WO2024001303A1 - 装配式钢结构模块建筑的柱梁生成方法、装置及设备 - Google Patents

装配式钢结构模块建筑的柱梁生成方法、装置及设备 Download PDF

Info

Publication number
WO2024001303A1
WO2024001303A1 PCT/CN2023/081304 CN2023081304W WO2024001303A1 WO 2024001303 A1 WO2024001303 A1 WO 2024001303A1 CN 2023081304 W CN2023081304 W CN 2023081304W WO 2024001303 A1 WO2024001303 A1 WO 2024001303A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
contour line
corner point
structural
column
Prior art date
Application number
PCT/CN2023/081304
Other languages
English (en)
French (fr)
Inventor
王彦文
萨纳库马尔萨努布
王鼎明
罗昆宇
Original Assignee
深圳小库科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳小库科技有限公司 filed Critical 深圳小库科技有限公司
Publication of WO2024001303A1 publication Critical patent/WO2024001303A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes

Definitions

  • the present disclosure relates to the field of computer technology, and more specifically to methods, devices and equipment for generating columns and beams of prefabricated steel structure module buildings.
  • the present disclosure relates to a column and beam generation method for a prefabricated steel structure module building, which method includes:
  • the relevant parameters are used to match the contour lines of the building's box units with the building's apartment unit outlines, filter out the target box unit outlines within the apartment unit outlines, and perform biasing on the target box unit outlines. Move to get the offset contour;
  • the present disclosure provides a column and beam generating device for a prefabricated steel structure module building.
  • the column and beam generating device for a prefabricated steel structure module building includes:
  • Matching module configured to use the relevant parameters to match the outline of the box unit of the building with the outline of the apartment unit of the building, filter out the outline of the target box unit within the outline of the apartment unit, and match the target box
  • the element outline is offset to obtain the offset outline
  • Generating module configured to generate a cross-sectional contour line of the column-beam structure of the building based on the target box unit contour line and the offset contour line, and perform a stretching operation on the cross-sectional contour line of the column-beam structure of the building to generate the building.
  • 3D model of a column and beam structure configured to generate a cross-sectional contour line of the column-beam structure of the building based on the target box unit contour line and the offset contour line.
  • the fourth aspect relates to a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the method for generating columns and beams of a prefabricated steel structure module building according to the present disclosure are implemented.
  • the present disclosure can automatically generate a module including boxes based on relevant parameters such as the arrangement of household units, the size of the box units, and the location of the corridors.
  • the three-dimensional model of the structural beams, structural columns and corridor structural beams of the unit unit automatically generates the three-dimensional model of the column and beam structure of the prefabricated steel structure module building.
  • Figure 1 is a flow chart schematic diagram of a preferred embodiment of a method for generating columns and beams in a prefabricated steel structure module building according to the present disclosure
  • Figure 2 is a schematic diagram of the outline of a unit of the present disclosure
  • Figure 3 is a schematic diagram of the outline of the box unit of the present disclosure within the outline of the apartment unit;
  • Figure 4 is a schematic diagram of a structural column of the target box unit of the present disclosure.
  • Figure 5 is a schematic diagram of each corner point of the cross-sectional outline of the structural column of the target box unit of the present disclosure
  • Figure 6 is a schematic diagram of the structural beam of the target box unit of the present disclosure.
  • Figure 7 is a schematic diagram of each corner point of the cross-sectional outline of the structural beam of the target box unit of the present disclosure.
  • Figure 8 is a schematic diagram of the corridor structural beam of the target box unit of the present disclosure.
  • Figure 9 is a schematic diagram of each corner point of the cross-sectional outline of the corridor structural beam of the target box unit of the present disclosure.
  • Figure 10 is a schematic diagram of the effect of the present disclosure on generating a column-beam structure for a C-shaped slab building
  • Figure 11 is a schematic diagram of the effect of the present disclosure on generating a column-beam structure for a rectangular slab building
  • Figure 12 is a module schematic diagram of a preferred embodiment of a column and beam generating device for a prefabricated steel structure modular building according to the present disclosure.
  • FIG. 13 is a schematic diagram of a preferred embodiment of the electronic device of the present disclosure.
  • FIG. 1 is a schematic flowchart of a method for generating columns and beams of a prefabricated steel structure module building according to an embodiment of the present disclosure.
  • the method may be performed by an electronic device, which may be implemented by software and/or hardware.
  • Column and beam generation methods for prefabricated steel structure module buildings include:
  • Step S1 Obtain the relevant parameters of the building where the column-beam structure is to be generated
  • Step S2 Use the relevant parameters to match the contour lines of the building's box units with the building's apartment unit outlines, screen out the target box unit outlines within the apartment unit outlines, and compare the target box unit outlines Lines are offset to obtain offset contours;
  • Step S3 Generate the cross-sectional contour line of the column-beam structure of the building based on the target box unit contour line and the offset contour line, and perform a stretching operation on the cross-sectional contour line of the column-beam structure of the building to generate the columns of the building. 3D model of the beam structure.
  • the prefabricated steel structure module building is a prefabricated building that is mainly assembled at the construction site using steel structure integrated module units.
  • the prefabricated steel structure module building can be assembled from multiple pre-made box units. Stacked, a box unit refers to a predetermined box. Different house types may be composed of different numbers of box units. For example, a single-room house type may be composed of one box, and a one-bedroom house type may be composed of two boxes. , a two-bedroom apartment can be composed of three boxes.
  • the relevant parameters include the apartment unit outline (unit floor outline), the first floor lobby floor outline, the box unit floor outline, the corridor floor outline, the number of buildings, the maximum number of floors of the building, Building height and corridor width.
  • apartment units include single-room apartments, one-bedroom apartments, two-bedroom apartments, etc.
  • the floor outline of the unit, the floor of the box unit, the floor of the first floor lobby, and the floor of the corridor are all imported in the format of a data tree (Data Tree), including the number of buildings, the maximum number of floors of the building, and the height of the building.
  • corridor width are all input in the format of numbers (integers or decimals).
  • the numbering format of data branches is ⁇ number 1; number 2 ⁇ , for example, ⁇ 1; 3 ⁇ , where number 1 represents the building number, number 2 represents the floor number, and the number starts from 0.
  • the contour line in branch ⁇ 0, 3 ⁇ represents the contour line of the room on the fourth floor of the first building.
  • each structural column and beam component is output according to the house type, that is, according to the single-room house type column and beam, the one-bedroom house type column and beam, and the two-bedroom house type column and beam.
  • the numbering format of the data branches is ⁇ No. 1; No. 2; No. 3 ⁇ .
  • ⁇ 1; 3; 2 ⁇ , No. 1 represents the building number.
  • number 2 represents the floor number
  • number 3 represents the number of the apartment type on this floor, and the number starts from 0.
  • the outline in branch ⁇ 0, 3, 2 ⁇ represents the structural member of the third one-bedroom unit on the fourth floor of the first building, as shown in Figure 2 .
  • different apartment types may be composed of different numbers of box units.
  • a single-room apartment may be composed of one box
  • a one-bedroom apartment may be composed of two boxes
  • a two-bedroom apartment may be composed of three units.
  • the outline of the box unit and the outline of each house type unit in the relevant parameters are input separately through the data tree, they are not directly related to each other. It is impossible to directly determine which unit a certain box outline belongs to, and the box unit outline is in the house type.
  • the three-dimensional model of the column and beam structure can only be generated within the unit outline. Therefore, in order to distinguish the house types when outputting the results, it is necessary to match the box outline and the house type outline before generating the column and beam components, that is, to filter out the house types.
  • the matching of the contour lines can be realized through a function, by judging whether the four points of a certain box contour line are within the range of a certain house type contour line, and then judging whether the box unit contour line belongs to This apartment type is used to complete the screening and matching, as shown in Figure 3, which is a schematic diagram in which the outline of the box unit of the present disclosure is within the outline of the apartment unit.
  • Figure 3 is a schematic diagram in which the outline of the box unit of the present disclosure is within the outline of the apartment unit.
  • the final Boolean value oddNodes is 1 (true)
  • the closest point to the input point on each edge of the contour line is calculated, and then the distance from each nearest point to the input point is calculated. distance, and take the minimum value. If the minimum value is less than the specified accuracy range (1e-10), it means that the input point is within the outline range of the apartment unit, and a Boolean value of 1 (true) is output. If the final Boolean value oddNodes is 0 (false ), indicating that the input point is not within the outline range of the apartment unit, and a Boolean value of 0 (false) is output.
  • the target box unit outlines within the apartment unit outlines can be accurately screened out, and then the target box unit outlines are offset to obtain the offset outlines.
  • the target box unit outlines are The line is offset inward by 0.15m, and the offset distance is the default length and width of the structural column cross-section. This value can be changed according to actual design requirements. Offset contours are used to generate a 3D model of the building's post-and-beam structure.
  • the three-dimensional model of the column-beam structure of the building includes a three-dimensional structural column model of the target box unit, a three-dimensional structural beam model of the target box unit, and a three-dimensional structural beam model of the corridor of the target box unit.
  • the cross-sectional outline of the building's column-beam structure can be generated. Extruding the cross-section outline of the building's column-beam structure can generate a three-dimensional model of the building's column-beam structure, where , the path direction of the structural columns of the target box unit, the path direction of the structural beams of the target box unit and the path direction of the corridor structural beams are all vertical upward.
