WO2024001194A1 - 芯片液冷散热结构及其制作方法、电子设备 - Google Patents

芯片液冷散热结构及其制作方法、电子设备 Download PDF

Info

Publication number
WO2024001194A1
WO2024001194A1 PCT/CN2023/074666 CN2023074666W WO2024001194A1 WO 2024001194 A1 WO2024001194 A1 WO 2024001194A1 CN 2023074666 W CN2023074666 W CN 2023074666W WO 2024001194 A1 WO2024001194 A1 WO 2024001194A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
cover plate
heat dissipation
microchannel
liquid
Prior art date
Application number
PCT/CN2023/074666
Other languages
English (en)
French (fr)
Inventor
陶成
刘帆
周晓东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024001194A1 publication Critical patent/WO2024001194A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • Embodiments of the present application relate to the field of semiconductor technology, and in particular to a chip liquid-cooling heat dissipation structure and its manufacturing method, and electronic equipment.
  • the conventional heat dissipation methods take away heat through the combination of conventional size radiators and chips.
  • the proportion of interface thermal resistance becomes larger and larger, and the convection heat transfer capacity tends to increase.
  • the limit there is a problem of insufficient heat dissipation capacity.
  • the field of gallium nitride devices uses an integrated design of chip and heat sink. However, this integrated design has low reliability and is difficult to maintain. Once the heat dissipation channel is blocked or other reliability problems occur, the entire chip cannot be used again.
  • Embodiments of the present application provide a chip liquid-cooling heat dissipation structure, a manufacturing method thereof, and electronic equipment.
  • embodiments of the present application provide a chip liquid-cooling heat dissipation structure, including: a bare chip, the bare chip is provided with a chip body, and a plurality of microchannels are etched on the surface of the chip body; a cover plate is used for sealing Cover the microchannel, the cover plate is detachably connected to the bare chip, the cover plate is provided with a water inlet and a water outlet, and the microchannel is connected to the water inlet and the water outlet respectively.
  • embodiments of the present application provide an electronic device, including the chip liquid-cooling heat dissipation structure described in the first aspect.
  • embodiments of the present application provide a method for manufacturing a chip liquid cooling heat dissipation structure, which includes: etching a plurality of microchannels on the surface of the chip body in the bare chip; and installing a cover plate on the bare chip to cover the entire surface.
  • the microchannel wherein the cover plate is detachably connected to the bare chip, the cover plate is provided with a water inlet and a water outlet, and the microchannel is connected to the water inlet and the water outlet respectively.
  • Figure 1 is a schematic structural diagram of a bare chip
  • Figure 2 is a schematic diagram of a chip liquid cooling heat dissipation structure provided by an embodiment of the present application
  • Figure 3 is a schematic structural diagram of a bare chip provided by an embodiment of the present application.
  • Figure 4 is a front structural view of a cover provided by an embodiment of the present application.
  • Figure 5 is a reverse structural view of a cover provided by an embodiment of the present application.
  • Figure 6 is a cross-sectional structural view of a bare chip provided by an embodiment of the present application.
  • Figure 7 is a structural diagram of another cover provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of the chip body provided by an embodiment of the present application.
  • Figure 9 is a flow chart of a chip liquid cooling manufacturing method provided by one embodiment of the present application.
  • Figure 10 is a sub-flow chart of a chip liquid cooling manufacturing method provided by one embodiment of the present application.
  • FIG. 11 is another sub-flow chart of a chip liquid cooling and heat dissipation manufacturing method provided by an embodiment of the present application.
  • the conventional heat dissipation methods take away heat through the combination of conventional size radiators and chips.
  • the proportion of interface thermal resistance becomes larger and larger, and the convection heat transfer capacity tends to increase.
  • the limit there is a problem of insufficient heat dissipation capacity.
  • the field of gallium nitride devices uses an integrated design of chip and heat sink. However, this integrated design has low reliability and is difficult to maintain. Once the heat dissipation channel is blocked or other reliability problems occur, the entire chip cannot be used again.
  • the chip liquid-cooling heat dissipation structure includes a bare chip and a cover plate.
  • the bare chip is provided with a chip body, and the surface of the chip body is etched.
  • the cover plate is provided with a water inlet and a water outlet, and the microchannels are connected to the water inlet and the water outlet respectively.
