WO2024001343A1 - 盘式电机及其组装方法、动力总成和车辆 - Google Patents

盘式电机及其组装方法、动力总成和车辆 Download PDF

Info

Publication number
WO2024001343A1
WO2024001343A1 PCT/CN2023/084013 CN2023084013W WO2024001343A1 WO 2024001343 A1 WO2024001343 A1 WO 2024001343A1 CN 2023084013 W CN2023084013 W CN 2023084013W WO 2024001343 A1 WO2024001343 A1 WO 2024001343A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft body
stator
shaft
fixedly connected
Prior art date
Application number
PCT/CN2023/084013
Other languages
English (en)
French (fr)
Inventor
石超杰
李晓刚
周朝
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024001343A1 publication Critical patent/WO2024001343A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/16Centering rotors within the stator; Balancing rotors
    • H02K15/165Balancing the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/04Balancing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This application relates to the field of electric motors, specifically to a disc motor and its assembly method, powertrain and vehicle.
  • Axial flux motors also called disk motors, are motors that form a closed flux loop through the axial air gap surface of the motor and have high torque density.
  • Existing disc motors usually include three structures: single stator and single rotor, double stator and single rotor, and double rotor and single stator.
  • the double rotor and single stator can achieve the highest torque density among the above three, so the double rotor and single stator motor is also Gradually become a research hotspot.
  • the existing electronics with dual rotor and single stator structure need to dynamically balance the rotor system (rotor + shaft) before assembly.
  • One current method is to use a dummy shaft to dynamically balance the rotor and then perform the stator adjustment. , the assembly of the rotor and the rotating shaft. Due to the deviation between the false shaft assembly and the actual rotating shaft assembly, the deviation between the center of mass and the center of rotation of the entire rotor system is limited by the inherent deviation of the current process capabilities (about 6-9 ⁇ m), refer to the national standard GB9239.1-2006 requires dynamic balance of motors. Motors with a maximum speed of 950rpm or above must meet the dynamic balance requirements of G2.5.
  • Another method of dynamic balance adjustment is to first perform dynamic balance adjustment on the system of two rotors, then disassemble one of the rotors, and then install the rotor after installing the stator. This method has many assembly steps and is not conducive to improving production efficiency, and Repeated disassembly and assembly of components with interference can easily cause the reliability of the entire machine to decrease. Therefore, the existing dynamic balance adjustment method cannot take into account the problems of accurate dynamic balance adjustment and convenient production.
  • This application provides a disc motor and its assembly method, powertrain and vehicle to improve the accuracy of dynamic balance adjustment and improve the convenience of assembly.
  • the application provides a disc motor.
  • the disc motor includes a rotating shaft and a first rotor, a stator and a second rotor that are sleeved on the rotating shaft.
  • the first rotor, the stator and the second rotor are arranged in sequence and at intervals.
  • the stator It is rotatably connected to a rotating shaft, wherein the rotating shaft includes a first shaft body and a second shaft body that are detachably connected.
  • the first shaft body is fixedly connected to the first rotor
  • the second shaft body is fixedly connected to the second rotor.
  • the rotating shaft of the disk motor of the present application can be divided into a first shaft body and a second shaft body.
  • the first shaft body is connected to the first rotor
  • the second shaft body is connected to the second rotor.
  • the first shaft body is connected to the first rotor.
  • the rotor and the first shaft body are dynamically balanced, and the second rotor and the second shaft body are dynamically balanced.
  • the stator is installed.
  • both the first rotor and the second rotor are adjusted using real shafts, thereby avoiding the problem of poor accuracy caused by using false shafts.
  • the dynamic balance index of a single rotor system (such as a rotor system composed of a first rotor and a first shaft body or a rotor system composed of a second rotor and a second shaft body) can be controlled throughout the entire process.
  • the dynamic balance index of the disc motor that is, the single-disc dynamic balance requirements are tightened, so that the final dynamic balance index of the disc motor meets the requirements.
  • connection method between the first shaft body and the second shaft body includes but is not limited to interference fit connection, keyed connection, coupling connection, pin connection, flange connection, etc. This application does not limit the specific connection method of the first shaft body and the second shaft body, as long as the connection between the two can be achieved.
  • At least one of the side surfaces of the first rotor that is perpendicular to the rotation axis and away from the stator and the second rotor that is perpendicular to the rotation axis and away from the stator is provided with a weight adjustment assembly.
  • at least one of the circumferential surface of the first rotor and the circumferential surface of the second rotor may be provided with a weight adjustment component.
  • the weight adjustment assembly includes fixed elements provided on the first rotor and the second rotor and a weight adjustment block cooperatively connected with the fixed elements.
  • the fixing elements include openings or bosses.
  • the fixing element is provided on a side surface of the first rotor that is perpendicular to the rotation axis and away from the stator.
  • the multiple fixing elements form concentric circles along the radial direction of the first rotor. ring.
  • a plurality of fixing elements are evenly arranged along the circumferential direction of the first rotor.
  • the fixing element is disposed on a side surface of the second rotor that is perpendicular to the rotation axis and away from the stator.
  • the multiple fixing elements form concentric rings.
  • a plurality of fixing elements are evenly arranged along the circumferential direction of the second rotor.
  • this application provides an assembly method of the above-mentioned disk motor, which assembly method includes the following steps:
  • the stator is sleeved on at least one of the first shaft body and the second shaft body, and is fixedly connected to the first shaft body and the second shaft body.
  • dynamic balance adjustment of the fixedly connected first shaft body and the first rotor includes: adjusting the weight adjustment component so that the first shaft body and the first rotor form a The deviation between the center of mass of the rotating unit and the center of rotation meets the preset dynamic balance level standards.
  • dynamic balance adjustment of the fixedly connected second shaft body and the second rotor includes: adjusting the weight adjustment component so that the second shaft body and the second rotor form a The deviation between the center of mass of the rotating unit and the center of rotation meets the preset dynamic balance level standards.
