4U external-priority patent/CN217606907U/zh
Priority claimed from CN202221680358.XU external-priority patent/CN217641541U/zh
Priority claimed from CN202221690815.3U external-priority patent/CN217606909U/zh
Application filed by 珠海冠宇电源有限公司 filed Critical 珠海冠宇电源有限公司
Publication of WO2024001380A1 publication Critical patent/WO2024001380A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery core heating system.
  • the most heated parts are usually the battery core or the chip on the circuit board.
  • Conventional designs usually only add fins, open windows on the shell, and conduct the heat through high thermal conductive materials for these high-heat positions.
  • the heat is dissipated by enhancing convection with the outside world, such as the outer casing, and the final heat is dissipated to the outside world.
  • the battery a part of the energy is lost, causing the problem of battery heat waste.
  • the demand for wireless electronic equipment is also gradually increasing.
  • the discharge performance of batteries under cold conditions will be severely limited, and may even cause electronic equipment to fail to work properly.
  • the battery needs to be heated to make electronic products more efficient. normal work.
  • the battery is generally heated by external heating equipment, or a heating equipment is added inside the battery to provide power and heat.
  • a heating equipment is added inside the battery to provide power and heat.
  • it is necessary to ensure that there are good heating or power supply conditions outside. In some extremely cold areas, such as scientific research stations going out for inspections, there is no guarantee that there are conditions for heating the battery. And this heating method will lead to the problem of high battery heating costs.
  • This application provides a battery core heating system, which solves the problems of battery heat waste and high heating cost under cold conditions.
  • This application provides a battery core heating system, including: a battery core group, a heating element, an energy storage module, a heat source, a cold source and a thermoelectric conversion module; the heating element is in contact with the battery core; the energy storage module is in contact with the battery core.
  • the heating element is electrically connected to power the heating element to generate thermal energy; the thermoelectric conversion module is in contact with the heat source and the cold source respectively, and the thermoelectric conversion module is electrically connected to the energy storage module to The generated electrical energy is stored in the energy storage module.
  • the cold source is a heat sink
  • the battery core heating system further includes a thermal conductive sheet
  • the thermal conductive sheet is in contact with the heat source
  • the thermoelectric conversion module is connected to the thermal conductive sheet and the heat sink respectively. The pieces are in contact.
  • the battery core group includes several battery cores arranged in parallel;
  • the heating sheet includes a plurality of heating parts arranged side by side along the arrangement direction of the battery cores, and the two adjacent ones are The first connection part to which the heating part is connected; the battery core At least one side is in contact with the heating part.
  • the battery core includes two first side surfaces that are oppositely arranged and two second side surfaces that are oppositely arranged; the area of the first side surface is larger than the area of the second side surface; At least one of the first side surfaces is in contact with the heating part.
  • the heat source is the electric core
  • the heating element is a heating sheet
  • the heat sink is located on a side of the thermal conductive sheet away from the electric core; the electric core is connected to the electric core respectively.
  • the heating sheet is in contact with the thermal conductive sheet.
  • the first connection part is provided with a slot
  • the thermally conductive sheet includes a thermally conductive part that passes through the slot, and the thermally conductive sheet and the heating sheet form a folded structure; at least one of the The electric core is located between the thermal conductive part and the heating part.
  • the thermally conductive sheet includes a second connection portion connecting adjacent thermally conductive portions; the second connection portion is in contact with the thermoelectric conversion module.
  • the folded structure in the arrangement direction of the battery cores, includes thermal conductive parts respectively located on two opposite sides thereof.
  • the length of the heating part is greater than the length of the thermal conductive part, and/or, in the height direction of the electric core heating system, the height of the thermoelectric conversion module is higher than the height of the thermal conductive sheet
  • the battery core includes a casing and a battery core body.
  • the casing includes a packaging part covering the battery core body and an edge sealing located on one side of the packaging part. The sealing edge moves closer to the battery core.
  • the direction of the core body is bent, and/or the battery core includes a shell and a battery core body, the shell includes a packaging portion covering the battery core body, and the packaging portions of adjacent battery cores are arranged facing each other.
  • the electric core heating system further includes a buffer member, the buffer member is located between the electric core and the heating part, and/or, between the electric core and the thermal conductive part.
  • the battery core includes a first battery core located on a first side and a second battery core located on a second side opposite to the first side; two first battery cores of the first battery core The side surfaces are respectively in contact with the heat conduction part or the heating part, and/or the two second side surfaces of the second battery core are in contact with the first connection part or the second connection part respectively.
  • an included angle is formed between the heat conductive part and the second connecting part, and the included angle is an arc angle or a linear angle.
  • the heat source is a heating element
  • the heating element is a heating film
  • the electric core heating system further includes a shell, and the shell is provided with an empty slot that matches the heat sink.
  • the heat sink is arranged in the empty slot; the thermoelectric conversion module is electrically connected to the heating sheet, and the heating sheet heats the battery core through the thermoelectric conversion module.
  • the heat sinks are fins, the heat sinks are evenly arranged on one side of the thermoelectric conversion module, and the other side of the thermoelectric conversion module is connected to the heating element.
  • the battery core heating system further includes a circuit board, one end of the circuit board is in contact with the thermoelectric conversion module, and the heating element is connected to the other end of the circuit board.
  • the battery core includes a first battery core located on a first side and a second battery core located on a second side opposite to the first side; two first battery cells of the first battery core The side surfaces are respectively in contact with the heat conduction part, and/or the two first side surfaces of the second battery core are in contact with the heat conduction part respectively.
  • an included angle is formed between the heating part and the first connecting part, and the included angle is an arc angle or a linear angle.
  • the angle range of the included angle is 0-90°.
  • At least two electric cores are accommodated between two adjacent heating parts.
  • the battery core group includes a first battery unit and a second battery unit;
  • the heating element includes a connection area and a heat conduction area, and the connection area is used to connect with the energy storage module. , the thermal conduction area and the second electrical
  • the heating element is used to conduct heat energy to the heat conduction area through the connection area, so The heating element constitutes the heat conduction area.
  • the heating element further includes a test area extending from the thermal conductive area to the first battery unit, and the test area is attached to the first battery unit;
  • the test area is provided with a first temperature sensor, and the heat conduction area is also provided with a second temperature sensor.
  • the first temperature sensor is used to measure the temperature of the first battery unit, and the second temperature sensor is used to measure the temperature of the first cell unit. The temperature of the second battery unit.
  • the number of cells in the thickness direction of the first cell unit is greater than 1, and the test area is provided between any two adjacent cells in the first cell unit.
  • the heat conduction area is provided with several heat conduction structures, and the several heat conduction structures are arranged at intervals.
  • the plurality of thermally conductive structures are arranged in the thermally conductive area parallel to each other.
  • the distance between the several thermally conductive structures is greater than or equal to 5mm, and/or; the thickness of the several thermally conductive structures is greater than or equal to 0.05mm, and the thickness of the several thermally conductive structures is less than or equal to 0.2mm .
  • the heating element includes a first insulation layer, a second insulation layer, and a heating element located between the first insulation layer and the second insulation layer, and the heating element is located in the heat conduction area, so
  • the heating element also includes a connector located in the connection area, and the heating element and the connector are electrically connected through a control circuit.
  • the battery core heating system further includes a control module connected to the energy storage module, and the control module is used to control the thermoelectric conversion module to charge the energy storage module. Or control the heating sheet to heat the battery core.
  • the battery core heating system further includes an amplification module, which is disposed between the thermoelectric conversion module and the energy storage module, and is connected to the thermoelectric conversion module and the energy storage module respectively.
  • the module is connected, and the amplification module is used to amplify the voltage generated by the thermoelectric conversion module and then transmit it to the energy storage module to charge the energy storage module.
  • thermoelectric conversion module is connected to the first end of the energy storage module, and the connector of the heating element is connected to the second end of the energy storage module.
  • thermoelectric conversion module includes: a first connecting piece and a second connecting piece, wherein both ends of the first connecting piece are connected to the heat source and the cold source respectively; Two ends are respectively connected to the heat source and the cold source; one end of the first connector and the second connector close to the cold source is connected to the amplification module and the control module.
  • thermoelectric conversion module is respectively connected to the heat source and the cold source through thermally conductive glue.
  • one end of the first connector and the second connector close to the cold source is connected to the first end of the amplification module, and the second end of the amplification module is connected to the first end of the control module.
  • the second end of the control module is connected to the energy storage module.
  • This application provides a battery core heating system that converts the waste heat generated by the heat source of the battery core heating system during operation into electrical energy and then stores it in an energy storage device.
  • the waste heat in the energy storage device is converted into electric energy.
  • the electric energy is converted into heat and provided to the battery core, which avoids the use of additional external heating equipment, achieves the effect of saving battery usage costs, increasing the battery life cycle, and also improves the battery's ability to cycle.
  • Figure 1 is one of the structural schematic diagrams of a battery module used as a battery core heating system in Embodiment 1 of the present application;
  • FIG. 2 is the second structural schematic diagram of the battery module used as the battery core heating system in Embodiment 1 of the present application;
  • FIG 3 is the third structural schematic diagram of the battery module used as the battery core heating system in Embodiment 1 of the present application;
  • Figure 4 is a schematic structural diagram of the thermal conductive sheet in Embodiment 1 of the present application.
  • FIG. 5 is a schematic structural diagram of the heating plate in Embodiment 1 of the present application.
  • FIG. 6 is a schematic structural diagram of the folding structure in Embodiment 1 of the present application.
  • FIG. 7 is a module schematic diagram of the battery core heating system provided in Embodiment 1 of the present application.
  • FIG. 8 is a schematic circuit structure diagram of the battery core heating system according to Embodiment 1 of the present application.
  • FIG. 9 is a schematic diagram of the internal structure of the battery module used as the battery core heating system in Embodiment 2 of the present application.
  • Figure 10 is a schematic diagram of the exploded structure of the battery module used as the battery core heating system in Embodiment 2 of the present application;
  • Figure 11 is a schematic structural diagram of the heating element in the second embodiment
  • Figure 12 is a module schematic diagram of the battery core heating system provided in the second embodiment
  • Figure 13 is a schematic circuit structure diagram of the battery core heating system in Embodiment 2 of the present application.
  • Figure 14 is one of the structural schematic diagrams of a battery module used as an electronic device of a battery core heating system provided in Embodiment 3 of the present application;
  • Figure 15 is an overall schematic diagram of the battery module in Embodiment 3 of the present application.
  • Figure 16 is the second structural schematic diagram of the battery module in Embodiment 3 of the present application.
  • FIG. 17 is a schematic structural diagram of a thermoelectric conversion module 110 as an electronic device of a battery core heating system provided in Embodiment 3 of the present application.
  • 10-Battery core heating system 100-heat source; 110-thermoelectric conversion module; 120-cold source; 130-amplification module; 140-energy storage module; 150-control module; 160-heating module; 170-first thermoelectric material; 180-second thermoelectric material; 190-heat source connection piece; 200-cold source connection piece; 210-thermoelectric module; 1-Battery cell group; 11-First battery unit; 12-Second battery unit; 2-Heating element; 21-Heating part; 22-First connection part; 23-Slotting; 24-Connecting wire; 25-Connection area; 26-Thermal conduction area; 27-Test area; 3-Thermal conductive sheet; 31-Thermal conductive part; 32-The second connecting part; 4-shell; 41-upper shell; 42-lower shell; 5-Heating element; 6-Heat sink; 7-Foam.
  • This application provides a battery core heating system 10, which includes: a battery core group 1, a heating element 2, an energy storage module 140, a heat source 100, a cold source 120, and a thermoelectric conversion module 110.
  • the heating element 2 is in contact with the battery core 13 to heat the battery core 133 in the battery core group 1 .
  • the energy storage module 140 is electrically connected to the heating element 2 to provide power to the heating element 2 to generate thermal energy.
  • the thermoelectric conversion module 110 is in contact with the heat source 100 and the cold source 120 respectively.
  • the thermoelectric conversion module 110 is electrically connected to the energy storage module 140 to store the generated electrical energy in the energy storage module 140 .
  • the waste heat generated by the heat source 100 of the battery core heating system 10 during operation can be converted into electrical energy and then stored in the energy storage module 140.
  • the electrical energy in the energy storage module 140 can be converted into heat and provided to the battery core. 13. It avoids the use of additional external heating equipment, achieves the effect of saving battery usage costs, improving battery usage cycles, and also improves battery usage cycle capabilities.
  • the battery core heating system 10 provided in the first embodiment is a battery module.
  • Figures 1, 2 and 3 are schematic structural diagrams of the battery module in the first embodiment.
  • the battery module can Includes: battery pack 1, heat sink 6, thermoelectric conversion module 110, thermal conductor 3 and heating sheet;
  • the heat sink 6 is located on the side of the thermal conductor 3 away from the battery core 13;
  • the battery core 13 is in contact with the heating sheet and the thermal conductive sheet 3 respectively;
  • thermoelectric conversion module 110 is in contact with the thermal conductive fin 3 and the heat sink 6 respectively.
  • the battery core 13 itself can be used as the heat source 100
  • the heat sink 6 can be used as the cold source 120
  • the thermal conductive sheet 3 can be a high thermal conductive sheet
  • the heating sheet can be used as the heating element 2 for heating the battery core 13.
  • the heating sheet It can be a heating sheet
  • the heat sink 6 can be a leaking aluminum sheet.
  • a thermoelectric conversion module is arranged between the folding position of the high thermal conductivity sheet and the leaking aluminum sheet. In order to allow the leaking aluminum sheet to better receive the heat from the battery core 13, between the leaking aluminum sheet and the side of the battery core 13, Thermal conductive silicone grease can also be added to enhance the thermal conductivity effect.
  • the battery core 13 is arranged between the high thermal conductivity sheet and the heating sheet.
  • the temperature of the battery core 13 can be maintained or heated according to the temperature provided by the high thermal conductivity sheet and the heating sheet.
  • the thermoelectric conversion module 110 is used to connect the heat source 100 with the cold source.
  • the heat between 120°C is converted into electrical energy and stored in batteries, capacitors and other power storage devices. After adjustment and control of the control circuit, it can supply power to the heating sheets and high thermal conductivity sheets inside the battery under cold conditions to provide power to the battery core. 13
  • 13 Provides heat without the need for an external power supply, allowing the battery to reach a good discharge temperature under cold conditions, ensuring the normal discharge capacity of the battery and providing stable power for equipment operation. If the thermoelectric conversion module 110 is arranged on the front of the battery core 13 , only the heat of the outermost battery core 13 can be better absorbed.
  • the control module 150 is provided with an energy storage module 140 and an amplification module 130 .