  • this application makes micro-channels on the surface of the chip body, and through the separate design of the cover plate and the bare chip, it ensures ultra-high heat dissipation capacity while realizing the disassembly and maintenance of the chip micro-channels, improving the reliability and reuse of the product. efficiency, reduce costs, and ultimately enhance product competitiveness.
  • the bare chip 100 shown in Figure 1 is surrounded by a chip protection ring 110.
  • the chip protection ring 110 protects the chip body 120 in the middle.
  • the bottom layer of the chip body 120 is the wiring area and the heat source.
  • the top of the chip body 120 It is single crystal silicon.
  • Conventional system-level heat dissipation uses a radiator to dissipate heat to the bare chip.
  • the bottom surface of the radiator has a long boss and is connected through an interface material such as thermal grease in the middle to achieve heat dissipation capability.
  • the chip liquid cooling structure of the present application includes a bare chip 100 and a cover plate 200.
  • the bare chip 100 is provided with a chip body 120, and a plurality of microchannels 121 are etched on the surface of the chip body 120;
  • the plate 200 is used to cover the microchannel 121.
  • the cover plate 200 is detachably connected to the bare chip 100.
  • the cover plate 200 is provided with a water inlet 210 and a water outlet 220.
  • the microchannel 121 is connected to the water inlet 210 and the water outlet 220 respectively.
  • microchannels are heat dissipation channels with a width ranging from 10um to 100um.
  • the specific maintenance process is as follows: when an abnormal pressure in the microchannel 121 of the chip body 120 on the single board is detected, that is, the microchannel 121 is blocked, pull out the Veneer; loosen the screws 250, remove the cover 200 and rubber pad 300; clean the microchannel 121 and dry it; prepare a new rubber pad 300 to install, cover the cover 200, and tighten the screws 250; reinstall the veneer. Plug in the device.
  • a drainage structure can also be provided on the side of the cover plate 200 facing the microchannel 121 .
  • the drainage structure includes a liquid inlet manifold 230 and a liquid outlet manifold 240 .
  • the liquid inlet manifold 230 is connected to the water inlet 210, and the liquid outlet manifold 240 is connected to the water outlet 220.
  • the liquid inlet manifold 230 and the liquid outlet manifold 240 can enhance heat exchange and reduce flow resistance.
  • the cover plate 200 of different structural forms can be replaced according to usage requirements, such as changing the number of inlet and outlet manifolds or adopting other drainage forms.
  • the bare chip 100 further includes a chip protection ring 110 .
  • the chip body 120 is located inside the chip protection ring 110 to protect the chip body 120 .
  • a rubber pad 300 is provided between the cover plate 200 and the chip protection ring 110 .
  • a rubber pad 300 is attached to the surface of the chip protection ring 110.
  • the cover plate 200 is pressed on the upper part of the rubber pad 300, and the cover plate 200 and the bare chip 100 can be combined together through the spring screws 250.
  • the distance between the microchannel 121 and the chip protection ring 110 is less than 1 mm to minimize the gap between the microchannel 121 and the chip protection ring 110 on the chip body 120.
  • the coolant is compressed as much as possible to flow on the microchannel 121 to avoid ineffective flow of the coolant, thereby further improving the heat dissipation effect.
  • the cover plate 200 and the bare chip 100 can be connected through screws 250 , and the cover plate 200 and the bare chip 100 are combined together through the screws 250 .
  • microchannels 121 can be etched in single crystal silicon on the upper surface of the chip body 120 , and the width of the microchannels 121 is 10um to 100um. It should be noted that the arrangement of the multiple microchannels 121 is not limited.
  • this application creates microchannels 121 on the surface of the chip body 120 and separates the cover plate 200 and the bare chip 100 to ensure ultra-high heat dissipation capacity while realizing the disassembly and maintenance of the chip microchannels 121, thereby improving the product's reliability. Reliability and reusability, reduce costs, and ultimately enhance product competitiveness.
  • a bottom plate in addition to directly etching microchannels on the surface of the chip body, a bottom plate can also be set on the top of the bare chip, with microchannels etched on the bottom plate.
  • the bottom plate can be combined with the bare chip through bonding, welding, etc.
