WO2024000977A1 - 一种鱼油原料中二十碳五烯酸的富集方法 - Google Patents

一种鱼油原料中二十碳五烯酸的富集方法 Download PDF

Info

Publication number
WO2024000977A1
WO2024000977A1 PCT/CN2022/129279 CN2022129279W WO2024000977A1 WO 2024000977 A1 WO2024000977 A1 WO 2024000977A1 CN 2022129279 W CN2022129279 W CN 2022129279W WO 2024000977 A1 WO2024000977 A1 WO 2024000977A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
chromatography column
fish oil
chromatography
sample loading
Prior art date
Application number
PCT/CN2022/129279
Other languages
English (en)
French (fr)
Inventor
鲁峰
向林
郭富锐
贾坤
祁威
李胜迎
Original Assignee
江苏汉邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏汉邦科技股份有限公司 filed Critical 江苏汉邦科技股份有限公司
Publication of WO2024000977A1 publication Critical patent/WO2024000977A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to the technical field of substance purification, and in particular to a method for enriching eicosapentaenoic acid in fish oil raw materials.
  • Fish oil is a natural health food with high utilization value.
  • the polyunsaturated fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) contained in it have the functions of inhibiting platelet aggregation, anti-thrombosis, and relaxation. It has functions such as regulating blood vessels, adjusting blood lipids, and improving biofilm fluidity. It has good effects in treating and preventing cardiovascular diseases, diabetes, dermatitis, large intestine ulcers, and inhibiting tumors.
  • methods for separating and purifying fish oil include urea inclusion method, cryogenic freezing method, metal salt precipitation method, saponification-urea inclusion method, fish oil cross-esterification, vacuum distillation method and supercritical extraction method.
  • EPA/DHA components in domestic fish oil raw materials, and the low level of separation and purification methods provided above, the quality of the final product is uneven, as shown in the following: EPA or DHA content in domestic cod liver oil or emulsion products Low, the market competitiveness is not strong and the economic benefits are not high. Therefore, there is a need to provide purification methods for fish oil products with high EPA content.
  • the object of the present invention is to provide a method for enriching eicosapentaenoic acid in fish oil raw materials.
  • the purity of EPA obtained by the enrichment method provided by the invention is ⁇ 98.5%.
  • the invention provides a method for enriching eicosapentaenoic acid in fish oil raw materials, which includes the following steps:
  • the number of repetitions is ⁇ 3 times;
  • the two-column simulated moving bed includes a first chromatography column and a second chromatography column;
  • the mobile phase of the double-column simulated moving bed is an alcohol aqueous solution
  • the enrichment includes sequentially carrying out sample loading, layer development, first internal circulation, sample loading and collection, second internal circulation and impurity removal;
  • the sample loading parameters include: the first chromatographic column and the second chromatographic column are connected in series, the sample loading flow rate is 0.1 ⁇ 3BV/h, and the sample loading time is 1 ⁇ 30 min;
  • the parameters of the layer development include: the first chromatography column and the second chromatography column are connected in series, the layer development reagent is consistent with the mobile phase, and the flow rate of the layer development reagent is 0.1 to 5 BV/ h, the layer development time is 15 to 40 minutes;
  • the parameters of the first internal circulation include: the first chromatography column and the second chromatography column are connected end to end to form a closed loop, the flow rate of the first internal circulation is 0.1 ⁇ 5BV/h, and the time of the first internal circulation is 20 ⁇ 40min;
  • the parameters of the sample loading and collection include: the first chromatography column and the second chromatography column are in an independent state, and the sample loading and collection includes loading of the first chromatography column and collection of the second chromatography column; the first chromatography column
  • the flow rate of sample loading on the column is 0.1-3BV/h, and the sample loading-collection time is 1-30 minutes;
  • the parameters of the second internal circulation include: the first chromatography column and the second chromatography column are connected end to end to form a closed loop, the flow rate of the second internal circulation is 0.1 ⁇ 5BV/h, and the time of the second internal circulation is 5 ⁇ 20min;
  • the parameters of the rear impurities include: the first chromatographic column and the second chromatographic column are in an independent state; the rear impurities include the first chromatographic column rear impurities and the second chromatographic column rear impurities; the first chromatographic column is in an independent state;
  • the reagents behind the chromatography column and the second chromatography column are consistent with the mobile phase, and the flow rate of the reagents behind the first chromatography column and the flow rate of the reagents behind the second chromatography column are independently It is 0.1 ⁇ 5BV/h, and the time for removing impurities is 20 ⁇ 50min.