  • this application also provides a power assembly, which may include a transmission mechanism and the disk motor of the first aspect of this application, wherein the transmission mechanism is connected to the disk motor.
  • the disc motor can drive the transmission mechanism to move.
  • the present application also provides a vehicle, which includes the disc motor of the present application.
  • Figure 1 is a schematic structural diagram of a disk motor according to an embodiment
  • Figure 2 is a schematic structural diagram of the bonded connection between the first shaft body and the second shaft body
  • Figure 3 is a schematic diagram of another connection method between the first shaft body and the second shaft body
  • Figure 4 is a schematic diagram of another connection method between the first shaft body and the second shaft body
  • Figure 5 is a schematic structural diagram of the side surface of the first rotor away from the stator
  • 6 to 7 are schematic diagrams of the assembly process of the disk motor of the present application.
  • Dynamic balancing is a research content of rotor dynamics, which refers to the operation of determining the position and size of the unbalance (centrifugal force and centrifugal couple) generated when the rotor rotates and eliminating it. Unbalance will cause lateral vibration of the rotor and subject the rotor to unnecessary dynamic loads, which is not conducive to the normal operation of the rotor. Therefore, the motor needs to be dynamically balanced before assembly so that its center of mass and center of rotation are as close as possible during rotation.
  • FIG. 1 is a schematic structural diagram of a disc motor 10 according to an embodiment.
  • the disc motor 10 includes a rotating shaft 14 and a first rotor 11 , a stator 12 and a second rotor 13 provided on the rotating shaft 14 , wherein the first rotor 11
  • the second rotor 13 and the second rotor 13 are arranged on both sides of the stator 12 respectively, and there are gaps between the first rotor 11 and the second rotor 13 and the stator 12 respectively.
  • First The rotor 11, the stator 12 and the second rotor 13 can all be disc-shaped structures, and the radial dimensions of the three can be the same.
  • the rotating shaft 14 may include a first shaft body 141 and a second shaft body 142 , wherein the first shaft body 141 and the second shaft body 142 are detachable connection structures.
  • the first shaft body 141 The connection method between 141 and the second shaft body 142 can be one of interference fit connection, keyed connection, coupling connection, pin connection or flange connection.
  • bonded connections include but are not limited to flat key connections, spline connections, or wedge key connections.
  • both the first shaft body 141 and the second shaft body 142 can be connected through an interference fit.
  • both the first shaft body 141 and the second shaft body 142 can be hollow shaft bodies, that is, a through hole extending along the axial direction can be provided inside the first shaft body 141 , and a through hole extending along the axial direction can also be provided inside the second shaft body 142 .
  • the outer peripheral surface of the first shaft body 141 can be partially inserted into the through hole of the second shaft body 142 .
  • the circumferential surface of the first shaft body 141 contacts the inner circumferential surface of the second shaft body 142, and a certain friction force is generated between them to form a passing force. Profit fit connection.
  • the outer circumferential surface of the first shaft body 141 may be provided with positioning protrusions 143 , and the positioning protrusions 143 may be annular protrusions provided along the outer circumferential surface of the first shaft body 141 .
  • the inner peripheral surface of the second shaft body 142 may be provided with a positioning step 144 , and the positioning step 144 may be an annular step surface provided in the second shaft body 142 .
  • the through hole in the second shaft body 142 can be formed by connecting two sub-holes with different inner diameters, so that a positioning step can be formed between the two connected sub-holes.
  • FIG. 2 is a schematic structural diagram of the keyed connection between the first shaft body 141 and the second shaft body 142.
  • the first shaft body 141 and the second shaft body 142 can also be connected by keying.
  • the outer circumferential surface of the first shaft body 141 can be provided with a first keyway 145
  • the outer circumferential surface of the second shaft body 142 is also provided with a second keyway 146 that matches the first keyway 145, wherein the first keyway 145 can be a countersunk keyway.
  • the second keyway 146 can be a through groove.
  • the first keyway 145 and the second keyway 146 can be aligned, and the first keyway 145 and the second keyway can be
  • the connecting key 147 is inserted into 146 at the same time, and the connecting key 147 is used to fixedly connect the first shaft body 141 and the second shaft body 142 to achieve a keyed connection.
  • the connecting key 147 includes but is not limited to a flat key, a spline or a wedge-shaped key.
  • Figure 3 is a schematic diagram of another connection method between the first shaft body 141 and the second shaft body 142. As shown in FIG. 3 , the first shaft body 141 and the second shaft body 142 can be fixedly connected through the coupling 148 .
  • Figure 4 is a schematic diagram of another connection method between the first shaft body 141 and the second shaft body 142.
  • a first flange 149 can be provided at the end of the first shaft body 141 close to the second shaft body 142.
  • a second flange 150 can be provided at the end of the second shaft body 142 close to the first shaft body 141 , and the first shaft body 141 and the second shaft body 142 can be fixed by the first flange 149 and the second flange 150 connect.
  • connection method of the first shaft body 141 and the second shaft body 142 is only an illustrative description. This application does not limit the specific connection method of the first shaft body 141 and the second shaft body 142 as long as the two can be realized. Just a fixed connection.
  • connection method between the rotating shaft, the stator, the first rotor and the second rotor will be explained below.
  • the first shaft 141 can be fixedly connected to the first rotor 11 , and the connection between the first shaft 141 and the first rotor 11 can be an interference fit connection or a keyed connection.
  • the second shaft 142 can be fixedly connected to the second rotor 13 , and the connection between the second shaft 142 and the second rotor 13 can be an interference fit connection or a keyed connection.
  • the stator 12 and the rotating shaft 14 are rotationally connected.
  • a bearing 15 may be provided between the stator 12 and the rotating shaft 14 to achieve rotational connection between the stator 12 and the rotating shaft 14 .
