WO2021169807A1 - 电子设备及控制的方法、散热系统 - Google Patents

电子设备及控制的方法、散热系统 Download PDF

Info

Publication number
WO2021169807A1
WO2021169807A1 PCT/CN2021/076318 CN2021076318W WO2021169807A1 WO 2021169807 A1 WO2021169807 A1 WO 2021169807A1 CN 2021076318 W CN2021076318 W CN 2021076318W WO 2021169807 A1 WO2021169807 A1 WO 2021169807A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
electronic device
module
temperature
charging
Prior art date
Application number
PCT/CN2021/076318
Other languages
English (en)
French (fr)
Inventor
徐峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021169807A1 publication Critical patent/WO2021169807A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components

Definitions

  • This application relates to the field of electronics, in particular, to electronic equipment, control methods, and charging systems.
  • wireless charging devices have been increasingly used in electronic devices such as mobile phones.
  • the wireless charging device has the advantage of convenient charging, but as users increase the performance requirements of electronic devices, the battery life pressure of electronic devices increases. And with the development of fast charging technology, the power consumption of wireless charging devices has further increased, so the heat dissipation problem of mobile phone batteries has become more and more serious.
  • the heating problem during the charging of electronic devices will not only reduce the user experience, but also have a negative impact on the safety performance of the electronic device.
  • the internal heating of the electronic device during the charging process will also affect its performance, such as processor frequency reduction and download speed reduction. and many more.
  • the current electronic equipment especially the electronic equipment involving the wireless charging function, the control method, and the charging system still need to be improved.
  • This application aims to alleviate or solve at least one of the above mentioned problems at least to a certain extent.
  • this application proposes an electronic device.
  • the electronic device includes: a housing, the housing defines an accommodating space, and a coil module, a uniform temperature and heat dissipation module, a semiconductor refrigerator, and a fan module located in the accommodating space, and the housing is away from the accommodating space.
  • One side of the space has a charging surface
  • the housing is far away from the charging surface with a heat dissipation air inlet and a heat dissipation air outlet communicating with the accommodation space
  • the coil module is located in the accommodation space close to the
  • the orthographic projection of the coil module on the charging surface covers a part of the charging surface
  • the uniform temperature and heat dissipation module is arranged close to the coil module and the uniform temperature and heat dissipation module is located in the
  • the orthographic projection on the charging surface covers at least a part of the charging surface that is not covered by the coil module
  • the semiconductor cooler has a cold end and a hot end, and the cold end is located close to the uniform temperature and heat dissipation module
  • the fan module is located on a side close to the hot end.
  • the wireless charging device can also dissipate the heat emitted by the mobile phone and other electronic devices to the charging surface of the housing, thereby alleviating the use of the wireless charging The overheating phenomenon of the electronic equipment of the device during the charging process.
  • this application proposes a method for controlling the aforementioned electronic device.
  • the method includes: using the coil module to charge, and applying a voltage to the semiconductor refrigerator to cool the cold end of the semiconductor refrigerator; using a fan heat dissipation module to perform charging on the area where the hot end of the semiconductor refrigerator is located. Heat dissipation.
  • the electronic device can be effectively used for charging.
  • this application proposes a charging system.
  • the charging system includes at least two electronic devices, and at least one of the two electronic devices is described above. Therefore, the charging system can effectively alleviate or even solve the overheating phenomenon of the electronic device to be charged during the charging process.
  • Figure 1 shows a schematic structural diagram of an electronic device according to an example of the present application
  • Figure 2 shows a schematic structural diagram of an electronic device according to another example of the present application.
  • Fig. 3 shows a schematic structural diagram of an even temperature and heat dissipation module according to an example of the present application
  • Fig. 4 shows a schematic diagram of a part of the structure of an electronic device according to an example of the present application
  • Figure 5 shows a schematic structural diagram of an electronic device according to an example of the present application
  • Fig. 6 shows a schematic structural diagram of an electronic device according to another example of the present application.
  • Figure 7 shows a schematic structural diagram of a charging system according to an example of the present application.
  • Fig. 8 shows an enlarged schematic diagram of area A in Fig. 7.
  • 1000 electronic equipment; 100: housing; 10: heat dissipation air inlet; 20: heat dissipation air outlet; 110: charging surface; 120: second surface; 130: groove; 200: coil module; 210: ferrite; 300: uniform temperature heat dissipation module; 310: metal heat conduction part; 320: heat sink; 400: semiconductor cooler; 410: cold end; 420: hot end; 500: fan module: 510: fan; 520: hot end heat sink ; 600: control circuit board; 30: temperature sensor; 40: humidity sensor; 2000: electronic equipment to be charged; 2100: camera; 3000: charging system.
  • the wireless charging device includes a housing 100 that defines an accommodating space.
  • the coil module 200, the uniform temperature and heat dissipation module 300, the semiconductor cooler 400, and the fan module 500 are all accommodated in the accommodating space.
  • the side of the housing 100 away from the receiving space has a charging surface 110 and a second surface 120 opposite to the charging surface 110.
  • the housing 100 is connected to the receiving space on the side close to the second surface, that is, the side close to the fan module 500.
  • the heat dissipation air inlet 10 and the heat dissipation air outlet 20 are connected, the coil module 200 is located in the containing space near the charging surface 110, and the orthographic projection of the coil module 200 on the charging surface covers a part of the charging surface.
  • the uniform temperature and heat dissipation module 300 is arranged close to the coil module 200 and the orthographic projection of the uniform temperature and heat dissipation module 300 on the charging surface 110 covers at least a part of the charging surface that is not covered by the coil module 200.
  • the semiconductor refrigerator 400 has a cold end 410 and a hot end 420. The cold end 410 is located close to the temperature equalization and heat dissipation module 300, and the fan module 500 is located close to the hot end 420.
  • the electronic device is an electronic device capable of wirelessly charging other rechargeable devices, for example, it may include but not limited to a wireless charger or a mobile terminal with a reverse charging function.
  • the electronic device effectively dissipates the heat generated during the charging process, and the electronic device can also dissipate the heat emitted to the charging surface of the housing from the electronic device waiting to be charged by the mobile phone, thereby alleviating the use of the electronic device Overheating of a charged electronic device during the charging process.
  • the thermal conductivity is usually low, and the heat dissipation effect is related to the contact area.
  • the heat dissipation area cannot be enlarged to a size sufficient to improve the heat dissipation efficiency, so the heat diffusion effect is extremely poor.
  • Wireless charging devices that actively dissipate heat mostly dissipate heat by arranging a fan in the charging device, blowing air to the battery side of the electronic device, and dissipating heat by air cooling.
  • this method requires the wind of the fan to be blown from the air outlet for heat dissipation.
  • the wireless charging device of the mobile phone Take the wireless charging device of the mobile phone as an example.
  • This heat dissipation method requires the mobile phone to be vertically attached to the wireless charger, and there is Only at a certain angle can the air at the air outlet achieve air-cooled heat dissipation.
  • the disadvantage of active heat dissipation is that it requires a certain amount of space, and wireless charging requires that the back panel of the mobile phone be closely attached to the charging coil. Therefore, the air from the air outlet cannot cool the whole machine. In addition, a certain amount of space is required.
  • the flow of wind will also affect the fit of the mobile phone and the charging coil. However, the area of the back panel of the mobile phone is limited.
  • the electronic equipment proposed in the present application uses the uniform temperature heat dissipation module 300, the semiconductor cooler 400 and the fan module 500 for heat dissipation, and is arranged in a reasonable position to make the above three components cooperate, which can not only realize the coil model of the wireless charging device
  • the group dissipates heat, and can effectively disperse the heat emitted by the electronic device to be charged during the charging process, which can also alleviate the overheating of the electronic device to be charged during the charging process, and on the one hand, it can improve the charging efficiency of wireless charging. On the one hand, it can prevent overheating from affecting the performance of electronic devices.
  • the semiconducting refrigerator 400 has a cold end and a hot end, and is made by using the Peltier effect of semiconductor materials.
  • the Peltier effect refers to the phenomenon that when a direct current passes through a galvanic couple composed of two semiconductor materials, one end of it absorbs heat and the other end releases heat.
  • heavily doped N-type and P-type bismuth telluride can be used to form a semiconductor refrigeration, and the bismuth telluride components are electrically connected in series and generate heat in parallel.
  • the semiconducting refrigerator (Tec) may include some P-type and N-type pairs (groups), and a plurality of P-type and N-type pairs are connected together by electrodes and sandwiched between two ceramic electrodes.
  • the cold end can be used to enhance the heat dissipation of certain heating or heat dissipation components in the wireless charging device, and the heat of the hot end can be dissipated by the fan module 500.
  • the advantage of this structure is that it can avoid the low efficiency caused by using the fan module 500 to directly dissipate heat from the coil module or the electronic device to be charged: compared to the coil module or the electronic device to be charged, semiconducting refrigeration
  • the volume of the hot end of the device 400 is smaller, so it is more convenient to design an air circulation channel for air-cooled heat dissipation, and the heat dissipation efficiency is higher than that of directly using a fan to blow the coil module or electronic equipment.