  • the mass percentage of eicosapentaenoic acid in the fish oil raw material is 40 to 90%.
  • the fish oil raw material is dissolved to obtain a fish oil solution; the reagents dissolved in the fish oil raw material are consistent with the mobile phase of the double-column simulated moving bed.
  • the concentration of fish oil raw material in the fish oil solution is 100-1000 mL/L.
  • the alcohols in the alcohol aqueous solution are C 1 to C 4 alcohols; the C 1 to C 4 alcohols include one or more of methanol, ethanol and isopropyl alcohol.
  • the volume fraction of water in the alcohol aqueous solution is 2 to 10%.
  • the first chromatography column and the second chromatography column are C8 chromatography columns, C16 chromatography columns or C18 chromatography columns.
  • the particle size of the filler in the first chromatography column and the second chromatography column is 10-50 ⁇ m.
  • the flow rate of the reagent collected by the second chromatography column is 0.1 to 5 BV/h.
  • the invention provides a method for enriching eicosapentaenoic acid in fish oil raw materials, which includes the following steps: entering the fish oil raw materials into a double-column simulated moving bed for enrichment; repeating the enrichment process; the number of repetitions is ⁇ 3 times; the double-column simulated moving bed includes a first chromatographic column and a second chromatographic column; the mobile phase of the double-column simulated moving bed is an alcohol aqueous solution; the enrichment includes sequentially loading, layer development, and the first Internal circulation, sample loading-collection, second internal circulation and impurity removal; the parameters of the sample loading include: the first chromatographic column and the second chromatographic column are connected in series, and the flow rate of the sample loading is 0.1 ⁇ 3BV /h, the sample loading time is 1 to 30 minutes; the parameters of the layer development include: the first chromatography column and the second chromatography column are connected in series, and the reagent of the layer development is consistent with the mobile phase, The flow rate
  • the sample loading-collection parameters include: the first chromatographic column and the second The chromatographic column is in an independent state, and the loading and collecting includes loading on the first chromatographic column and collection on the second chromatographic column; the flow rate of loading on the first chromatographic column is 0.1 ⁇ 3BV/h, and the loading and collecting The time is 1 to 30 minutes;
  • the parameters of the second internal circulation include: the first chromatography column and the second chromatography column are connected end to end to form a closed loop, the flow rate of the second internal circulation is 0.1 to 5BV/h, and the second internal circulation
  • the time of the second internal circulation is 5 to 20 minutes;
  • the parameters of the rear impurities include: the first chromatographic column and the second chromatographic column are in an independent state, and the rear impurities include the rear impurities of the first chromatographic column and the second chromatographic column.
  • the reagents used in the first chromatographic column and the second chromatographic column are consistent with the mobile phase.
  • the flow rate of the reagents used in the first chromatographic column is consistent with that of the second chromatographic column.
  • the flow rate of the reagent for removing impurities from the column is independently 0.1 to 5 BV/h, and the time for removing impurities from the column is 20 to 50 minutes.
  • the enrichment method provided by the present invention can separate EPA with a purity of ⁇ 98.5% from fish oil raw materials.
  • the enrichment method provided by the present invention uses less solvent and has a high yield, which facilitates the realization of automated and continuous production.
  • Figure 1 is a schematic structural diagram of a double-column simulated moving bed
  • Figure 2 is a schematic diagram of the connection between the first chromatographic column and the second chromatographic column during the processes of sample loading, layer development, first internal circulation, sample loading-collection, second internal circulation and impurity removal;
  • Figure 3 is a liquid chromatogram of EPA obtained in Example 1.
  • the invention provides a method for enriching eicosapentaenoic acid in fish oil raw materials, which includes the following steps:
  • the number of repetitions is ⁇ 3 times.
  • the raw materials used in the present invention are preferably commercially available products.
  • fish oil raw materials enter the double-column simulated moving bed for enrichment.
  • the mass percentage of eicosapentaenoic acid in the fish oil raw material is preferably 40 to 90%, and more preferably 60 to 80%.
  • the fish oil raw material before the fish oil raw material enters the double-column simulated moving bed for enrichment, the fish oil raw material preferably includes dissolving the fish oil raw material to obtain a fish oil solution.
  • the reagent dissolved in the fish oil raw material is consistent with the mobile phase of the double-column simulated moving bed; the mobile phase of the double-column simulated moving bed will be introduced later.