  • this embodiment has less impact on chip design and is more feasible, but the heat dissipation capacity may be reduced due to interface thermal resistance.
  • a silicon plate with better heat dissipation capability is preferred, and a bottom plate containing metal material can also be used, which is not limited in this embodiment.
  • An embodiment of the present application also provides an electronic device, which includes the above-mentioned chip liquid-cooling heat dissipation structure.
  • the chip liquid-cooling heat dissipation structure in this electronic device includes a bare chip 100 and a cover plate 200.
  • the bare chip 100 is provided with a chip body 120, and a plurality of microchannels 121 are etched on the surface of the chip body 120; the cover plate 200 is used to cover the micro-channels.
  • the channel 121 and the cover plate 200 are detachably connected to the bare chip 100.
  • the cover plate 200 is provided with a water inlet 210 and a water outlet 220.
  • the microchannel 121 is connected with the water inlet 210 and the water outlet 220 respectively. Based on this, this The application makes microchannels 121 on the surface of the chip body 120 and separates the cover plate 200 and the bare chip 100 to ensure ultra-high heat dissipation while achieving disassembly and maintenance of the chip microchannels 121, thereby improving the reliability and reproducibility of the product. usability, reduce costs, and ultimately enhance product competitiveness.
  • the embodiment of the present application also provides a method for manufacturing a chip liquid cooling heat dissipation structure.
  • the manufacturing method includes but is not limited to the following steps:
  • Step S901 etching multiple microchannels on the surface of the chip body in the bare chip
  • Step S902 Install a cover plate on the bare chip to cover the microchannel.
  • the cover plate is detachably connected to the bare chip.
  • the cover plate is provided with a water inlet and a water outlet.
  • the microchannel is connected to the water inlet and the water outlet respectively.
  • a chip body in the bare chip There is a chip body in the bare chip. During production, multiple microchannels are etched on the surface of the chip body. For example, reactive ion etching microchannels can be used.
  • a cover plate is installed on the bare chip, and the cover plate is used to cover the microchannel, and the cover plate and the bare chip are detachably connected.
  • the cover plate is provided with a water inlet and a water outlet, and the microchannel is connected with the water inlet and the water outlet respectively.
  • the cover plate and the bare chip adopt a detachable connection design. When the microchannel is blocked, the cover plate can be easily disassembled to clean the microchannel, thereby achieving detachable maintenance.
  • the width of the microchannel is 10um to 100um, and the arrangement of the multiple microchannels is not limited.
  • Step S901 may include but is not limited to the following steps:
  • Step S1001 spin-coat photoresist on the surface of single crystal silicon and dry it;
  • Step S1002 use a mask to cover the single crystal silicon and expose it to ultraviolet light to form a microchannel photolithography pattern
  • Step S1003 etching the microchannel photolithography pattern through reactive ion etching to obtain the microchannel.
  • photoresist is spin-coated on the surface of single crystal silicon and dried.
  • the single crystal silicon is covered with a mask and exposed to ultraviolet light to form a microchannel photolithography pattern.
  • the microchannels are etched by reactive ion etching.
  • the channels are photolithographically patterned, thereby etching microchannels.
  • Step S902 may include but is not limited to the following steps:
  • Step S1101 attach a rubber pad to the surface of the chip protection ring
  • Step S1102 press the cover plate on the rubber pad
  • Step S1103 use screws to install the cover plate and the bare chip together through the rubber pad, so that the cover plate and the chip body fit together.
  • a rubber pad is attached to the surface of the chip protection ring, and the cover plate is pressed on the upper part of the rubber pad, and the cover plate and the bare chip can be combined together through spring screws.
  • a drainage structure can also be provided on the side of the cover facing the microchannel.
  • the drainage structure includes a liquid inlet manifold and a liquid outlet manifold.
  • the liquid inlet manifold is connected to the water inlet, and the liquid outlet manifold is connected to the outlet. Water mouth.
  • the inlet and outlet manifolds can enhance heat exchange and reduce flow resistance.
  • cover plates of different structures can be replaced according to usage requirements, such as changing the number of inlet and outlet manifolds or using other drainage forms.