  • the uniform temperature heat dissipation module 300 can be used to conduct heat from the coil module and the electronic device to be charged (which will be in close contact with the charging surface 110 during the charging process), and then the cold end of the semiconductor cooler 400 can be used to raise the uniformity.
  • the heat dissipation efficiency of the temperature heat dissipation module 300 further creates a temperature difference between the charging surface 110 and the back plate of the electronic device to be charged, thereby improving the heat dissipation efficiency.
  • the fan module 500 can dissipate heat from the hot end of the semiconductor refrigerator 400. In this way, effective heat dissipation of the charging coil and the charging surface 110 (the heat comes from the electronic device being charged) is realized.
  • the structure shown in FIG. 1 is only for describing and explaining the electronic device proposed in the present application, and cannot be understood as a limitation on the shape of each module and component therein.
  • the fan module 500 and the surface of the semiconductor cooler 400 facing the charging surface 110 can also be located on the same plane.
  • the semiconductor cooler 400 is in a longitudinal section.
  • the upper can have special shapes including but not limited to L-shaped, so as to make full use of the space inside the accommodating space and set the positional relationship between various components more reasonably to achieve the effect of thinning.
  • the fan module 500 may also have a special shape (not shown in the figure) to achieve the purpose of saving space and the like.
  • the coil module 200 includes a charging coil (not shown in the figure) and a ferrite 210 to realize the wireless charging function.
  • the specific composition and positional relationship of the charging coil and the ferrite 210 are not particularly limited. Those skilled in the art can select appropriate materials and coil structures to form the coil module 200 according to the principle of wireless charging.
  • an insulating and thermally conductive material is filled between the charging coil and the ferrite, so that the heat transfer and heat dissipation capabilities of the coil module 200 can be improved.
  • the specific composition of the insulating and thermally conductive material is not particularly limited, as long as it is insulated and has a thermal conductivity greater than that of air.
  • the insulating and thermally conductive material includes at least one of thermally conductive gel and thermally conductive silicone grease.
  • the projection of the coil module 200 on the charging surface 110 may cover a part of the charging surface 110.
  • the projection of the coil module 200 on the charging surface 110 may be located in the center of the charging surface 110.
  • the area of the charging surface 110 that is not covered by the coil module 200 can be used to transfer the heat emitted by the electronic device to be charged during the charging process. This part of the heat can be transferred to one side of the housing space of the housing 100 through the uniform temperature and heat dissipation module 300, and then the semiconductor cooler 400 and the fan module 500 are used for heat dissipation, and finally transferred to the environment through the heat dissipation air outlet 20.
  • the uniform temperature heat dissipation module 300 may include a metal heat conducting part 310 and a heat dissipating part 320 (320A and 320B as shown in the figure).
  • the heat dissipating part 320 is connected to the metal heat conducting part 310.
  • the metal heat-conducting portion 310 can be arranged directly opposite to the ferrite 210.
  • the symmetry center of the metal heat-conducting portion 310 and the symmetry center 210 of the ferrite 210 can be located on the same straight line, for example, both are located on the plane 110' perpendicular to the charging surface.
  • the semiconductor cooler 400 has ceramic electrodes.
  • the positions of the uniform temperature heat dissipation module 300 and the semiconductor cooler 400 can be controlled.
  • the force of the uniform temperature and heat dissipation module 300 on the semiconductor refrigerator 400 is perpendicular to the charging surface 110 downward.
  • the metal heat-conducting part 310 can be made to have a symmetrical center, and a plurality of heat sinks 320 can be symmetrically distributed around the metal heat-conducting part 310, so that the center of the semiconductor cooler 400 is also directly aligned with the symmetrical center of the metal heat-conducting part 310, for example, is also located at a vertical position. It is on a certain straight line (the dashed line in the vertical direction in the figure) on the plane 110' where the charging surface is located.
  • the heat sink 320 may include at least one of a heat pipe, a soaking plate, a graphite sheet, and a heat dissipation fin, and the specific type is not particularly limited, as long as it has good heat dissipation performance.
  • the heat emitted by the electronic device during the charging process can be transmitted through the side of the charging surface 110 to the side of the housing space of the housing. Since the cold end 410 of the semiconductor heat sink 400 is colder, the cold end 410 and The heat sink 320 has a larger temperature difference on one side, which is more conducive to transferring the heat emitted by the electronic device to be charged toward the side toward the accommodating space.
  • the temperature and heat dissipation module may include a plurality of heat dissipation elements, and the plurality of heat dissipation elements may be symmetrically distributed around the metal heat conducting portion.
  • the plurality of heat sinks 320 are preferably located on the same plane and flush with the surface of the coil module 200 facing the housing. As a result, the heat sink can be brought closer to the charging surface 110, and the heat on the side of the electronic device to be charged can be evenly transferred.
  • the uniform temperature heat dissipation module and the coil module may be bonded by a thermally conductive material.
  • the specific composition of the thermally conductive material is not particularly limited, as long as the thermal conductivity is greater than that of air.
  • the heat-conducting material here may be conductive or non-conductive. Electrically conductive and thermally conductive materials generally have a larger thermal conductivity, so the efficiency of heat transfer from the side of the coil module to the side of the uniform temperature and heat dissipation module can be further improved.
  • the cold end 410 of the semiconductor refrigerator may be located at the center of the metal heat conducting part 310.
  • the cold end 410 may be provided at the center of the circle.
  • the cold end 410 of the semiconductor refrigerator and the heat sink 320 may also be filled with a thermally conductive material.
  • the thermal conductive material here can be the same as or different from the thermal conductive material filled between the uniform temperature and heat dissipation module and the coil module described above. As long as the air gap between the cold end 410 and the heat sink 320 can be filled, and the thermal conductivity of the thermally conductive material is greater than that of air.
  • the fan module 500 is located on the side of the hot end (not shown in the figure) of the heat sink 400, and the fan can be used to diffuse the heat of the hot end into the environment.
  • the fan module can be rigidly fixed on the housing.
  • the fan module may include a fan 510 and a hot-end heat sink 520.
  • the center of the hot-end heat sink can be arranged opposite to the hot end of the semiconductor cooler, which facilitates the use of the hot-end heat sink to conduct and diffuse the heat of the hot end of the semiconductor cooler, and then use a fan to blow air and dissipate heat through the shell
  • the air inlet and the heat-dissipating air outlet form a passage for air circulation, and then dissipate heat to the environment.
  • the type of the hot-end heat sink 520 is not particularly limited, as long as it can dissipate heat.
  • it may be a metal or graphite sheet with higher thermal conductivity, or may be a structure such as a heat pipe or a heat dissipation fin.
  • the air gap between the fan heat dissipation module and the semiconductor refrigerator can also be filled with thermally conductive materials.
  • the type and requirements of the thermally conductive material have been described in detail above, and will not be repeated here.
  • the electronic device may further include a control circuit board 600.
  • the control circuit board 600 can be used to control the coil module 200 to work, and can also have the function of controlling the semiconductor refrigerator 400 at the same time. Specifically, it can be used to adjust the voltage or current applied to the semiconductor refrigerator 400 so as to control the temperature of the cold end of the semiconductor refrigerator 400.
  • the specific position of the control circuit board 600 is not particularly limited. For example, it may be located between the uniform temperature heat dissipation module and the fan heat dissipation module, and adjacent to the semiconductor cooler.
  • One or more temperature sensors can also be arranged in the housing space of the housing.
  • the temperature sensor 30 (30A-30C as shown in the figure) may be located at at least one of the following positions: the heat dissipation air inlet, the cold end, the coil module, and the housing toward one side of the accommodation space and close to On the surface of the coil module.
  • the temperature sensor 30C can be used to report the minimum temperature
  • the temperature sensor 30A at the heat dissipation air inlet can report the ambient temperature
  • the temperature of the cold end of the semiconductor refrigerator can be controlled to control the minimum temperature inside the accommodating space not to be lower than the ambient temperature.
  • the housing space may also have a humidity sensor 40, and the temperature sensor and the parameters (temperature and humidity) sensed by the humidity sensor 40 may also be used to calculate and determine the dew point temperature in the housing space, so that the temperature of the cold end of the semiconductor refrigerator 400 can be controlled to be higher than the dew point temperature.
  • the housing 100 may be an integrated housing, or may be formed by splicing an upper cover plate and a lower cover plate.
  • the housing may have an upper cover, and the charging surface can be located on the upper cover.
  • the gap between the upper cover and the coil module can be filled with an insulating and thermally conductive material, that is, an insulating and thermally conductive material can be filled between the charging surface and the coil module.
  • the height between the highest point and the lowest point on the charging surface can be controlled within 0.1mm. Referring to FIGS.
  • the housing may also have a groove 130, that is, a groove is formed at the corresponding position of the camera 2100. To ensure good contact with the mobile phone.
  • the above-mentioned electronic equipment can be prepared by the following methods:
  • the housing assembly that provides the housing can be composed of, for example, an upper cover with a flat surface and a lower cover with heat dissipation air inlets and air outlets. Subsequently, the coil and the ferrite are combined to form a coil module, the coil and the ferrite are closely attached, and the gap is filled with a thermally conductive material in the middle.
  • the thermally conductive material can be an insulating material such as potting glue, thermally conductive gel, and thermally conductive silicone grease. Then put the uniform temperature and heat dissipation module under the coil module and closely adhere to the coil module.
  • the uniform temperature and heat dissipation module and the coil module are bonded together .
  • thermal interface materials such as silicone grease, thermal pads, etc.
  • the hot end of the semiconductor cooler is closely attached to the fan heat dissipation module, for example, the gap can be filled with a thermally conductive material.
  • the hot end of the semiconductor cooler can be rigidly fixed to the hot end heat sink in the fan heat dissipation module, and the hot end of the semiconductor cooler can be kept in the best position for heat dissipation of the hot end heat sink.
  • it can be combined with the heat dissipation fins and other structures.
  • the center position corresponds.
  • the cold end of the semiconductor refrigerator can be fixed to the uniform temperature and heat dissipation module.
  • the cold end can be kept in close contact with the uniform temperature heat dissipation module, such as filling the gap with a thermally conductive material, and ensure that the pressure of the uniform temperature heat dissipation module on the semiconductor refrigerator is vertical downward to avoid crushing the semiconductor refrigerator during the installation process.
  • the upper cover can be pressed on the uniform temperature and heat dissipation module to ensure that the upper cover is in good contact with the coil module and the uniform temperature and heat dissipation module.
  • the upper cover and the coil module can be filled with insulating and thermally conductive materials.
  • the present invention provides a method for controlling the aforementioned electronic device.
  • the method may specifically include: charging the coil module and applying voltage to the semiconductor refrigerator to cool the cold end of the semiconductor refrigerator.
  • the fan heat dissipation module is used to dissipate heat in the area where the hot end of the semiconductor refrigerator is located.
  • the electronic device has at least two temperature sensors, and the two temperature sensors can be respectively located near the cold end of the semiconductor refrigerator and near the heat dissipation air inlet.
  • the method may also include: monitoring the temperature at the cold end of the peltier cooler and the heat dissipation air inlet during charging, and controlling the temperature of the cold end by controlling the voltage applied to the peltier cooler, so that the temperature at the cold end is not low The temperature at the cooling air inlet. This can prevent condensation caused by overcooling of the cold end.
  • the parameters (temperature and humidity) sensed by the temperature sensor and the humidity sensor can also be used to calculate and determine the dew point temperature in the accommodating space, so that the temperature of the cold end of the semiconductor cooler can be controlled to be higher than the dew point temperature .
  • temperature sensors can be installed at the fan air inlet, that is, the heat dissipation air inlet, the coil of the coil module, and the upper cover to monitor the temperature at three locations.
  • the semiconductor cooler is adjusted, and the temperature of the upper cover of the wireless charger is adjusted by controlling the power consumption of the semiconductor cooler.
  • the cooling capacity can be controlled by the PWM method, that is, the method of controlling the duty cycle: the voltage or current supplied to the semiconductor cooler can be kept unchanged, for example, the voltage is set to the rated voltage, and the power supply time is changed to apply to the semiconductor cooler.
  • the voltage of the converter becomes pulsed, thereby controlling the current duty cycle to achieve cooling capacity control.
  • the charging system may include at least two electronic devices, and at least one of the two electronic devices is the electronic device with wireless charging function described above.
  • the two electronic devices may be the aforementioned electronic device 1000 (wireless charger) with wireless charging function, and the other may be the electronic device 2000 (such as a mobile phone) to be charged.
  • the electronic device 2000 to be charged has a rechargeable battery and a wireless charging module that can be adapted to the electronic device 1000 with wireless charging function.
  • the electronic device 2000 to be charged is configured to be placed on the charging surface of the wireless charger for charging . Therefore, the heat dissipation system can effectively alleviate or even solve the overheating phenomenon of the electronic device to be charged during the charging process.
  • the two electronic devices in the charging system may also be mobile phones, etc., that is, the charging system may include an electronic device with a reverse charging function, and the electronic device with a reverse charging function in the charging system may be the aforementioned electronic device with a reverse charging function.
  • the two electronic devices may also be the electronic devices with wireless charging function described above.
  • the specific types of the electronic devices described in the present application are not particularly limited.
  • they may be mobile phones, smart watches, handheld computers, or notebook computers.
  • the above-mentioned electronic device may be any of various types of computer system devices that are mobile or portable and perform wireless communication.
  • the electronic device may be a mobile phone or a smart phone (for example, a phone based on iPhone TM, a phone based on Android TM), a portable game device (for example, Nintendo DS TM, PlayStation Portable TM, Gameboy Advance TM, iPhone TM), a laptop Computers, PDAs, portable Internet devices, music players, and data storage devices, other handheld devices, such as watches, earphones, pendants, headsets, etc., electronic devices can also be other wearable devices (such as electronic Glasses, electronic clothes, electronic bracelets, electronic necklaces, electronic tattoos or head-mounted devices (HMD) for smart watches).
  • a smart phone for example, a phone based on iPhone TM, a phone based on Android TM
  • a portable game device for example, Nintendo DS TM, PlayStation Portable TM, Gameboy Advance TM, iPhone TM
  • laptop Computers PDAs
  • portable Internet devices music players, and data storage devices
  • other handheld devices such as watches, earphones, pendants, headsets,
  • the electronic device can also be any one of multiple electronic devices, including but not limited to cellular phones, smart phones, other wireless communication devices, personal digital assistants, audio players, other media players, music recorders, Video recorders, cameras, other media recorders, radios, medical equipment, vehicle transportation equipment, calculators, programmable remote controls, pagers, laptop computers, desktop computers, printers, netbook computers, personal digital assistants (PDAs), portable multimedia Players (PMP), Moving Picture Experts Group (MPEG-1 or MPEG-2) Audio Layer 3 (MP3) players, portable medical equipment and digital cameras and combinations thereof.
  • PDAs personal digital assistants
  • PMP portable multimedia Players
  • MPEG-1 or MPEG-2 Moving Picture Experts Group Audio Layer 3
  • electronic devices can perform multiple functions (e.g., play music, display videos, store pictures, and receive and send phone calls).
  • the electronic device may be a portable device such as a cell phone, media player, other handheld device, wrist watch device, pendant device, earpiece device, or other compact portable device.
  • the structure of the electronic device is shown in Figure 6, the center of the ferrite in the coil module 200, the center of the thermally conductive metal block in the uniform temperature and heat dissipation module, and the center of the cold end of the semiconductor cooler 400 are located on the same straight line perpendicular to the charging surface.
  • the lower center of the hot end of the semiconductor cooler 400 faces the center of the heat dissipation fins of the hot end radiator 520, and the heat sink in the uniform temperature heat dissipation module extends to the charging surface side and is flush with the upper end of the coil module.
  • the air gaps between the ferrite and the coil in the coil module 200 and the air gaps between the coil module 200 and the upper cover of the housing are filled with insulating and thermally conductive materials, and the remaining modules are filled with thermally conductive materials.
  • Temperature sensors are provided at the upper cover, the cold end and the air inlet.
  • the structure of the electronic device is the same as that of Example 1, except that the temperature sensor is not provided.
  • the structure of the electronic device is the same as that of Example 1, except that the air gap is not filled with insulating and thermally conductive materials or thermally conductive materials.
  • the structure of the electronic device is the same as in Example 1, except that the cold end is not aligned with the center of the thermally conductive metal block in the uniform temperature heat dissipation module.
  • the structure of the electronic device is the same as in Example 1, except that the heat sink in the uniform temperature heat dissipation module does not extend to the charging surface side and is flush with the upper end of the coil module.
  • the structure of the electronic device is the same as that of Example 1, except that it does not have a uniform temperature heat dissipation module, and the cold end of the semiconductor refrigerator is directly in contact with the coil module.
  • the structure of the electronic device is the same as that of Example 1, except that it does not have a fan cooling module.
  • the electronic device only has a coil module, and the structure of the coil module is the same as in Example 1.
  • Example 1 has the fastest charging speed and the lowest temperature of the back shell of the mobile phone.
  • Example 2 is flush with Example 1.
  • the charging speed of example 3 and example 4 are similar, but both are slower than example 1 and example 2.
  • the temperature of the back cover of the mobile phone during the charging process is also higher than that of example 1 and example 2.
  • the temperature of the rear case of the mobile phone in Example 5 is the highest during the charging process.
  • Example 1 Compared with Comparative Example 3, Example 1 shortens the charging time by 10 minutes and increases the charging rate by 20%.
  • the temperature of the mobile phone battery is lowered by more than 4°C, and the temperature of the back cover of the mobile phone is lowered by 8°C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电子设备及控制的方法、充电系统。该电子设备包括:壳体(100),壳体(100)远离所述容纳空间的一侧具有充电表面(110),线圈模组(200)在所述充电表面(110)上的正投影覆盖所述充电表面(110)的部分区域;所述均温散热模块(300)在所述充电表面(110)上的正投影至少覆盖所述充电表面(110)中未被所述线圈模组(200)覆盖的部分区域;半导体制冷器(400)具有冷端(410)以及热端(420),所述冷端(410)位于靠近所述均温散热模块(300)处,所述风扇模组(500)位于靠近所述热端(420)一侧。