  • the concentration of the fish oil raw material in the fish oil solution is preferably 100 to 1000 mL/L, and more preferably 100 to 500 mL/L.
  • the structural schematic diagram of the double-column simulated moving bed is shown in Figure 1.
  • Figure 1 the structural schematic diagram of the double-column simulated moving bed is shown in Figure 1.
  • the two-column simulated moving bed includes a first chromatography column and a second chromatography column.
  • the first chromatography column and the second chromatography column are preferably a C8 chromatography column, a C16 chromatography column or a C18 chromatography column, and more preferably a C18 chromatography column.
  • the particle size of the filler in the first chromatography column and the second chromatography column is preferably 10 to 50 ⁇ m.
  • the mobile phase of the double-column simulated moving bed is an alcohol aqueous solution.
  • the alcohols in the alcohol aqueous solution are preferably C1 to C4 alcohols.
  • the C1-C4 alcohol preferably includes one or more of methanol, ethanol and isopropyl alcohol, and is further preferably methanol.
  • the volume fraction of water in the alcohol aqueous solution is preferably 2 to 10%, and more preferably 5 to 10%.
  • the enrichment includes sequentially performing sample loading, layer development, first internal circulation, sample loading and collection, second internal circulation and impurity removal.
  • the sample loading parameters include: the first chromatography column and the second chromatography column are connected in series.
  • the sample loading flow rate is 0.1-3BV/h, preferably 1-2BV/h.
  • the sample loading time is 1 to 30 minutes, preferably 5 to 15 minutes.
  • the first chromatography column and the second chromatography column are connected as shown in Figure 2.
  • the parameters of the layer development include: the first chromatography column and the second chromatography column are preferably connected in series.
  • the spreading reagent is consistent with the mobile phase of the double-column simulated moving bed.
  • the flow rate of the layer-expanding reagent is 0.1-5BV/h, preferably 1-3BV/h.
  • the layer development time is 15 to 40 minutes, preferably 20 to 30 minutes.
  • the first chromatography column and the second chromatography column are connected as shown in Figure 2.
  • the parameters of the first internal circulation include: the first chromatography column and the second chromatography column are preferably connected end to end to form a closed loop.
  • the flow rate of the first internal circulation is 0.1-5BV/h.
  • the time of the first internal circulation is 20 to 40 minutes, preferably 25 to 30 minutes.
  • the first chromatography column and the second chromatography column are connected as shown in Figure 2.
  • the sample loading-collection parameters include: the first chromatography column and the second chromatography column are in an independent state.
  • the sample loading and collection includes loading on the first chromatography column and collection on the second chromatography column.
  • the flow rate of loading the first chromatographic column is 0.1-3BV/h, preferably 1-2BV/h.
  • the flow rate of the reagent collected by the second chromatography column is preferably 0.1 to 5 BV/h, and more preferably 1 to 3 BV/h.
  • the reagents collected by the second chromatographic column are preferably consistent with the mobile phase of the dual-column simulated moving bed.
  • the sample loading-collection time is 1 to 30 minutes, preferably 5 to 15 minutes.
  • the connection mode of the first chromatography column and the second chromatography column is as shown in Figure 2.
  • the parameters of the second internal circulation include: the first chromatographic column and the second chromatographic column are connected end to end to form a closed loop.
  • the flow rate of the second internal circulation is 0.1-5BV/h.
  • the time of the second internal circulation is 5 to 20 minutes, preferably 5 to 15 minutes.
  • the first chromatography column and the second chromatography column are connected as shown in Figure 2.
  • the parameters for eliminating impurities include: the first chromatographic column and the second chromatographic column are in an independent state.
  • the said impurities include first chromatography column impurities and second chromatography column impurities.
  • the reagents used in the first chromatographic column and the second chromatographic column are consistent with the mobile phase of the double-column simulated moving bed.
  • the flow rate of the reagent for backing up impurities in the first chromatography column and the flow rate of the reagent for backing up impurities in the second chromatography column are independently 0.1 to 5 BV/h.
  • the time for removing impurities is 20 to 50 minutes.
  • the first chromatography column and the second chromatography column are connected as shown in Figure 2.
  • the enrichment process is repeated; the number of repetitions is ⁇ 3 times; that is, by repeating the enrichment process three times, an EPA product with a purity of ⁇ 98.5 can be collected during the sample loading and collection process.