  • the battery also includes an upper battery case 41 and a lower battery case 42, where the upper battery case 41 is provided on the control module 150 and the lower battery case 42 is provided outside the folding structure.
  • the outside of the folding structure is a thermoelectric converter. Replace module 110 and expose the aluminum sheet.
  • This application provides a battery module, which includes: a battery core group 1, a heat sink 6, a thermoelectric conversion module 110, a thermal conductor 3 and a heating sheet; the heat sink 6 is located on the side of the thermal conductor 3 away from the battery core 13; The core 13 is in contact with the heating sheet and the heat conduction sheet 3 respectively; the thermoelectric conversion module 110 is in contact with the heat conduction sheet 3 and the heat sink 6 respectively.
  • the embodiment of the present application provides a battery module that converts the waste heat of the battery core 13 into electrical energy and then stores it in an energy storage device. When the battery is started under cold conditions, the electrical energy in the energy storage device is converted into heat and provided to the battery. Core 13 avoids the use of additional external heating equipment and achieves the effect of saving battery usage costs.
  • Figure 3 is a schematic structural diagram of the thermal conductive sheet 3 in this embodiment.
  • Figure 4 is a schematic structural diagram of the heating sheet in this embodiment.
  • Figure 5 is a folding structure in this embodiment. Structural diagram.
  • the battery cell group 1 includes several battery cells 13 arranged in parallel;
  • the heating sheet includes a plurality of heating parts 21 arranged side by side along the arrangement direction of the battery cores 13, a first connecting part 22 connecting two adjacent heating parts 21, and a slot 23 opened in the first connecting part 22. ;
  • the thermally conductive sheet 3 includes a thermally conductive portion 31 extending through the slot 23, and the thermally conductive sheet 3 and the heating sheet form a folded structure;
  • At least one electric core 13 is located between the thermal conductive part 31 and the heating part 21 .
  • the heating sheet is a heating sheet
  • the thermal conductive sheet 3 is a highly thermally conductive sheet.
  • the heating sheet includes a plurality of heating parts 21 and a first connection part 22, and also includes a slot 23 on the first connection part 22; high
  • the thermal conductive sheet forms a folded structure that matches the heating sheet through the slot 23 .
  • at least two electric cores 13 are accommodated between adjacent thermal conductive parts 31 or heating parts 21 . According to the structure formed by the heat conduction part 31 or the heating part 21, one or more electric cores 13 are arranged in the folded structure.
  • the thermally conductive sheet 3 includes a second connection part 32 that connects adjacent thermally conductive parts 31; the second connection part 32 is in contact with the thermoelectric conversion module 110.
  • the folded structure in the arrangement direction of the battery cores 13, includes thermal conductive parts 31 respectively located on two opposite sides thereof.
  • the length of the heating part 21 is greater than the length of the heat conduction part 31, and/or in the height direction of the battery module, the height of the thermoelectric conversion module 110 is higher than the height of the heat conduction sheet 3, and/or the battery core 13 includes a shell and a battery core.
  • the shell includes a packaging part covering the body of the battery core 13 and an edge sealing located on one side of the packaging part, the edge sealing is bent in a direction close to the body of the battery core 13, and/or the battery core 13 includes a shell and a battery core 13 body, the shell includes a packaging part that covers the body of the battery core 13, the packaging parts of adjacent battery cores 13 are arranged facing each other, and/or the battery module also includes a buffer, the buffer is located between the battery core 13 and the heating part 21 between, and/or between the battery core 13 and the thermal conductive portion 31 .
  • the high thermal conductivity sheet and the heating sheet both form a folded structure, and together they form a composite folding structure.
  • Each battery core 13 is placed between adjacent folding surfaces of the composite folding structure, and the heating sheet has a slot 23 at its folding position.
  • the avoidance position is used for assembly with the high thermal conductivity sheet.
  • the folding position must ensure that the high thermal conductivity sheet is on the outside and the heating sheet is on the inside to ensure better contact between the high thermal conductivity sheet and the thermoelectric conversion module 110 on the outside.
  • the composite folding structure allows each battery core 13 to have at least one large surface in contact with the heating sheet, allowing each battery core 13 to be heated more evenly, and due to the high thermal conductivity of the high thermal conductivity sheet, the temperature between the battery cores 13 is further balanced. The difference makes the temperature of each battery cell 13 close to the same when the battery module is working, thereby extending the battery life.
  • the heating sheet can also be connected to the control module 150 through wires, so that the control module 150 can control the working condition of the heating sheet.
  • the battery core 13 includes two oppositely arranged first sides and two oppositely arranged second sides;
  • the area of the first side is greater than the area of the second side
  • At least one first side surface of the battery core 13 is in contact with the heating part 21 .
  • the battery core 13 includes a first battery core 13 located on the first side and a second battery core 13 located on the second side opposite to the first side. second battery cell 13;
  • the two first side surfaces of the first battery core 13 are in contact with the thermal conductive part 31 or the heating part 21 respectively, and/or
  • the two second side surfaces of the second battery core 13 are in contact with the first connection part 22 or the second connection part 32 respectively.
  • an included angle is formed between the thermal conductive part 31 and the second connecting part 32 and/or between the heating part 21 and the first connecting part 22, and the included angle is an arc angle or a linear angle.
  • the battery core 13 is in the shape of a long body and is arranged in the adjacent heat conduction part 31.
  • the first side of the battery core 13 is a side with a larger area
  • the second side is a side with a smaller area.
  • the angle between the heat conduction part 31 and the second connection part 32 generally needs to be less than 90°. When it is greater than 90°, the battery core 13 cannot fully contact the heat conduction part 31, so the problem of uneven heating will occur.
  • FIG. 7 is a schematic diagram of a battery module as a battery core heating system 10 provided by an embodiment of the present application.
  • the battery module includes: a thermoelectric module 210, a battery core 13, an energy storage module 140 and Heating module 160;
  • thermoelectric module 210 is electrically connected to the energy storage module 140, the energy storage module 140 is electrically connected to the heating module 160, and the heating module 160 and the thermoelectric module 210 are in contact with the battery core 13;
  • thermoelectric module 210 is used to generate a first voltage based on the temperature difference between the cold end of the thermoelectric module 210 and the surface of the battery core 13;
  • the energy storage module 140 is used for charging according to the first voltage. When the preset conditions are met, the energy storage module 140 releases the second voltage generated according to the first voltage;
  • the heating module 160 is used to convert the second voltage into first heat and provide it to the battery core 13 .
  • thermoelectric module 210 utilizes the Seebeck effect thermoelectric conversion technology and arranges the thermoelectric conversion module 110 on the side of the battery core 13.
  • the thermoelectric conversion module 110 contains multiple groups of thermoelectric conversion units, which can operate the battery. After the heat energy generated in the battery is converted into electrical energy, the electrical energy is stored in batteries, capacitors and other storage devices through the control circuit to increase the voltage and control the charge and discharge process, effectively solving the battery heating problem and reducing the cost of key components such as battery cells 13
  • the temperature is conducive to improving the working performance and service life of the battery, and improving the user experience.
  • the thermoelectric module 210 includes a heat source 100, a thermoelectric conversion module 110 and a cold source 120.
  • the thermoelectric conversion module 110 is disposed between the heat source 100 and the cold source 120.
  • the thermoelectric conversion module 110 is connected to the heat source 100 and the cold source 120 respectively.
  • the heat from the heat source 100 is exported from the high thermal conductivity sheet and then absorbed and converted into electrical energy by the thermoelectric conversion module.
  • the thermoelectric conversion module 110 is set in sequence after contact with the aluminum sheet. on the surface of highly thermally conductive sheets.
  • the waste heat during the operation of the battery core 13 is used as the heat source 100, and a layer of leaking aluminum sheet provided on the casing 4 is used as the cold source 120. Heating can be performed when there is a temperature difference, and when the battery is in cold conditions , the heating effect is better.
  • the first voltage is generated through the temperature difference between the heat source 100 and the cold source 120 and the thermoelectric conversion module 110. It should be noted that the first voltage is generally lower than the charging voltage of the energy storage module 140, and needs to be increased by the amplification module 130 before it can be compared with the charging voltage of the energy storage module 140. The charging voltage is high.
  • FIG. 8 is a schematic diagram of the circuit structure in this embodiment, in which a thermoelectric conversion module 110 is provided between the heat source 100 and the cold source 120 , and the heat source 100 , the cold source 120 and the thermoelectric conversion module 110 are combined into a thermoelectric module 210.
  • an amplification module 130 is also included.
  • the amplification module 130 is disposed between the thermoelectric module 210 and the energy storage module 140 and is electrically connected to the thermoelectric module 210 and the energy storage module 140 respectively.
  • the amplification module 130 is used to convert the first voltage to After amplification, the energy storage module 140 is charged.
  • a control module 150 is also included.
  • the control module 150 is electrically connected to the energy storage module 140 .
  • the control module 150 is used to control the charging and discharging process of the energy storage module 140 .
  • the control module 150 is a circuit board, and the amplification module 130 and the energy storage module 140 are both arranged on the circuit board.
  • thermoelectric conversion module 110 is arranged between the heat source 100 and the cold source 120, where the thermoelectric conversion module 110 includes multiple groups of thermoelectric conversion units, and the thermoelectric conversion units are used to generate the first voltage.
  • the thermoelectric conversion module 110, the amplification module 130, and the energy storage module 140 form a loop.
  • the energy storage module 140 forms a loop with the control module 150 and the heating sheet in the heating module 160 .
  • the amplification module 130 can use an electronic component with a circuit amplification function to increase the potential difference generated by the thermoelectric conversion module 110 and the voltage value of the electrical energy stored in the energy storage module 140.
  • an operational amplifier is used.
  • other circuit amplifier devices can also be selected.
  • the energy storage module 140 can select various devices with power storage capabilities, such as capacitors or special low-temperature batteries, etc., and can be adaptively selected according to the actual situation, which is not specifically limited in this embodiment.
  • the control module 150 can control the charging and discharging process of the energy storage module 140. When the battery core 13 needs to be heated, the power stored in the energy storage module 140 is released, adjusted, and matched to power the heating sheet. It also has a circuit protection function.
  • the battery core heating system 10 provided in the first embodiment of the present application is a battery module.
  • the battery module includes: battery pack 1, heat sink 6, thermoelectric conversion module 110, thermal conductor 3 and heating sheet; the heat sink 6 is located on the side of the thermal conductor 3 away from the battery core 13; the battery core 13 is connected to the heating sheet respectively. It is in contact with the heat conduction sheet 3; the thermoelectric conversion module 110 is in contact with the heat conduction sheet 3 and the heat sink 6 respectively.
  • the battery module provided by the embodiment of the present application as the battery core heating system 10 converts the waste heat of the battery core 13 into electrical energy and then stores it in an energy storage device. When the battery is started under cold conditions, the electrical energy in the energy storage device is converted into Providing heat to the battery core 13 avoids the use of additional external heating equipment, thereby achieving the effect of saving battery usage costs.
  • the battery core heating system 10 provided in the second embodiment of the present invention is another battery module.
  • Figures 9 and 10 are schematic structural diagrams of the battery module in the second embodiment of the present application.
  • the battery module may include : Battery core group 1, heating element 5, heat sink 6, thermoelectric conversion module 110, heating film and shell 4;
  • thermoelectric conversion module 110 is arranged between the heating element 5 and the heat sink 6 and is in contact with the heating element 5 and the heat sink 6 respectively;
  • the housing 4 is provided with empty slots matching the heat sink 6, and the heat sink 6 is arranged in the empty slot;
  • thermoelectric conversion module 110 is electrically connected to the heating film, and the heating film heats the battery core 13 through the thermoelectric conversion module 110 .
  • the heating element 5 is the chip.
  • the heating element 5 serves as the heat source 100
  • the heat sink 6 serves as the cold source 120
  • the heating film serves as the heat source.
  • the heating element 2 is heated by the electric core 13.
  • a thermoelectric conversion module 110 is arranged between the chip and the heat sink 6. Because the chip is not flat, a layer of aluminum sheet as a thermal conductive sheet 3 is added between the chip and the thermoelectric conversion module 110 to ensure that the contact surface is flat to facilitate thermoelectric conversion. The module 110 can better accept the heat from the chip of the heat source 100.
  • thermal conductive silicone grease can be applied to the gap of the chip to further improve the heat conduction effect from the chip to the thermoelectric conversion module 110.
  • the aluminum sheet is in direct contact with the thermoelectric conversion module 110.
  • the thermoelectric conversion module 110 is in direct contact with the heat sink 6 .
  • the electrical energy generated by the thermoelectric conversion module 110 is amplified by the amplification module 130 and then stored in the energy storage module 140 .
  • the electric energy stored in the energy storage module 140 is released to the heating film, which plays the role of heating the battery core 133 of the battery core group 1.
  • the battery core 13 is heated to a suitable temperature, the battery can work normally under cold conditions.
  • the heating film In order to allow each battery core 13 to be heated more evenly when the heating film is heated, the heating film is designed into a thin sheet, and the heating sheet is folded multiple times to form a folded structure as shown in the figure.
  • the battery core 13 is placed in the folded structure to ensure that each battery core 13 all have a big
  • the surface of the outermost battery core 13 is in direct contact with the heating film.
  • the outermost battery core 13 has better heat dissipation conditions than the inner battery core 13. Both front and back surfaces of the outermost battery core 13 are in direct contact with the heating film.
  • the heating film is connected to the control module 150 through wires, and forms a loop with the energy storage module 140 and the control module 150 during the heating process.
  • the heat sink 6 is a fin, and the heat sink 6 is evenly arranged on one side of the thermoelectric conversion module 110 , and the other side of the thermoelectric conversion module 110 is connected to the heating element 5 .
  • a circuit board is also included, one end of the circuit board is in contact with the thermoelectric conversion module 110, and the heating element 5 is connected to the other end of the circuit board.
  • the heat sink 6 is designed to be exposed to the air, and the contact surface with the air is designed as a fin to enhance the convection heat dissipation between the heat sink 6 and the air, thereby making the temperature difference between the chip and the heat sink 6 larger.
  • the thermoelectric conversion module 110 has more heat to generate more power.
  • the heat sink 6 and the housing 4 are fixed in the following manner: the housing 4 is placed in a hollow area where the heat sink 6 is placed, the heat sink 6 is placed in the hollowed area of the battery upper case 41 for installing the heat sink 6, and the flat surface of the heat sink 6 is in contact with the thermoelectric
  • the conversion module 110 is in direct contact.