Description

电子设备及控制的方法、散热系统 技术领域
本申请涉及电子领域,具体地,涉及电子设备及控制方法、充电系统。
背景技术
随着电子技术的发展,无线充电装置已被越来越多的应用于手机等电子设备中。无线充电装置具有充电便捷的优点,但随着用户对电子设备性能要求的提升,电子设备的电池续航压力增大。并且随着快充技术的发展,无线充电装置的功耗进一步增大,因此带来的手机电池散热问题也随之愈发严重。电子设备充电过程中发热的问题不仅会降低用户体验,且对电子设备的安全性能也具有负面影响,另外充电过程中电子设备内部的升温也会影响其性能,例如处理器降频、下载速度下降等等。
因此,目前的电子设备,特别是涉及无线充电功能的电子设备及控制的方法、充电系统仍有待改进。
发明内容
本申请旨在至少一定程度上缓解或解决上述提及问题中至少一个。
在本申请的一个方面,本申请提出了一种电子设备。该电子设备包括:壳体,所述壳体限定出容纳空间,以及位于所述容纳空间内的线圈模组、均温散热模块、半导体制冷器以及风扇模组,所述壳体远离所述容纳空间的一侧具有充电表面,所述壳体远离所述充电表面处具有与所述容纳空间相连通的散热进风口和散热出风口,所述线圈模组位于所述容纳空间内部中靠近所述充电表面处,所述线圈模组在所述充电表面上的正投影覆盖所述充电表面的部分区域;所述均温散热模块靠近所述线圈模组设置且所述均温散热模块在所述充电表面上的正投影至少覆盖所述充电表面中未被所述线圈模组覆盖的部分区域;所述半导体制冷器具有冷端以及热端,所述冷端位于靠近所述均温散热模块处,所述风扇模组位于靠近所述热端一侧。由此,不仅可有效对无线充电装置在充电过程中产生的热量进行散热,且该无线充电装置还能够对手机等电子设备散发至壳体的充电表面的热量进行散热,从而缓解利用该无线充电装置的电子设备在充电过程中产生的过热现象。
在本申请的另一方面,本申请提出了一种控制前面所述的电子设备的方法。该方法包括:所述利用线圈模组进行充电,并对半导体制冷器施加电压,以便令所述半导体制冷器的冷端制冷;利用风扇散热模组对所述半导体制冷器的热端所在区域进行散热。由此,可有效利用该电子设备进行充电。
在本申请的又一方面,本申请提出了一种充电系统。所述充电系统包括至少两个电子设备,所述两个电子设备中的至少之一为前面所述的。由此,该充电系统可有效缓解甚至解决待充电的电子设备在充电过程中的过热现象。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1显示了根据本申请一个示例的电子设备的结构示意图;
图2显示了根据本申请另一个示例的电子设备的结构示意图;
图3显示了根据本申请一个示例的均温散热模块的结构示意图;
图4显示了根据本申请一个示例的电子设备的部分结构示意图;
图5显示了根据本申请一个示例的电子设备的结构示意图;
图6显示了根据另本申请一个示例的电子设备的结构示意图;
图7显示了根据本申请一个示例的充电系统的结构示意图;
图8显示了图7中A区域的放大示意图。
附图标记说明:
1000:电子设备;100:壳体;10:散热进风口;20:散热出风口;110:充电表面;120:第二表面;130:凹槽;200:线圈模组;210:铁氧体;300:均温散热模块;310:金属导热部;320:散热件;400:半导体制冷器;410:冷端;420:热端;500:风扇模组:510:风扇;520:热端散热件;600:控制电路板;30:温度传感器;40:湿度传感器;2000:待充电电子设备;2100:摄像头;3000:充电系统。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的一个方面,本申请提出了一种电子设备。参考图1,该无线充电装置包括壳体100,壳体100限定出容纳空间,线圈模组200、均温散热模块300、半导体制冷器400以及风扇模组500均收纳于容纳空间内部。壳体100远离容纳空间的一侧具有充电表面110以及与充电表面110相对的第二表面120,壳体100在靠近第二表面一侧,即靠近风扇模组500的一侧具有与容纳空间相连通的散热进风口10和散热出风口20,线圈模组200位于容纳空间内部中靠近充电表面110处,线圈模组200在充电表面上的正投影覆盖充电表面的 部分区域。均温散热模块300靠近线圈模组200设置且均温散热模块300在充电表面110上的正投影,至少覆盖充电表面中未被线圈模组200覆盖的部分区域。半导体制冷器400具有冷端410以及热端420,冷端410位于靠近均温散热模块300处,风扇模组500位于靠近热端420一侧。该电子设备为具有为其他可充电设备进行无线充电的电子设备,例如可以为包括但不限于无线充电器或是具有反向充电功能的移动终端等。由此,该电子设备对在充电过程中产生的热量进行有效散热,且该电子设备还能够对手机等待充电的电子设备散发至壳体的充电表面的热量进行散热,从而缓解利用该电子设备进行充电的电子设备在充电过程中产生的过热现象。
为了方便理解,下面首先对相关技术中无线充电过程的散热问题进行简单说明:
早期的具有无线充电功能的电子设备由于功耗低大多采用被动散热方式,依靠自然对流靠温度差驱动散热。以利用无线充电器对手机进行充电的过程为例,充电过程中产生的热量通过充电器机身均匀分散开,然后以自然对流的方式散到自然环境中。这种散热方式的优点在于成本低、可靠性高,并且不会产生除电磁噪声外的其它噪声,适用场景广泛。但缺点是散热效率较低,由于无线充电装置的上盖(与电子设备接触一侧)必须是绝缘材料,因此导热系数通常较低,且散热效果与接触面积有关,而无线充电器受尺寸的限制,又无法将散热面积扩大到足够提升散热效率的尺寸,因此对热量的扩散效果极差。当无线充电装置的功耗提升之后,单依靠被动散热难以有效分散充电器机身和电子设备产生的热量。主动散热的无线充电装置多是通过在充电装置内配置风扇,向电子设备电池侧吹风进行散热,通过风冷进行散热。然而这一方式需要令风扇的风自出风口吹出进行散热,以手机的无线充电装置为例,这一散热方式需要令手机竖直贴在无线充电器上,并令手机和出风口之间具有一定角度,才能够令出风口的风实现风冷散热。也即是说,主动散热缺点在于需要一定空间,且无线充电要求手机背板与充电线圈紧密贴合,因此出风口的风无法对整机都进行风冷散热,另外由于要留出一定空间让风流过,因此也会影响手机和充电线圈的贴合。而手机背板的面积有限,要起到良好的散热目的必须要保证较高的风量,因此会带来噪声较高的问题。因此,目前具有无线充电功能的电子设备普遍存在由于散热问题导致充电过热,而不得不降额,难以提升无线充电的效率。
本申请提出的电子设备利用均温散热模块300、半导体制冷器400以及风扇模组500进行散热,并通过合理的位置设置以令上述三个组件进行配合,不仅能够实现对无线充电装置的线圈模组进行散热,并且可以有效将充电过程中待充电的电子设备发出的热量进行分散,从而还能够缓解待充电的电子设备在充电过程中发生过热,进而一方面可以提升无线充电的充电效率,另一方面可防止充电过热影响电子设备的性能。
为方便理解,下面首先对根据本申请的电子设备可实现上述有益效果的原理进行简单 说明:
根据本申请的实施例,半导制冷器400具有冷端和热端,是利用了半导体材料的珀尔帖效应制成的。珀尔帖效应是指当直流电流通过两种半导体材料组成的电偶时,其一端吸热,一端放热的现象。例如重掺杂的N型和P型的碲化铋即可用于形成半导体制冷去,碲化铋元件采用电串联并且是并行发热。半导制冷器(Tec)可以包括一些P型和N型对(组),多个P型和N型对通过电极连在一起夹在两个陶瓷电极之间。当有电流从Tec流过时,电流产生的热量会从Tec的一侧传到另一侧,在Tec上产生″热″端和″冷″端。因此,可利用冷端加强无线充电装置中某些发热或散热元件的散热,而热端的热量可通过风扇模组500进行散热。这一结构的优点在于可避免利用风扇模组500直接对线圈模组或是待充电的电子设备散热而导致的效率低下:相对于线圈模组或是待充电的电子设备而言,半导制冷器400的热端体积更小,因此更方便设计风冷散热的空气流通甬道,散热效率也会较直接利用风扇吹送线圈模组或是电子设备更高。更具体地,可利用均温散热模块300将线圈模组和待充电的电子设备(在充电过程中将与充电表面110紧密接触)的热量传导出来,随后利用半导体制冷器400的冷端提升均温散热模块300的散热效率,进而制造充电表面110和待充电的电子设备背板之间的温度差,提升散热效率。风扇模组500可对半导体制冷器400的热端进行散热。由此,以实现对充电线圈和充电表面110(热量来自充电中的电子设备)的有效散热。
此处需要特别说明的是,图1中所示出的结构仅为了描述和说明本申请提出的电子设备,而不能够理解为对其中的各个模组和部件的形状的限制。例如,参考图2,为了进一步节省空间,对该电子设备进行减薄,风扇模组500和半导体制冷器400朝向充电表面110一侧的表面也可位于同一平面上,半导体制冷器400在纵截面上可以具有包括但不限于L型等异形的形状,以充分利用容纳空间内部的空间,更加合理地设置各个部件之间的位置关系,以起到减薄的效果。或者,也可以令风扇模组500具有异形的形状(图中未示出),以达到节省空间等目的。
根据本发明的实施例,参考图3以及图4,线圈模组200包括充电线圈(图中未示出)以及铁氧体210,以实现无线充电功能。充电线圈以及铁氧体210的具体组成以及位置关系不受特别限制,本领域技术人员可根据无线充电的原理,选择适当的材料以及线圈结构构成线圈模组200。根据本申请的示例,充电线圈和铁氧体之间填充有绝缘导热材料,由此可提高线圈模组200的传热和散热能力。绝缘导热材料的具体组成不受特别限制,只要绝缘且导热系数大于空气即可。具体地,绝缘导热材料包括导热凝胶、导热硅脂的至少之一。
线圈模组200在充电表面110上的投影可覆盖充电表面110的部分区域,例如线圈模组200在充电表面110上的投影可位于充电表面110的中央。由此,充电表面110未被线圈模 组200覆盖的区域即可用于传递待充电的电子设备在充电过程中散发的热量。该部分热量可通过均温散热模组300向着壳体100的容纳空间一侧传递,进而利用半导体制冷器400以及风扇模组500进行散热,并最终通过散热出风口20传递至环境中。
均温散热模组300可包括金属导热部310以及散热件320(如图中所示出的320A以及320B),散热件320与金属导热部310相连,散热件320在所述充电表面上的正投影与线圈模组在充电表面的正投影以外的区域之间具有重叠部分,即散热件320可以与金属导热部310相连并自铁氧体210一侧向着充电表面(如图中所示出的充电表面所在平面110’)上未被线圈模组的正投影覆盖的区域延伸。本领域技术人员熟悉的是,线圈模组200中的热量主要来自铁氧体210。因此金属导热部310可以与铁氧体210正对设置,例如可令金属导热部310的对称中心与铁氧体210的对称中心210位于同一直线上,例如均位于垂直于充电表面所在平面110’的某一直线(如图中垂直方向的虚线)上。由此,有利于提高金属导热部310的导热效率,以便有效对铁氧体210进行散热。此处需要特别说明的是,半导体制冷器400具有陶瓷电极,为了避免在组装和使用过程中均温散热模块300压坏半导体制冷器400,可控制均温散热模块300和半导体制冷器400的位置,令均温散热模块300对半导体制冷器400的力为垂直于充电表面110向下的。具体地,可令金属导热部310具有对称中心,并令多个散热件320环绕金属导热部310对称分布,令半导体制冷器400的中心也正对金属导热部310的对称中心,例如也位于垂直于充电表面所在平面110’的某一直线(如图中垂直方向的虚线)上。
散热件320可包括热管、均热板、石墨片以及散热翅片的至少之一,具体类型不受特别限制,只要具有较好的散热性能即可。由此,可通过充电表面110一侧将电子设备在充电过程中散发的热量想着壳体的容纳空间一侧进行传导,而由于半导体散热器400的冷端410较冷,因此冷端410和散热件320一侧具有较大的温差,从而更加有利于将待充电的电子设备所散发的热量向着朝向容纳空间一侧进行传递。根据本申请的具体示例,温散热模块可以包括多个散热件,多个散热件可围绕金属导热部对称分布。多个散热件320优选位于同一平面上并与线圈模组200朝向壳体一侧的表面相齐平。由此,可令散热件更加靠近充电表面110,并有利于均匀地传递待充电电子设备一侧的热量。
根据本申请的示例,为了进一步提高无线充电过程中的散热效果,均温散热模块和线圈模组之间可以通过导热材料贴合。类似地,导热材料的具体组分不受特别限制,只要导热系数大于空气即可。并且由于均温散热模块和线圈模组之间仅需要进行热量的传递,因此此处的导热材料可以是导电的也可以是不导电的。导电的导热材料普遍导热系数要更大,因此可以进一步提升热量自线圈模组一侧向均温散热模块一侧传递的效率。
根据本申请的示例,半导体制冷器的冷端410可位于金属导热部310的中心所在位置 处。例如,当金属导热部310具有如图3中所示出的形状时,冷端410可对应于圆形的圆心处设置。半导体制冷器的冷端410以及散热件320之间还可以填充有导热材料。此处的导热材料可以与前面描述的填充在均温散热模块和线圈模组之间的导热材料相同,也可以不同。只要能够填充冷端410以及散热件320之间的空气间隙,并令导热材料的导热系数大于空气即可。
根据本申请的示例,参考图6,风扇模组500位于散热件400的热端(图中未示出)一侧,可利用风扇将热端的热量扩散至环境中。为避免风扇使用过程中发出噪声,风扇模组可刚性固定在壳体上。具体地,为了提高风扇模组的散热能力,风扇模组可以包括风扇510以及热端散热件520。热端散热件的中心可与半导体制冷器的热端相对设置,从而有利于利用热端散热件将半导体制冷器热端的热量进行传导和扩散,随后利用风扇送风,并经壳体上的散热进风口和散热出风口形成空气流通的通路,进而将热量散发至环境中。热端散热件520的类型不受特别限制,只要能够进行散热即可,例如可以为具有较高导热能力的金属或是石墨片,也可以为导热管、散热翅片等结构。类似地,风扇散热模组以及半导体制冷器之间的空气间隙处也可填充有导热材料。关于导热材料的类型以及要求前面已经进行了详细的描述,在此不再赘述。
为了进一步提高该电子设备无线充电的性能,该电子设备还可包括控制电路板600。控制电路板600可用于控制线圈模组200进行工作,也可同时具有控制半导体制冷器400的作用。具体地,可用于调节施加在半导体制冷器400的电压或电流,从而控制半导体制冷器400冷端的温度。控制电路板600的具体位置不受特别限制,例如可以位于均温散热模块以及风扇散热模组之间,并与半导体制冷器相邻。