  • generating a column-beam structural cross-sectional outline of the building based on the target box unit outline and the offset outline includes:
  • each corner point of the corridor structural beam cross-sectional outline of the target box unit is determined, and each corner point is connected to generate the corridor structural beam cross-sectional outline.
  • the offset contour line is obtained by shifting the target box unit contour line inward by a preset distance.
  • the offset distance can be the length and width of the structural column cross-section, which can be determined based on the offset distance.
  • Each corner point of the structural column cross-sectional contour line and the structural beam cross-sectional contour line of the target box unit can be obtained by connecting each corner point of the structural column cross-sectional contour line, and the structural column cross-sectional contour line can be obtained by connecting the structural beam cross-section line.
  • the structural beam cross-section outline can be obtained from each corner point of the outline.
  • A1 Select a corner point of the contour line of the target box unit as the first corner point of the cross-sectional contour line of the structural column;
  • A3 Draw a perpendicular line between the third corner point and the outline of the target box unit through the third corner point, and select the two closest perpendicular points to the third corner point as the second corner point and the third corner point of the cross-sectional outline of the structural column. four corner points;
  • each target box unit includes 4 structural columns.
  • the structural column has a rectangular cross-section with four corners in total.
  • the first corner point of the structural column cross-section outline ( Corner point 1) is the starting point of an edge of the box unit outline, and then the closest point to the corner point on the offset outline is obtained. This point is the third corner point (corner point) of the structural column cross-section outline. 3), draw a perpendicular between the third corner point and the target box unit outline through the third corner point, and select the two closest perpendicular points to the third corner point as the second corner point (corner point 2) of the structural column cross-section outline and the fourth corner point (corner point 4).
  • the second corner point is the closest point to the third corner point on the box outline side 1
  • the fourth corner point is the third corner point on the box outline side 4. the closest point on the .
  • Figure 5 by connecting the first corner point, the second corner point, the third corner point and the fourth corner point of the structural column cross-sectional outline in sequence, the structural column cross-sectional outline can be obtained. Repeat the above process 4 times to generate the cross-sectional outlines of the four structural columns of the box unit. Wire.
  • each corner point of the structural beam cross-sectional contour line of the target cabinet unit is determined based on the offset contour line and the target cabinet unit contour line, and each corner point is connected to generate the Describe the cross-sectional outline of the structural beam, including:
  • steps B1-B5 until the structural beam cross-sectional outlines of the four structural beams at the bottom of the target box unit are generated. Copy the structural beam cross-sectional outlines of the bottom four structural beams and translate them in the vertical upward direction. The distance between building floors is used to obtain the structural beam cross-sectional outlines of the four structural beams at the top of the target box unit.
  • each target box unit includes 8 structural main beams.
  • the structural beam cross-section (rectangle) of the target box unit has a total of 4 corner points.
  • the first corner point (corner point 1) is an edge of the offset contour line.
  • the starting point of Corner point 2) obtain the closest point of the fourth corner point (corner point 4) on the target box unit contour line, which is the third corner point (corner point 3), and connect the structural beam cross-sections in sequence
  • the first corner point, the second corner point, the third corner point and the fourth corner point of the contour line can be used to obtain the cross-sectional contour line of the structural beam.
  • the above process can be executed 4 times to generate the 4 bottom corners of the target box unit.
  • Structural beam cross-sectional contours copy the generated cross-sectional contours of the four structural beams and translate upward in the vertical direction by the distance of the building height (height of the box unit), you can get the 4 tops of the target box unit Cross-sectional outline of a root structural beam.
  • each corner point of the cross-sectional contour line of the corridor structural beam of the target box unit is determined based on the target box unit outline and the corridor width of the building, and each corner point is connected to generate the Describe the cross-sectional outline of the corridor structural beams, including:
  • C1 Select a corner point of the contour line of the target box unit as the first corner point of the cross-sectional contour line of the corridor structural beam;
  • C2 Move the first corner point by a preset distance along the width vector direction of the target box unit contour line, and use the moved position as the second corner point of the corridor structural beam cross-sectional contour line;
  • C3 Move the second corner point by the width of the corridor along the length vector direction of the target box unit contour line, and use the moved position as the third corner point of the cross-sectional contour line of the corridor structural beam;
  • C4 Move the first corner point by the width of the corridor along the length vector direction of the target box unit outline, and use the moved position as the fourth corner point of the corridor structural beam cross-section outline;
  • C5 Connect the first corner point, the second corner point, the third corner point and the fourth corner point of the cross-sectional contour line of the corridor structural beam to obtain the cross-sectional contour line of the corridor structural beam;
  • each target box unit includes 4 corridor structural beams.
  • the cross-section (rectangular) of the corridor structural beam has a total of 4 corner points.
  • the first corner point (corner point 1) is the starting point of one side of the target box unit outline.
  • the second corner point (Corner Point 2) is a point on side 1 that is a preset distance (for example, 0.15m) away from the first corner point
  • the third corner point (Corner Point 3) is the second corner point (Corner Point 2 ) moves the distance of the corridor width along the vector.
  • the fourth corner point (corner point 4) is the distance of the first corner point (corner point 1) that moves the corridor width along the vector.
  • the vector is determined by the direction of side 4, and the starting point is side 4.
  • the starting point of the straight line segment, and the ending point is the end point of the straight line segment on side 4.
  • performing an extrusion operation on the cross-sectional outline of the post-beam structure of the building generates a three-dimensional model of the post-beam structure of the building, including:
  • the path direction of the structural columns of the target box unit, the path direction of the structural beams of the target box unit and the path direction of the corridor structural beams are all vertically upward.
  • a three-dimensional model of the structural column of the target box unit can be generated by stretching the cross-sectional outline of the structural column along the path direction of the structural column of the target box unit.
  • the stretched path direction is vertically upward. , that is, the positive direction of the Z axis of the world coordinate, and the stretching length is the floor height of the building (that is, the height of a box).
  • a three-dimensional model of the structural beam of the target box unit can be generated by stretching the cross-sectional outline of the structural beam along the path direction of the structural beam of the target box unit.
  • the stretched path direction is vertically upward. , that is, the positive direction of the Z axis of the world coordinate, and the stretching length is
  • the length and width of the cross-section of the structural beam for example 0.15m, are generated one by one to generate a three-dimensional structural beam model of each box unit, and the three-dimensional structural beam model of the building can be obtained.
  • the cross-sectional contour lines of the corridor structural beams are stretched along the path direction of the corridor structural beams of the target box unit to generate a three-dimensional model of the corridor structural beams of the target box unit.
  • the stretched path direction is vertical.
  • the method further includes:
  • the cross-sectional outline of the column-beam structure of the core tube of the building is generated according to the relevant parameters, and a stretching operation is performed on the cross-sectional outline of the column-beam structure of the core tube to generate a three-dimensional model of the post-beam structure of the core tube of the building.
  • a three-dimensional structural column and beam model of the core tube part of the building can be generated according to the design requirements.
  • the three-dimensional structural column and beam model of the core tube and the three-dimensional structural column and beam model of the above-mentioned target box unit can be generated.
  • the method of generating the three-dimensional model of the structural beam of the target box unit is the same and will not be described again here.
  • FIG. 10 it is a schematic diagram of the effect of the present disclosure on generating a column-beam structure for a C-shaped slab building.
  • the maximum number of floors of the slab building is 10.
  • FIG. 11 it is a schematic diagram of the effect of the present disclosure on generating a column-beam structure for a rectangular slab building.
  • the maximum number of floors of the slab building is 10.
  • the present disclosure can automatically generate structural beams and structures including box units based on relevant parameters such as the arrangement of household units, the size of the box units, and the location of the corridors.
  • the three-dimensional model of columns and corridor structural beams is a three-dimensional model of the column-beam structure of a prefabricated steel structure module building that is automatically generated. Users do not need to manually adjust design parameters such as different building shapes and floor heights when making large-scale changes to the design plan in the early stages of the design.
  • columns-beam structure By drawing and adjusting the column-beam structure, users can visually preview the column-beam structure frame of the entire building, which is helpful for users to preview the column-beam structure at the building level in the early design stage and to make preliminary calculations of the required building materials.
  • the collaboration and consideration of column-beam structures are added in the early stage of design, which can reduce the time of manual modeling and modification in the later stage.
  • FIG. 12 a functional module diagram of the column and beam generating device 100 of the assembled steel structure module building according to the present disclosure is shown.
  • the column and beam generating device 100 of the prefabricated steel structure module building of the present disclosure can be installed in electronic equipment.
  • the column and beam generation device 100 of the prefabricated steel structure module building may include an acquisition module 110 , a matching module 120 and a generation module 130 .