  • Figure 11 is a schematic structural diagram of the heating film in this embodiment; the battery core group 1 includes several battery cores 13 arranged in parallel;
  • the heating film includes a plurality of heating parts 21 arranged side by side along the arrangement direction of the battery cores 13 and a first connecting part 22 connecting two adjacent heating parts 21;
  • At least one surface of the battery core 13 is in contact with the heating part 21 .
  • the battery core 13 includes two first side surfaces arranged oppositely and two second side surfaces arranged oppositely;
  • the area of the first side is greater than the area of the second side
  • At least one first side surface of the battery core 13 is in contact with the heating part 21 .
  • the battery core 13 includes a first battery core 13 located on a first side and a second battery core 13 located on a second side opposite to the first side;
  • the two first side surfaces of the first battery core 13 are in contact with the heating part 21 respectively, and/or
  • the two first side surfaces of the second battery core 13 are in contact with the heating part 21 respectively.
  • An included angle is formed between the heating part 21 and the first connecting part 22, and the included angle is an arc angle or a linear angle.
  • the angle range of the included angle is 0-90°.
  • At least two electric cores 13 are accommodated between adjacent heating parts 21 .
  • the heating film has a bent structure.
  • the bent structure includes a plurality of heating parts 21 and a plurality of first connection parts 22 arranged between any two heating parts 21.
  • the battery core 13 is arranged at the first connection part. Part 22.
  • the heating module 160 also includes a connecting wire 24. One end of the connecting wire 24 is connected to one end of the heating part 21, and the other end of the connecting wire 24 is connected to the control module 150.
  • the connecting wire 24 is used to provide operating voltage to the heating module 160.
  • the battery core 13 has a long main body shape.
  • the first side of the battery core 13 is a side with a larger area, and the second side is a side with a smaller area. By bringing the side with a larger area into contact with the heating part 21, better contact can be achieved.
  • the battery core 13 is heated. Two or more electric cores 13 are accommodated between adjacent heating parts 21, and the specific number can be adjusted adaptively according to the actual situation.
  • the angle between the heating part 21 and the first connection part 22 generally needs to be less than 90°. When it is greater than 90°, the battery core 13 cannot fully contact the heating part 21, so uneven heating may occur.
  • the heating film by designing the heating film into a thin sheet and folding the heating film multiple times to form a folded structure, multiple battery cores 13 are placed in the folded structure to ensure that each battery core 13 has a large surface in direct contact with the folded structure. , to achieve the effect of increasing the heating rate and reducing the temperature difference between each battery core 13 during heating.
  • the battery core heating system 10 provided in the second embodiment of the present application is a battery module.
  • the battery module includes: battery pack 1, Heating element 5, heat sink 6, thermoelectric conversion module 110, heating film and housing 4; thermoelectric conversion module 110 is arranged between the heating element 5 and heat sink 6 and in contact with the heating element 5 and heat sink 6 respectively; battery housing 4 There is an empty slot matching the heat sink 6, and the heat sink 6 is arranged in the empty slot; the thermoelectric conversion module 110 is electrically connected to the heating film, and the heating film heats the battery core 13 through the thermoelectric conversion module 110.
  • the waste heat generated during the operation of the chip is converted into electrical energy and then stored in an energy storage device. When the battery is started under cold conditions, the electrical energy in the energy storage device is converted into heat and provided to the battery core 13. Reduce the cost of battery use in cold conditions and improve the effect of battery life cycle.
  • Figure 12 is a module schematic diagram of a battery module provided by an embodiment of the present application, including: a thermoelectric module 210, a battery core 13, a control module 150, a heating module 160 and an energy storage module 140; the heating module 160 and the battery module
  • the core 13 is in contact, the energy storage module 140 is connected to the thermoelectric module 210 and the heating module 160 respectively, and the control module 150 is electrically connected to the thermoelectric module 210 and the heating module 160 respectively;
  • the thermoelectric module 210 includes a chip, a heat sink 6 and a thermoelectric conversion module 110.
  • the module 210 is used to generate a first voltage according to the temperature difference between the chip and the heat sink 6; the energy storage module 140 is used to store the first voltage; the heating module 160 is used to heat the battery core 13 according to the first voltage; the control module 150 is used to control The thermoelectric module 210 charges the energy storage device or controls the heating module 160 to heat the battery core 13 .
  • thermoelectric module 210 uses a thermoelectric conversion technology that utilizes the Seebeck effect, and the thermoelectric conversion module 110 is disposed between the chip and the heat sink 6.
  • the thermoelectric conversion module 110 contains multiple groups of thermoelectric conversion units, which can convert After the heat energy generated during battery operation is converted into electrical energy, the electrical energy is stored in batteries, capacitors and other storage devices through the control circuit to increase the voltage and control the charge and discharge process, effectively solving the heating problem of the battery and reducing the cost of battery cells 13, etc.
  • the temperature of key components is conducive to improving the working performance and service life of the battery, and improving the user experience.
  • the chip is the heat source 100
  • the heat sink 6 is the cold source 120
  • the thermoelectric conversion module 110 is arranged between the heat source 100 and the cold source 120
  • the thermoelectric conversion module 110 is in contact with the heat source 100 and the cold source 120 respectively.
  • the thermoelectric module 210 also includes an aluminum sheet, which is disposed between the chip and the thermoelectric conversion module 110 .
  • the aluminum sheet is used to enhance the thermal conductivity of the thermoelectric conversion module 110 , that is, the aluminum sheet constitutes the thermal conductive sheet 3 .
  • thermoelectric conversion module 110 is arranged between the chip and the cold source 120. , wherein the thermoelectric conversion module 110 includes multiple groups of thermoelectric conversion units. When heat passes through the thermoelectric conversion module 110, the thermoelectric conversion module 110 can generate electrical energy. When the battery is working, current passes through the chip, causing the chip to generate heat. The heat needs to pass through the thermoelectric conversion module 110 in the process of being conducted or radiated to the cold source 120 . If you want to obtain more electric energy through the thermoelectric conversion module 110 while maintaining the same size, you need to increase the temperature difference between both sides of the thermoelectric conversion module 110, that is, the chip and the cold source 120.
  • control module 150 is a circuit board, and the energy storage module 140 and the amplification module 130 are provided on the control module 150 .
  • control module 150 is used to control the thermoelectric conversion module 110 to charge the energy storage module 140 or to control the heating film to heat the battery core 13.
  • the control module 150 can be a preset circuit board with a control program stored therein.
  • the heating module 160 may be a heating device such as a heating film.
  • thermoelectric conversion module 110 By exposing the cold source 120 in contact with the thermoelectric conversion module 110 to the air, the thermoelectric conversion module 110 is placed between the cold source 120 in contact with the outside world and the heat source 100 inside the battery, thereby increasing the temperature difference between the two ends of the thermoelectric conversion module 110. More heat is passed through the thermoelectric conversion module 110, thereby generating more electrical energy.
  • the cold source 120 is exposed to the air, after absorbing the heat from inside the battery, the cold source 120 can dissipate it to the outside faster, thereby enhancing the heat dissipation effect of the battery. While improving the heat dissipation capacity of the battery, it can also recycle the waste heat generated during battery operation to a greater extent, improving the user experience.
  • Figure 13 is a schematic diagram of the circuit structure in this embodiment. It also includes an amplification module 130.
  • the energy storage module 140 is disposed between the thermoelectric module 210 and the heating module 160.
  • the energy storage module 140 is To store the first voltage, when the heating module 160 operates, the energy storage module 140 releases the first voltage to generate a second voltage that is provided to the heating module 160 , and the heating module 160 heats the battery core 13 .
  • the amplification module 130 is disposed between the thermoelectric module 210 and the energy storage module 140 and is connected to the thermoelectric module 210 and the energy storage module 140 respectively.
  • the amplification module 130 is used to amplify the first voltage and then transmit it to the energy storage module 140 to amplify the first voltage.
  • the energy storage module 140 is charged.
  • thermoelectric conversion module 110 is arranged between the chip and the cold source 120.
  • the thermoelectric conversion module 110 includes multiple groups of thermoelectric conversion units. When there are When heat passes through the thermoelectric conversion module 110, the thermoelectric conversion module 110 can generate electrical energy. When the battery is working, current passes through the chip, causing the chip to generate heat. The heat needs to pass through the thermoelectric conversion module 110 in the process of being conducted or radiated to the cold source 120 . If you want to obtain more electric energy through the thermoelectric conversion module 110 while maintaining the same size, you need to increase the temperature difference between both sides of the thermoelectric conversion module 110, that is, the chip and the cold source 120.
  • the electric energy generated by the thermoelectric conversion module 110 is amplified by the amplification module 130 and stored in the energy storage module 140.
  • the amplification module 130 has the function of increasing the voltage.
  • an operational amplifier is used as an example, so that the thermoelectric conversion module 110 The resulting increase in potential difference is higher than the voltage value of the electrical energy stored in the energy storage module 140.
  • the energy storage module 140 can use various devices with electrical storage capabilities, such as capacitors, special low-temperature batteries, etc. In this embodiment, a capacitor is used.
  • the control module 150 can control the discharge process of the energy storage module 140. When the battery needs to be heated, the power stored in the energy storage module 140 is released, adjusted, and matched to power the heating module 160. In cold conditions, batteries and other systems need to be used. Under normal circumstances, power is supplied to the heating module 160 to heat the battery to normal operating temperature to meet the user's needs.
  • the waste heat during the operation of the equipment is converted into electrical energy and stored in batteries, capacitors and other power storage devices.
  • power can be supplied to the heating device inside the battery under cold conditions. , providing heat to the battery core 13 without the need for an external power supply, allowing the battery to reach a good discharge temperature under cold conditions, ensuring the normal discharge capacity of the battery, and providing stable power for equipment operation.
  • the control module 150 controls the energy storage module 140 to control the charging process of the electric energy obtained by thermoelectric conversion to the energy storage module 140.
  • the control circuit controls the discharge process of the energy storage module 140 to the heating module 160, so that the heating module 160 heats the battery core 13 to a suitable temperature and provides protection for the circuit.
  • the battery core heating system 10 is a battery module.
  • the battery module includes: a battery pack 1, a heating element 5, a heat sink 6, a thermoelectric conversion module 110, a heating film and a housing 4; the thermoelectric conversion module 110 is disposed between the heating element 5 and the heat sink 6 and is located separately from the heating element 5 It is in contact with the heat sink 6; the battery shell 4 is provided with an empty slot matching the heat sink 6, and the heat sink 6 is arranged in the empty slot; the thermoelectric conversion module 110 is electrically connected to the heating film, and the heating film conducts electricity through the thermoelectric conversion module 110. Core 13 is heated.
  • the embodiment of the present application converts the waste heat generated during the operation of the chip into electrical energy and stores it in an energy storage device. When the battery is started under cold conditions, the electrical energy in the energy storage device is converted into heat and provided to the battery core 13. Reduce the cost of battery use in cold conditions and improve the effect of battery life cycle.
  • the battery core heating system 10 provided in the third embodiment is an electronic device.
  • the electronic device may include a battery module.
  • the battery module includes a casing 4, a battery pack 1 and a heating element 2.
  • the battery pack 1 includes a first battery unit 11 and a second battery unit 12;
  • the heating element 2 includes a connection area 25 and a heat conduction area 26.
  • the connection area 25 is used to connect to the energy storage module 140, and the heat conduction area 26 is connected to the second battery unit.
  • the core unit 12 is attached, and the heating element 2 is used to conduct heat energy to the heat conduction area 26 through the connection area 25 when the temperature difference between the first battery unit 11 and the second battery unit 12 is greater than a preset value.
  • the battery core group 1 is covered by the casing 4, which protects the battery core group 1.
  • the heating element 2 is arranged in close contact with the battery core group 1, wherein the first battery cell unit 11 and the There are two battery core units 12, and the battery core group 1 includes the heating element 2 including a connection area 25 and a heat conduction area 26.
  • the connection area 25 is used to connect to the energy storage module 140, and the heat conduction area 26 is located in the second battery unit 12 and connected with the third Any cell 13 of the two cell units 12 is bonded together.
  • the temperature difference between the first battery unit 11 and the second battery unit 12 can be within a preset value range, thereby improving the battery life cycle.
  • the number of battery cells 13 of the first battery unit 11 in the thickness direction of the battery may be greater than the number of battery cells 13 of the second battery unit 12 in the thickness direction of the battery, that is, the first battery unit 11 and the second battery unit
  • the number of battery cells 13 in the battery cell unit 12 in the battery thickness direction is inconsistent, resulting in a temperature difference between the first battery cell 13 and the second battery cell 13 , which further affects the relationship between the first battery unit 11 and the second battery unit 12 . Make temperature adjustments.
  • the battery cells 13 in the first battery unit 11 and the second battery unit 12 are arranged in a stacked manner perpendicular to the plate surface of the housing 4, so the thickness direction of the battery is perpendicular to the board surface direction of the housing 4. .
  • the thermal conductive area 26 in the heating element 2 is located in the second battery unit 12 and is attached to any battery 13 of the second battery unit 12.
  • the second battery unit 12 has an electric charge in the thickness direction of the battery
  • the number of cores 13 in the second battery unit 12 is greater than It can be arranged at a position between a single battery core 13 and a single battery core 13 in the second battery cell unit 12, or it can also be arranged on the surface of the battery core 13 closest to the housing 4 in the second battery cell unit 12.
  • the temperature test of the first battery unit 11 and the second battery unit 12 may be a temperature measurement component in the electronic device.
  • the first battery unit 11 and the second battery unit are tested through the temperature measurement component in the electronic device.
  • the core unit 12 performs temperature testing.
  • components capable of testing the battery core group 1 may also be provided on the heating element 2, which is not limited in the embodiment of the present application.
  • connection area 25 can be connected to any component that can output the heating element 2.
  • the connection area 25 can be connected to an output component inside the electronic device.
  • the electronic device converts the waste heat generated into the heat energy required by the heating element 2.
  • the connection area 25 can also be connected to an external output component, and the external output component directly heats the heating element 2 .
  • the material of the housing 4 may be a plastic material. In some embodiments, it may be a hard plastic material; in other embodiments, it may be a thermoplastic engineering plastic.
  • the heating element 2 includes a connection area 25 and a heat conduction area 26.
  • the connection area 25 is used to connect with the energy storage module 140.
  • the energy storage module 140 can be a component in the electronic device that is capable of transmitting or storing energy.
  • the heat conduction area 26 may include a heat conduction structure. The heating element 2 conducts heat energy to the heat conduction area 26 through the connection area 25. That is, the heat conduction structure in the heat conduction area 26 receives heat energy, thereby providing heat to the second battery unit 12. .
  • the insulating covering structure on the outer surface of the heating element 2 may be an integral structure, or may be a plurality of structures spliced together to form an integral structure, which is not limited in the embodiments of the present application.