根据本申请的示例,由于半导体制冷器400的冷端制冷,因此为了防止冷端温度过低而产生低于环境温度的低温造成在低温下结露,发生短路或腐蚀电路的风险,参考图6,壳体的容纳空间内还可设置一个或多个温度传感器。例如,温度传感器30(如图中所示出的30A-30C)可以位于以下位置的至少之一处:散热进风口、冷端处、线圈模组和壳体朝向所述容纳空间一侧且靠近线圈模组的表面上。由此,在使用过中可以利用温度传感器30C上报最低温度,散热进风口处的温度传感器30A上报环境温度,并控制半导体制冷器冷端的温度,以控制容纳空间内部最低温度不低于环境温度。容纳空间内还可具有湿度传感器40,也可利用温度传感器和湿度传感器40感应的参数(温度和湿度)计算确定容纳空间内的露点温度,从而可控制半导体制冷器400的冷端的温度高于露点温度。
根据本申请的示例,壳体100可以为一体化的壳体,也可以是由上盖板、下盖板拼接而成的。例如壳体可以具有上盖板,充电表面即可位于所述上盖板上。为了进一步提升导热效果,可在上盖板以及线圈模组之间的间隙处填充绝缘导热材料,即可在充电表面和线 圈模组之间填充绝缘导热材料。为保证充电表面尽量平整,提高电子设备与充电表面的贴合度,充电表面上最高点和最低点之间的高度可控制在差不超过0.1mm。参考图7和图8,当无线充电装置1000与电子设备2000相接触的表面上具有突出的手机摄像头2100时,壳体上还可以具有凹槽130,即在于摄像头2100相对应处开凹槽,以保证与手机接触良好。
上述电子设备可以是利用以下方法制备的:
提供构成壳体的壳体组件,例如可以由具有平整表面的上盖和具有散热进风口和出风口的下盖构成。随后提供线圈与铁氧体组合形成线圈模组,线圈与铁氧体紧密贴合,中间用导热材料填充满间隙。导热材料可以是灌封胶、导热凝胶、导热硅脂等具有绝缘性的填隙材料。随后将均温散热模块置于线圈模组下方,并与线圈模组紧密贴合,具体可填充导热界面材料如硅脂、导热衬垫等,将均温散热模块与线圈模组贴合在一起。均温散热模块的具体结构前面已经进行了详细的描述,在此不再赘述。
将半导体制冷器的热端与风扇散热模组紧密贴合,例如可以用导热材料填充空隙。具体可令半导体制冷器的热端与风扇散热模组中的热端散热件刚性固定,保持半导体制冷器的热端在热端散热件的散热最佳位置,具体可以与散热翅片等结构的中心位置相对应。
随后可将半导体制冷器的冷端与均温散热模块固定。具体可保持冷端与均温散热模块紧密接触,例如采用导热材料填充缝隙,并保证均温散热模块对半导体制冷器的压力为垂直向下,避免安装过程中压坏半导体制冷器。
最后可将上盖压在均温散热模块上,保证上盖与线圈模组、均温散热模块接触良好,上盖与线圈模组中间可用绝缘导热材料填充满。
在本发明的又一方面,本发明提出了一种控制前面所述的电子设备的方法。该方法可以具体包括:利用线圈模组进行充电,并对半导体制冷器施加电压,以便令所述半导体制冷器的冷端制冷。利用风扇散热模组对所述半导体制冷器的热端所在区域进行散热。由此,可缓解利用该具有无线充电功能的电子设备进行充电时,待充电的电子设备处发生的过热问题。
根据本申请的具体示例,该电子设备至少具有两个温度传感器,两个温度传感器可以分别位于靠近半导体制冷器的冷端处,以及靠近散热进风口处。该方法还可以包括:在进行充电时监测半导体制冷器的冷端处和散热进风口处的温度,并通过控制施加在半导体制冷器的电压控制冷端的温度,以令冷端处的温度不低于散热进风口处的温度。由此可防止冷端过冷而导致的结露。或者,容纳空间内还可具有湿度传感器,也可利用温度传感器和湿度传感器感应的参数(温度和湿度)计算确定容纳空间内的露点温度,从而可控制半导体制冷器的冷端的温度高于露点温度。
具体地,可在在风扇进风口,即散热进风口处、线圈模组的线圈处、上盖板处加装温 度传感器监控三个位置的温度。根据以上三组温度,对半导体制冷器进行调节,通过控制半导体制冷器的功耗调节无线充电器上盖板温度。具体可以通过PWM方式进行控制制冷量,即控制占空比的方式:可保持供给至半导体制冷器的电压或电流不变,例如将电压设置为额定电压,而改变供电时间,使施加至半导体制冷器的电压变为脉冲式,从而控制电流占空比来实现制冷量控制。
在本申请的又一方面,本申请提出了一种充电系统。参考图7,该充电系统可包括至少两个电子设备,两个电子设备中的至少之一是前面描述的具有无线充电功能的电子设备。具体地,如图7以及图8中所示出的,两个电子设备可以一个为前述的具有无线充电功能的电子设备1000(无线充电器),另一个为待充电电子设备2000(如手机)。待充电电子设备2000具有可充电电池,以及可与具有无线充电功能的电子设备1000相适配的无线充电模组,待充电电子设备2000被配置为可放置于无线充电器的充电表面上进行充电。由此,该散热系统可有效缓解甚至解决待充电的电子设备在充电过程中的过热现象。
或者,该充电系统中的两个电子设备也可均为手机等,即该充电系统可包括具有反向充电功能的电子设备,该充电系统中具有反向充电功能的电子设备可为前述的具有无线充电功能的电子设备。或者,两个电子设备也可均为前面描述的具有无线充电功能的电子设备。
本申请所述的电子设备(包括待充电的电子设备以及前述的具有无线充电功能的电子设备)的具体类型不受特别限制,例如,可以为手机、智能手表、掌上电脑或者笔记本电脑。上述电子设备可以为移动或便携式并执行无线通信的各种类型的计算机系统设备中的任何一种。具体的,电子设备可以为移动电话或智能电话(例如,基于iPhone TM,基于Android TM的电话),便携式游戏设备(例如Nintendo DS TM,PlayStation Portable TM,Gameboy Advance TM,iPhone TM)、膝上型电脑、PDA、便携式互联网设备、音乐播放器以及数据存储设备,其他手持设备以及诸如手表、入耳式耳机、吊坠、头戴式耳机等,电子设备还可以为其他的可穿戴设备(例如,诸如电子眼镜、电子衣服、电子手镯、电子项链、电子纹身或智能手表的头戴式设备(HMD))。
电子设备还可以是多个电子设备中的任何一个,多个电子设备包括但不限于蜂窝电话、智能电话、其他无线通信设备、个人数字助理、音频播放器、其他媒体播放器、音乐记录器、录像机、照相机、其他媒体记录器、收音机、医疗设备、车辆运输仪器、计算器、可编程遥控器、寻呼机、膝上型计算机、台式计算机、打印机、上网本电脑、个人数字助理(PDA)、便携式多媒体播放器(PMP)、运动图像专家组(MPEG-1或MPEG-2)音频层3(MP3)播放器,便携式医疗设备以及数码相机及其组合。
在一些情况下,电子设备可以执行多种功能(例如,播放音乐,显示视频,存储图片 以及接收和发送电话呼叫)。如果需要,电子设备可以是诸如蜂窝电话、媒体播放器、其他手持设备、腕表设备、吊坠设备、听筒设备或其他紧凑型便携式设备的便携式设备。
下面通过具体的示例对本申请进行说明,本领域技术人员能够理解的是,下面的具体的示例仅仅是为了说明的目的,而不以任何方式限制本申请的范围。另外,在下面的示例中,除非特别说明,所采用的材料和设备均是市售可得的。如果在后面的示例中,未对具体的处理条件和处理方法进行明确描述,则可以采用本领域中公知的条件和方法进行处理。
示例1
电子设备的结构如图6所示,线圈模组200中的铁氧体的中心、均温散热模块中导热金属块的中心以及半导体制冷器400冷端的中心位于同一垂直于充电表面的直线上,半导体制冷器400热端的中心下方正对热端散热器520散热翅片的中心,均温散热模块中散热件向充电表面一侧延伸并与线圈模组的上端齐平。线圈模组200中的铁氧体和线圈之间、线圈模组200和壳体上盖之间的空气间隙均填充有绝缘导热材料,其余各模组之间均填充有导热材料。在上盖、冷端以及进风口处均设置有温度传感器。