  • the distance between the microchannel and the chip protection ring is less than 1 mm to minimize the gap between the microchannel and the chip protection ring on the chip body, so that the cooling liquid is compressed on the microchannel as much as possible. flow to avoid ineffective flow of coolant, thereby further improving the heat dissipation effect.
  • the specific maintenance process is as follows: when abnormal pressure in the microchannel of the chip body on the single board is detected, that is, the microchannel is blocked, pull out the single board; Loosen the screws, remove the cover plate and rubber pad; clean and dry the microchannel; prepare a new rubber pad to install, cover the cover plate, and tighten the screws; reinsert the single board into the device.
  • this application makes micro-channels on the surface of the chip body, and through the separate design of the cover plate and the bare chip, it ensures ultra-high heat dissipation capacity while realizing the disassembly and maintenance of the chip micro-channels, improving the reliability and reuse of the product. efficiency, reduce costs, and ultimately enhance product competitiveness.
  • Embodiments of the present application include: a chip liquid-cooling heat dissipation structure and a manufacturing method thereof, and electronic equipment.
  • the chip liquid-cooling heat dissipation structure includes a bare chip and a cover plate, wherein the bare chip is provided with a chip body, and a plurality of microchannels are etched on the surface of the chip body;
  • the cover plate is used to cover the microchannel, and the cover plate is detachably connected to the bare chip.
  • the cover plate is provided with a water inlet and a water outlet, and the microchannel is connected to the water inlet and the water outlet respectively.
  • this application makes micro-channels on the surface of the chip body, and through the separate design of the cover plate and the bare chip, it ensures ultra-high heat dissipation capacity while realizing the disassembly and maintenance of the chip micro-channels, improving the reliability and reuse of the product. efficiency, reduce costs, and ultimately enhance product competitiveness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请公开了芯片液冷散热结构及其制作方法、电子设备,其中,芯片液冷散热结构包括裸芯片(100)和盖板(200),其中,裸芯片(100)设置有芯片本体(120),芯片本体(120)表面蚀刻有多条微通道(121);盖板(200)用于封盖微通道(121),盖板(200)与裸芯片(100)可拆卸连接,盖板(200)设置有进水口(210)和出水口(220),微通道(121)分别与进水口(210)和出水口(220)连通。