  • the heating element 2 also includes a test area 27 extending from the thermal conductive area 26 to the first battery unit 11, and the test area 27 is attached to the first battery unit 11; the test area 27 is provided with a first temperature sensor, and the heat conduction area 26 is also provided with a second temperature sensor.
  • the first temperature sensor is used to measure the temperature of the first battery unit 11, and the second temperature sensor is used to measure the temperature of the second battery unit 12. .
  • the heating element 2 includes a connection area 25, a thermal conductive area 26 and a test area 27, and the test area 27 is a non-thermal conductive area, where the test area 27 extends from the thermal conductive area 26 to the first battery unit 11 , a second temperature sensor is provided in the test area 27, and a second temperature sensor is provided in the heat conduction area 26.
  • the temperature of the battery unit 12 is determined to determine whether the temperatures of the first battery unit 11 and the second battery unit 12 are within the preset value, thereby reducing the risk of the first battery unit 11 and the second battery unit 12 Battery damage caused by excessive temperature difference between them.
  • test area 27 can be a non-thermal conductive area 26, which is only used to test the temperature of the battery core 13.
  • test area 27 is an extension of the thermal conductive area 26 to the first battery unit 11 , where the shape of the test area 27 may be a strip, that is, the first temperature sensor is disposed in the strip-shaped test area 27 , and the position where the test area 27 extends to the first battery unit 11 may be at a position close to the center of the first battery unit 11 , thereby improving the accuracy of obtaining the temperature of the first battery unit 11 .
  • the second temperature sensor is disposed in the heat conduction area 26, where the second sensor can be positioned near the center of the heat conduction area 26, thereby improving the accuracy of obtaining the temperature of the second battery cell unit 12, and the second temperature sensor It needs to be set at a certain distance from the thermally conductive structure in the thermally conductive area 26.
  • the distance between the second temperature sensor and the thermally conductive structure can be controlled to be greater than or equal to 5mm, thereby reducing the impact of the heat generated by the thermally conductive structure on the monitoring of the second temperature sensor. Influence.
  • test area 27 can be an extension of the thermal conduction area 26 to the first battery unit 11 in the same horizontal direction, that is, the connection between the thermal conduction area 26 and the test area 27 is in an unbent state, or in other words.
  • the length of the thermal conductive area 26 on the thickness of the battery core 13 of the second battery unit 12 is consistent with the length of the test area 27 on the thickness of the battery core 13 of the first battery unit 11 .
  • test area 27 is provided between any two adjacent battery cells 13 in the first battery cell unit 11 .
  • the number of battery cells 13 included in the first battery unit 11 is greater than 1, and the test area 27 is disposed between any two adjacent battery cells 13 in the first battery unit 11 , that is, the first temperature sensor is located Between any two adjacent battery cells 13 in the first battery unit 11, through the arrangement of this structure, the measurement accuracy of the first temperature sensor for the temperature of the first battery unit 11 can be improved, thereby improving the accuracy of the first battery unit. 11 and the second battery cell unit 12 temperature difference control.
  • the position where the test area 27 fits the battery cells 13 in the first battery unit 11 can be set according to the specific structure and size of the battery, which is not limited in the embodiment of the present application.
  • the number of battery cores 13 in the thickness direction of the second battery cell unit 12 is greater than 1, and the thermal conductive area 26 is provided between any two adjacent battery cells 13 in the second battery cell unit 12 .
  • a temperature measuring device for detecting the second battery cell unit 12 may also be provided in the thermal conduction area 26 .
  • the arrangement of this structure may improve the temperature detection accuracy of the second battery cell unit 12 .
  • the heat conduction area 26 is provided with several heat conduction structures, and the several heat conduction structures are arranged at intervals.
  • the heat conduction area 26 is provided with several heat conduction structures, and the several heat conduction structures are arranged at intervals. Through the arrangement of these structures, the heating failure caused by the close distance between the heat conduction structures is reduced, and the efficiency of the second heat conduction structure is improved. The heating effect of the battery unit 12.
  • the thermal conductive structure may be a copper sheet that can conduct heat and generate heat, or may be made of a material with high thermal conductivity, which is not limited in the embodiments of the present application.
  • the thickness of the thermal conductive structure may be set in a range between 0.05 mm and 0.2 mm, and the specific size and thickness may be set according to the size of the heating element 2, which is not limited in the embodiments of the present application.
  • several thermally conductive structures are arranged parallel to each other in the thermally conductive area 26 .
  • the thermally conductive structures are arranged parallel to each other in the thermally conductive area 26. Through the arrangement of this structure, the heating effect on the second battery cell unit 12 is improved, so that the heated temperature of the second battery cell unit 12 can be equal to that of the first battery cell unit 12. The temperature of the battery unit 11 is within the preset value, thereby improving the battery life cycle.
  • the thermal conductive structure may be made into a long strip shape, or may be made into a shape suitable for the battery structure, which is not limited in the embodiments of the present application.
  • thermal conductive structures may be arranged in the thermal conductive area 26 at a certain distance, and the distance may be set according to the structural size of the battery, which is not limited in the embodiment of the present application.
  • the size setting of a single thermal conductive structure can also be set according to the heating demand and the battery structure size, which is not limited in the embodiments of the present application.
  • the distance between several thermally conductive structures is greater than or equal to 5mm, and/or; the thickness of several thermally conductive structures is greater than or equal to 0.05mm, and the thickness of several thermally conductive structures is less than or equal to 0.2mm.
  • the distance between several thermally conductive structures can be set to a size greater than or equal to 5mm, thereby reducing damage to the above-mentioned battery caused by the close placement of the thermally conductive structures.
  • the distance between several thermally conductive structures The thickness can be set to greater than or equal to 0.05mm and less than or equal to 0.2mm. Through the arrangement of this structure, damage to the battery caused by improper positioning of several thermal conductive structures can be reduced. On the other hand, the thermal conductive area 26 can also be heated evenly.
  • the heating element 2 includes a first insulation layer, a second insulation layer, a heating element 2 located between the first insulation layer and the second insulation layer, a connector and a control circuit, and the heating element 2 is located between the first insulation layer and the second insulation layer.
  • the heat conduction area 26 and the connector are located in the connection area 25.
  • the heating element 2 and the connector are electrically connected through a control circuit.
  • connection area 25 is arranged in the connection area 25 .
  • the above-mentioned heating element 2 includes a three-layer structure, which includes a first insulating layer, a second insulating layer, a heating element 2, a connector and a control device disposed between the first insulating layer and the second insulating layer.
  • circuit, and the above-mentioned connector is located in the connection area 25, and the above-mentioned heating element 2 and the above-mentioned connector are electrically connected through a control circuit.
  • the disassembly and modification of the above-mentioned heating element 2 are more convenient, and corresponding modifications can be carried out as the battery structure changes.
  • the arrangement of the three-layer structure can improve the safety performance of the battery and reduce the This eliminates the possibility of leakage due to direct contact between the heating element 2 and the battery.
  • the outside of the heating element 2 is wrapped by the above-mentioned insulating film, which not only improves the protection of the heating element 2, but also reduces the influence of the outside world on the heating element 2, thereby improving the heating effect on the second battery unit 12.
  • first insulating layer and the above-mentioned second insulating layer can be made of insulating materials suitable for batteries, such as polyimide materials, which are not limited in the embodiments of the present application.
  • the thickness of the first insulating layer and the second insulating layer may be set in a range between 0.05 mm and 0.1 mm.
  • the battery core heating system 10 provided in the embodiment of the present application is an electronic device, including the above-mentioned battery.
  • the connection area 25 of the heating element 2 of the battery is connected to the energy storage module 140 of the electronic device.
  • the electronic device can be a laptop computer, a smartphone, and other devices.
  • the electronic device further includes a thermoelectric conversion module 110.
  • the thermoelectric conversion module 110 is connected to the first end of the energy storage module 140, and the connector of the heating element 2 is connected to the second end of the energy storage module 140.
  • FIG 17 shows a thermoelectric conversion module 110 in an electronic device.
  • the heat source 100 and the cold source 120 can be components that generate heat in the electronic device.
  • the electronic device is a notebook computer
  • the central part of the notebook computer The processor (central processing unit, CPU for short) serves as the heat source 100 in the thermoelectric conversion power supply, and the metal casing 4 in the notebook computer has the same temperature as room temperature under normal operating conditions, so it can be used as the cold source in the thermoelectric conversion module 110 120.
  • CPU central processing unit
  • the heat source 100 needs to be connected to the heat source connecting piece 190
  • the cold source 120 needs to be connected to the cold source connecting piece 200
  • the first thermoelectric material 170 and the second thermoelectric material are provided between the heat source connecting piece 190 and the cold source connecting piece 200. 180.
  • the heat source 100 is in close contact with the heat source connecting piece 190.
  • thermoelectric conversion module 110 includes: a first connection member and a second connection member, wherein both ends of the first connection member are respectively connected to the heat source 100 and the cold source 120 in the electronic device; the second connection member Both ends of the component are respectively connected to the heat source 100 and the cold source 120 in the electronic device; the ends of the first connector and the second connector close to the cold source 120 are connected to an external circuit.
  • the heat source 100 may include a heat source body and a heat source connecting piece 190.
  • the cold source 120 may include a cold source body and a connecting piece of the cold source 120.
  • the heat source body and the cold source body may be heat generating devices in the electronic device.
  • Components for example: taking a notebook computer as the target electronic device, the central processing unit in the notebook computer can be used as the heat source body in the thermoelectric conversion module 110 , and the metal casing 4 in the notebook computer can be used as a cooling element in the thermoelectric conversion module 110 .
  • Source ontology taking a notebook computer as the target electronic device, the central processing unit in the notebook computer can be used as the heat source body in the thermoelectric conversion module 110 , and the metal casing 4 in the notebook computer can be used as a cooling element in the thermoelectric conversion module 110 .
  • the heat source body may be connected to the heat source connecting piece 190
  • the cold source body may be connected to the cold source connecting piece 200 .
  • first connecting member and the second connecting member may be made of thermoelectric material.
  • the electric energy generated therein can be exported to the outside for use, that is, connected to the connector.
  • the above-mentioned connector then converts electrical energy into thermal energy for heating of the thermal conductive structure.
  • thermoelectric conversion module 110 is connected to the heat source 100 and the cold source 120 respectively through thermally conductive glue.
  • connection between the thermoelectric conversion module 110 and the heat source 100 and the connection between the thermoelectric conversion module 110 and the cold source 120 can be made by using thermally conductive glue.
  • thermally conductive glue By using the thermally conductive glue for connection, the efficiency during the working process can be improved.
  • the heat dissipation effect, and the cured thermally conductive colloid can be an elastomer, which has the advantages of impact resistance and vibration resistance.
  • the external circuit includes an amplification module 130 and a control module 150.
  • One end of the first connector and the second connector close to the cold source 120 is connected to the first end of the amplification module 130.
  • the third end of the amplification module 130 The two ends are connected to the first end of the control module 150 , and the second end of the control module 150 is connected to the energy storage module 140 .