  • the disk motor 10 may also include a casing (not shown in the figure) for packaging the above components, wherein , the stator 12 can be fixedly connected to the housing to increase the stability of the stator 12 connection.
  • magnets 16 may be provided on both the side surface of the first rotor 11 facing the stator 12 and the side surface of the second rotor 13 facing the stator 12 .
  • both the side surface of the first rotor 11 facing the stator 12 and the side surface of the second rotor 13 facing the stator 12 may be provided with grooves for accommodating the magnets 16 to install the magnets 16 .
  • the shape of the magnet 16 can be annular or other shapes, and the specific shape and size can be set according to the specific performance parameters of the disk motor 10 .
  • Figure 5 is a schematic view of the surface structure of the side of the first rotor 11 away from the stator 12 in an embodiment.
  • the side surface of the first rotor 11 is perpendicular to the rotation axis 14 and away from the stator 12. That is, a weight-adjusting component 20 may be provided on a side surface of the magnet 16 that is away from the magnet 16 , and a weight-adjusting component may also be provided on a side of the second rotor 13 that is perpendicular to the rotating shaft 14 and away from the stator 12 .
  • the weight adjustment assembly 20 can be disposed on the first rotor 11 alone, or on the second rotor 13 alone, or can be disposed on the first rotor 11 and the second rotor 13 at the same time.
  • the first rotor 11 and the second rotor 13 may both be provided with a weight adjustment assembly 20 .
  • the weight adjustment component 20 can also be disposed on the circumferential side of the first rotor 11 , and can also achieve corresponding adjustment functions.
  • a weight adjustment assembly 20 may also be provided on the peripheral side of the second rotor 13 .
  • the weight adjustment assembly 20 can be provided separately on the circumferential side of the first rotor 11 or the second rotor 13 , or can be provided on the circumferential side of the first rotor 11 and the second rotor 13 at the same time.
  • the weight adjustment assembly 20 includes a fixing element 21 provided on the first rotor 11 and an adjusting element connected to the fixing element 21 .
  • the fixing element 21 may be a hole or a protruding pillar for fixing the weight adjustment block 22 .
  • the weight adjustment block 22 may be a standard nut, for example. During the dynamic balance adjustment process, the weight of the first rotor 11 can be increased or decreased by adding or removing the weight adjustment block 22 .
  • the remaining unbalance of the rotating unit composed of the first shaft 141 and the first rotor 11 can be adjusted by increasing or decreasing the weight, wherein the remaining unbalance can be adjusted by dynamic balancing.
  • the unit is mg*mm, until the remaining unbalance reaches the preset dynamic balance standard, such as the grade standards specified in GB/T 9239.1 such as G2.5 and G1.0.
  • the maximum remaining unbalance of the rotating object at the highest speed can be calculated according to the relevant test standards in GB/T 9239.1 and the corresponding preset dynamic balance level standards.
  • the remaining unbalance of the rotation unit composed of the second shaft body 142 and the second rotor 13 can be determined by referring to the above method, which will not be repeated here.
  • adjustment when performing dynamic balance adjustment through the weight-increasing method, adjustment can be made by adding an adjustment block on the fixed component 21 or other methods.
  • dynamic balance adjustment through the weight reduction method in addition to adjusting the number of weight adjustment blocks 22, it can also be adjusted by opening holes in the first rotor 11 and the second rotor 13.
  • the specific weight adjustment method is in the embodiment of this application. No specific restrictions are made.
  • the plurality of fixing elements 21 form concentric rings; and in any direction In the circular ring formed by the fixing elements 21 , a plurality of the fixing elements 21 are evenly arranged along the circumferential direction of the first rotor 11 .
  • the structure of the weight adjustment assembly of the second rotor 13 may be referred to the weight adjustment assembly of the first rotor 11 , and will not be described repeatedly here.
  • Figures 6 to 7 are schematic diagrams of the assembly process of the disk motor 10 of the present application.
  • the assembly process of the disk motor 10 of the embodiment of the present application will be explained below with reference to Figures 6 and 7.
  • the disk motor 10 of the embodiment of the present application The assembly process of the type motor 10 includes the following steps:
  • Step S11 Referring to Figure 6, the first rotor 11 is sleeved and fixed on the first shaft body 141, and dynamic balance adjustment is performed on the fixedly connected first shaft body 141 and the first rotor 11;
  • Step S12 Referring to Figure 6, the second rotor 13 is sleeved and fixed on the second shaft body 142, and dynamic balance adjustment is performed on the fixedly connected second shaft body 142 and the second rotor 13;
  • Step S13 referring to FIG. 7, the stator 12 is sleeved and fixed on the first shaft body 141 or the second shaft body 142, and then the first shaft body 141 and the second shaft body 142 are fixedly connected.
  • the dynamic balance adjustment of the rotating unit composed of the first shaft 141 and the first rotor 11 includes the following steps: adjusting the weight adjustment assembly to rotate the first shaft 141 and the first rotor 11 at a preset rotation speed.
  • the deviation between the unit's center of mass and the center of rotation meets the preset dynamic balance grade standards, such as the grade standards specified in GB/T 9239.1 G2.5, G1.0, etc.
  • the dynamic balance adjustment of the rotating unit composed of the second shaft 142 and the second rotor 13 includes the following steps: adjusting the weight adjustment assembly to make the second shaft 142 and the second rotor 13
  • the deviation between the center of mass of the rotating unit and the center of rotation meets the preset dynamic balance grade standards, such as the grade standards specified in GB/T 9239.1 G2.5, G1.0, etc.
  • the disc motor 10 in the embodiment of the present application divides the rotating shaft 14 into a first shaft body 141 and a second shaft body 142 that are detachably connected. Dynamic balance adjustment is performed on each rotor system before assembly. After the dynamic balance adjustment of the rotor system is completed, the disc motor 10 is assembled. When adjusting the dynamic balance of a single rotor system, the dynamic balance index of the single rotor system can be strictly controlled so that the final overall dynamic balance of the disc motor 10 can meet the usage requirements. During the assembly process, the whole machine's geodynamic balancing only introduces an assembly error.
  • the assembly method of the disk motor 10 in the embodiment of the present application can not only ensure the convenience of assembly, but also significantly improve the quality of the entire motor balance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