  • the enrichment process in order to achieve automated and continuous production, can be repeated multiple times ( ⁇ 3 times).
  • the fish oil raw material with an EPA mass percentage of 80% was diluted with 92% methanol water (mobile phase) to prepare 500 mL/L.
  • the double-column simulated moving bed has two chromatographic columns, the first chromatographic column and the second chromatographic column.
  • the dimensions of the first chromatographic column and the second chromatographic column are both 250 mm ⁇ 10 mm, and the filler is C18 with a particle size of 10 ⁇ m.
  • the enrichment includes sequentially performing sample loading, layer development, first internal circulation, loading and collection, second internal circulation and impurity removal.
  • the sample loading parameters include: the first chromatographic column and the second chromatographic column are connected in series, the flow rate of the sample loading pump is 1mL/min, and the time is 8min.
  • the parameters of the layer development include: the first chromatography column and the second chromatography column are connected in series, the layer development reagent is the volume fraction of 92% methanol water, the volume fraction of the 92% methanol water is 3mL/min, and the layer development reagent is 92% methanol water with a volume fraction of 3mL/min.
  • the time is 23min.
  • the parameters of the first internal circulation include: the first chromatographic column and the second chromatographic column are connected end to end to form a closed loop, the circulation pump flow rate is 3mL/min, and the time is 25min.
  • the parameters of sample loading and collection include: the first chromatographic column and the second chromatographic column are in an independent state, including the loading of the first chromatographic column and the collection of the second chromatographic column.
  • the flow rate of the material pump for loading the first chromatographic column is 1mL/min;
  • the flow rate of the mobile phase collected by the second chromatographic column (volume fraction is 92% methanol and water) is 2 mL/min;
  • the sample loading-collection time is 8 minutes; the second chromatographic column outputs EPA.
  • the parameters of the second internal circulation include: the first chromatographic column and the second chromatographic column are connected end to end to form a closed loop, the flow rate of the circulation pump is 3mL/min, and the time is 10min.
  • the parameters of the impurity removal include: the first chromatography column and the second chromatography column are in an independent state, including the impurities of the first chromatography column and the second chromatography column, the impurities of the first chromatography column and the second chromatography column.
  • the reagents used to remove impurities are all methanol water with a volume fraction of 92%.
  • the flow rate of the reagents used to remove impurities in the first chromatographic column is 0.3mL/min, and the flow rate of the reagents used to remove impurities in the second chromatographic column is 3mL/min;
  • the time for finishing is 40 minutes.
  • the system reaches equilibrium by repeating the two enrichment processes.
  • the liquid phase conditions include:
  • the fish oil raw material with an EPA mass percentage of 80% was loaded without dilution.
  • the double-column simulated moving bed has two chromatographic columns, the first chromatographic column and the second chromatographic column.
  • the dimensions of the first chromatographic column and the second chromatographic column are both 250 mm ⁇ 10 mm, and the filler is C18 with a particle size of 10 ⁇ m.
  • the enrichment includes sequentially performing sample loading, layer development, first internal circulation, loading and collection, second internal circulation and impurity removal.
  • the sample loading parameters include: the first chromatographic column and the second chromatographic column are connected in series, the flow rate of the sample loading pump is 0.3mL/min, and the time is 9min.
  • the parameters of the layer development include: the first chromatography column and the second chromatography column are connected in series, the layer development reagent is the volume fraction of 92% methanol water, the volume fraction of the 92% methanol water is 3mL/min, and the layer development reagent is 92% methanol water with a volume fraction of 3mL/min.
  • the time is 24min.
  • the parameters of the first internal circulation include: the first chromatographic column and the second chromatographic column are connected end to end to form a closed loop, the circulation pump flow rate is 3mL/min, and the time is 26min.
  • the parameters of sample loading and collection include: the first chromatographic column and the second chromatographic column are in an independent state, including the loading of the first chromatographic column and the collection of the second chromatographic column.
  • the flow rate of the material pump for loading the first chromatographic column is 0.3mL/min.
  • the flow rate of the mobile phase collected by the second chromatographic column (volume fraction is 92% methanol and water) is 1.8mL/min
  • the sample loading-collection time is 9min
  • EPA is discharged from the second chromatographic column.
  • the parameters of the second internal circulation include: the first chromatographic column and the second chromatographic column are connected end to end to form a closed loop, the flow rate of the circulation pump is 3mL/min, and the time is 12min.