  • the modules described in this disclosure can also be called units, which refer to a series of computer program segments that can be executed by the processor of the electronic device and can complete fixed functions, and are stored in the memory of the electronic device.
  • each module/unit is as follows:
  • Acquisition module 110 configured to obtain relevant parameters of the building to be generated with a column-beam structure
  • Matching module 120 configured to use the relevant parameters to match the contour lines of the box units of the building with the outline lines of the apartment units of the building, filter out the target box unit outlines within the outline of the apartment units, and match the target box units
  • the volume element outline is offset to obtain the offset outline
  • Generating module 130 configured to generate a cross-sectional contour line of the building's column-beam structure according to the target box unit contour line and the offset contour line, and perform a stretching operation to generate the cross-sectional contour line of the column-beam structure of the building. 3D model of the building's post-and-beam structure.
  • generating the cross-sectional outline of the building's column-beam structure based on the target box unit outline and the offset outline includes:
  • each corner point of the corridor structural beam cross-sectional outline of the target box unit is determined, and each corner point is connected to generate the corridor structural beam cross-sectional outline.
  • each corner point of the structural column cross-sectional contour line of the target cabinet unit is determined based on the offset contour line and the target cabinet unit contour line, and each corner point is connected to generate the The cross-sectional outline of the structural column includes:
  • A1 Select a corner point of the contour line of the target box unit as the first corner point of the cross-sectional contour line of the structural column;
  • A2 Use the point closest to the first corner point to the offset contour line as the third corner point of the cross-sectional contour line of the structural column;
  • A3 Draw a perpendicular line between the third corner point and the outline of the target box unit through the third corner point, and select the two closest perpendicular points to the third corner point as the second corner point and the third corner point of the cross-sectional outline of the structural column. four corner points;
  • A4 Connect the first corner point, the second corner point, the third corner point and the fourth corner point of the cross-sectional contour line of the structural column to obtain the cross-sectional contour line of the structural column;
  • each corner point of the structural beam cross-sectional contour line of the target cabinet unit is determined based on the offset contour line and the target cabinet unit contour line, and each corner point is connected to generate the Describe the cross-sectional outline of the structural beam, including:
  • steps B1-B5 until the structural beam cross-sectional outlines of the four structural beams at the bottom of the target box unit are generated. Copy the structural beam cross-sectional outlines of the bottom four structural beams and translate them in the vertical upward direction. The distance between building floors is used to obtain the structural beam cross-sectional outlines of the four structural beams at the top of the target box unit.
  • each corner point of the cross-sectional contour line of the corridor structural beam of the target box unit is determined based on the target box unit outline and the corridor width of the building, and each corner point is connected to generate the Describe the cross-sectional outline of the corridor structural beams, including:
  • C1 Select a corner point of the contour line of the target box unit as the first corner point of the cross-sectional contour line of the corridor structural beam;
  • C2 Move the first corner point by a preset distance along the width vector direction of the target box unit contour line, and use the moved position as the second corner point of the corridor structural beam cross-sectional contour line;
  • C4 Move the first corner point by the width of the corridor along the length vector direction of the target box unit outline, and use the moved position as the fourth corner point of the corridor structural beam cross-section outline;
  • C5 Connect the first corner point, the second corner point, the third corner point and the fourth corner point of the cross-sectional contour line of the corridor structural beam to obtain the cross-sectional contour line of the corridor structural beam;
  • performing an extrusion operation on the cross-sectional outline of the post-beam structure of the building generates a three-dimensional model of the post-beam structure of the building, including:
  • the path direction of the structural beams of the element and the path direction of the structural beams of the corridor are both vertical and upward.
  • the generation module is also configured to:
  • FIG. 13 is a schematic diagram of a preferred embodiment of the electronic device 1 of the present disclosure.
  • the electronic device 1 includes but is not limited to: a memory 11 , a processor 12 , a display 13 and a communication interface 14 .
  • the electronic device 1 is connected to the network through the communication interface 14 .
  • the network may be an intranet, the Internet, a Global System of Mobile communication (GSM), a Wideband Code Division Multiple Access (WCDMA), or a 4G network , 5G network, Bluetooth, Wi-Fi, call network and other wireless or wired networks.
  • GSM Global System of Mobile communication
  • WCDMA Wideband Code Division Multiple Access
  • 4G network 5G network
  • Bluetooth Bluetooth
  • Wi-Fi call network and other wireless or wired networks.
  • the memory 11 includes at least one type of readable storage medium, which includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), random access memory (RAM), static memory, etc. Random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), programmable read-only memory (PROM), magnetic memory, magnetic disks, optical disks, etc.
  • the memory 11 may be an internal storage unit of the electronic device 1 , such as a hard disk or memory of the electronic device 1 .
  • the memory 11 may also be an external storage device of the electronic device 1, such as a plug-in hard drive, a smart memory card (Smart Media Card, SMC), or a secure digital card equipped with the electronic device 1. Secure Digital (SD) card, Flash Card, etc.
  • the memory 11 may also include both the internal storage unit and the external storage device of the electronic device 1 .
  • the memory 11 is usually configured to store the operating system and various application software installed on the electronic device 1 , such as the program code of the column and beam generation program 10 of the prefabricated steel structure module building.
  • the memory 11 can also be used to temporarily store various types of data that have been output or will be output.
  • the processor 12 may be a central processing unit (CPU), a controller, a microcontroller, a microprocessor, or other data processing chips.
  • the processor 12 is generally used to control the overall operation of the electronic device 1, such as performing data interaction or communication-related control and processing.
  • the processor 12 is used to run the program code or process data stored in the memory 11 , for example, run the program code of the column and beam generation program 10 of the prefabricated steel structure module building, etc.
  • Display 13 may be called a display screen or display unit.
  • the display 13 may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an organic light-emitting diode (OLED) sensor, etc.
  • the display 13 is configured to display information processed in the electronic device 1 and to display a visual work interface.
  • communication interface 14 may include a standard wired interface, wireless Interface (such as WI-F1 interface), the communication interface 14 is usually configured to establish a communication connection between the electronic device 1 and other electronic devices.
  • WI-F1 interface wireless Interface
  • Figure 13 only shows the electronic device 1 with the components 11-14 and the column and beam generation program 10 of the prefabricated steel structure module building, but it should be understood that it is not required to implement all the components shown, and more may be implemented instead. More or less components.
  • the electronic device 1 may also include a user interface.
  • the user interface may include a display (Display) and an input unit such as a keyboard (Keyboard).
  • the optional user interface may also include a standard wired interface or a wireless interface.
  • the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an organic light-emitting diode (OLED) sensor, etc.
  • the display may also be appropriately referred to as a display screen or a display unit, and is used for displaying information processed in the electronic device 1 and for displaying a visualized user interface.
  • the electronic device 1 may also include a radio frequency (Radio Frequency, RF) circuit, a sensor, an audio circuit, etc., which will not be described again here.
  • RF Radio Frequency
  • the processor 12 executes the column and beam generation program 10 of the prefabricated steel structure module building stored in the memory 11, the following steps can be implemented:
  • the relevant parameters are used to match the contour lines of the building's box units with the building's apartment unit outlines, filter out the target box unit outlines within the apartment unit outlines, and perform biasing on the target box unit outlines. Move to get the offset contour;
  • the storage device may be the memory 11 of the electronic device 1 , or may be other storage devices communicatively connected to the electronic device 1 .
  • inventions of the present disclosure also provide a computer-readable storage medium, which may be non-volatile or volatile.
  • the computer-readable storage medium can be a hard disk, multimedia card, SD card, flash memory card, SMC, read-only memory (ROM), erasable programmable read-only memory (EPROM), portable compact disk read-only memory (CD- ROM), USB memory, etc. or any combination of several.
  • the computer-readable storage medium includes a storage data area and a storage program area.
  • the storage program area stores a column and beam generation program 10 for a prefabricated steel structure module building.
  • the column and beam generation program 10 for a prefabricated steel structure module building is The processor performs the following operations when executing:
  • the relevant parameters are used to compare the outline of the box unit of the building with the layout of the unit of the building. Match the contours, filter out the target box unit outlines within the apartment unit outlines, and perform offset on the target box unit outlines to obtain the offset outlines;
  • the specific implementation of the computer-readable storage medium of the present disclosure is substantially the same as the specific implementation of the column and beam generation method of the above-mentioned prefabricated steel structure module building, and will not be described again here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present disclosure can be embodied in the form of a software product in nature or in part that contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM) as mentioned above. , magnetic disk, optical disk), including several instructions to cause a terminal device (which can be a mobile phone, a computer, an electronic device, or a network device, etc.) to execute the methods described in various embodiments of the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