本申请提供了一种盘式电机及其组装方法、动力总成和车辆。该盘式电机包括转轴和套设于转轴的第一转子、定子和第二转子,第一转子、定子和第二转子依次且间隔设置,定子与转轴可转动连接,其中,转轴包括可拆卸连接的第一轴体和第二轴体,第一轴体与第一转子固定连接,第二轴体与第二转子固定连接。在组装前,第一转子和第一轴体做动平衡调整,第二转子和第二轴体做动平衡调整,之后再将第一轴体和第二轴体连接,并安装定子,以提高动平衡调整的准确性,并提高组装的便利性。

Description

盘式电机及其组装方法、动力总成和车辆
相关申请的交叉引用
本申请要求在2022年06月30日提交中国专利局、申请号为202210770799.7、申请名称为“盘式电机及其组装方法、动力总成和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机领域,具体涉及一种盘式电机及其组装方法、动力总成和车辆。
背景技术
电动汽车驱动电机的发展方向之一是多电机化,其最终期望的形态是实现每个车轮独立驱动,以此获得最好的动力性与操控性。为此,实现电机的小型化发展已成为行业发展趋势。在一定的功率要求下,将电机做小的方式有两种,一是高速化,二是高转矩密度设计。目前的电机设计已接近机械系统(主要是齿轴)的极限(如20000rpm),而高转矩密度设计则仍有较大空间。轴向磁通电机,也称为盘式电机,其为通过电机轴向气隙面形成闭合磁通回路的电机,具有较高的转矩密度。现有盘式电机通常包括单定子单转子、双定子单转子、双转子单定子三种结构,而双转子单定子可以实现上述三者中的最高的转矩密度,因此双转子单定子电机也逐渐成为研究的热点。
但是,现有的双转子单定子结构的电子,在组装前需要对其转子系统(转子+转轴)进行动平衡调节,目前一种方法是利用假轴对转子做动平衡调整,然后再进行定子、转子和转轴的组装,由于假轴装配与实际转轴装配存在偏差,这就造成整个转子系统的质心与旋转中心的偏差受限于当前工艺能力的固有偏差(约6-9μm左右),参照国标GB9239.1-2006对电机动平衡的要求,最高转速950rpm以上的电动机需满足G2.5的动平衡要求,以10000rpm为例,其质心偏差限制约在2.5μm以内,而考虑到上述的固有偏差后,通过假轴进行动平衡的方案理论上无法达到G2.5水平的动平衡要求。另一种动平衡调整方法是先对两个转子的系统做动平衡调整,然后拆卸其中一个转子,安装定子后再进行转子的安装,该方法装配步骤较多,不利于生产效率的提高,且反复拆装过盈的部件容易造成整机的可靠性下降。由此,现有的动平衡调整方法还不能兼顾准确进行动平衡调整和生产便捷的问题。
发明内容
本申请提供了一种盘式电机及其组装方法、动力总成和车辆,以提高动平衡调整的准确性,并提高组装的便利性。
第一方面,本申请提供一种盘式电机,该盘式电机包括转轴和套设于转轴的第一转子、定子和第二转子,第一转子、定子和第二转子依次且间隔设置,定子与转轴可转动连接,其中,转轴包括可拆卸连接的第一轴体和第二轴体,第一轴体与第一转子固定连接,第二轴体与第二转子固定连接。
本申请的盘式电机,其转轴可分为第一轴体和第二轴体,其中,第一轴体与第一转子连接,第二轴体与第二转子连接,在组装前,第一转子和第一轴体做动平衡调整,第二转子和第二轴体做动平衡调整,之后再将第一轴体和第二轴体连接,并安装定子。在动平衡调整过程中,第一转子和第二转子均使用真轴进行调整,进而可避免利用假轴造成的准确度差的问题。在动平衡调整的过程中,可通过将单体转子系统(如第一转子和第一轴体组成的转子系统或第二转子和第二轴体组成的转子系统)的动平衡指标控制在整个盘式电机的动平衡指标之内(即加严单盘动平衡要求),以使最终的盘式电机的动平衡指标满足要求。利用该结构的盘式电机,在组装时,无需再对经过动平衡调整后的转子进行拆装,整个电机一次性完成装配,可保证装配的便捷性和可靠性。
在一种可选的实现方式中,第一轴体与第二轴体之间的连接方式包括但不限于过盈配合连接、键合连接、联轴器连接、销接、法兰连接等。本申请中并不限定第一轴体和第二轴体的具体连接方式,只要能实现两者的连接即可。
在一种可选的实现方式中,第一转子垂直于转轴且远离定子的一侧表面以及第二转子垂直于所述转轴且的远离定子的一侧表面中的至少一面设有调重组件。在一种可选的实现方式中,第一转子的圆周面以及第二转子的圆周面中的至少一面可设置调重组件。
其中,在一种可选的实现方式中,调重组件包括设于第一转子以及第二转子的固定元件以及与固定元件配合连接的调重块。作为示例性说明,固定元件包括开孔或凸柱。
在一种可选的实现方式中,固定元件设于第一转子垂直于转轴且远离定子的一侧表面,固定元件为多个,沿第一转子的径向方向,多个固定元件形成同心圆环。示例性地,在任一由固定元件形成的圆环中,多个固定元件沿第一转子的周向均匀布置。固定元件设于第二转子垂直于转轴且远离定子的一侧表面,固定元件为多个,沿第二转子的径向方向,多个固定元件形成同心圆环。示例性地,在任一由固定元件形成的圆环中,多个固定元件沿第二转子的周向均匀布置。
第二方面,本申请提供一种上述盘式电机的组装方法,该组装方法包括以下步骤:
对固定连接的第一轴体和第一转子进行动平衡调整,对固定连接的第二轴体和第二转子进行动平衡调整;