示例2
电子设备的结构与示例1相同,所不同的是未设置温度传感器。
示例3
电子设备的结构与示例1相同,所不同的是未利用绝缘导热材料或导热材料填充空气间隙。
示例4
电子设备的结构与示例1相同,所不同的是冷端未与均温散热模块中导热金属块的中心对齐。
示例5
电子设备的结构与示例1相同,所不同的是均温散热模块中散热件未向充电表面一侧延伸并与线圈模组的上端齐平。
对比例1
电子设备的结构与示例1相同,所不同的是不具有均温散热模块,半导体制冷器的冷端直接与线圈模组接触。
对比例2
电子设备的结构与示例1相同,所不同的是不具有风扇散热模组。
对比例3
电子设备中仅具有线圈模组,线圈模组的结构与示例1相同。
利用上述示例和对比例提供的电子设备(无线充电器)对手机样机进行充电,电量自 0%开始进行充电,至电量为100%为止,对充电时间以及充电时的手机壳体温度进行测定。示例1-5的充电速度均快于对比例,且充电过程中手机电池侧壳体的温度均较对比例1-3更低。其中示例1的充电速度最快,手机背壳温度最低,示例2与示例1相齐平,但充电结束后对示例2的无线充电装置进行拆壳后发现壳体内部具有结露现象。示例3和示例4的充电速度想差不多,但均慢于示例1和示例2,充电过程中手机后盖的温度也较示例1和示例2高。在示例1-5中,示例5的手机后壳在充电过程中的温度最高。
示例1与对比例3相比,充电时间缩短10分钟,充电速率提升20%。手机电池温度降低4℃以上,手机背盖温度降低8℃。
在本申请的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请而不是要求本申请必须以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种电子设备,包括:
    壳体,所述壳体限定出容纳空间,以及位于所述容纳空间内的线圈模组、均温散热模块、半导体制冷器以及风扇模组,
    所述壳体远离所述容纳空间的一侧具有充电表面,所述壳体远离所述充电表面处具有与所述容纳空间相连通的散热进风口和散热出风口,
    所述线圈模组位于所述容纳空间内部中靠近所述充电表面处,所述线圈模组在所述充电表面上的正投影覆盖所述充电表面的部分区域;
    所述均温散热模块靠近所述线圈模组设置,且所述均温散热模块在所述充电表面上的正投影至少覆盖所述充电表面中未被所述线圈模组覆盖的部分区域;
    所述半导体制冷器具有冷端以及热端,所述冷端位于靠近所述均温散热模块处,所述风扇模组位于靠近所述热端一侧。
  2. 根据权利要求1所述的电子设备,所述线圈模组包括充电线圈以及铁氧体。
  3. 根据权利要求2所述的电子设备,所述充电线圈和所述铁氧体之间填充有绝缘导热材料,所述绝缘导热材料包括导热凝胶、导热硅脂的至少之一。
  4. 根据权利要求1所述的电子设备,所述均温散热模块包括:金属导热部以及散热件,所述金属导热部与所述铁氧体正对设置,所述散热件与所述金属导热部相连。
  5. 根据权利要求4所述的电子设备,所述散热件在所述充电表面上的正投影与所述线圈模组在所述充电表面的正投影以外的区域之间具有重叠部分。
  6. 根据权利要求4所述的电子设备,铁氧体在所述充电表面上的正投影位于所述充电表面的中部,所述均温散热模块包括多个所述散热件,多个所述散热件围绕所述金属导热部对称分布,所述多个散热件位于同一平面上并与所述线圈模组朝向所述壳体一侧的表面相齐平。
  7. 根据权利要求4所述的电子设备,所述散热件包括热管、均热板、石墨片以及散热翅片的至少之一。
  8. 根据权利要求4所述的电子设备,所述均温散热模块和所述线圈模组之间通过导热材料贴合。
  9. 根据权利要求4所述的电子设备,所述半导体制冷器的冷端位于所述金属导热部的中心所在位置处。
  10. 根据权利要求8所述的电子设备,所述半导体制冷器的冷端以及所述散热件之间填充有导热材料。
  11. 根据权利要求1-10任一项所述的电子设备,所述风扇模组包括风扇以及热端散热件,所述风扇模组刚性固定在所述壳体上。
  12. 根据权利要求11所述的电子设备,所述热端散热件的中心与所述半导体制冷器的热端相对设置。
  13. 根据权利要求11所述的电子设备,所述风扇散热模组以及所述半导体制冷器之间填充有导热材料。
  14. 根据权利要求1-13任一项所述的电子设备,进一步包括以下结构的至少之一:
    控制电路板,所述控制电路板位于所述均温散热模块以及所述风扇散热模组之间,并与所述半导体制冷器相邻;
    至少一个温度传感器,所述温度传感器位于以下位置的至少之一处:所述散热进风口、所述冷端处、所述线圈模组和所述壳体朝向所述容纳空间一侧且靠近所述线圈模组的表面上;以及
    湿度传感器,所述湿度传感器位于所述容纳空间内部。
  15. 根据权利要求14所述的电子设备,进一步包括:湿度传感器,所述湿度传感器位于所述容纳空间内。
  16. 根据权利要求1-15任一项所述的电子设备,所述充电表面以及所述线圈模组之间的间隙处填充有绝缘导热材料,所述充电表面上最高点和最低点之间的高度差不超过0.1mm。
  17. 一种控制权利要求1-16任一项所述的电子设备的方法,包括:
    利用线圈模组进行充电,并对半导体制冷器施加电压,以便令所述半导体制冷器的冷端制冷;
    利用风扇散热模组对所述半导体制冷器的热端所在区域进行散热。
  18. 根据权利要求17所述的方法,所述无线充电装置至少具有两个温度传感器,两个所述温度传感器分别位于靠近所述半导体制冷器的冷端处,以及靠近所述散热进风口处,所述方法进一步包括:
    在利用所述线圈模组进行充电时监测所述半导体制冷器的冷端处和所述散热进风口处的温度,并通过控制施加在所述半导体制冷器的电压控制所述冷端的温度,以令所述冷端处的温度不低于所述散热进风口处的温度;
    或者,利用所述温度传感器和所述湿度传感器检测温度和湿度并确定露点温度,并通过控制施加在所述半导体制冷器的电压控制所述冷端的温度,以令所述冷端的温度高于所 述露点温度。
  19. 一种充电系统,所述充电系统包括至少两个电子设备,所述两个电子设备中的至少之一为权利要求1-16任一项所述的。
  20. 根据权利要求19所述的充电系统,所述两个电子设备中的一个为无线充电装置且所述无线充电装置为权利要求1-16任一项所述的电子设备,所述两个电子设备中的另一个为移动终端,所述移动终端具有可充电电池,以及与所述无线充电装置相适配、可向所述可充电电池进行充电的无线充电模组;
    或者,所述两个电子设备均为移动终端,其中一个所述移动终端为权利要求1-16任一项所述的电子设备。
PCT/CN2021/076318 2020-02-26 2021-02-09 电子设备及控制的方法、散热系统 WO2021169807A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010120959.4A CN111342511A (zh) 2020-02-26 2020-02-26 电子设备及控制方法、充电系统
CN202010120959.4 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021169807A1 true WO2021169807A1 (zh) 2021-09-02