Description

芯片液冷散热结构及其制作方法、电子设备
相关申请的交叉引用
本申请基于申请号为202210736620.6、申请日为2022年06月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及半导体技术领域,特别是涉及一种芯片液冷散热结构及其制作方法、电子设备。
背景技术
芯片的发展遵循摩尔定律,功率密度逐渐增高,部分行业如氮化镓功率器件已经突破1000W/cm2,传统风冷以及常规液冷都已经无法满足芯片的散热要求。
目前,常规散热方式中风冷和常规液冷都是通过常规尺度的散热器与芯片结合带走热量,随着热密度的提升,界面热阻占比越来越大,且对流换热能力趋于极限,存在散热能力不足的问题。在相关技术中,氮化镓器件领域有采用芯片与散热器一体设计,但该一体化设计可靠性低,难以维护,一旦散热通道堵塞或出现其他可靠性问题,整个芯片都不能再使用。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种芯片液冷散热结构及其制作方法、电子设备。
第一方面,本申请实施例提供了一种芯片液冷散热结构,包括:裸芯片,所述裸芯片设置有芯片本体,所述芯片本体表面蚀刻有多条微通道;盖板,用于封盖所述微通道,所述盖板与所述裸芯片可拆卸连接,所述盖板设置有进水口和出水口,所述微通道分别与所述进水口和所述出水口连通。
第二方面,本申请实施例提供了一种电子设备,包括有如上第一方面所述的芯片液冷散热结构。
第三方面,本申请实施例提供了一种芯片液冷散热结构制作方法,包括:在裸芯片内的芯片本体表面蚀刻多条微通道;在所述裸芯片上安装盖板,以封盖所述微通道,其中,所述盖板与所述裸芯片可拆卸连接,所述盖板设置有进水口和出水口,所述微通道分别与所述进水口和所述出水口连通。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为裸芯片的结构示意图;
图2为本申请一个实施例提供的芯片液冷散热结构示意图;
图3为本申请一个实施例提供的裸芯片结构示意图;
图4是本申请一个实施例提供的一种盖板正面结构图;
图5为本申请一个实施例提供的一种盖板反面结构图;
图6为本申请一个实施例提供的裸芯片剖视结构图;
图7为本申请一个实施例提供的另一种盖板结构图;
图8为本申请一个实施例提供的芯片本体结构示意图;
图9为本申请一个实施例提供的芯片液冷散热制作方法流程图;
图10为本申请一个实施例提供的芯片液冷散热制作方法子流程图;
图11为本申请一个实施例提供的芯片液冷散热制作方法另一子流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
目前,常规散热方式中风冷和常规液冷都是通过常规尺度的散热器与芯片结合带走热量,随着热密度的提升,界面热阻占比越来越大,且对流换热能力趋于极限,存在散热能力不足的问题。在相关技术中,氮化镓器件领域有采用芯片与散热器一体设计,但该一体化设计可靠性低,难以维护,一旦散热通道堵塞或出现其他可靠性问题,整个芯片都不能再使用。
针对上述问题,本申请实施例提供了一种芯片液冷散热结构及其制作方法、电子设备,芯片液冷散热结构包括裸芯片和盖板,其中,裸芯片设置有芯片本体,芯片本体表面蚀刻有多条微通道;盖板用于封盖微通道,盖板与裸芯片可拆卸连接,盖板设置有进水口和出水口,微通道分别与进水口和出水口连通。基于此,本申请通过在芯片本体表面制作微通道,并通过盖板与裸芯片的分离式设计,保证超高散热能力的同时实现芯片微通道的拆卸维护,提高了产品的可靠性和复用性,降低成本,最终提升产品竞争力。
在相关技术中,如图1所示的裸芯片100,四周是芯片保护环110,芯片保护环110保护中间的芯片本体120,芯片本体120的底层是布线区以及热量源,芯片本体120的顶部是单晶硅。常规系统级散热通过散热器给裸芯片散热,散热器底面长凸台,中间通过界面材料如导热硅脂连接,以实现散热能力。
如图2至图8所示,本申请的芯片液冷散热结构包括裸芯片100和盖板200,其中,裸芯片100设置有芯片本体120,芯片本体120表面蚀刻有多条微通道121;盖板200用于封盖微通道121,盖板200与裸芯片100可拆卸连接,盖板200设置有进水口210和出水口220,微通道121分别与进水口210和出水口220连通。由于芯片本体120底层热量源散发的热量自下而上传递到芯片本体120上表面的多条微通道121,从盖板200的进水口210流入的冷 却液流经多条微通道121再从出水口220流出,从而带走热量,以起到高效散热的作用。而且,盖板200与裸芯片100采用可拆卸连接设计,当微通道121出现堵塞时,可以轻易拆开盖板200,对微通道121进行清洗,从而实现可拆卸维护。需要说明的是,微通道为宽度介乎为10um至100um的散热通道。