  • the arrangement of the amplification module 130 and the control module 150 can improve the thermoelectric conversion effect in the above-mentioned electronic device, thereby improving the ability of the above-mentioned battery to control the temperature difference between the battery packs 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电芯加热系统,包括:电芯、加热件、储能模块、热源、冷源和热电转换模块;所述加热件与所述电芯相接触;所述储能模块与所述加热件电连接,以为所述加热件供电产生热能;所述热电转换模块分别与所述热源和所述冷源相接触,所述热电转换模块与所述储能模块电连接,以将产生的电能存储至所述储能模块。本申请的电芯加热系统,通过将电芯加热系统的热源在运行中产生的废热转化为电能后存储在储能装置中,在寒冷条件下启动电池时再将储能装置中的电能转换为热量提供给电芯,避免了额外使用外界加热设备,实现了节约电池使用成本、提高电池使用周期的效果,也可以提高电池使用循环的能力。

Description

一种电芯加热系统
本申请要求于2022年06月30日提交中国专利局、申请号为202221680358.X、申请名称为“一种电池模组”和2022年06月30日提交中国专利局、申请号为202221680359.4、申请名称为“一种电池模组”以及2022年06月30日提交中国专利局、申请号为202221690815.3、申请名称为“一种电池及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种电芯加热系统。
背景技术
随着科技的不断进步,越来越多的电子产品走进了人们的日常生活中,很多电子产品都在往无线的方向发展,无线电子产品的能源来自与产品的电池,随着产品性能的要求提高,对产品电池的性能要求也越来越高。
目前大部分电子产品,发热最严重的位置通常是电芯或者电路板上的芯片,常规设计针对这些发热高的位置,通常都只是通过加翅片、外壳开窗、通过高导热材料将热量导到外壳等方式,通过增强与外界的对流来进行散热,最终的热量都是散发到外界,对电池来说就是损失了一部分能量,造成了电池热量浪费的问题。而在一些寒冷地区,对无线电子设备的需求量也在逐渐增加,但是电池在寒冷条件下,放电性能会严重受限制,甚至会导致电子设备无法正常工作,需要对电池进行加热才能使电子产品正常工作。
在现有技术中,一般通过外界加热设备对电池进行加热,或者在电池内部增加加热设备供电加热。但是这样需保证外界有良好的供热或者供电条件,一些极寒地区,如科考站外出考察等,是无法保证有条件对电池进行加热的。且这样的加热方式,会导致电池加热成本过高的问题。
发明内容
本申请提供一种电芯加热系统,解决了电池热量浪费和在寒冷条件下加热使用成本过高的问题。
本申请提供一种电芯加热系统,包括:电芯组、加热件、储能模块、热源、冷源和热电转换模块;所述加热件与所述电芯相接触;所述储能模块与所述加热件电连接,以为所述加热件供电产生热能;所述热电转换模块分别与所述热源和所述冷源相接触,所述热电转换模块与所述储能模块电连接,以将产生的电能存储至所述储能模块。
在一些实施例中,所述冷源为散热片,所述电芯加热系统还包括导热片,所述导热片与所述热源接触,所述热电转换模块分别与所述导热片和所述散热片相接触。
可选地,所述电芯组包括若干个并列排布的电芯;所述加热片包括多个沿所述电芯的排列方向并排设置的多个加热部、将相邻的两个所述加热部连接的第一连接部;所述电芯 的至少一面与所述加热部接触。
可选地,所述电芯包括呈相对设置的两个第一侧面以及呈相对设置的两个第二侧面;所述第一侧面的面积大于所述第二侧面的面积;所述电芯的至少一个所述第一侧面与所述加热部接触。
在一些可能的实施例中,所述热源为所述电芯,所述加热件为加热片,所述散热片位于所述导热片背离所述电芯的一侧;所述电芯分别与所述加热片和所述导热片相接触。
可选地,所述第一连接部上开设有开槽,所述导热片包括有穿设在所述开槽内的导热部,所述导热片和所述加热片形成折叠结构;至少一个所述电芯位于所述导热部和所述加热部之间。
可选地,所述导热片包括将相邻的所述导热部连接的第二连接部;所述第二连接部与所述热电转换模块接触。
可选地,在所述电芯的排布方向上,所述折叠结构包括分别位于其的两相对侧上的导热部。
可选地,所述加热部的长度大于所述导热部的长度,和/或,在所述电芯加热系统的高度方向上,所述热电转换模块的高度高于所述导热片的高度,和/或,所述电芯包括壳体和电芯本体,所述壳体包括包覆电芯本体的封装部和位于所述封装部一侧的封边,所述封边向靠近所述电芯本体的方向弯折,和/或,所述电芯包括壳体和电芯本体,所述壳体包括包覆电芯本体的封装部,相邻的所述电芯的封装部呈相向设置,和/或,所述电芯加热系统还包括缓冲件,所述缓冲件位于所述电芯和所述加热部之间,和/或,位于所述电芯和所述导热部之间。
可选地,所述电芯包括有位于第一侧的第一电芯和位于与所述第一侧相对的第二侧上的第二电芯;所述第一电芯的两个第一侧面分别与所述导热部或加热部接触,和/或,所述第二电芯的两个第二侧面分别与所述第一连接部或第二连接部接触。
可选地,所述导热部和所述第二连接部之间形成有夹角,所述夹角为弧形角或线性角。
在另一些可能的实施例中,所述热源为发热元件,所述加热件为加热膜,所述电芯加热系统还包括外壳,所述外壳上设置有与所述散热片相匹配的空槽,所述散热片设置在所述空槽中;所述热电转换模块与所述加热片电连接,所述加热片通过所述热电转换模块对所述电芯进行加热。
可选地,所述散热片为翅片,所述散热片均匀设置在所述热电转换模块的一面上,所述热电转换模块的另一面与所述发热元件连接。
可选地,所述电芯加热系统还包括电路板,所述电路板的一端与所述热电转换模块相接触,所述发热元件与所述电路板的另一端连接。
可选地,所述电芯包括有位于第一侧的第一电芯和位于与所述第一侧相对的第二侧上的第二电芯;所述第一电芯的两个第一侧面分别与所述导热部接触,和/或,所述第二电芯的两个第一侧面分别与所述导热部接触。
可选地,所述加热部和所述第一连接部之间形成有夹角,所述夹角为弧形角或线性角。
可选地,所述夹角的角度范围为0-90°。
可选地,相邻的两个所述加热部之间容纳有至少两个电芯。
在其他的一些可能的实施例中,所述电芯组包括第一电芯单元和第二电芯单元;所述加热件包括连接区和导热区,所述连接区用于与储能模块连接,所述导热区与所述第二电 芯单元贴合,所述加热件用于在所述第一电芯单元与所述第二电芯单元的温度差大于预设值时,通过所述连接区为所述导热区传导热能,所述加热件构成所述导热区。
可选地,所述加热件还包括测试区,所述测试区由所述导热区向所述第一电芯单元的延伸,所述测试区与所述第一电芯单元贴合;所述测试区设置有第一温度传感器,所述导热区还设置有第二温度传感器,所述第一温度传感器用于测定所述第一电芯单元的温度,所述第二温度传感器用于测定所述第二电芯单元的温度。
可选地,所述第一电芯单元在厚度方向上的电芯数量大于1,所述测试区设置于所述第一电芯单元中任意两相邻电芯之间。
可选地,所述导热区设置有若干个导热结构,所述若干个导热结构间隔设置。
可选地,所述若干个导热结构互相平行设置于所述导热区。
可选地,所述若干个导热结构之间的距离大于或等于5mm,和/或;所述若干个导热结构的厚度大于或等于0.05mm,所述若干个导热结构的厚度小于或等于0.2mm。
可选地,所述加热件包括第一绝缘层、第二绝缘层以及位于所述第一绝缘层与所述第二绝缘层之间的加热件,所述加热件位于所述导热区,所述加热件还包括位于所述连接区的连接器,所述加热件与所述连接器通过控制电路电连接。
作为一个可选的实施例,所述电芯加热系统还包括控制模块,所述控制模块与所述储能模块连接,所述控制模块用于控制所述热电转换模块对所述储能模块充电或控制所述加热片对所述电芯进行加热。
作为一个可选的实施例,所述电芯加热系统还包括放大模块,所述放大模块设置在热电转换模块与所述储能模块之间,并分别与所述热电转换模块和所述储能模块连接,所述放大模块用于将所述热电转换模块生成的电压进行放大后传输到所述储能模块中以对所述储能模块进行充电。
可选地,所述热电转换模块与所述储能模块的第一端连接,所述加热件的连接器与所述储能模块的第二端连接。
可选地,所述热电转换模块包括:第一连接件和第二连接件,其中,所述第一连接件的两端分别连接所述热源和所述冷源;所述第二连接件的两端分别连接所述热源和所述冷源;所述第一连接件和所述第二连接件靠近冷源的一端接入所述放大模块和所述控制模块。
可选地,所述热电转换模块通过导热胶质分别与所述热源和所述冷源连接。
可选地,所述第一连接件和所述第二连接件靠近冷源的一端与所述放大模块的第一端连接,所述放大模块的第二端与所述控制模块的第一端连接,所述控制模块的第二端与所述储能模块连接。
本申请提供了一种电芯加热系统,通过将电芯加热系统的热源在运行中产生的废热转化为电能后存储在储能装置中,在寒冷条件下启动电池时再将储能装置中的电能转换为热量提供给电芯,避免了额外使用外界加热设备,实现了节约电池使用成本、提高电池使用周期的效果,也可以提高电池使用循环的能力。
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其他特征将通过以下的说明书而变得容易理解。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。其中:
图1为本申请实施例一中作为电芯加热系统的电池模组的结构示意图之一;
图2为本申请实施例一中作为电芯加热系统的电池模组的结构示意图之二;
图3为本申请实施例一中作为电芯加热系统的电池模组的结构示意图之三;
图4为本申请实施例一中的导热片的结构示意图;
图5为本申请实施例一中的加热片的结构示意图;
图6为本申请实施例一中的折叠结构的结构示意图;
图7为本申请实施例一提供的电芯加热系统的模块示意图;
图8为本申请实施例一的电芯加热系统的电路结构示意图;
图9为本申请实施例二中作为电芯加热系统的电池模组的内部结构示意图;
图10为本申请实施例二中作为电芯加热系统的电池模组的爆炸结构示意图;
图11为本实施例二中的加热件的结构示意图;
图12为本实施例二提供的电芯加热系统的模块示意图;
图13为本申请实施例二的电芯加热系统的电路结构示意图;
图14是本申请实施例三提供的作为电芯加热系统的电子设备的电池模组的结构示意图之一;
图15是本申请实施例三中的电池模组的整体示意图;
图16是本申请实施例三中的电池模组的结构示意图之二;
图17是本申请实施例三提供的作为电芯加热系统的电子设备的热电转换模块110的结构示意图。
附图标记说明:
10-电芯加热系统;
100-热源;110-热电转换模块;120-冷源;130-放大模块;140-储能模块;150-控制模
块;160-加热模块;170-第一热电材料;180-第二热电材料;190-热源连接片;200-冷源连接片;210-热电模块;
1-电芯组;11-第一电芯单元;12-第二电芯单元;
2-加热件;21-加热部;22-第一连接部;23-开槽;24-连接导线;25-连接区;26-导热
区;27-测试区;
3-导热片;31-导热部;32-第二连接部;
4-外壳;41-上壳;42-下壳;
5-发热元件;
6-散热片;7-泡棉。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。基于本申请中的实施例,本领域普 通技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本申请保护的范围。
除非另作定义,本申请中使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本申请中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
本申请提供一种电芯加热系统10,包括:电芯组1、加热件2、储能模块140、热源100、冷源120和热电转换模块110。其中,加热件2与电芯13相接触,以为电芯组1中的电芯133加热。储能模块140与加热件2电连接,以为加热件2供电产生热能。热电转换模块110分别与热源100和冷源120相接触,热电转换模块110与储能模块140电连接,以将产生的电能存储至储能模块140。如此,可以利用电芯加热系统10的热源100在运行中产生的废热转化为电能后存储在储能模块140中,在启动电池时再将储能模块140中的电能转换为热量提供给电芯13,避免了额外使用外界加热设备,实现了节约电池使用成本、提高电池使用周期的效果,也可以提高电池使用循环的能力。
实施例一
参阅图1-图3,本实施例一提供的电芯加热系统10为一种电池模组,图1、图2和图3为本实施例一的电池模组的结构示意图,电池模组可以包括:电芯组1、散热片6、热电转换模块110、导热片3和加热片;
散热片6位于导热片3背离电芯13的一侧;
电芯13分别与加热片和导热片3相接触;
热电转换模块110分别与导热片3和散热片6相接触。
其中,在本实施例中,电芯13自身可以作为热源100,散热片6作为冷源120,导热片3可以为高导热薄片,加热片可以作为对电芯13加热的加热件2,加热片可以为加热薄片,散热片6可以为外漏的铝片。高导热薄片折叠位置与外漏铝片之间布置有热电转化模块,为了让外漏铝片能更好的接受到来自电芯13的热量,在外漏铝片与电芯13侧边之间,还可以加导热硅脂增强导热效果。电芯13设置在高导热薄片和加热薄片之间,可以根据高导热薄片和加热薄片提供的温度保持电芯13温度或对电芯13进行加热,热电转换模块110用于将热源100与冷源120之间的热量转换为电能并储存在电池、电容等蓄电装置中,经过控制电路的调整和控制后,可以在寒冷条件下给电池内部的加热薄片和高导热薄片进行供电,为电芯13提供热量,无需外部电源,即可让电池在寒冷条件下能达到良好放电温度,保证电池正常放电能力,为设备运行提供稳定电源。若热电转换模块110布置在电芯13正面,则只有最外侧的电芯13的热量能被较好的吸收,内侧电芯13的热量比较难吸收到,且会占用电芯13厚度空间。电芯13间除了高导热薄片以及加热薄片以外,还需加贴一定的泡棉7,用于吸收电芯13循环后的厚度膨胀量。控制模块150上设置有储能模块140和放大模块130。电池还包括电池上壳41和电池下壳42,其中电池上壳41设置在控制模块150上,电池下壳42设置在折叠结构外部。折叠结构外部依次为热电转 换模块110、外露铝片。
本申请提供一种电池模组,包括:包括:电芯组1、散热片6、热电转换模块110、导热片3和加热片;散热片6位于导热片3背离电芯13的一侧;电芯13分别与加热片和导热片3相接触;热电转换模块110分别与导热片3和散热片6相接触。本申请实施例提供了一种电池模组,通过将电芯13废热转化为电能后存储在储能装置中,在寒冷条件下启动电池时再将储能装置中的电能转换为热量提供给电芯13,避免了额外使用外界加热设备,实现了节约电池使用成本的效果。
在另一个实施例中,参阅图3-图5,图3为本实施例中导热片3的结构示意图,图4为本实施例中加热片的结构示意图,图5为本实施例中折叠结构的结构示意图。
可选的,电芯组1包括若干个并列排布的电芯13;
加热片包括多个沿电芯13的排列方向并排设置的多个加热部21、将相邻的两个加热部21连接的第一连接部22以及开设在第一连接部22上的开槽23;
导热片3包括有穿设在开槽23内的导热部31,导热片3和加热片形成折叠结构;
至少一个电芯13位于导热部31和加热部21之间。
在本实施例中,加热片为加热薄片,导热片3为高导热薄片,加热薄片包括多个加热部21和第一连接部22,还包括在第一连接部22上的开槽23;高导热薄片通过开槽23与加热薄片形成配合的折叠结构,可选的,相邻的导热部31或加热部21之间容纳有至少两个电芯13。根据导热部31或加热部21形成的结构,一个或者多个电芯13设置在折叠结构之中。