将定子套设在第一轴体以及第二轴体中的至少一个轴体,并固定连接第一轴体和第二轴体。
在一种可选的实现方式中,对固定连接的第一轴体和第一转子进行动平衡调整,包括:调整调重组件,在预设转速下,使第一轴体和第一转子组成的转动单元的质心与旋转中心的偏差满足预设动平衡等级标准。
在一种可选的实现方式中,对固定连接的第二轴体和第二转子进行动平衡调整,包括:调整调重组件,在预设转速下,使第二轴体和第二转子组成的转动单元的质心与旋转中心的偏差满足预设动平衡等级标准。
第三方面,本申请还提供一种动力总成,该动力总成可包括传动机构和本申请第一方面的盘式电机,其中,传动机构与盘式电机连接。盘式电机可带动传动机构运动。
第四方面,本申请还提供一种车辆,该车辆包括本申请的盘式电机。
上述第二方面至第四方面可以达到的技术效果,可以参照上述第一方面中的相应效果描述,这里不再重复赘述。
附图说明
图1为一种实施例的盘式电机的结构示意图;
图2为第一轴体和第二轴体的键合连接的结构示意图;
图3为第一轴体和第二轴体另一种连接方式示意图;
图4为第一轴体和第二轴体的另一种连接方式示意图;
图5为第一转子的远离定子一侧表面的结构示意图;
图6至图7为本申请盘式电机的组装过程示意图。
附图标记:
10-盘式电机;11-第一转子;12-定子;13-第二转子;14-转轴;141-第一轴体;
142-第二轴体;143-定位凸起;144-定位台阶;145-第一键槽;146-第二键槽;
147-连接键;148-联轴器;149-第一法兰;150-第二法兰;
15-轴承;16-磁体;20-调重组件;21-固定元件;22-调重块。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为方便理解,先对本申请所提及的动平衡做解释说明。动平衡为转子动力学的一个研究内容,指确定转子转动时产生的不平衡量(离心力和离心力偶)的位置和大小并加以消除的操作。不平衡量会引起转子的横向振动,并使转子受到不必要的动载荷,这不利于转子正常运转。因此,电机在组装前需要对转子进行动平衡调整,以使其在转动过程中的质心和旋转中心近可能的接近。
目前针对多转子的盘式电机(例如双转子单定子的盘式电机)并没有成熟的动平衡调整方案,多为各转子利用假轴单独进行动平衡后再整体组装,该调整方案并没有考虑假轴对动平衡的影响,以致会降低盘式电机的轴承可靠性并可能引入超量振动(即电机的振动幅度超出预设值)问题。
针对上述问题,本申请提供一种盘式电机。图1为一种实施例的盘式电机10的结构示意图。如图1所示,在一种实施例中,该盘式电机10包括转轴14和设于所述转轴14的第一转子11、定子12和第二转子13,其中,所述第一转子11和所述第二转子13分别设置在定子12的两侧,且第一转子11和第二转子13与定子12之间分别留有间隙。第一 转子11、定子12和第二转子13均可为盘状结构,三者的径向尺寸可相同。
如图1所示,转轴14可包括第一轴体141和第二轴体142,其中,第一轴体141和第二轴体142为可拆卸连接结构,作为示例性说明,第一轴体141和第二轴体142的连接方式可为过盈配合连接、键合连接、联轴器连接、销接或法兰连接中的一种。其中,键合连接包括但不限于平键连接、花键连接或楔形键连接等。以下将结合具体附图对各种第一轴体141和第二轴体142的各种连接方式做详细说明。
以图1为例,第一轴体141和第二轴体142之间可通过过盈配合连接。其中,第一轴体141和第二轴体142均可为空心轴体,即第一轴体141的内部可设置沿轴向延伸的通孔,第二轴体142内也可设置沿轴向延伸的通孔,第一轴体141的外周面可部分插设于第二轴体142的通孔内。第一轴体141部分插设于第二轴体142后,第一轴体141的圆周面与第二轴体142的内周面抵接,两者之间产生一定的摩擦力,以形成过盈配合连接。
继续参照图1,在一种可选的实施例中,第一轴体141的外周面可设置定位凸起143,定位凸起143可为沿第一轴体141的外周面设置的环形凸起。类似地,第二轴体142的内周面可设置定位台阶144,定位台阶144可为设于第二轴体142内的环形台阶面。其中,第二轴体142内的通孔可由两个内径不同的子孔连通形成,以此,可在两个连通子孔之间形定位台阶。通过设置定位凸起143和定位台阶144可实现第一轴体141和第二轴体142之间的定位连接的目的,使其满足装配的尺寸要求。
结合图2对第一轴体141和第二轴体142的另一种连接方式做解释说明。图2为第一轴体141和第二轴体142的键合连接的结构示意图,第一轴体141和第二轴体142之间除可通过过盈配合连接外,还可通过键合连接。例如,第一轴体141的外周面可设置第一键槽145,第二轴体142的外周面也设有与第一键槽145相配合的第二键槽146,其中,第一键槽145可为沉槽,第二键槽146可为通槽,在固定第一轴体141和第二轴体142时,可将第一键槽145和第二键槽146对位后,在第一键槽145和第二键槽146内同时插入连接键147,利用连接键147固定连接第一轴体141和第二轴体142,以实现键合连接。其中,连接键147包括但不限于平键、花键或楔形键。
图3为第一轴体141和第二轴体142另一种连接方式示意图。如图3所示,第一轴体141和第二轴体142可通过联轴器148实现固定连接。