在一示例性的实施方式中,以安装在设备上的单板为例,维护具体过程如下:当监测到单板上芯片本体120的微通道121压力异常,即微通道121出现堵塞,拔出单板;松开螺钉250,卸下盖板200和橡胶垫300;清洗微通道121并烘干;准备新的橡胶垫300安装好,并盖上盖板200,打上螺钉250;将单板重新插入设备。
在一示例性的实施方式中,如图7所示,盖板200朝向微通道121的一侧还可以设置引流结构,引流结构包括进液歧管230和出液歧管240,进液歧管230连接进水口210,出液歧管240连接出水口220。进液歧管230和出液歧管240能够强化换热,降低流阻,同时可以根据使用要求更换不同结构形式的盖板200,例如更改进出歧管的数量或采用其他引流形式。
在一示例性的实施方式中,如图3所示,裸芯片100还包括有芯片保护环110,芯片本体120位于芯片保护环110内部,对芯片本体120起到保护作用。
在一示例性的实施方式中,如图6所示,盖板200与芯片保护环110之间设置有橡胶垫300。芯片保护环110表面贴附橡胶垫300,在橡胶垫300上部按压盖板200,可以通过弹簧螺钉250将盖板200与裸芯片100结合在一起。
在一示例性的实施方式中,如图3所示,微通道121与芯片保护环110之间的间距小于1mm,以尽量减少芯片本体120上微通道121与芯片保护环110之间的空隙,使得冷却液被尽量压缩在微通道121上进行流动,避免冷却液的无效流动,从而进一步提高散热效果。
在一示例性的实施方式中,如图2至图6所示,盖板200与裸芯片100可以通过螺钉250连接,通过螺钉250将盖板200与裸芯片100结合在一起。
在一示例性的实施方式中,如图8所示,可以在芯片本体120上表面的单晶硅蚀刻微通道121,微通道121的宽度为10um至100um。需要说明的是,对于多条微通道121的排布方式并不作限定。
基于此,本申请通过在芯片本体120表面制作微通道121,并通过盖板200与裸芯片100的分离式设计,保证超高散热能力的同时实现芯片微通道121的拆卸维护,提高了产品的可靠性和复用性,降低成本,最终提升产品竞争力。
需要指出的是,除了在芯片本体表面直接刻蚀微通道,还可以在裸芯片顶部设置底板,在底板上蚀刻有微通道,底板可以通过键合、焊接等方式与裸芯片结合在一起,相比于前述在芯片本体表面直接刻蚀微通道的实施方式,本实施方式对芯片设计影响小,可行性高,但散热能力因界面热阻可能存在下降。需要说明的是,对于底板的材质,首选采用散热能力较佳的硅板,也可以选用含有金属材质的底板,本实施方式对此不作限制。
本申请实施例还提供了一种电子设备,该电子设备包括有上述的芯片液冷散热结构。
在一实施例中,由于电子设备采用了上述的芯片液冷散热结构,因此,本电子设备能够取得与上述芯片液冷散热结构同样的技术效果。本电子设备中的芯片液冷散热结构包括裸芯片100和盖板200,其中,裸芯片100设置有芯片本体120,芯片本体120表面蚀刻有多条微通道121;盖板200用于封盖微通道121,盖板200与裸芯片100可拆卸连接,盖板200设置有进水口210和出水口220,微通道121分别与进水口210和出水口220连通。基于此,本 申请通过在芯片本体120表面制作微通道121,并通过盖板200与裸芯片100的分离式设计,保证超高散热能力的同时实现芯片微通道121的拆卸维护,提高了产品的可靠性和复用性,降低成本,最终提升产品竞争力。
如图9所示,本申请实施例还提供了一种芯片液冷散热结构制作方法,该制作方法包括但不限于如下步骤:
步骤S901,在裸芯片内的芯片本体表面蚀刻多条微通道;
步骤S902,在裸芯片上安装盖板,以封盖微通道,其中,盖板与裸芯片可拆卸连接,盖板设置有进水口和出水口,微通道分别与进水口和出水口连通。
在裸芯片内具有芯片本体,制作时,在芯片本体表面蚀刻多条微通道,例如,可以采用反应离子蚀刻微通道。在裸芯片上安装盖板,盖板用于封盖微通道,且盖板与裸芯片可拆卸连接,盖板设置有进水口和出水口,微通道分别与进水口和出水口连通。由于芯片本体底层热量源散发的热量自下而上传递到芯片本体上表面的多条微通道,从盖板的进水口流入的冷却液流经多条微通道再从出水口流出,从而带走热量,以起到高效散热的作用。而且,盖板与裸芯片采用可拆卸连接设计,当微通道出现堵塞时,可以轻易拆开盖板,对微通道进行清洗,从而实现可拆卸维护。
在一示例性的实施方式中,微通道的宽度为10um至100um,且对于多条微通道的排布方式并不作限定。
如图10所示,芯片本体的顶部为单晶硅,步骤S901可以包括但不限于如下步骤:
步骤S1001,在单晶硅的表面旋涂光刻胶并烘干;
步骤S1002,采用掩膜覆盖单晶硅并放置在紫外线下曝光,形成微通道光刻图案;
步骤S1003,通过反应离子蚀刻微通道光刻图案,以得到微通道。