可选的,导热片3包括将相邻的导热部31连接的第二连接部32;第二连接部32与热电转换模块110接触。
可选的,在电芯13的排布方向上,折叠结构包括分别位于其的两相对侧上的导热部31。加热部21的长度大于导热部31的长度,和/或在电池模组的高度方向上,热电转换模块110的高度高于导热片3的高度,和/或电芯13包括壳体和电芯13本体,壳体包括包覆电芯13本体的封装部和位于封装部一侧的封边,封边向靠近电芯13本体的方向弯折,和/或电芯13包括壳体和电芯13本体,壳体包括包覆电芯13本体的封装部,相邻的电芯13的封装部呈相向设置,和/或电池模组还包括缓冲件,缓冲件位于电芯13和加热部21之间,和/或位于电芯13和导热部31之间。
在本实施例中,高导热薄片与加热薄片均形成折叠结构,二者共同组成复合折叠结构,各电芯13分别放置在复合折叠结构的相邻折叠面之间,加热薄片折叠位置开槽23避位,用于与高导热薄片进行组装,折叠位置需保证高导热薄片位于外侧,加热薄片位于内侧,以保证高导热薄片与位于外侧的热电转换模块110更好的接触。复合折叠结构可以使每一个电芯13都至少有一个大面与加热薄片接触,让各电芯13受热更均匀,且由于高导热薄片的高导热特性,进一步均衡各电芯13之间的温度差,使电池模组工作时各电芯13的温度接近一致,提升电池寿命。进一步的,加热薄片还可以通过导线与控制模块150连接,从而控制模块150能够控制加热薄片的工作情况。
可选的,电芯13包括呈相对设置的两个第一侧面以及呈相对设置的两个第二侧面;
第一侧面的面积大于第二侧面的面积;
电芯13的至少一个第一侧面与加热部21接触。
可选的,电芯13包括有位于第一侧的第一电芯13和位于与第一侧相对的第二侧上的 第二电芯13;
第一电芯13的两个第一侧面分别与导热部31或加热部21接触,和/或
第二电芯13的两个第二侧面分别与第一连接部22或第二连接部32接触。
可选的,导热部31和第二连接部32之间和/或加热部21和第一连接部22之间形成有夹角,夹角为弧形角或线性角。
在本实施例中,电芯13为长主体形状,并设置在相邻的导热部31之中,电芯13的第一侧面为面积较大的一面,第二侧面为面积较小的一面,通过将面积较大的一面与导热部31接触,可以更好地对电芯13进行加热。相邻的导热部31之间容纳有两个或两个以上的电芯13,具体数量根据实际情况进行适应性调整。导热部31和第二连接部32之间的夹角一般需要小于90°,当大于90°时电芯13无法完全与导热部31接触,因此会出现加热不均匀的问题
参阅图7,图7为本申请实施例提供的一种作为电芯加热系统10的电池模组的模块示意图,具体地,电池模组包括:热电模块210、电芯13、储能模块140和加热模块160;
热电模块210与储能模块140电连接,储能模块140与加热模块160电连接,加热模块160、热电模块210与电芯13接触;
热电模块210用于根据热电模块210的冷端与电芯13表面的温差生成第一电压;
储能模块140用于根据第一电压进行充电,在满足预设条件的情况下,储能模块140释放根据第一电压生成的第二电压;
加热模块160用于将第二电压转换为第一热量并提供给电芯13。
在本实施例中,热电模块210通过利用塞贝克效应的热电转换技术,通过在电芯13的侧边布置热电转换模块110,该热电转换模块110中包含多组热电转换单元,可将电池运行中产生的热能转换为电能后,经由控制电路增幅电压、控制充放电过程后,将电能储存在电池、电容等蓄电装置中,有效的解决电池的发热问题,降低了电芯13等关键组件的温度,有利于提高电池的工作性能和使用寿命,提升了用户使用体验。
具体地,可选的,热电模块210包括热源100、热电转换模块110和冷源120,热电转换模块110设置在热源100和冷源120之间,热电转换模块110分别与热源100和冷源120接触;其中,冷源120为铝片,热源100为电芯13,来自热源100的热量由高导热薄片导出后由热电转化模块吸收并转化为电能,热电转换模块110和铝片接触后依次设置在高导热薄片表面。
其中,利用电芯13运行过程中的废热作为热源100,利用设在外壳4的一层外漏铝片作为冷源120,在存在温差的情况下即可进行加热,而在电池处于寒冷条件下,加热效果更好。通过热源100与冷源120温差和热电转换模块110生成第一电压,需要说明的是,第一电压一般低于储能模块140的充电电压,需放大模块130增幅后才能比储能模块140的充电电压高。
在另一个实施例中,参阅图8,图8为本实施例中的电路结构示意图,其中,热源100与冷源120之间设置有热电转换模块110,热源100、冷源120和热电转换模块110组合为热电模块210。可选的,还包括放大模块130,放大模块130设置于热电模块210与储能模块140之间,并分别与热电模块210和储能模块140电连接,放大模块130用于将第一电压进行放大后对储能模块140进行充电。可选的,还包括控制模块150,控制模块150与储能模块140电连接,控制模块150用于控制储能模块140的充电和放电过程。可选的, 控制模块150为电路板,放大模块130、储能模块140均设置在电路板上。
其中,在热源100和冷源120之间布置热电转换模块110,其中热电转换模块110包含了多组热电转换单元,热电转换单元用于生成第一电压。热电转换模块110与放大模块130,储能模块140组成回路。储能模块140与控制模块150和加热模块160中的加热薄片组成回路。具体地,放大模块130可使用具有电路放大功能的电子组件,使得热电转换模块110产生的电势差增幅,储能模块140中储存电能的电压值,示例性的,在本实施例中以运算放大器为例,也可以选择其他电路放大装置。储能模块140可以选择各种具有蓄电能力的装置,例如电容或者特制低温使用电池等等,可以根据实际情况进行适应性选择,在本实施例中不做具体限定。控制模块150可以控制储能模块140的充放电过程,在电芯13需要加热的时候将储能模块140储存的电力释放、调整、匹配后为加热薄片供电,同时也具有电路保护功能。
本申请实施例一提供的电芯加热系统10,为一种电池模组。电池模组包括:包括:电芯组1、散热片6、热电转换模块110、导热片3和加热片;散热片6位于导热片3背离电芯13的一侧;电芯13分别与加热片和导热片3相接触;热电转换模块110分别与导热片3和散热片6相接触。本申请实施例提供的作为电芯加热系统10的电池模组,通过将电芯13废热转化为电能后存储在储能装置中,在寒冷条件下启动电池时再将储能装置中的电能转换为热量提供给电芯13,避免了额外使用外界加热设备,实现了节约电池使用成本的效果。
实施例二
参阅图9和图10,本实施例二提供的电芯加热系统10为另一种电池模组,图9和图10为本申请实施例二的电池模组的结构示意图,电池模组可以包括:电芯组1、发热元件5、散热片6、热电转换模块110、加热膜和外壳4;
热电转换模块110设置在发热元件5与散热片6之间并分别于发热元件5和散热片6相接触;
外壳4上设置有散热片6相匹配的空槽,散热片6设置在空槽中;
热电转换模块110与加热膜电连接,加热膜通过热电转换模块110对电芯13进行加热。
在本实施例中,在电池工作过程中,发热最严重的部位是芯片,因此,发热元件5为芯片,同时,发热元件5作为热源100,而散热片6是冷源120,加热膜作为对电芯13加热的加热件2。在芯片与散热片6之间布置有热电转换模块110,因为芯片位置不平整,芯片与热电转换模块110之间还加有一层作为导热片3的铝片,以保证接触面平整,使得热电转换模块110能更好的接受来自热源100芯片的热量,必要时还可以在芯片的缝隙处点导热硅脂,进一步提高芯片到热电转换模块110的导热效果,其中铝片与热电转换模块110直接接触,热电转换模块110与散热片6直接接触。由热电转换模块110产生的电能,经放大模块130放大后储存在储能模块140中。在寒冷条件下需使用电池等系统需要的情况下,在控制模块150的控制下,储存在储能模块140中的电能释放给加热膜,起到加热电芯组1的电芯133的作用,当电芯13加热到合适温度后,电池即可在寒冷条件下正常工作。加热膜加热时为了让各电芯13受热更均匀,加热膜设计成薄片,并将加热薄片多次折叠形成如图所示折叠结构,将电芯13置于折叠结构中,保证每个电芯13都有一个大 面与加热膜直接接触,最外侧的电芯13由于散热条件相对内侧电芯13更好,最外侧的电芯13正反两个大面均与加热膜直接接触。加热膜通过导线与控制模块150连接,在加热过程中,与储能模块140,控制模块150组成回路。
可选的,散热片6为翅片,散热片6均匀设置在热电转换模块110的一面上,热电转换模块110的另一面与发热元件5连接。
可选的,还包括电路板,电路板的一端与热电转换模块110相接触,发热元件5与电路板的另一端连接。
具体地,散热片6设计暴露在空气中,且与空气接触面做成翅片设计,来增强散热片6与空气的对流散热,从而使得芯片与散热片6的温差更大,经过热电转换模块110的热量更多,以产生更多电能。其中散热片6与外壳4的固定方式为:外壳4放置散热片6区域挖空,散热片6放入电池上壳41用于安装散热片6的挖空区域,散热片6的平整面与热电转换模块110直接接触。
在另一个实施例中,图11为本实施例中加热膜的结构示意图;电芯组1包括若干个并列排布的电芯13;
加热膜包括沿电芯13的排列方向并排设置的多个加热部21以及将相邻的两个加热部21连接的第一连接部22;
电芯13的至少一面与加热部21接触。
电芯13包括呈相对设置的两个第一侧面以及呈相对设置的两个第二侧面;
第一侧面的面积大于第二侧面的面积;
电芯13的至少一个第一侧面与加热部21接触。
电芯13包括有位于第一侧的第一电芯13和位于与第一侧相对的第二侧上的第二电芯13;
第一电芯13的两个第一侧面分别与加热部21接触,和/或
第二电芯13的两个第一侧面分别与加热部21接触。
加热部21和第一连接部22之间形成有夹角,夹角为弧形角或线性角。
夹角的角度范围为0-90°。
相邻的加热部21之间容纳有至少两个电芯13。
在本实施例中,加热膜为弯折结构,弯折结构包括多个加热部21和多个设置在任意两个加热部21之间的第一连接部22,电芯13设置在第一连接部22中。加热模块160还包括连接导线24,连接导线24的一端与加热部21的一端连接,连接导线24的另一端与控制模块150连接,连接导线24用于对加热模块160提供工作电压。电芯13为长主体形状,电芯13的第一侧面为面积较大的一面,第二侧面为面积较小的一面,通过将面积较大的一面与加热部21接触,可以更好地对电芯13进行加热。相邻的加热部21之间容纳有两个或两个以上的电芯13,具体数量根据实际情况进行适应性调整。加热部21和第一连接部22之间的夹角一般需要小于90°,当大于90°时电芯13无法完全与加热部21接触,因此会出现加热不均匀的问题。
具体地,通过将加热膜设计成薄片,并将加热膜多次折叠形成折叠结构,将多个电芯13置于折叠结构中,保证每个电芯13都有一个大面与折叠结构直接接触,以达到增加加热速率,且加热时缩小各电芯13之间的温差的效果。
本申请实施例二提供的电芯加热系统10,为一种电池模组。电池模组包括:电芯组1、 发热元件5、散热片6、热电转换模块110、加热膜和外壳4;热电转换模块110设置在发热元件5与散热片6之间并分别于发热元件5和散热片6相接触;电池外壳4上设置有散热片6相匹配的空槽,散热片6设置在空槽中;热电转换模块110与加热膜电连接,加热膜通过热电转换模块110对电芯13进行加热。本申请实施例通过将芯片运行过程中产生的废热转化为电能后储存在储能装置中,在寒冷条件下启动电池时再将储能装置中的电能转换为热量提供给电芯13,实现了减少电池在寒冷条件下的使用成本和提高电池使用周期的效果。
参阅图12,图12为本申请实施例提供的一种电池模组的模块示意图,包括:热电模块210、电芯13、控制模块150、加热模块160和储能模块140;加热模块160与电芯13接触,储能模块140分别与热电模块210和加热模块160连接,控制模块150分别与热电模块210、加热模块160电连接;热电模块210包括芯片、散热片6和热电转换模块110,热电模块210用于根据芯片和散热片6的温差生成第一电压;储能模块140用于存储第一电压;加热模块160用于根据第一电压对电芯13进行加热;控制模块150用于控制热电模块210对储能装置充电或控制加热模块160对电芯13加热。
在本实施例中,热电模块210通过利用塞贝克效应的热电转换技术,通过将热电转换模块110设置在芯片和散热片6之间,该热电转换模块110中包含多组热电转换单元,可将电池运行中产生的热能转换为电能后,经由控制电路增幅电压、控制充放电过程后,将电能储存在电池、电容等蓄电装置中,有效的解决电池的发热问题,降低了电芯13等关键组件的温度,有利于提高电池的工作性能和使用寿命,提升了用户使用体验。
进一步的,芯片为热源100,散热片6为冷源120,热电转换模块110设置在热源100和冷源120之间,热电转换模块110分别与热源100和冷源120接触。热电模块210还包括铝片,铝片设置在芯片与热电转换模块110之间,铝片用于增强热电转换模块110的导热能力,即铝片构成了导热片3。
其中,在本实施例中以无人机电池为例,电池模组中芯片发热量最高,温度最低的组件为冷源120的散热片6,在芯片和冷源120之间布置热电转换模块110,其中热电转换模块110包含了多组热电转换单元,当有热量经过热电转换模块110时,热电转换模块110即可产生电能。当电池工作时,电流经过芯片,使芯片产生热量,热量在传导或辐射到冷源120的过程中需要经过热电转换模块110。若想在尺寸不变的情况下通过热电转换模块110获得更多的电能,则需要加大热电转换模块110两边,即芯片与冷源120的温差。
在本实施例中,控制模块150为电路板,储能模块140和放大模块130设置在控制模块150上。
具体地,控制模块150用于控制热电转换模块110对储能模块140充电或控制加热膜对电芯13进行加热,其中,控制模块150可以为预先设置好的电路板,存储有控制程序。示例性的,加热模块160可以为加热膜等加热装置。
通过将与热电转换模块110接触的冷源120暴露在空气中,热电转换模块110放置在与外界接触的冷源120以及电池内部的热源100之间,加大热电转换模块110两端的温度差,使更多的热量通过热电转换模块110,从而产生更多的电能。同时,因为冷源120暴露在空气中,冷源120吸收了来自电池内部的热量后,能更快的散发到外界,增强了电池的散热效果。在改善电池散热能力的同时,也能更大程度的回收电池运行时产生的废热,提升用户体验。
在另一个实施例中,参阅图13,图13为本实施例中的电路结构示意图,还包括放大模块130,储能模块140设置在热电模块210与加热模块160之间,储能模块140用于存储第一电压,当加热模块160进行工作时,储能模块140释放第一电压生成的第二电压提供到加热模块160,加热模块160对电芯13进行加热。放大模块130设置在热电模块210与储能模块140之间,并分别与热电模块210和储能模块140连接,放大模块130用于将第一电压进行放大后传输到储能模块140中以对储能模块140进行充电。
在电池中发热最多的组件为电路板芯片,温度最低的组件为冷源120,在芯片和冷源120之间布置热电转换模块110,其中热电转换模块110包含了多组热电转换单元,当有热量经过热电转换模块110时,热电转换模块110即可产生电能。当电池工作时,电流经过芯片,使芯片产生热量,热量在传导或辐射到冷源120的过程中需要经过热电转换模块110。若想在尺寸不变的情况下通过热电转换模块110获得更多的电能,则需要加大热电转换模块110两边,即芯片与冷源120的温差。由热电转换模块110产生的电能,经放大模块130放大后储存在储能模块140中,其中放大模块130具有提高电压的功能,在本实施例中以运算放大器为例,使得由热电转换模块110产生的电势差增幅,高于储能模块140中储存电能的电压值,储能模块140可使用各种具有蓄电能力的装置,例如电容、特制低温使用电池等等,在本实施例中以电容为例。控制模块150能够控制储能模块140的放电过程,在电池需要加热的时候将储能模块140储存的电力释放、调整、匹配后为加热模块160供电,在寒冷条件下需使用电池等系统需要的情况下为加热模块160供电,将电池加热到正常工作温度,满足用户的使用需求。