装配式钢结构模块建筑的柱梁生成方法、装置及设备。所述方法包括获取待生成柱梁结构的建筑的相关参数(S1),利用相关参数将建筑的箱体单元轮廓线与建筑的户型单元轮廓线进行匹配,筛选出在户型单元轮廓线以内的目标箱体单元轮廓线,对目标箱体单元轮廓线执行偏移得到偏移轮廓线(S2),根据目标箱体单元轮廓线和偏移轮廓线生成建筑的柱梁结构横截面轮廓线,对建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型(S3)。

Description

装配式钢结构模块建筑的柱梁生成方法、装置及设备
相关申请的引用
本公开要求于2022年6月7日向中华人民共和国国家知识产权局提交的申请号为202210735515.0,发明名称为“装配式钢结构模块建筑的柱梁生成方法、装置及设备”的发明专利公开的全部权益,并通过引用的方式将其全部内容并入本公开。
领域
本公开涉及计算机技术领域,更具体地涉及装配式钢结构模块建筑的柱梁生成方法、装置及设备。
背景
目前,市面上的建筑设计施工领域的三维建模软件均无法根据装配式钢结构模块建筑的建筑模型,直接生成对应的全楼栋柱梁结构的三维模型,若用户需要预览或查看全楼栋的柱梁结构设计方案,用户需手动绘制对应的柱梁结构的设计方案,工作流程繁琐且耗时较长。
概述
第一方面,本公开涉及装配式钢结构模块建筑的柱梁生成方法,该方法包括:
获取待生成柱梁结构的建筑的相关参数;
利用所述相关参数将建筑的箱体单元轮廓线与建筑的户型单元轮廓线进行匹配,筛选出在户型单元轮廓线以内的目标箱体单元轮廓线,对所述目标箱体单元轮廓线执行偏移得到偏移轮廓线;以及
根据所述目标箱体单元轮廓线和所述偏移轮廓线生成建筑的柱梁结构横截面轮廓线,对所述建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型。
第二方面,本公开提供一种装配式钢结构模块建筑的柱梁生成装置,该装配式钢结构模块建筑的柱梁生成装置包括:
获取模块:配置为获取待生成柱梁结构的建筑的相关参数;
匹配模块:配置为利用所述相关参数将建筑的箱体单元轮廓线与建筑的户型单元轮廓线进行匹配,筛选出在户型单元轮廓线以内的目标箱体单元轮廓线,对所述目标箱体单元轮廓线执行偏移得到偏移轮廓线;以及
生成模块:配置为根据所述目标箱体单元轮廓线和所述偏移轮廓线生成建筑的柱梁结构横截面轮廓线,对所述建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型。
第三方面,本公开涉及电子设备,其包括处理器、通信接口、存储器和通信总线,其中,所述处理器,所述通信接口,所述存储器通过所述通信总线完成相互间的通信;
存储器,配置为存放计算机程序;以及
处理器,配置为执行存储器上所存放的程序时,实现本公开实施例所述的装配式钢结构模块建筑的柱梁生成方法的步骤。
第四方面,涉及计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如本公开所述的装配式钢结构模块建筑的柱梁生成方法的步骤。
在某些实施方案中,针对由箱型装配式单元建造而成的装配式钢结构模块建筑,本公开可根据户型单元排布、箱体单元尺寸、走廊的位置等相关参数,自动生成包括箱体单元的结构梁、结构柱及走廊结构梁的三维模型,即自动生成装配式钢结构模块建筑的柱梁结构的三维模型,用户在设计初期在大量更改设计方案时,无需针对不同建筑外形、不同的层高等设计参数手动绘制和调整柱梁结构,用户可以直观地预览全楼栋的柱梁结构框架,有助于用户设计初期对楼栋层级的柱梁结构进行预览以及所需建材的工程量的初步计算,由于在设计前期增加了柱梁结构的协同和考虑,可以减少后期手动建模和修改的时间。
附图简要说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
图1为本公开装配式钢结构模块建筑的柱梁生成方法较佳实施例的流程图示意图;
图2为本公开户型单元轮廓线的示意图;
图3为本公开的箱体单元轮廓线在户型单元轮廓线之内的示意图;
图4为本公开目标箱体单元的结构柱的示意图;
图5为本公开目标箱体单元的结构柱横截面轮廓线的每个角点的示意图;
图6为本公开目标箱体单元的结构梁的示意图;
图7为本公开目标箱体单元的结构梁横截面轮廓线的每个角点的示意图;
图8为本公开目标箱体单元的走廊结构梁的示意图;
图9为本公开目标箱体单元的走廊结构梁横截面轮廓线的每个角点的示意图;
图10为本公开对C型板楼生成柱梁结构的效果示意图;
图11为本公开对矩形板楼生成柱梁结构的效果示意图;
图12为本公开装配式钢结构模块建筑的柱梁生成装置较佳实施例的模块示意图;以及
图13为本公开电子设备较佳实施例的示意图。
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,在本公开中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本公开要求的保护范围之内。
本公开提供一种装配式钢结构模块建筑的柱梁生成方法。参照图1所示,为本公开装配式钢结构模块建筑的柱梁生成方法的实施例的方法流程示意图。该方法可以由电子设备执行,该电子设备可以由软件和/或硬件实现。装配式钢结构模块建筑的柱梁生成方法包括:
步骤S1:获取待生成柱梁结构的建筑的相关参数;
步骤S2:利用所述相关参数将建筑的箱体单元轮廓线与建筑的户型单元轮廓线进行匹配,筛选出在户型单元轮廓线以内的目标箱体单元轮廓线,对所述目标箱体单元轮廓线执行偏移得到偏移轮廓线;以及
步骤S3:根据所述目标箱体单元轮廓线和所述偏移轮廓线生成建筑的柱梁结构横截面轮廓线,对所述建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型。
在某些实施方案中,装配式钢结构模块建筑是主要采用钢结构集成模块单元在施工现场组合而成的装配式建筑,装配式钢结构模块建筑可以是由预先制定的多个箱体单元拼叠而成的,一个箱体单元是指一个预先制定的箱体,不同户型可能由不同数量的箱体单元构成,例如,单间户型由一个箱体构成,一室户型可以由两个箱体构成,两室户型可以由三个箱体构成。
在某些实施方案中,相关参数包括户型单元轮廓线(户型单元地板轮廓线)、首层大堂地板轮廓线、箱体单元地板轮廓线、走廊地板轮廓线、楼栋数量、建筑最大层数、建筑层高、走廊宽度。其中,户型单元包括单间户型、一室户型、两室户型等。户型单元地板轮廓线、箱体单元地板轮廓线、首层大堂地板轮廓线、走廊地板轮廓线均是以数据树(Data Tree)的格式传入,楼栋数量、建筑最大层数、建筑层高、走廊宽度均已数字(整数或小数)的格式传入。在数据树结构中,数据分支的编号格式为{编号1;编号2},例如,{1;3},其中,编号1代表楼栋编号,编号2代表楼层编号,编号从0开始计算。例如,分支{0,3}中的轮廓线表示第一栋楼第四层的房间的轮廓线。
之后定义输出参数格式,生成的柱梁构件三维模型均通过横截面(矩形轮廓线)沿路径(向量)拉伸而成。横截面是位于世界坐标系XY平面上的矩形,路径向量根据建筑层高确定。由于不同户型由不同数量的箱体单元构成,各个结构柱梁构件按照户型分别输出,即按照单间户型柱梁、一室户型柱梁、两室户型柱梁输出,此外,对于任意单一输出参数,均以数据树(Data Tree)的格式输出,在结构树中,数据分支的编号格式为{编号1;编号2;编号3},例如,{1;3;2},编号1代表楼栋编号,编号2代表楼层编号,编号3代表该层该户型的编号,编号从0开始计算。在某些实施方案中,对于一室户型单元,分支{0,3,2}中的轮廓线表示第一栋楼第四层的第三个一室户型单元的结构构件,如图2所示。
在某些实施方案中,不同户型可能由不同数量的箱体单元构成,例如,单间户型可以由一个箱体构成,一室户型可以由两个箱体构成,两室户型可以由三个户型构成。由于相关参数中箱体单元的轮廓线和各个户型单元轮廓线通过数据树分别输入,彼此并无直接关联,无法直接判断某一箱体轮廓线属于哪个户型单元,而箱体单元轮廓线在户型单元轮廓线之内时才可生成柱梁结构三维模型,因此,为了在输出结果时按照户型区分,在生成柱梁构件之前需要将箱体轮廓线和户型轮廓线进行匹配,即筛选出在户型单元轮廓线以内的目标箱体单元轮 廓线。
在某些实施方案中,轮廓线的匹配通过可通过函数实现,通过判断某一箱体轮廓线的四个点是否均在某一户型轮廓线范围内,进而判断该箱体单元轮廓线是否属于该户型以完成筛选匹配,如图3所示,为本公开的箱体单元轮廓线在户型单元轮廓线之内的示意图,在某些实施方案中:
取输入的户型单元轮廓线的每条边的起始点和终止点,判断箱体单元轮廓线输入点的Y坐标值是否在起始点和终止点Y坐标值之间,并且起始点和终止点中的任意一个的X坐标值是否小于输入点的X坐标值,将判断结果赋值给一个布尔值变量b;
定义一个新的布尔值变量oddNodes,初始赋值为0(false),每条边进行上述运算得到的布尔值b,与布尔值oddNodes做异或运算,计算结果重新赋值给布尔值oddNodes;
在遍历每条边执行上述计算过程后,如果最终布尔值oddNodes为1(true),则计算得到轮廓线每条边上与输入点距离最近的点,进而计算得到各个距离最近点到输入点的距离,并取其中最小值,若该最小值小于规定精度范围(1e-10),说明输入点在户型单元轮廓线范围内,输出布尔值1(true),如果最终布尔值oddNodes为0(false),说明输入点不在户型单元轮廓线范围内,输出布尔值0(false)。
通过上述异或运算,可以准确地筛选出在户型单元轮廓线以内的目标箱体单元轮廓线,之后对目标箱体单元轮廓线执行偏移得到偏移轮廓线,例如,将目标箱体单元轮廓线向内偏移0.15m,偏移的距离为结构柱横截面的默认长宽值,该数值可以根据实际的设计需求进行更改。偏移轮廓线用于生成建筑的柱梁结构的三维模型。
在某些实施方案中,建筑的柱梁结构的三维模型包括目标箱体单元的结构柱三维模型、目标箱体单元的结构梁三维模型及目标箱体单元的走廊结构梁三维模型。根据目标箱体单元轮廓线和偏移轮廓线可以生成建筑的柱梁结构横截面轮廓线,对建筑的柱梁结构横截面轮廓线执行拉伸操作可以生成建筑的柱梁结构的三维模型,其中,目标箱体单元的结构柱的路径方向、目标箱体单元的结构梁的路径方向及走廊结构梁的路径方向均为竖直向上。
在某些实施方案中,根据所述目标箱体单元轮廓线和所述偏移轮廓线生成建筑的柱梁结构横截面轮廓线,包括:
根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构柱横截面轮廓线的每个角点,连接每个角点生成所述结构柱横截面轮廓线;
根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构梁横截面轮廓线的每个角点,连接每个角点生成所述结构梁 横截面轮廓线;以及
根据所述目标箱体单元轮廓线与建筑的走廊宽度,确定目标箱体单元的走廊结构梁横截面轮廓线的每个角点,连接每个角点生成所述走廊结构梁横截面轮廓线。
在某些实施方案中,偏移轮廓线是目标箱体单元轮廓线向内偏移预设距离得到的,偏移的距离可以是结构柱横截面的长宽值,可以根据偏移的距离确定目标箱体单元的结构柱横截面轮廓线和结构梁横截面轮廓线的每个角点,连接结构柱横截面轮廓线的每个角点可以得到结构柱横截面轮廓线,连接结构梁横截面轮廓线的每个角点可以得到结构梁横截面轮廓线。在目标箱体单元轮廓线选取两个角点,将两个角点沿走廊方向移动走廊宽度的距离可以得到目标箱体单元的走廊结构梁横截面轮廓线的另外两个角点,连接每个角点生成所述走廊结构梁横截面轮廓线。
在某些实施方案中,所述根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构柱横截面轮廓线的每个角点,连接每个角点生成所述结构柱横截面轮廓线,包括:
A1:选取所述目标箱体单元轮廓线的一个角点作为所述结构柱横截面轮廓线的第一角点;
A2:以第一角点距离所述偏移轮廓线最近的点作为所述结构柱横截面轮廓线的第三角点;
A3:过第三角点作第三角点与所述目标箱体单元轮廓线的垂线,选取距离第三角点最近的两个垂点作为所述结构柱横截面轮廓线的第二角点和第四角点;
A4:连接所述结构柱横截面轮廓线的第一角点、第二角点、第三角点及第四角点,得到所述结构柱横截面轮廓线;以及
重复执行步骤A1-A4,直至生成目标箱体单元四根结构柱的结构柱横截面轮廓线。
如图4所示,每个目标箱体单元包括4根结构柱,以其中以一根柱为例,结构柱横截面矩形共四个角点,结构柱横截面轮廓线的第一角点(角点1)为箱体单元轮廓线的一条边的起始点,再获得该角点在偏移轮廓线上的距离最近的点,该点为结构柱横截面轮廓线的第三角点(角点3),过第三角点作第三角点与目标箱体单元轮廓线的垂线,选取距离第三角点最近的两个垂点作为结构柱横截面轮廓线的第二角点(角点2)和第四角点(角点4),例如,第二角点为第三角点在箱体轮廓线边1上的距离最近的点,第四角点为第三角点在箱体轮廓线边4上的距离最近的点。如图5所示,按顺序连接结构柱横截面轮廓线的第一角点、第二角点、第三角点及第四角点,可以得到结构柱横截面轮廓线。将上述过程循环执行4次即可生成该箱体单元的四根结构柱横截面轮廓 线。
在某些实施方案中,所述根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构梁横截面轮廓线的每个角点,连接每个角点生成所述结构梁横截面轮廓线,包括:
B1:选取所述偏移轮廓线的一个角点作为所述结构梁横截面轮廓线的第一角点;
B2:将第一角点在所述偏移轮廓线边上的另一个角点作为所述结构梁横截面轮廓线的第四角点;
B3:以第一角点距离所述目标箱体单元轮廓线最近的点作为所述结构梁横截面轮廓的第二角点;
B4:以第四角点距离所述目标箱体单元轮廓线最近的点作为所述结构梁横截面轮廓的第三角点;
B5:连接所述结构梁横截面轮廓线的第一角点、第二角点、第三角点及第四角点,得到所述结构梁横截面轮廓线;以及
重复执行步骤B1-B5,直至生成目标箱体单元底部的四根结构梁的结构梁横截面轮廓线,将底部的四根结构梁的结构梁横截面轮廓线复制并沿竖直向上的方向平移建筑层高的距离,得到目标箱体单元顶部的四根结构梁的结构梁横截面轮廓线。
如图6所示,每个目标箱体单元包括8根结构主梁。以其中一根主梁为例,如图7所示,目标箱体单元的结构梁横截面(矩形)共4个角点,第一角点(角点1)为偏移轮廓线的一条边的起始点,第四角点(角点4)为该条边的终止点,另外获得第一角点在目标箱体单元轮廓线上的距离最近的点,该点即为第二角点(角点2),获得第四角点(角点4)在目标箱体单元轮廓线上的距离最近的点,该点即为第三角点(角点3),按顺序依次连接结构梁横截面轮廓线的第一角点、第二角点、第三角点及第四角点,可以得到结构梁横截面轮廓线,将上述过程循环执行4次即可生成该目标箱体单元底部的4根结构梁横截面轮廓线,将已生成的4根结构梁横截面轮廓线复制并沿竖直方向向上平移建筑层高(箱体单元的高度)的距离,即可得到目标箱体单元顶部的4根结构梁的横截面轮廓线。
在某些实施方案中,所述根据所述目标箱体单元轮廓线与建筑的走廊宽度,确定目标箱体单元的走廊结构梁横截面轮廓线的每个角点,连接每个角点生成所述走廊结构梁横截面轮廓线,包括:
C1:选取所述目标箱体单元轮廓线的一个角点作为所述走廊结构梁横截面轮廓线的第一角点;
C2:将第一角点沿所述目标箱体单元轮廓线的宽度向量方向移动预设距离,将移动后的位置作为所述走廊结构梁横截面轮廓线的第二角点;
C3:将第二角点沿所述目标箱体单元轮廓线的长度向量方向移动走廊的宽度的距离,将移动后的位置作为所述走廊结构梁横截面轮廓线的第三角点;
C4:将第一角点沿所述目标箱体单元轮廓线的长度向量方向移动走廊的宽度的距离,将移动后的位置作为所述走廊结构梁横截面轮廓线的第四角点;
C5:连接所述走廊结构梁横截面轮廓线的第一角点、第二角点、第三角点及第四角点,得到所述走廊结构梁横截面轮廓线;以及
重复执行步骤C1-C5,直至生成目标箱体单元四根走廊结构梁的走廊结构梁横截面轮廓线。
如图8所示,每个目标箱体单元包括4根走廊结构梁。以其中一根梁为例,如图9所示,走廊结构梁横截面(矩形)共4个角点,第一角点(角点1)为目标箱体单元轮廓线的一条边的起始点,第二角点(角点2)为在边1上与第一角点距离预设距离(例如,0.15m)的点,第三角点(角点3)为第二角点(角点2)沿向量移动走廊宽度的距离,第四角点(角点4)为第一角点(角点1)沿向量移动走廊宽度的距离,该向量由边4的方向确定,起始点为边4直线段的起始点,终止点为边4直线段的终止点。按顺序连接走廊结构梁横截面轮廓线的第一角点、第二角点、第三角点及第四角点,可以得到走廊结构梁横截面轮廓线。将上述过程循环执行4次即可生成该箱体单元的4根走廊结构梁横截面轮廓线。
在某些实施方案中,所述对所述建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型,包括:
将所述结构柱横截面轮廓线沿目标箱体单元的结构柱的路径方向进行拉伸,生成目标箱体单元的结构柱三维模型;
将所述结构梁横截面轮廓线沿目标箱体单元的结构梁的路径方向进行拉伸,生成目标箱体单元的结构梁三维模型;
将所述走廊结构梁横截面轮廓线沿目标箱体单元的走廊结构梁的路径方向进行拉伸,生成目标箱体单元的走廊结构梁三维模型;以及
其中,所述目标箱体单元的结构柱的路径方向、所述目标箱体单元的结构梁的路径方向及所述走廊结构梁的路径方向均为竖直向上。
在某些实施方案中,将结构柱横截面轮廓线沿目标箱体单元的结构柱的路径方向进行拉伸,可以生成目标箱体单元的结构柱三维模型,拉伸的路径方向为竖直向上,即世界坐标Z轴正方向,拉伸长度为建筑的层高(即一个箱体的高度),逐个生成每个箱体单元的结构柱三维模型,可以得到楼栋的结构柱三维模型。
在某些实施方案中,将结构梁横截面轮廓线沿目标箱体单元的结构梁的路径方向进行拉伸,可以生成目标箱体单元的结构梁三维模型,拉伸的路径方向为竖直向上,即世界坐标Z轴正方向,拉伸长度为结 构梁横截面的长宽值,例如0.15m,逐个生成每个箱体单元的结构梁三维模型,可以得到楼栋的结构梁三维模型。
在某些实施方案中,将走廊结构梁横截面轮廓线沿目标箱体单元的走廊结构梁的路径方向进行拉伸,生成目标箱体单元的走廊结构梁三维模型,拉伸的路径方向为竖直向上,即世界坐标Z轴正方向,拉伸长度为结构梁横截面的长宽值,例如0.15m,逐个生成每个箱体单元的走廊结构梁三维模型,可以得到楼栋的走廊结构梁三维模型。
在某些实施方案中,所述方法还包括:
根据所述相关参数生成建筑的核心筒的柱梁结构横截面轮廓线,对所述核心筒的柱梁结构横截面轮廓线执行拉伸操作生成建筑的核心筒的柱梁结构的三维模型。
在某些实施方案中,在实际的设计场景中,可以根据设计需求生成建筑的核心筒部分的结构柱梁三维模型,核心筒的结构柱梁三维模型与上述目标箱体单元的结构柱三维模型及目标箱体单元的结构梁三维模型的生成方法相同,在此不再赘述。
如图10所示,为本公开对C型板楼生成柱梁结构的效果示意图,该板楼最大楼层数是10。
如图11所示,为本公开对矩形板楼生成柱梁结构的效果示意图,该板楼最大楼层数是10。
针对由箱型装配式单元建造而成的装配式钢结构模块建筑,本公开可根据户型单元排布、箱体单元尺寸、走廊的位置等相关参数,自动生成包括箱体单元的结构梁、结构柱及走廊结构梁的三维模型,即自动生成装配式钢结构模块建筑的柱梁结构的三维模型,用户在设计初期在大量更改设计方案时,无需针对不同建筑外形、不同的层高等设计参数手动绘制和调整柱梁结构,用户可以直观地预览全楼栋的柱梁结构框架,有助于用户设计初期对楼栋层级的柱梁结构进行预览以及所需建材的工程量的初步计算,由于在设计前期增加了柱梁结构的协同和考虑,可以减少后期手动建模和修改的时间。
参照图12所示,为本公开装配式钢结构模块建筑的柱梁生成装置100的功能模块示意图。
本公开所述装配式钢结构模块建筑的柱梁生成装置100可以安装于电子设备中。根据实现的功能,所述装配式钢结构模块建筑的柱梁生成装置100可以包括获取模块110、匹配模块120及生成模块130。本公开所述模块也可以称之为单元,是指能够被电子设备处理器所执行,并且能够完成固定功能的一系列计算机程序段,其存储在电子设备的存储器中。
在某些实施方案中,关于各模块/单元的功能如下:
获取模块110:配置为获取待生成柱梁结构的建筑的相关参数;
匹配模块120:配置为利用所述相关参数将建筑的箱体单元轮廓线与建筑的户型单元轮廓线进行匹配,筛选出在户型单元轮廓线以内的目标箱体单元轮廓线,对所述目标箱体单元轮廓线执行偏移得到偏移轮廓线;以及
生成模块130:配置为根据所述目标箱体单元轮廓线和所述偏移轮廓线生成建筑的柱梁结构横截面轮廓线,对所述建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型。