在一示例性的实施方式中,在单晶硅的表面旋涂光刻胶并烘干,采用掩膜覆盖单晶硅并放置在紫外线下曝光,形成微通道光刻图案,通过反应离子蚀刻微通道光刻图案,从而蚀刻出微通道。
如图11所示,裸芯片还包括有芯片保护环,芯片本体位于芯片保护环内部,步骤S902可以包括但不限于如下步骤:
步骤S1101,在芯片保护环表面贴橡胶垫;
步骤S1102,在橡胶垫上按压盖板;
步骤S1103,采用螺钉将盖板通过橡胶垫与裸芯片安装在一起,使得盖板与芯片本体贴合。
在一示例性的实施方式中,在芯片保护环表面贴附橡胶垫,在橡胶垫上部按压盖板,可以通过弹簧螺钉将盖板与裸芯片结合在一起。
在一示例性的实施方式中,盖板朝向微通道的一侧还可以设置引流结构,引流结构包括进液歧管和出液歧管,进液歧管连接进水口,出液歧管连接出水口。进液歧管和出液歧管能够强化换热,降低流阻,同时可以根据使用要求更换不同结构形式的盖板,例如更改进出歧管的数量或采用其他引流形式。
在一示例性的实施方式中,微通道与芯片保护环之间的间距小于1mm,以尽量减少芯片本体上微通道与芯片保护环之间的空隙,使得冷却液被尽量压缩在微通道上进行流动,避免冷却液的无效流动,从而进一步提高散热效果。
在一示例性的实施方式中,以安装在设备上的单板为例,维护具体过程如下:当监测到单板上芯片本体的微通道压力异常,即微通道出现堵塞,拔出单板;松开螺钉,卸下盖板和橡胶垫;清洗微通道并烘干;准备新的橡胶垫安装好,并盖上盖板,打上螺钉;将单板重新插入设备。
基于此,本申请通过在芯片本体表面制作微通道,并通过盖板与裸芯片的分离式设计,保证超高散热能力的同时实现芯片微通道的拆卸维护,提高了产品的可靠性和复用性,降低成本,最终提升产品竞争力。
本申请实施例包括:芯片液冷散热结构及其制作方法、电子设备,芯片液冷散热结构包括裸芯片和盖板,其中,裸芯片设置有芯片本体,芯片本体表面蚀刻有多条微通道;盖板用于封盖微通道,盖板与裸芯片可拆卸连接,盖板设置有进水口和出水口,微通道分别与进水口和出水口连通。基于此,本申请通过在芯片本体表面制作微通道,并通过盖板与裸芯片的分离式设计,保证超高散热能力的同时实现芯片微通道的拆卸维护,提高了产品的可靠性和复用性,降低成本,最终提升产品竞争力。
以上是对本申请的若干实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请本质的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (11)

  1. 一种芯片液冷散热结构,包括:
    裸芯片,所述裸芯片设置有芯片本体,所述芯片本体表面蚀刻有多条微通道;
    盖板,用于封盖所述微通道,所述盖板与所述裸芯片可拆卸连接,所述盖板设置有进水口和出水口,所述微通道分别与所述进水口和所述出水口连通。
  2. 根据权利要求1所述的芯片液冷散热结构,其中,所述盖板朝向所述微通道的一侧设置有引流结构,所述引流结构包括进液歧管和出液歧管,所述进液歧管连接所述进水口,所述出液歧管连接所述出水口。
  3. 根据权利要求1所述的芯片液冷散热结构,其中,所述裸芯片还包括有芯片保护环,所述芯片本体位于所述芯片保护环内部。
  4. 根据权利要求3所述的芯片液冷散热结构,其中,所述盖板与所述芯片保护环之间设置有橡胶垫。
  5. 根据权利要求4所述的芯片液冷散热结构,其中,所述微通道与所述芯片保护环之间的间距小于1mm。
  6. 根据权利要求1所述的芯片液冷散热结构,其中,所述盖板与所述裸芯片通过螺钉连接。
  7. 根据权利要求1至6任意一项所述的芯片液冷散热结构,其中,所述微通道的宽度为10um至100um。
  8. 一种电子设备,包括有如权利要求1至7任意一项所述的芯片液冷散热结构。
  9. 一种芯片液冷散热结构制作方法,包括:
    在裸芯片内的芯片本体表面蚀刻多条微通道;
    在所述裸芯片上安装盖板,以封盖所述微通道,其中,所述盖板与所述裸芯片可拆卸连接,所述盖板设置有进水口和出水口,所述微通道分别与所述进水口和所述出水口连通。
  10. 根据权利要求9所述的制作方法,其中,所述芯片本体的顶部为单晶硅;
    所述在裸芯片内的芯片本体表面蚀刻多条微通道,包括:
    在所述单晶硅的表面旋涂光刻胶并烘干;
    采用掩膜覆盖所述单晶硅并放置在紫外线下曝光,形成微通道光刻图案;
    通过反应离子蚀刻所述微通道光刻图案,以得到所述微通道。
  11. 根据权利要求9所述的制作方法,其中,所述裸芯片还包括有芯片保护环,所述芯片本体位于所述芯片保护环内部;
    所述在所述裸芯片上安装盖板,包括:
    在所述芯片保护环表面贴橡胶垫;
    在橡胶垫上按压所述盖板;
    采用螺钉将所述盖板通过所述橡胶垫与所述裸芯片安装在一起,使得所述盖板与所述芯片本体贴合。
PCT/CN2023/074666 2022-06-27 2023-02-06 芯片液冷散热结构及其制作方法、电子设备 WO2024001194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210736620.6A CN117352476A (zh) 2022-06-27 2022-06-27 芯片液冷散热结构及其制作方法、电子设备