Family

ID=71185726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076318 WO2021169807A1 (zh) 2020-02-26 2021-02-09 电子设备及控制的方法、散热系统

Country Status (2)

Country Link
CN (1) CN111342511A (zh)
WO (1) WO2021169807A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025559A (zh) * 2021-10-20 2022-02-08 苏州浪潮智能科技有限公司 一种用于边缘计算服务器的温度控制装置及方法
CN114326851A (zh) * 2021-11-17 2022-04-12 苏州浪潮智能科技有限公司 一种基于tec的边缘智能温控方法及系统
WO2023109472A1 (zh) * 2021-12-13 2023-06-22 夯歌东莞科技有限公司 一种侧向吹风散热器及无线充电器
WO2024052186A1 (en) * 2022-09-08 2024-03-14 Brusa Elektronik Ag Vehicle charging device with optimized cooling
CN118367267A (zh) * 2024-06-19 2024-07-19 长安绿电科技有限公司 电池防爆箱

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342511A (zh) * 2020-02-26 2020-06-26 Oppo广东移动通信有限公司 电子设备及控制方法、充电系统
CN113852144A (zh) * 2020-06-28 2021-12-28 北京小米移动软件有限公司 无线充电装置
WO2022000281A1 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Adaptive strategy for enhanced thermal mitigation and overheating assistance signaling
CN114497931B (zh) * 2020-10-28 2023-06-27 中国科学院理化技术研究所 高温超导滤波器系统
CN113407017B (zh) * 2021-06-18 2024-07-09 北京市九州风神科技股份有限公司 半导体散热装置的控制方法、半导体散热装置及存储介质
CN113422896A (zh) * 2021-07-06 2021-09-21 蚌埠学院 摄像头散热装置及摄像头装置
CN113467545A (zh) * 2021-07-26 2021-10-01 联想(北京)有限公司 控制方法及电子设备
CN113923938B (zh) * 2021-09-06 2023-03-24 联想(北京)有限公司 电子设备
CN118117767A (zh) * 2022-11-29 2024-05-31 蔚来移动科技有限公司 无线充电模组及车辆
CN117596838B (zh) * 2023-11-20 2024-07-02 广东翼丰盛科技有限公司 一种采用液冷系统的散热片及采用该散热片的液冷散热器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203423725U (zh) * 2013-12-01 2014-02-05 叶远平 一种手机散热装置
CN208862588U (zh) * 2018-08-01 2019-05-14 深圳造物部落科技有限公司 一种带有主动控温的无线充电器
CN209730870U (zh) * 2019-05-30 2019-12-03 深圳市第一卫电子有限公司 一种手机无线充电座
CN110661318A (zh) * 2019-07-22 2020-01-07 韦陶 一种支持无线充电功能的半导体制冷手机降温充电装置
CN111342511A (zh) * 2020-02-26 2020-06-26 Oppo广东移动通信有限公司 电子设备及控制方法、充电系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9814331B2 (en) * 2010-11-02 2017-11-14 Ember Technologies, Inc. Heated or cooled dishware and drinkware
CN203574404U (zh) * 2013-10-24 2014-04-30 杨庆春 一种无线充电发射装置
CN208539596U (zh) * 2017-12-01 2019-02-22 桑堇馨 一种无线充电器
CN207234484U (zh) * 2017-12-12 2018-04-13 桑堇馨 无线充电器
CN208401601U (zh) * 2018-07-27 2019-01-18 深圳市誉品智能光电科技有限公司 无线充电器
CN108711917A (zh) * 2018-07-27 2018-10-26 深圳市誉品智能光电科技有限公司 无线充电器
CN208461522U (zh) * 2018-08-10 2019-02-01 Oppo广东移动通信有限公司 无线充电装置和具有其的无线充电系统
CN208738898U (zh) * 2018-09-30 2019-04-12 深圳市誉品智能光电科技有限公司 无线充电器
CN208707367U (zh) * 2018-09-30 2019-04-05 深圳市誉品智能光电科技有限公司 无线充电器
WO2020133150A1 (zh) * 2018-12-28 2020-07-02 广东高普达集团股份有限公司 主动降温式无线充电器
CN209823474U (zh) * 2019-06-24 2019-12-20 Oppo广东移动通信有限公司 无线充电设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203423725U (zh) * 2013-12-01 2014-02-05 叶远平 一种手机散热装置
CN208862588U (zh) * 2018-08-01 2019-05-14 深圳造物部落科技有限公司 一种带有主动控温的无线充电器
CN209730870U (zh) * 2019-05-30 2019-12-03 深圳市第一卫电子有限公司 一种手机无线充电座
CN110661318A (zh) * 2019-07-22 2020-01-07 韦陶 一种支持无线充电功能的半导体制冷手机降温充电装置
CN111342511A (zh) * 2020-02-26 2020-06-26 Oppo广东移动通信有限公司 电子设备及控制方法、充电系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025559A (zh) * 2021-10-20 2022-02-08 苏州浪潮智能科技有限公司 一种用于边缘计算服务器的温度控制装置及方法
CN114326851A (zh) * 2021-11-17 2022-04-12 苏州浪潮智能科技有限公司 一种基于tec的边缘智能温控方法及系统
WO2023109472A1 (zh) * 2021-12-13 2023-06-22 夯歌东莞科技有限公司 一种侧向吹风散热器及无线充电器
WO2024052186A1 (en) * 2022-09-08 2024-03-14 Brusa Elektronik Ag Vehicle charging device with optimized cooling
CN118367267A (zh) * 2024-06-19 2024-07-19 长安绿电科技有限公司 电池防爆箱

Also Published As

Publication number Publication date
CN111342511A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021169807A1 (zh) 电子设备及控制的方法、散热系统
US7974090B2 (en) Portable medical device cooling system
CN112383153B (zh) 一种具有冷却装置的无线充电器
CN112714601B (zh) 一种用于智能终端的散热结构及智能终端
CN111106677A (zh) 无线充电设备及无线充电系统
JP2021097590A (ja) ワイヤレス充電装置
US11317544B1 (en) Wireless charger, charging assembly, matching assembly and bracket for electric equipment
JP2007109819A (ja) 携帯型電子機器
WO2019185036A1 (zh) Vr一体机及其运行方法
CN209072105U (zh) 一种具有压电陶瓷风扇散热结构的无线充电座
CN212392688U (zh) 无线充电装置以及电子系统
CN114828539A (zh) 散热背夹和电子设备组件
CN213752686U (zh) 电子设备
CN112864111B (zh) 一种用于智能终端的散热结构及智能终端
CN212323769U (zh) 无线充电座
WO2024022085A1 (zh) 散热装置、支撑件及电子设备
CN113314782A (zh) 散热组件、电池包和机器人
CN210053451U (zh) 手机温度调节装置
CN111901965A (zh) 电路板散热结构及电子设备
CN104602484B (zh) 便携式设备及其散热装置
CN215496853U (zh) 电子设备
CN212085847U (zh) 无线充电装置
CN215187032U (zh) 散热基座及电子设备组件
CN213280441U (zh) 用于电子设备的热电式制冷装置及电子设备
CN111615299B (zh) 无线充电座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760640

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21760640

Country of ref document: EP

Kind code of ref document: A1