在某些实施方案中,所述根据所述目标箱体单元轮廓线和所述偏移轮廓线生成建筑的柱梁结构横截面轮廓线,包括:
根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构柱横截面轮廓线的每个角点,连接每个角点生成所述结构柱横截面轮廓线;
根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构梁横截面轮廓线的每个角点,连接每个角点生成所述结构梁横截面轮廓线;以及
根据所述目标箱体单元轮廓线与建筑的走廊宽度,确定目标箱体单元的走廊结构梁横截面轮廓线的每个角点,连接每个角点生成所述走廊结构梁横截面轮廓线。
在某些实施方案中,所述根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构柱横截面轮廓线的每个角点,连接每个角点生成所述结构柱横截面轮廓线,包括:
A1:选取所述目标箱体单元轮廓线的一个角点作为所述结构柱横截面轮廓线的第一角点;
A2:以第一角点距离所述偏移轮廓线最近的点作为所述结构柱横截面轮廓线的第三角点;
A3:过第三角点作第三角点与所述目标箱体单元轮廓线的垂线,选取距离第三角点最近的两个垂点作为所述结构柱横截面轮廓线的第二角点和第四角点;
A4:连接所述结构柱横截面轮廓线的第一角点、第二角点、第三角点及第四角点,得到所述结构柱横截面轮廓线;以及
重复执行步骤A1-A4,直至生成目标箱体单元四根结构柱的结构柱横截面轮廓线。
在某些实施方案中,所述根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构梁横截面轮廓线的每个角点,连接每个角点生成所述结构梁横截面轮廓线,包括:
B1:选取所述偏移轮廓线的一个角点作为所述结构梁横截面轮廓线的第一角点;
B2:将第一角点在所述偏移轮廓线边上的另一个角点作为所述结 构梁横截面轮廓线的第四角点;
B3:以第一角点距离所述目标箱体单元轮廓线最近的点作为所述结构梁横截面轮廓的第二角点;
B4:以第四角点距离所述目标箱体单元轮廓线最近的点作为所述结构梁横截面轮廓的第三角点;
B5:连接所述结构梁横截面轮廓线的第一角点、第二角点、第三角点及第四角点,得到所述结构梁横截面轮廓线;以及
重复执行步骤B1-B5,直至生成目标箱体单元底部的四根结构梁的结构梁横截面轮廓线,将底部的四根结构梁的结构梁横截面轮廓线复制并沿竖直向上的方向平移建筑层高的距离,得到目标箱体单元顶部的四根结构梁的结构梁横截面轮廓线。
在某些实施方案中,所述根据所述目标箱体单元轮廓线与建筑的走廊宽度,确定目标箱体单元的走廊结构梁横截面轮廓线的每个角点,连接每个角点生成所述走廊结构梁横截面轮廓线,包括:
C1:选取所述目标箱体单元轮廓线的一个角点作为所述走廊结构梁横截面轮廓线的第一角点;
C2:将第一角点沿所述目标箱体单元轮廓线的宽度向量方向移动预设距离,将移动后的位置作为所述走廊结构梁横截面轮廓线的第二角点;
C3:将第二角点沿所述目标箱体单元轮廓线的长度向量方向移动走廊的宽度的距离,将移动后的位置作为所述走廊结构梁横截面轮廓线的第三角点;
C4:将第一角点沿所述目标箱体单元轮廓线的长度向量方向移动走廊的宽度的距离,将移动后的位置作为所述走廊结构梁横截面轮廓线的第四角点;
C5:连接所述走廊结构梁横截面轮廓线的第一角点、第二角点、第三角点及第四角点,得到所述走廊结构梁横截面轮廓线;以及
重复执行步骤C1-C5,直至生成目标箱体单元四根走廊结构梁的走廊结构梁横截面轮廓线。
在某些实施方案中,所述对所述建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型,包括:
将所述结构柱横截面轮廓线沿目标箱体单元的结构柱的路径方向进行拉伸,生成目标箱体单元的结构柱三维模型;
将所述结构梁横截面轮廓线沿目标箱体单元的结构梁的路径方向进行拉伸,生成目标箱体单元的结构梁三维模型;
将所述走廊结构梁横截面轮廓线沿目标箱体单元的走廊结构梁的路径方向进行拉伸,生成目标箱体单元的走廊结构梁三维模型;以及
其中,所述目标箱体单元的结构柱的路径方向、所述目标箱体单 元的结构梁的路径方向及所述走廊结构梁的路径方向均为竖直向上。
在某些实施方案中,生成模块还配置为:
根据所述相关参数生成建筑的核心筒的柱梁结构横截面轮廓线,对所述核心筒的柱梁结构横截面轮廓线执行拉伸操作生成建筑的核心筒的柱梁结构的三维模型。
参照图13所示,为本公开电子设备1较佳实施例的示意图。
该电子设备1包括但不限于:存储器11、处理器12、显示器13及通信接口14。所述电子设备1通过通信接口14连接网络。其中,所述网络可以是企业内部网(Intranet)、互联网(Internet)、全球移动通讯系统(Global System of Mobile communication,GSM)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、4G网络、5G网络、蓝牙(Bluetooth)、Wi-Fi、通话网络等无线或有线网络。
其中,存储器11至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,所述存储器11可以是所述电子设备1的内部存储单元,例如该电子设备1的硬盘或内存。在另一些实施例中,所述存储器11也可以是所述电子设备1的外部存储设备,例如该电子设备1配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,所述存储器11还可以既包括所述电子设备1的内部存储单元也包括其外部存储设备。本实施例中,存储器11通常配置于存储安装于所述电子设备1的操作系统和各类应用软件,例如装配式钢结构模块建筑的柱梁生成程序10的程序代码等。此外,存储器11还可以用于暂时地存储已经输出或者将要输出的各类数据。
在某些实施方案中,处理器12可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。该处理器12通常用于控制所述电子设备1的总体操作,例如执行数据交互或者通信相关的控制和处理等。本实施例中,所述处理器12用于运行所述存储器11中存储的程序代码或者处理数据,例如运行装配式钢结构模块建筑的柱梁生成程序10的程序代码等。
显示器13可以称为显示屏或显示单元。在某些实施方案中,显示器13可以是LED显示器、液晶显示器、触控式液晶显示器以及有机发光二极管(Organic Light-Emitting Diode,OLED)虫摸器等。显示器13配置为显示在电子设备1中处理的信息以及用于显示可视化的工作界面。
在某些实施方案中,通信接口14可以包括标准的有线接口、无线 接口(如WI-Fl接口),该通信接口14通常配置为在所述电子设备1与其它电子设备之间建立通信连接。
图13仅示出了具有组件11-14以及装配式钢结构模块建筑的柱梁生成程序10的电子设备1,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。
在某些实施方案中,所述电子设备1还可以包括用户接口,用户接口可以包括显示器(Display)、输入单元比如键盘(Keyboard),可选的用户接口还可以包括标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及有机发光二极管(Organic Light-Emitting Diode,OLED)虫摸器等。其中,显示器也可以适当的称为显示屏或显示单元,用于显示在电子设备1中处理的信息以及用于显示可视化的用户界面。
该电子设备1还可以包括射频(Radio Frequency,RF)电路、传感器和音频电路等等,在此不再赘述。
在某些实施方案中,处理器12执行存储器11中存储的装配式钢结构模块建筑的柱梁生成程序10时可以实现如下步骤:
获取待生成柱梁结构的建筑的相关参数;
利用所述相关参数将建筑的箱体单元轮廓线与建筑的户型单元轮廓线进行匹配,筛选出在户型单元轮廓线以内的目标箱体单元轮廓线,对所述目标箱体单元轮廓线执行偏移得到偏移轮廓线;以及
根据所述目标箱体单元轮廓线和所述偏移轮廓线生成建筑的柱梁结构横截面轮廓线,对所述建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型。
所述存储设备可以为电子设备1的存储器11,也可以为与电子设备1通讯连接的其它存储设备。
关于上述步骤的详细介绍,请参照上述图12关于装配式钢结构模块建筑的柱梁生成装置100实施例的功能模块图以及图1关于装配式钢结构模块建筑的柱梁生成方法实施例的流程图的说明。
此外,本公开实施例还提出计算机可读存储介质,所述计算机可读存储介质可以是非易失性的,也可以是易失性的。该计算机可读存储介质可以是硬盘、多媒体卡、SD卡、闪存卡、SMC、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器等等中的任意一种或者几种的任意组合。所述计算机可读存储介质中包括存储数据区和存储程序区,存储程序区存储有装配式钢结构模块建筑的柱梁生成程序10,所述装配式钢结构模块建筑的柱梁生成程序10被处理器执行时实现如下操作:
获取待生成柱梁结构的建筑的相关参数;
利用所述相关参数将建筑的箱体单元轮廓线与建筑的户型单元轮 廓线进行匹配,筛选出在户型单元轮廓线以内的目标箱体单元轮廓线,对所述目标箱体单元轮廓线执行偏移得到偏移轮廓线;以及
根据所述目标箱体单元轮廓线和所述偏移轮廓线生成建筑的柱梁结构横截面轮廓线,对所述建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型。
本公开之计算机可读存储介质的具体实施方式与上述装配式钢结构模块建筑的柱梁生成方法的具体实施方式大致相同,在此不再赘述。
需要说明的是,上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。并且本文中的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,电子装置,或者网络设备等)执行本公开各个实施例所述的方法。
以上仅为本公开的优选实施例,并非因此限制本公开的专利范围,凡是利用本公开说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本公开的专利保护范围内。