CN202210736620.6 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024001194A1 true WO2024001194A1 (zh) 2024-01-04

Family

ID=89365476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074666 WO2024001194A1 (zh) 2022-06-27 2023-02-06 芯片液冷散热结构及其制作方法、电子设备

Country Status (2)

Country Link
CN (1) CN117352476A (zh)
WO (1) WO2024001194A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0376611A2 (en) * 1988-12-30 1990-07-04 The Board Of Trustees Of The Leland Stanford Junior University Electrophoretic system
CN104201158A (zh) * 2014-08-28 2014-12-10 中国电子科技集团公司第二十九研究所 一种硅基微通道散热器集成冷却装置
CN106252309A (zh) * 2016-09-26 2016-12-21 北京无线电测量研究所 一种用于高热流密度芯片的微通道液冷散热器及导冷插件
CN114284223A (zh) * 2021-11-03 2022-04-05 浙江大学杭州国际科创中心 一种用于嵌入式功率芯片散热的歧管式微通道结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0376611A2 (en) * 1988-12-30 1990-07-04 The Board Of Trustees Of The Leland Stanford Junior University Electrophoretic system
CN104201158A (zh) * 2014-08-28 2014-12-10 中国电子科技集团公司第二十九研究所 一种硅基微通道散热器集成冷却装置
CN106252309A (zh) * 2016-09-26 2016-12-21 北京无线电测量研究所 一种用于高热流密度芯片的微通道液冷散热器及导冷插件
CN114284223A (zh) * 2021-11-03 2022-04-05 浙江大学杭州国际科创中心 一种用于嵌入式功率芯片散热的歧管式微通道结构

Also Published As

Publication number Publication date
CN117352476A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US7537047B2 (en) Liquid-cooling heat sink
JP2007227902A (ja) マイクロチャンネルヒートシンク
JP2007096307A (ja) ヒートシンクアセンブリ
CN101375650B (zh) 液冷式散热装置
CN108495539A (zh) 一种整合式的液冷散热系统
TWM251442U (en) Liquid cooling apparatus
WO2018014596A1 (zh) 一种散热器
TW201731369A (zh) 水冷系統
TWM622861U (zh) 散熱裝置
WO2018014599A1 (zh) 一种散热器
WO2024001194A1 (zh) 芯片液冷散热结构及其制作方法、电子设备
CN210470130U (zh) 充电装置及其散热机构
WO2023005205A1 (zh) 散热装置及电子设备
CN208905263U (zh) 一种整合式的液冷散热系统
WO2017049867A1 (zh) 散热装置及其散热板
TWM638946U (zh) 散熱裝置
CN210579811U (zh) 散热装置
CN210808078U (zh) 一种深埋式铜管水冷板
US20100243216A1 (en) Liquid-cooling device
TW202137865A (zh) 液冷模組及其液冷頭
JP3173802U (ja) 放熱モジュール
TW202231171A (zh) 水冷散熱裝置
TW200741433A (en) Liquid-cooling heat sink
TWM245500U (en) Water cooling apparatus
CN214482008U (zh) 液冷散热结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829387

Country of ref document: EP

Kind code of ref document: A1