在本实施例的方案,通过将设备运行中的废热转换为电能并储存在电池、电容等蓄电装置中,经过控制电路的调整和控制后,可以在寒冷条件下给电池内部的加热装置供电,为电芯13提供热量,无需外部电源,即可让电池在寒冷条件下能达到良好放电温度,保证电池正常放电能力,为设备运行提供稳定电源。在这一过程中,存在控制模块150控制储能模块140控制热电转换所获取电能到储能模块140的充电过程,同时存在控制电路控制储能模块140对加热模块160的放电过程,使得加热模块160将电芯13加热到合适温度,并为电路提供保护。
本申请提供的一种电芯加热系统10,为一种电池模组。电池模组包括:电芯组1、发热元件5、散热片6、热电转换模块110、加热膜和外壳4;热电转换模块110设置在发热元件5与散热片6之间并分别于发热元件5和散热片6相接触;电池外壳4上设置有散热片6相匹配的空槽,散热片6设置在空槽中;热电转换模块110与加热膜电连接,加热膜通过热电转换模块110对电芯13进行加热。本申请实施例通过将芯片运行过程中产生的废热转化为电能后储存在储能装置中,在寒冷条件下启动电池时再将储能装置中的电能转换为热量提供给电芯13,实现了减少电池在寒冷条件下的使用成本和提高电池使用周期的效果。
实施例三
考虑到电池被广泛应用到智能手机、笔记本电脑等电子产品之中,其中,以笔记本电脑为代表的电子产品,通常使用包括多个电芯13的电池为笔记本电脑提供电能。然而,现有电子产品所使用电池的电芯13数量可能分配不均,这导致多个电芯13之间通常存在温度差异,长期的温度差异会导致电池的使用循环寿命较短,从而造成电池容量的非正常 衰弱。可见,现有技术中存在因电芯13温度差异而导致电池使用循环较差的问题。
因此,本实施例三提供的电芯加热系统10为一种电子设备。电子设备可以包括电池模组。如图14至图17所示,电池模组包括外壳4、电芯组1和加热件2。电芯组1包括第一电芯单元11和第二电芯单元12;加热件2包括连接区25和导热区26,连接区25用于与储能模块140连接,导热区26与第二电芯单元12贴合,加热件2用于在第一电芯单元11与第二电芯单元12的温度差大于预设值时,通过连接区25为导热区26传导热能。
该实施方案中,电芯组1由外壳4覆盖,由外壳4对电芯组1起到保护的作用,加热件2与电芯组1贴合设置,其中,第一电芯单元11和第二电芯单元12,并且电芯组1包括由加热件2包括连接区25和导热区26,连接区25用于与储能模块140连接,导热区26位于第二电芯单元12且与第二电芯单元12的任意电芯13贴合,通过温度测量部件的测试,测试到第一电芯单元11与第二电芯单元12的温度差大于预设值时,加热件2通过连接区25为导热区26传导热能,从而减小第一电芯单元11和第二电芯单元12之间的温度差。通过该结构的设置,可以使得第一电芯单元11和第二电芯单元12之间的温度差在预设值范围之内,从而提高电池的使用循环。
其中,第一电芯单元11在电池的厚度方向上的电芯13数量可以是大于第二电芯单元12在电池的厚度方向上的电芯13数量,即第一电芯单元11和第二电芯单元12在电池厚度方向上的电芯13数量不一致,从而使得第一电芯13和第二电芯13产生温度差,进而对第一电芯单元11和第二电芯单元12之间进行温度调节。
需要说明的是,第一电芯单元11和第二电芯单元12中电芯13的设置方式为以垂直外壳4的板面方向叠加设置,所以电池的厚度方向为垂直外壳4的板面方向。
另外,加热件2中的导热区26位于第二电芯单元12且与第二电芯单元12的任意电芯13贴合,其中,当第二电芯单元12在电池的厚度方向上的电芯13数量为时,导热区26设置在第二电芯单元12朝向外壳4的电芯13表面,当第二电芯单元12在电池的厚度方向上的电芯13数量大于时,导热区26可以设置在第二电芯单元12中单个电芯13与单个电芯13之间的位置,也可以设置在第二电芯单元12中最靠近外壳4的电芯13的表面,对此本申请不作限定。
应理解,对第一电芯单元11和第二电芯单元12的温度测试,可以是电子设备中的温度测量部件,通过电子设备中的温度测量部件对第一电芯单元11和第二电芯单元12进行温度测试,另外,也可以是在加热件2上设置能够测试电芯组1的部件,对此本申请实施例不做限定。
当然,连接区25可以是连接任意可以对加热件2有输出的部件,例如:连接区25可以是连接至电子设备内部的输出部件,电子设备将产生的废热转化为加热件2所需要的热能,另外,连接区25还可以是连接至外部输出部件,外部输出部件直接对加热件2起到加热的作用。
另外,外壳4的材料可以是塑性材料,在一些实施例中,可以是硬质的塑性材料;在另一些实施例中,可以是热塑性工程塑料。
另外,加热件2包括连接区25和导热区26,连接区25用于与储能模块140连接,其中,储能模块140可以是电子设备中自带的能够传输能力或是储存能量的部件,而导热区26可以是包括有导热结构,加热件2通过连接区25为导热区26传导热能,即导热区26中的导热结构接收热能,从而起到给第二电芯单元12供热的作用。
应理解,加热件2外表的绝缘覆盖结构可以是一体结构,也可以是由多个结构拼接而成整体的结构,对此本申请实施例不做限定。
作为一种可选的实施方式,加热件2还包括测试区27,测试区27由导热区26向第一电芯单元11的延伸,测试区27与第一电芯单元11贴合;测试区27设置有第一温度传感器,导热区26还设置有第二温度传感器,第一温度传感器用于测定第一电芯单元11的温度,第二温度传感器用于测定第二电芯单元12的温度。
该实施方案中,加热件2包括有连接区25、导热区26和测试区27,并且测试区27为非导热的区域,其中,测试区27由导热区26向第一电芯单元11的延伸,在测试区27中设置有第二温度传感器,在导热区26中设置有第二温度传感器,通过第一温度传感器和第二温度传感器的设置,可以实时获取第一电芯单元11和第二电芯单元12的温度,从而判断第一电芯单元11和第二电芯单元12的温度是否在预设值之内,进而减小了因第一电芯单元11和第二电芯单元12之间温差过大带来的电池损伤。
其中,测试区27可为非导热区26,仅用于对电芯13进行温度的测试。
需要说明的是,测试区27为导热区26向第一电芯单元11的延伸,其中,测试区27的形状可以是长条状,即在长条状的测试区27中设置第一温度传感器,并且测试区27延伸到第一电芯单元11的位置可以是处于第一电芯单元11靠近中心的位置,从而提高获取第一电芯单元11温度的精准。
另外,第二温度传感器设置在导热区26中,其中,第二传感器的位置设置可以在导热区26靠近中心的位置,从而可以提高获取第二电芯单元12温度的精度,并且第二温度传感器需要与导热区26中的导热结构设置有一定的距离,第二温度传感器与导热结构的距离可以控制在大于或等于5mm的范围,从而减小因导热结构的发热对第二温度传感器监测产生的影响。
需要说明的是,测试区27可以为导热区26向第一电芯单元11在同一水平方向上的延伸,即导热区26与测试区27之间的连接处为未弯折状态,或者说是导热区26在第二电芯单元12电芯13厚度上的长度与测试区27在第一电芯单元11电芯13厚度上的长度一致。通过该结构的设置,即取相同电芯13厚度上的温度值,可以提高对于第一电芯单元11和第二电芯单元12的温度测量精度,另一方面,减少了加热件2的弯折结构,从而节约了加热件2材料的使用。
作为一种可选的实施方式,测试区27设置于第一电芯单元11中任意两相邻电芯13之间。
该实施方案中,第一电芯单元11中包含的电芯13数量大于1,并且测试区27设置于第一电芯单元11中任意两相邻电芯13之间,即第一温度传感器位于第一电芯单元11中任意两相邻电芯13之间,通过该结构的设置,可以提高第一温度传感器对于第一电芯单元11温度的测量精度,进而提高了对于第一电芯单元11和第二电芯单元12的温度差控制。
需要说明的是,测试区27贴合第一电芯单元11中电芯13的位置可以视上述电池的具体结构和尺寸设定,对此本申请实施例不做限定。
作为一种可选的实施方式,第二电芯单元12在厚度方向上的电芯13数量大于1,导热区26设置于第二电芯单元12中任意两相邻电芯13之间。
该实施方案中,当第二电芯单元12在厚度方向上的电芯13数量大于时,导热区26 设置于第二电芯单元12中任意两相邻电芯13之间,通过该结构的设置,提高了导热区26对于第二电芯单元12的整体加热效果。
另一方面,在导热区26中还可以设置有用于检测第二电芯单元12的温度测量装置,该结构的设置可以提高对于第二电芯单元12的温度检测精度。
作为一种可选的实施方式,导热区26设置有若干个导热结构,若干个导热结构间隔设置。
该实施方案中,导热区26设置有若干个导热结构,若干个导热结构间隔设置,通过该结构的设置,减小了导热结构之间因设置距离过近导致的加热故障,提高了对于第二电芯单元12的加热效果。
其中,导热结构可以是选择可以导热发热的铜片,也可以是选择具有高导热性的材料制成,对此本申请实施例不做限定。
需要说明的是,导热结构的厚度可以是设置在0.05mm至0.2mm之间的范围,具体的尺寸厚度可以根据加热件2的尺寸而进行设置,对此本申请实施例不作限定。作为一种可选的实施方式,若干个导热结构互相平行设置于导热区26。
该实施方案中,导热结构互相平行设置于导热区26,通过该结构的设置,提高了对于第二电芯单元12的加热效果,进而使得第二电芯单元12加热后的温度能够和第一电芯单元11的温度在预设值之内,提高电池使用循环。
其中,导热结构可以是制作成长条形状,也可以是制作成适用于电池结构的形状,对此本申请实施例不作限定。
需要说明的是,导热结构可以是以一定距离间隔设置在导热区26内,该距离的设定可以是根据电池的结构尺寸来确定,对此本申请实施例不作限定。
另外,对于单个导热结构的尺寸设定也可以是根据发热需求和电池结构尺寸进行设定,对此本申请实施例不作限定。
作为一种可选的实施方式,若干个导热结构之间的距离大于或等于5mm,和/或;若干个导热结构的厚度大于或等于0.05mm,若干个导热结构的厚度小于或等于0.2mm。
该实施方案中,若干个导热结构之间的距离可以是按照大于或等于5mm的尺寸进行设定,从而减小了因导热结构设置位置紧密造成对上述电池的损害,另外,若干个导热结构的厚度可以设置为大于或等于0.05mm,并且小于或等于0.2mm。通过该结构的设置可以减小因若干个导热结构的位置设置不当带来对电池的损害,另一方面,也可以对导热区26进行均匀加热。
作为一种可选的实施方式,加热件2包括第一绝缘层、第二绝缘层以及位于第一绝缘层与第二绝缘层之间的加热件2、连接器和控制电路,加热件2位于导热区26,连接器位于连接区25,加热件2与连接器通过控制电路电连接。
其中,上述连接器设置于连接区25之中。
该实施方案中,上述加热件2包括有三层结构,其中,包括有第一绝缘层、第二绝缘层以及设置在第一绝缘层和第二绝缘层之间的加热件2、连接器和控制电路,并且,上述连接器位于连接区25,上述加热件2与上述连接器通过控制电路电连接。通过该结构的设置,使得对上述加热件2的拆卸以及改装更加方便,可以随着电池结构的改变而进行对应的改造,另一方面,三层结构的设置可以提高电池的安全性能,减小了因加热件2与电池的直接接触产生漏电的可能性。
另外,加热件2的外部由上述绝缘膜包裹,在提高对加热件2保护性的同时,也可以减小外界对加热件2的影响,从而提高对于第二电芯单元12的加热效果。
需要说明的是,上述第一绝缘层和上述第二绝缘层可以采用适用于电池的绝缘材料制成,例如聚酰亚胺材料,对此本申请实施例不作限定。
另外,上述第一绝缘层和上述第二绝缘层的厚度可以是设置在0.05mm至0.1mm之间的范围。
本申请实施例提供的电芯加热系统10,为一种电子设备,包括上述的电池,电池的加热件2的连接区25与电子设备的储能模块140连接。
需要说明的是,电子设备可以是笔记本电脑、智能手机等设备。作为一种可选的实施方式,电子设备还包括热电转换模块110,热电转换模块110与储能模块140的第一端连接,加热件2的连接器与储能模块140的第二端连接。
请参见图17,图17为电子设备中的热电转换模块110,其中,热源100和冷源120可以是电子设备中产生热量的部件,例如:若电子设备为笔记本电脑,则笔记本电脑中的中央处理器(central processing unit,简称CPU)作为热电转化电源中的热源100,而笔记本电脑中的金属外壳4因在正常工作情况下的温度和室温一致,所以可以作为热电转换模块110中的冷源120。
另外,热源100需要与热源连接片190连接,冷源120需要与冷源连接片200连接,并且在热源连接片190和冷源连接片200之间设置有第一热电材料170和第二热电材料180。
应理解,热源100与热源连接片190紧密贴合,热源连接片190的截面积越大,则传递热量的效率也就越高。通过将第一热电材料170和第二热电材料180靠近冷源120的一端分别接入外部电路,可以使得其中产生的电能能够导出至外部使用,即连接至上述加热件2中的上述连接器,上述连接器再将电能转化为热能供导热结构发热。通过该结构的设置,提高了电子设备内热量的循环使用,从而延长了电池的续航时间。
作为一种可选的实施方式,热电转换模块110包括:第一连接件和第二连接件,其中,第一连接件的两端分别连接电子设备中的热源100和冷源120;第二连接件的两端分别连接电子设备中的热源100和冷源120;第一连接件和第二连接件靠近冷源120的一端接入有外部电路。
其中,上述热源100可以是包括热源本体和热源连接片190,上述冷源120可以是包括冷源本体和冷源120连接件,上述热源本体和上述冷源本体可以是上述电子设备中产生热量的部件,例如:以笔记本电脑作为目标电子设备为例,笔记本电脑中的中央处理器可以作为上述热电转换模块110中的热源本体,笔记本电脑中的金属外壳4可以作为上述热电转换模块110中的冷源本体。
需要说明的是,上述热源本体可以是与上述热源连接片190进行连接,上述冷源本体可以是与上述冷源连接片200进行连接。
另外,上述第一连接件和上述第二连接件可以是采用热电材料制成。
该实施方案中,通过将上述第一连接件和上述第二连接件靠近上述冷源120的一端分别接入外部电路,从而使得其中产生的电能能够导出至外部使用,即连接至上述连接器中,上述连接器再将电能转化为热能供导热结构发热。通过该结构的设置,提高了电子设备内热量的循环使用,从而延长了电池的续航时间。
作为一种可选的实施方式,热电转换模块110通过导热胶质分别与热源100和冷源120连接。
在该实施方案中,热电转换模块110与热源100的连接以及热电转换模块110与冷源120之间的连接可以是采用导热胶质,通过使用导热胶质来进行连接可以提高在工作过程中的散热效果,同时固化后的导热胶质可以是呈弹性体,具有抗冲击和抗震动的优点。
作为一种可选的实施方式,外部电路包括放大模块130和控制模块150,第一连接件和第二连接件靠近冷源120的一端与放大模块130的第一端连接,放大模块130的第二端与控制模块150的第一端连接,控制模块150的第二端与储能模块140连接。
在该实施方案中,放大模块130和控制模块150的设置可以提高在上述电子设备中的热电转换效果,从而提高上述电池控制电芯组1之间温度差的能力。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限于按所讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (31)

  1. 一种电芯加热系统(10),其特征在于,包括:电芯组(1)、加热件(2)、储能模块(140)、热源(100)、冷源(120)和热电转换模块(110);
    所述加热件(2)与所述电芯组(1)相接触;
    所述储能模块(140)与所述加热件(2)电连接,以为所述加热件(2)供电产生热能;