Claims (10)

  1. 装配式钢结构模块建筑的柱梁生成方法,其中,所述方法包括:
    获取待生成柱梁结构的建筑的相关参数;
    利用所述相关参数将建筑的箱体单元轮廓线与建筑的户型单元轮廓线进行匹配,筛选出在户型单元轮廓线以内的目标箱体单元轮廓线,对所述目标箱体单元轮廓线执行偏移得到偏移轮廓线;以及
    根据所述目标箱体单元轮廓线和所述偏移轮廓线生成建筑的柱梁结构横截面轮廓线,对所述建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型。
  2. 如权利要求1所述的装配式钢结构模块建筑的柱梁生成方法,其中,所述根据所述目标箱体单元轮廓线和所述偏移轮廓线生成建筑的柱梁结构横截面轮廓线,包括:
    根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构柱横截面轮廓线的每个角点,连接每个角点生成所述结构柱横截面轮廓线;
    根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构梁横截面轮廓线的每个角点,连接每个角点生成所述结构梁横截面轮廓线;以及
    根据所述目标箱体单元轮廓线与建筑的走廊宽度,确定目标箱体单元的走廊结构梁横截面轮廓线的每个角点,连接每个角点生成所述走廊结构梁横截面轮廓线。
  3. 如权利要求2所述的装配式钢结构模块建筑的柱梁生成方法,其中,所述根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构柱横截面轮廓线的每个角点,连接每个角点生成所述结构柱横截面轮廓线,包括:
    选取所述目标箱体单元轮廓线的一个角点作为所述结构柱横截面轮廓线的第一角点;
    以第一角点距离所述偏移轮廓线最近的点作为所述结构柱横截面轮廓线的第三角点;
    过第三角点作第三角点与所述目标箱体单元轮廓线的垂线,选取距离第三角点最近的两个垂点作为所述结构柱横截面轮廓线的第二角点和第四角点;
    连接所述结构柱横截面轮廓线的第一角点、第二角点、第三角点及第四角点,得到所述结构柱横截面轮廓线;以及
    重复执行上述步骤,直至生成目标箱体单元四根结构柱的结构柱横截面轮廓线。
  4. 如权利要求2或3所述的装配式钢结构模块建筑的柱梁生成方法,其中,所述根据所述偏移轮廓线与所述目标箱体单元轮廓线确定目标箱体单元的结构梁横截面轮廓线的每个角点,连接每个角点生成所述结构梁横截面轮廓线,包括:
    选取所述偏移轮廓线的一个角点作为所述结构梁横截面轮廓线的第一角点;
    将第一角点在所述偏移轮廓线边上的另一个角点作为所述结构梁横截面轮廓线的第四角点;
    以第一角点距离所述目标箱体单元轮廓线最近的点作为所述结构梁横截面轮廓的第二角点;
    以第四角点距离所述目标箱体单元轮廓线最近的点作为所述结构梁横截面轮廓的第三角点;
    连接所述结构梁横截面轮廓线的第一角点、第二角点、第三角点及第四角点,得到所述结构梁横截面轮廓线;以及
    重复执行上述步骤,直至生成目标箱体单元底部的四根结构梁的结构梁横截面轮廓线,将底部的四根结构梁的结构梁横截面轮廓线复制并沿竖直向上的方向平移建筑层高的距离,得到目标箱体单元顶部的四根结构梁的结构梁横截面轮廓线。
  5. 如权利要求2至4中任一权利要求所述的装配式钢结构模块建筑的柱梁生成方法,其中,所述根据所述目标箱体单元轮廓线与建筑的走廊宽度,确定目标箱体单元的走廊结构梁横截面轮廓线的每个角点,连接每个角点生成所述走廊结构梁横截面轮廓线,包括:
    选取所述目标箱体单元轮廓线的一个角点作为所述走廊结构梁横截面轮廓线的第一角点;
    将第一角点沿所述目标箱体单元轮廓线的宽度向量方向移动预设距离,将移动后的位置作为所述走廊结构梁横截面轮廓线的第二角点;
    将第二角点沿所述目标箱体单元轮廓线的长度向量方向移动走廊的宽度的距离,将移动后的位置作为所述走廊结构梁横截面轮廓线的第三角点;
    将第一角点沿所述目标箱体单元轮廓线的长度向量方向移动走廊的宽度的距离,将移动后的位置作为所述走廊结构梁横截面轮廓线的第四角点;
    连接所述走廊结构梁横截面轮廓线的第一角点、第二角点、第三角点及第四角点,得到所述走廊结构梁横截面轮廓线;以及
    重复执行上述步骤,直至生成目标箱体单元四根走廊结构梁的走廊结构梁横截面轮廓线。
  6. 如权利要求1至5中任一权利要求所述的装配式钢结构模块建筑的柱梁生成方法,其中,所述对所述建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型,包括:
    将所述结构柱横截面轮廓线沿目标箱体单元的结构柱的路径方向进行拉伸,生成目标箱体单元的结构柱三维模型;
    将所述结构梁横截面轮廓线沿目标箱体单元的结构梁的路径方向进行拉伸,生成目标箱体单元的结构梁三维模型;
    将所述走廊结构梁横截面轮廓线沿目标箱体单元的走廊结构梁的路径方向进行拉伸,生成目标箱体单元的走廊结构梁三维模型;以及
    其中,所述目标箱体单元的结构柱的路径方向、所述目标箱体单元的结构梁的路径方向及所述走廊结构梁的路径方向均为竖直向上。
  7. 如权利要求1至7中任一权利要求所述的装配式钢结构模块建筑的柱梁生成方法,其中,所述方法还包括:
    根据所述相关参数生成建筑的核心筒的柱梁结构横截面轮廓线,对所述核心筒的柱梁结构横截面轮廓线执行拉伸操作生成建筑的核心筒的柱梁结构的三维模型。
  8. 装配式钢结构模块建筑的柱梁生成装置,其中,所述装置包括:
    获取模块:配置为获取待生成柱梁结构的建筑的相关参数;
    匹配模块:配置利用所述相关参数将建筑的箱体单元轮廓线与建筑的户型单元轮廓线进行匹配,筛选出在户型单元轮廓线以内的目标箱体单元轮廓线,对所述目标箱体单元轮廓线执行偏移得到偏移轮廓线;以及
    生成模块:配置为根据所述目标箱体单元轮廓线和所述偏移轮廓线生成建筑的柱梁结构横截面轮廓线,对所述建筑的柱梁结构横截面轮廓线执行拉伸操作生成建筑的柱梁结构的三维模型。
  9. 电子设备,其包括处理器、通信接口、存储器和通信总线,其中,所述处理器,所述通信接口,所述存储器通过所述通信总线完成相互间的通信;
    存储器,配置为存放计算机程序;以及
    处理器,配置为执行存储器上所存放的程序时,实现权利要求1至7中任一权利要求所述的装配式钢结构模块建筑的柱梁生成方法。
  10. 计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至7中任一权利要求所述装配式钢结构模块建筑的柱梁生成方法的步骤。
PCT/CN2023/081304 2022-06-27 2023-03-14 装配式钢结构模块建筑的柱梁生成方法、装置及设备 WO2024001303A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210735515.0A CN114818093B (zh) 2022-06-27 2022-06-27 装配式钢结构模块建筑的柱梁生成方法、装置及设备
CN202210735515.0 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024001303A1 true WO2024001303A1 (zh) 2024-01-04