图4为第一轴体141和第二轴体142的另一种连接方式示意图,如图4所示,第一轴体141靠近第二轴体142的端部可设置第一法兰149,第二轴体142靠近第一轴体141的端部可设置第二法兰150,第一轴体141和第二轴体142之间可通过第一法兰149和第二法兰150实现固定连接。
以上第一轴体141和第二轴体142的连接方式仅为示例性说明,本申请并不对第一轴体141和第二轴体142的具体连接方式做出限定,只要能实现两者的固定连接即可。
继续参照图1,以下将对转轴、定子、第一转子和第二转子之间的连接方式做解释说明。
其中,参照图1,第一轴体141可与第一转子11固定连接,第一轴体141与第一转子11的连接方式可为过盈配合连接或键合连接。第二轴体142可与第二转子13固定连接,第二轴体142与第二转子13的连接方式可为过盈配合连接或键合连接。由此,第一轴体141和第二轴体142固定连接组成转轴14后,第一转子11和转轴14之间在转轴14的周向和轴向均无相对运动,第二转子13和转轴14之间在转轴14的周向和轴向均无相对运 动。在盘式电机10工作过程中,当第一转子11和第二转子13发生转动时,可带动转轴14一起转动,以实现转轴14、第一转子11以及第二转子13的同步转动。
继续参照图1,定子12和转轴14之间转动连接。其中,定子12和转轴14之间可设置轴承15,以实现定子12与转轴14的转动连接。需要说明的是,盘式电机10除可包括上述转轴14、第一转子11、第二转子13和定子12外,还可包括用于封装上述部件的壳体(图中未示出),其中,定子12可与壳体固定连接,以增加定子12连接的稳定度。
继续参照图1,本申请实施例中,第一转子11面向定子12的一侧表面以及第二转子13面向定子12的一侧表面均可设置磁体16。其中,第一转子11面向定子12的一侧表面以及第二转子13的面向定子12的一侧表面均可设置用于容纳磁体16的凹槽,以安装磁体16。磁体16的形状可为环形,也可为其他形状,具体的形状以及尺寸可根据盘式电机10的具体性能参数进行设定。
图5为一种实施例的第一转子11的远离定子12一侧的表面结构示意图,如图1和图5所示,第一转子11的垂直于转轴14且背离定子12的一侧表面,即背离所述磁体16的一侧表面可设置调重组件20,第二转子13的垂直于转轴14且背离定子12的一侧也可设置调重组件。其中,调重组件20可单独设置第一转子11上,也可单独设置第二转子13上,还可同时设置在第一转子11和第二转子13上。为方便调节,第一转子11和第二转子13上可均设置调重组件20。
其中,调重组件20除可设置在第一转子11的与转轴14垂直的侧面外,还可设置于第一转子11的周侧面,同样也可实现相应的调节作用。类似地,第二转子13的周侧面也可设置调重组件20。调重组件20可单独设置第一转子11的周侧面,也可单独设置第二转子13的周侧面,还可同时设置在第一转子11的周侧面和第二转子13周侧面。
以第一转子11为例,如图5所示,在一种实施例中,所述调重组件20包括设于所述第一转子11的固定元件21以及所述固定元件21配合连接的调重块22。其中,固定元件21可为开孔或凸柱,以用于固定调重块22。调重块22例如可为标准螺母。在动平衡调整过程中,可通过添减调重块22实现第一转子11的增重和减重。结合图1和图5,在进行动平衡调整过程中,可通过增重或减重调整第一轴体141和第一转子11组成的转动单元的剩余不平衡量,其中,剩余不平衡量可以通过动平衡检测设备测得,其单位为mg*mm,直到剩余不平衡量达到预设动平衡标准,例如GB/T 9239.1中G2.5、G1.0等规定的等级标准。其中,可根据GB/T 9239.1中相关测试标准,根据相应的预设动平衡等级标准计算出转动物体在最高转速下的最大剩余不平衡量。相应地,第二轴体142和第二转子13组成的转动单元的剩余不平衡量,可参照上述方式进行,在此不再重复赘述。
其中,通过增重法进行动平衡调整时,可通过在固定元件21上增设调整块等方式进行调整。通过减重法进行动平衡调整时,除可调整调重块22的数量外,还可通过在第一转子11和第二转子13上开设孔洞的方式进行调整,具体调重方式本申请实施例不做具体的限定。
继续参照图5,所述第一转子11中,所述固定元件21为多个,沿所述第一转子11的径向方向,多个所述固定元件21形成同心圆环;且在任一由所述固定元件21形成的圆环中,多个所述固定元件21沿所述第一转子11的周向均匀布置。
其中,第二转子13的调重组件的结构可参照第一转子11的调重组件,在此不做重复描述。
图6至图7为本申请盘式电机10的组装过程示意图,以下结合图6和图7对本申请实施例的盘式电机10的组装过程做解释说明,示例性地,本申请实施例的盘式电机10的组装过程包括如下步骤:
步骤S11、参照图6,将第一转子11套设固定在第一轴体141,并对固定连接的第一轴体141和第一转子11进行动平衡调整;
步骤S12、参照图6,将第二转子13套设固定在第二轴体142,并对固定连接的第二轴体142和第二转子13进行动平衡调整;
步骤S13、参照图7,将定子12套设固定在第一轴体141或第二轴体142,然后进行第一轴体141和第二轴体142的固定连接。