    所述热电转换模块(110)分别与所述热源(100)和所述冷源(120)相接触,所述热电转换模块(110)与所述储能模块(140)电连接,以将产生的电能存储至所述储能模块(140)。
  2. 根据权利要求1所述的电芯加热系统(10),其特征在于,所述冷源(120)为散热片(6),所述电芯加热系统(10)还包括导热片(3),所述导热片(3)与所述热源(100)接触,
    所述热电转换模块(110)分别与所述导热片(3)和所述散热片(6)相接触。
  3. 根据权利要求2中所述的电芯加热系统(10),其特征在于,所述电芯组(1)包括若干个并列排布的电芯(13);
    所述加热片包括沿所述电芯(13)的排列方向并排设置的多个加热部(21)、将相邻的两个所述加热部(21)连接的第一连接部(22);
    所述电芯(13)的至少一面与所述加热部(21)接触。
  4. 根据权利要求3所述的电芯加热系统(10),其特征在于,所述电芯(13)包括呈相对设置的两个第一侧面以及呈相对设置的两个第二侧面;
    所述第一侧面的面积大于所述第二侧面的面积;
    所述电芯(13)的至少一个所述第一侧面与所述加热部(21)接触。
  5. 根据权利要求4所述的电芯加热系统(10),其特征在于,所述热源(100)为所述电芯(13),所述加热件(2)为加热片,所述散热片(6)位于所述导热片(3)背离所述电芯(13)的一侧;
    所述电芯(13)分别与所述加热片和所述导热片(3)相接触。
  6. 根据权利要求5所述的电芯加热系统(10),其特征在于,所述第一连接部(22)上开设有开槽(23),
    所述导热片(3)包括有穿设在所述开槽(23)内的导热部(31),所述导热片(3)和所述加热片形成折叠结构;
    至少一个所述电芯(13)位于所述导热部(31)和所述加热部(21)之间。
  7. 根据权利要求6中所述的电芯加热系统(10),其特征在于,所述导热片(3)包括将相邻的所述导热部(31)连接的第二连接部(32);
    所述第二连接部(32)与所述热电转换模块(110)接触。
  8. 根据权利要求6中所述的电芯加热系统(10),其特征在于,
    在所述电芯(13)的排布方向上,所述折叠结构包括分别位于其的两相对侧上的导热部(31)。
  9. 根据权利要求6中所述的电芯加热系统(10),其特征在于,所述加热部(21)的 长度大于所述导热部(31)的长度,和/或
    在所述电芯加热系统(10)的高度方向上,所述热电转换模块(110)的高度高于所述导热片(3)的高度,和/或
    所述电芯(13)包括壳体和电芯本体,所述壳体包括包覆电芯本体的封装部和位于所述封装部一侧的封边,所述封边向靠近所述电芯本体的方向弯折,和/或
    所述电芯(13)包括壳体和电芯本体,所述壳体包括包覆电芯本体的封装部,相邻的所述电芯(13)的封装部呈相向设置,和/或
    所述电芯加热系统(10)还包括缓冲件,所述缓冲件位于所述电芯(13)和所述加热部(21)之间,和/或
    位于所述电芯(13)和所述导热部(31)之间。
  10. 根据权利要求7中所述的电芯加热系统(10),其特征在于,所述电芯(13)包括有位于第一侧的第一电芯(13)和位于与所述第一侧相对的第二侧上的第二电芯(13);
    所述第一电芯(13)的两个第一侧面分别与所述导热部(31)或加热部(21)接触,和/或
    所述第二电芯(13)的两个第二侧面分别与所述第一连接部(22)或第二连接部(32)接触。
  11. 根据权利要求7中所述的电芯加热系统(10),其特征在于,所述导热部(31)和所述第二连接部(32)之间形成有夹角,所述夹角为弧形角或线性角。
  12. 根据权利要求4所述的电芯加热系统(10),其特征在于,所述热源(100)为发热元件(5),所述加热件(2)为加热膜,所述电芯加热系统(10)还包括外壳(4),所述外壳(4)上设置有与所述散热片(6)相匹配的空槽,所述散热片(6)设置在所述空槽中;
    所述热电转换模块(110)与所述加热片电连接,所述加热片通过所述热电转换模块(110)对所述电芯(13)进行加热。
  13. 根据权利要求12中所述的电芯加热系统(10),其特征在于,所述散热片(6)为翅片,所述散热片(6)均匀设置在所述热电转换模块(110)的一面上,所述热电转换模块(110)的另一面与所述发热元件(5)连接。
  14. 根据权利要求12中所述的电芯加热系统(10),其特征在于,还包括电路板,所述电路板的一端与所述热电转换模块(110)相接触,所述发热元件(5)与所述电路板的另一端连接。
  15. 根据权利要求12中所述的电芯加热系统(10),其特征在于,所述电芯(13)包括有位于第一侧的第一电芯(13)和位于与所述第一侧相对的第二侧上的第二电芯(13);
    所述第一电芯(13)的两个第一侧面分别与所述导热部(31)接触,和/或
    所述第二电芯(13)的两个第一侧面分别与所述导热部(31)接触。
  16. 根据权利要求4-15中任一项所述的电芯加热系统(10),其特征在于,所述加热部(21)和所述第一连接部(22)之间形成有夹角,所述夹角为弧形角或线性角。
  17. 根据权利要求16中所述的电芯加热系统(10),其特征在于,所述夹角的角度范围为0-90°。
  18. 根据权利要求4-15中任一项所述的电芯加热系统(10),其特征在于,相邻的两 个所述加热部(21)之间容纳有至少两个电芯(13)。
  19. 根据权利要求1所述的电芯加热系统(10),其特征在于,所述电芯组(1)包括第一电芯单元(11)和第二电芯单元(12),
    所述加热件(2)包括连接区(25)和导热区(26),所述连接区(25)用于与储能模块(140)连接,所述导热区(26)与所述第二电芯单元(12)贴合,所述加热件(2)用于在所述第一电芯单元(11)与所述第二电芯单元(12)的温度差大于预设值时,通过所述连接区(25)为所述导热区(26)传导热能。
  20. 根据权利要求19所述的电芯加热系统(10),其特征在于,所述加热件(2)还包括测试区(27),所述测试区(27)由所述导热区(26)向所述第一电芯单元(11)的延伸,所述测试区(27)与所述第一电芯单元(11)贴合;
    所述测试区(27)设置有第一温度传感器,所述导热区(26)还设置有第二温度传感器,所述第一温度传感器用于测定所述第一电芯单元(11)的温度,所述第二温度传感器用于测定所述第二电芯单元(12)的温度。
  21. 根据权利要求20所述的电芯加热系统(10),其特征在于,所述第一电芯单元(11)在厚度方向上的电芯(13)数量大于1,所述测试区(27)设置于所述第一电芯单元(11)中任意两相邻电芯(13)之间。
  22. 根据权利要求19所述的电芯加热系统(10),其特征在于,所述导热区(26)设置有若干个导热结构,所述若干个导热结构间隔设置。
  23. 根据权利要求22所述的电芯加热系统(10),其特征在于,所述若干个导热结构互相平行设置于所述导热区(26)。
  24. 根据权利要求22所述的电芯加热系统(10),其特征在于,所述若干个导热结构之间的距离大于或等于5mm,和/或;
    所述若干个导热结构的厚度大于或等于0.05mm,所述若干个导热结构的厚度小于或等于0.2mm。
  25. 根据权利要求19所述的电芯加热系统(10),其特征在于,所述加热件(2)包括第一绝缘层、第二绝缘层以及位于所述第一绝缘层与所述第二绝缘层之间的加热件(2),所述加热件(2)位于所述导热区(26),所述加热件(2)还包括位于所述连接区(25)的连接器,所述加热件(2)与所述连接器通过控制电路电连接。
  26. 根据权利要求2中所述的电芯加热系统(10),其特征在于,还包括控制模块(150),所述控制模块(150)与所述储能模块(140)连接,所述控制模块(150)用于控制所述热电转换模块(110)对所述储能模块(140)充电或控制所述加热片对所述电芯(13)进行加热。
  27. 根据权利要求26中所述的电芯加热系统(10),其特征在于,还包括放大模块(130),所述放大模块(130)设置在热电转换模块(110)与所述储能模块(140)之间,并分别与所述热电转换模块(110)和所述储能模块(140)连接,所述放大模块(130)用于将所述热电转换模块(110)生成的电压进行放大后传输到所述储能模块(140)中以对所述储能模块(140)进行充电。
  28. 根据权利要求27所述的电芯加热系统(10),其特征在于,所述热电转换模块(110)与所述储能模块(140)的第一端连接,所述加热件(2)的连接器与所述 储能模块(140)的第二端连接。
  29. 根据权利要求28所述的电芯加热系统(10),其特征在于,所述热电转换模块(110)包括:第一连接件和第二连接件,其中,所述第一连接件的两端分别连接所述热源(100)和所述冷源(120);
    所述第二连接件的两端分别连接所述热源(100)和所述冷源(120);
    所述第一连接件和所述第二连接件靠近所述冷源(120)的一端接入所述放大模块和所述控制模块。
  30. 根据权利要求29所述的电芯加热系统(10),其特征在于,所述热电转换模块(110)通过导热胶质分别与热源(100)和冷源(120)连接。
  31. 根据权利要求29所述的电芯加热系统(10),其特征在于,所述第一连接件和所述第二连接件靠近所述冷源(120)的一端与所述放大模块(130)的第一端连接,所述放大模块(130)的第二端与所述控制模块(150)的第一端连接,所述控制模块(150)的第二端与所述储能模块(140)连接。
PCT/CN2023/086024 2022-06-30 2023-04-03 一种电芯加热系统 WO2024001380A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202221680359.4U CN217606907U (zh) 2022-06-30 2022-06-30 一种电池模组
CN202221690815.3 2022-06-30
CN202221680358.XU CN217641541U (zh) 2022-06-30 2022-06-30 一种电池模组
CN202221690815.3U CN217606909U (zh) 2022-06-30 2022-06-30 一种电池及电子设备
CN202221680358.X 2022-06-30
CN202221680359.4 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024001380A1 true WO2024001380A1 (zh) 2024-01-04

Family

ID=89382732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086024 WO2024001380A1 (zh) 2022-06-30 2023-04-03 一种电芯加热系统

Country Status (1)

Country Link
WO (1) WO2024001380A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767349A (zh) * 2018-07-27 2018-11-06 海捷水下潜航器(深圳)有限公司 一种蓄电池、船体的能量回收系统和方法、及船体
CN111129662A (zh) * 2019-12-27 2020-05-08 广东工业大学 一种电池仿生状散热与热回收系统及其实现方法
CN211062832U (zh) * 2019-10-23 2020-07-21 北京京东方光电科技有限公司 一种电池调控装置以及电子设备
CN112635894A (zh) * 2020-12-08 2021-04-09 华东交通大学 一种带安全装置的锂离子动力电池包复合式热管理系统
CN217606907U (zh) * 2022-06-30 2022-10-18 珠海冠宇电源有限公司 一种电池模组
CN217606909U (zh) * 2022-06-30 2022-10-18 珠海冠宇电源有限公司 一种电池及电子设备
CN217641541U (zh) * 2022-06-30 2022-10-21 珠海冠宇电源有限公司 一种电池模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767349A (zh) * 2018-07-27 2018-11-06 海捷水下潜航器(深圳)有限公司 一种蓄电池、船体的能量回收系统和方法、及船体
CN211062832U (zh) * 2019-10-23 2020-07-21 北京京东方光电科技有限公司 一种电池调控装置以及电子设备
CN111129662A (zh) * 2019-12-27 2020-05-08 广东工业大学 一种电池仿生状散热与热回收系统及其实现方法
CN112635894A (zh) * 2020-12-08 2021-04-09 华东交通大学 一种带安全装置的锂离子动力电池包复合式热管理系统
CN217606907U (zh) * 2022-06-30 2022-10-18 珠海冠宇电源有限公司 一种电池模组
CN217606909U (zh) * 2022-06-30 2022-10-18 珠海冠宇电源有限公司 一种电池及电子设备
CN217641541U (zh) * 2022-06-30 2022-10-21 珠海冠宇电源有限公司 一种电池模组

Similar Documents

Publication Publication Date Title
WO2021169807A1 (zh) 电子设备及控制的方法、散热系统
WO2019185036A1 (zh) Vr一体机及其运行方法
JP7379312B2 (ja) ワイヤレス充電装置
US8980452B2 (en) Battery case and battery pack using the same
KR20130025332A (ko) 축전 장치 및 축전 시스템
TWM377062U (en) Electronic device with a heat insulating structure
CN102573417A (zh) 壳体结构及具有其的电子装置
US20080259569A1 (en) Thermally enhanced battery module
WO2017206682A1 (zh) 移动显示设备
WO2015090066A1 (zh) 移动通信终端
US20150194816A1 (en) Electrically powered portable device
JP2015088380A (ja) 電池パック
CN114828539A (zh) 散热背夹和电子设备组件
WO2024001380A1 (zh) 一种电芯加热系统
CN217606909U (zh) 一种电池及电子设备
TWI669843B (zh) 具備二次電池之發電裝置
TW201318547A (zh) 電子裝置
CN217641541U (zh) 一种电池模组
CN217606907U (zh) 一种电池模组
CN209561585U (zh) 一种复合导热结构、电池装置及电子设备
JP6204020B2 (ja) 熱拡散部材および熱拡散部材を備える電子機器
TWI264272B (en) A battery module for electrical apparatus
TWM636907U (zh) 具有散熱構造的電池模組
JP2015088381A (ja) 電池パック
CN210866417U (zh) 一种快速散热电池模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829570

Country of ref document: EP

Kind code of ref document: A1