Family

ID=82523306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081304 WO2024001303A1 (zh) 2022-06-27 2023-03-14 装配式钢结构模块建筑的柱梁生成方法、装置及设备

Country Status (2)

Country Link
CN (1) CN114818093B (zh)
WO (1) WO2024001303A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114818093B (zh) * 2022-06-27 2022-09-30 深圳小库科技有限公司 装配式钢结构模块建筑的柱梁生成方法、装置及设备
CN117195383B (zh) * 2023-11-08 2024-03-01 中建科工集团绿色科技有限公司 模块化钢结构模型的生成方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140229142A1 (en) * 2013-02-12 2014-08-14 Paul T. Schrum, Jr. Corridor Modeling System, Apparatus, and Method
CN111159796A (zh) * 2019-11-22 2020-05-15 久瓴(上海)智能科技有限公司 建筑的梁的生成方法、装置、计算机设备和存储介质
CN114169065A (zh) * 2022-02-09 2022-03-11 深圳小库科技有限公司 生成装配式钢结构的方法和装置、电子设备和存储介质
CN114186315A (zh) * 2021-12-13 2022-03-15 广联达科技股份有限公司 生成建筑简模的方法、装置、计算机设备和可读存储介质
CN114818093A (zh) * 2022-06-27 2022-07-29 深圳小库科技有限公司 装配式钢结构模块建筑的柱梁生成方法、装置及设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207077B1 (en) * 2000-02-18 2001-03-27 Orion 21 A.D. Pty Ltd Luminescent gel coats and moldable resins
US8766925B2 (en) * 2008-02-28 2014-07-01 New York University Method and apparatus for providing input to a processor, and a sensor pad
US20100177120A1 (en) * 2009-01-13 2010-07-15 Balfour Technologies Llc System and method for stretching 3d/4d spatial hierarchy models for improved viewing
KR102204919B1 (ko) * 2014-06-14 2021-01-18 매직 립, 인코포레이티드 가상 및 증강 현실을 생성하기 위한 방법들 및 시스템들
CN108304631A (zh) * 2018-01-22 2018-07-20 北京市公路桥梁建设集团锐诚工程试验检测有限公司 一种桥梁上部结构的bim参数化设计方法
CN111177831A (zh) * 2019-12-26 2020-05-19 沈阳工业大学 一种基于bim技术的钢筋三维建模及自动算量方法
CN113378255A (zh) * 2020-02-25 2021-09-10 比亚迪股份有限公司 一种曲线导轨梁的设计方法和曲线导轨梁
CN111255081A (zh) * 2020-03-03 2020-06-09 北京仲基应用技术研究院有限公司 快装钢结构及太阳能多功能式建筑及安装方法
CN113158303A (zh) * 2021-04-01 2021-07-23 江苏大学 一种基于bim的装配式钢桥三维模型施工方法
CN114299148A (zh) * 2021-12-30 2022-04-08 京东方科技集团股份有限公司 一种三维模型构建方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140229142A1 (en) * 2013-02-12 2014-08-14 Paul T. Schrum, Jr. Corridor Modeling System, Apparatus, and Method
CN111159796A (zh) * 2019-11-22 2020-05-15 久瓴(上海)智能科技有限公司 建筑的梁的生成方法、装置、计算机设备和存储介质
CN114186315A (zh) * 2021-12-13 2022-03-15 广联达科技股份有限公司 生成建筑简模的方法、装置、计算机设备和可读存储介质
CN114169065A (zh) * 2022-02-09 2022-03-11 深圳小库科技有限公司 生成装配式钢结构的方法和装置、电子设备和存储介质
CN114818093A (zh) * 2022-06-27 2022-07-29 深圳小库科技有限公司 装配式钢结构模块建筑的柱梁生成方法、装置及设备

Also Published As

Publication number Publication date
CN114818093A (zh) 2022-07-29
CN114818093B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2024001303A1 (zh) 装配式钢结构模块建筑的柱梁生成方法、装置及设备
US11288413B2 (en) Method for automatic modeling of an architecture based on an architectural drawing
WO2021196515A1 (zh) 户型图生成方法、装置、计算机设备和存储介质
CN107944187B (zh) 一种基于Revit的钢筋计算方法、装置、终端设备及介质
CN110737944A (zh) 一种基于Revit生成楼板的方法及生成装置
CN105512265A (zh) 一种通过图形展示数据的方法及装置
CN113538706B (zh) 基于数字沙盘的房景展示方法、装置、设备及存储介质
KR100309582B1 (ko) 2차원 캐드인터페이스를 이용한 물량산출 시스템과 그 방법
CN111079215A (zh) 坡道工程量的确定方法、装置和电子设备
US10922450B2 (en) Associating computer-executable objects with timber frames within an architectural design environment
CN113763541B (zh) 一种计算柱中纵筋的方法、设备及可读存储介质
CN114818226B (zh) 板楼建筑的管线排布生成方法、装置、设备及存储介质
US20230315925A1 (en) Library-based connections design automation
US20190220506A1 (en) Fine-tuning automatically label locations in engineering drawings
CN114299214A (zh) 虚拟室内场景的生成方法及装置、存储介质、电子装置
WO2022234563A2 (en) System, method and computer program product for efficient design of buildings
KR20200131991A (ko) 건축물의 자동 설계 방법 및 프로그램
CN111753346A (zh) 线性构件的剖面图生成方法、Revit平台及存储介质
CN113392453B (zh) 工程图纸中的空间提取方法、装置、电子设备和存储介质
CN113468641B (zh) 创建栏杆几何模型的方法、装置、电子设备及存储介质
JP2831911B2 (ja) 格子点発生方式
CN115329444B (zh) 自动获得建筑投影线的方法、系统、终端设备及存储介质
WO2024109959A1 (zh) 廊道桥架及支架三维自动化设计方法、装置、介质及设备
JP2000235591A (ja) 壁パネル配置設計方法及びその装置
CN117744224A (zh) 基于施工信息管理的bim模型创建方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829494

Country of ref document: EP

Kind code of ref document: A1