其中,上述步骤S11至S13之间的先后顺序仅为示例性说明,其先后顺序可根据实际需要进行调整,在此不做具体限定。
其中,第一轴体141和第一转子11组成的转动单元的动平衡调整,包括如下步骤:调整调重组件,在预设转速下,使第一轴体141和第一转子11组成的转动单元的质心与旋转中心的偏差满足预设动平衡等级标准,例如GB/T 9239.1中G2.5、G1.0等规定的等级标准。
类似地,第二轴体142和第二转子13组成的转动单元的动平衡调整,包括如下步骤:调整调重组件,在预设转速下,使第二轴体142和第二转子13组成的转动单元的质心与旋转中心的偏差满足预设动平衡等级标准,例如GB/T 9239.1中G2.5、G1.0等规定的等级标准。
本申请实施例的盘式电机10,通过将转轴14分为可拆卸连接的第一轴体141和第二轴体142,在组装前先对每个转子系统做动平衡调节,在对每个转子系统做完动平衡调整后再进行盘式电机10的组装。在对单个转子系统做动平衡调节时,可通过严格控制单个转子系统的动平衡指标,再使得最终的盘式电机10的整体动平衡达到使用要求。在装配过程中,整机地动平衡仅引入一次装配误差,此误差影响可通过两个转子系统各自的剩余不平衡量、装配尺寸误差(如过盈量、同轴度等参数)消除,进而实现对整机剩余不平衡量的有效控制。另外,本申请实施例的盘式电机10的组装方法中,在保证了装配便捷性的同时,还可以显著提升整机动平衡的品质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种盘式电机,其特征在于,包括转轴和套设于所述转轴的第一转子、定子和第二转子,所述第一转子、所述定子和所述第二转子依次且间隔设置,所述定子与所述转轴可转动连接,其中,所述转轴包括可拆卸连接的第一轴体和第二轴体,所述第一轴体与所述第一转子固定连接,所述第二轴体与所述第二转子固定连接。
  2. 根据权利要求1所述的盘式电机,其特征在于,所述第一轴体与所述第二轴体之间的连接方式包括过盈配合连接、键合连接、联轴器连接、销接或法兰连接。
  3. 根据权利要求1或2所述的盘式电机,其特征在于,所述第一转子垂直于所述转轴且远离所述定子的一侧表面以及所述第二转子垂直于所述转轴且远离所述定子的一侧表面中的至少一面设有调重组件。
  4. 根据权利要求1或2所述的盘式电机,其特征在于,所述第一转子的圆周面以及所述第二转子的圆周面中的至少一面设有调重组件。
  5. 根据权利要求3或4所述的盘式电机,其特征在于,所述调重组件包括设于所述第一转子和/或所述第二转子的固定元件以及与所述固定元件配合连接的调重块。
  6. 根据权利要求5所述的盘式电机,其特征在于,所述固定元件设于所述第一转子垂直于所述转轴且远离所述定子的一侧表面,所述固定元件为多个,沿所述第一转子的径向方向,多个所述固定元件形成同心圆环。
  7. 根据权利要求6所述的盘式电机,其特征在于,在任一由所述固定元件形成的圆环中,多个所述固定元件沿所述第一转子的周向均匀布置。
  8. 根据权利要求5所述的盘式电机,其特征在于,所述固定元件设于所述第二转子垂直于所述转轴且远离所述定子的一侧表面,所述固定元件为多个,沿所述第二转子的径向方向,多个所述固定元件形成同心圆环。
  9. 根据权利要求8所述的盘式电机,其特征在于,在任一由所述固定元件形成的圆环中,多个所述固定元件沿所述第二转子的周向均匀布置。
  10. 根据权利要求5-9任一项所述的盘式电机,其特征在于,所述固定元件包括开孔或凸柱。
  11. 一种如权利要求1-10任一项所述的盘式电机的组装方法,其特征在于,包括:
    对固定连接的第一轴体和第一转子进行动平衡调整,对固定连接的第二轴体和第二转子进行动平衡调整;
    将所述定子套设在所述第一轴体和所述第二轴体中的至少一个轴体,并固定连接所述第一轴体和所述第二轴体。
  12. 根据权利要求11所述的组装方法,其特征在于,所述对固定连接的第一轴体和第一转子进行动平衡调整,包括:
    调整调重组件,在预设转速下,使所述第一轴体和所述第一转子组成的转动单元的质心与旋转中心的偏差满足预设动平衡等级标准。
  13. 根据权利要求11所述的组装方法,其特征在于,所述对固定连接的第二轴体和第二转子进行动平衡调整,包括:
    调整调重组件,在预设转速下,使所述第二轴体和所述第二转子组成的转动单元的质心与旋转中心的偏差满足预设动平衡等级标准。
  14. 一种动力总成,其特征在于,包括传动机构和与所述传动机构连接的如权利要求1-10任一项所述的盘式电机。
  15. 一种车辆,其特征在于,包括车架和安装于所述车架的驱动系统,所述驱动系统包括车轮和如权利要求1-10任一项所述的盘式电机,所述盘式驱动电机用于驱动所述车轮转动。
PCT/CN2023/084013 2022-06-30 2023-03-27 盘式电机及其组装方法、动力总成和车辆 WO2024001343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210770799.7 2022-06-30
CN202210770799.7A CN115276352A (zh) 2022-06-30 2022-06-30 盘式电机及其组装方法、动力总成和车辆

Publications (1)

Publication Number Publication Date
WO2024001343A1 true WO2024001343A1 (zh) 2024-01-04

Family

ID=83763098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084013 WO2024001343A1 (zh) 2022-06-30 2023-03-27 盘式电机及其组装方法、动力总成和车辆

Country Status (2)

Country Link
CN (1) CN115276352A (zh)
WO (1) WO2024001343A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276352A (zh) * 2022-06-30 2022-11-01 华为数字能源技术有限公司 盘式电机及其组装方法、动力总成和车辆
DE102022212360A1 (de) * 2022-11-18 2024-05-23 Mahle International Gmbh Verfahren zum Herstellen einer Rotorwelle
CN116191732B (zh) * 2023-04-21 2023-08-29 小米汽车科技有限公司 轴向磁通电机及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201617568D0 (en) * 2015-10-16 2016-11-30 Yasa Motors Limited Axial flux machine
CN209659124U (zh) * 2018-12-19 2019-11-19 仪坤动力科技(上海)有限公司 三定子双转子盘式电机
CN214014092U (zh) * 2021-01-11 2021-08-20 浙江盘毂动力科技有限公司 一种转子的动平衡结构及盘式电机
CN115276352A (zh) * 2022-06-30 2022-11-01 华为数字能源技术有限公司 盘式电机及其组装方法、动力总成和车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201617568D0 (en) * 2015-10-16 2016-11-30 Yasa Motors Limited Axial flux machine
CN209659124U (zh) * 2018-12-19 2019-11-19 仪坤动力科技(上海)有限公司 三定子双转子盘式电机
CN214014092U (zh) * 2021-01-11 2021-08-20 浙江盘毂动力科技有限公司 一种转子的动平衡结构及盘式电机
CN115276352A (zh) * 2022-06-30 2022-11-01 华为数字能源技术有限公司 盘式电机及其组装方法、动力总成和车辆

Also Published As

Publication number Publication date
CN115276352A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024001343A1 (zh) 盘式电机及其组装方法、动力总成和车辆
US8723383B2 (en) Interior rotor for a rotary electrical machine and method of assembling it
JP4195097B2 (ja) エレベータ巻上げ機およびエレベータ
US9948161B2 (en) Rotor assembly for an electric machine and method for producing a rotor assembly
KR102318963B1 (ko) 비상시에 운전 가능한 보조모터를 가진 전기차용 다중 인휠 모터
TWI488412B (zh) 藉偏置外轉式電機驅動之外迴轉機構
JP2019086150A (ja) 動力源を有する減速機
CN212012387U (zh) 一种紧凑式行星齿轮差速减速电机
CN207134939U (zh) 共轴电机及无人飞行器
JP2000350416A (ja) 片持ち軸回転電動機及びその輸送時保護装置
CN110707867B (zh) 飞轮电池
CN114337159A (zh) 一种可穿轴安装的电机式在线自动平衡装置
JPH11353788A (ja) 磁気ディスク装置のバランス修正機構
CN218997795U (zh) 电机降噪转子结构及电机
CN114571362B (zh) 一种应用于晶圆减薄抛光的永磁传动式气浮主轴
CN218997794U (zh) 电机减振转子结构及电机
JP2020167903A (ja) 回転電機及びこれを用いた推進装置
CN219779878U (zh) 一种外转子电机
CN219322207U (zh) 电机组件及具有其的车辆
CN218416153U (zh) 双定子单转子盘式永磁电机
CN220896378U (zh) 一种电机转子结构
US20240030755A1 (en) claw-pole magnetic levitation torque motor
JP2024513543A (ja) 磁気歯車システム、方法、及び装置
JPH0729719Y2 (ja) 空気軸受モータ
CN219605833U (zh) 五自由度混合磁悬浮轴承、电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829534

Country of ref document: EP

Kind code of ref document: A1