  • the parameters of the impurity removal include: the first chromatography column and the second chromatography column are in an independent state, including the impurities of the first chromatography column and the second chromatography column, the impurities of the first chromatography column and the second chromatography column.
  • the reagents used to remove impurities are all methanol water with a volume fraction of 92%.
  • the flow rate of the reagents used to remove impurities in the first chromatographic column is 0.3mL/min.
  • the flow rate of the reagents used to remove impurities in the second chromatographic column is 3mL/min.
  • the time is 35min.
  • the system reaches equilibrium by repeating the two enrichment processes.
  • the fish oil raw material with an EPA mass percentage of 80% was diluted with 92% methanol water (mobile phase) to prepare 300 mL/L.
  • the double-column simulated moving bed has two chromatographic columns, the first chromatographic column and the second chromatographic column.
  • the dimensions of the first chromatographic column and the second chromatographic column are both 250 mm ⁇ 10 mm, and the filler is C18 with a particle size of 10 ⁇ m.
  • the enrichment includes sequentially performing sample loading, layer development, first internal circulation, loading and collection, second internal circulation and impurity removal.
  • the sample loading parameters include: the first chromatographic column and the second chromatographic column are connected in series, the flow rate of the sample loading pump is 2mL/min, and the time is 10min.
  • the parameters of the layer development include: the first chromatography column and the second chromatography column are connected in series, the layer development reagent is the volume fraction of 92% methanol water, the volume fraction of the 92% methanol water is 3mL/min, and the layer development reagent is 92% methanol water with a volume fraction of 3mL/min.
  • the time is 24min.
  • the parameters of the first internal circulation include: the first chromatographic column and the second chromatographic column are connected end to end to form a closed loop, the circulation pump flow rate is 3mL/min, and the time is 22min.
  • the parameters of sample loading and collection include: the first chromatographic column and the second chromatographic column are in an independent state, including the loading of the first chromatographic column and the collection of the second chromatographic column; the flow rate of the material pump for loading the first chromatographic column material is 2 mL/min. , the flow rate of the mobile phase collected by the second chromatographic column (volume fraction is 92% methanol and water) is 1.5mL/min, the sample loading-collection time is 10min, the second chromatographic column enters the mobile phase and exits EPA.
  • the parameters of the second internal circulation include: the first chromatographic column and the second chromatographic column are connected end to end to form a closed loop, the flow rate of the circulation pump is 3mL/min, and the time is 13min.
  • the parameters of the impurity removal include: the first chromatography column and the second chromatography column are in an independent state, including the impurities of the first chromatography column and the second chromatography column, the impurities of the first chromatography column and the second chromatography column.
  • the reagents used to remove impurities are all methanol water with a volume fraction of 92%.
  • the flow rate of the reagents used to remove impurities in the first chromatographic column is 0.25mL/min.
  • the flow rate of the reagents used to remove impurities in the second chromatographic column is 3mL/min.
  • the time is 45min.
  • the system reaches equilibrium by repeating the two enrichment processes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fats And Perfumes (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于物质纯化技术领域,具体提供了一种鱼油原料中二十碳五烯酸的富集方法。本发明提供的富集方法,包括以下步骤:将鱼油原料进入双柱模拟移动床依次进行上样、展层、第一内循环、上样-收集、第二内循环和排后杂;所述双柱模拟移动床包括第一色谱柱和第二色谱柱;所述双柱模拟移动床的流动相为醇类水溶液。本发明提供的富集方法,能够从鱼油原料中分离出纯度≥98.5%的EPA,且本发明提供的富集方法溶剂用量少、收率高,便于实现自动化、连续化的生产。

Description

一种鱼油原料中二十碳五烯酸的富集方法 技术领域
本发明涉及物质纯化技术领域,尤其涉及一种鱼油原料中二十碳五烯酸的富集方法。
背景技术
鱼油是一种利用价值很高的天然保健食品,其所含的多不饱和脂肪酸EPA(二十碳五烯酸)和DHA(二十二碳六烯酸)具有抑制血小板凝聚、抗血栓、舒张血管、调整血脂以及提高生物膜流动性等功能,在治疗和预防心血管疾病、糖尿病、皮炎、大肠溃疡以及抑制肿瘤等方面都有较好的疗效。
目前,对鱼油进行分离纯化的方法包括尿素包合法、低温冷冻法、金属盐沉淀法、皂化-尿素包合法、鱼油交酯化、真空蒸馏法和超临界萃取法等。但是,由于国内鱼油原料所含的EPA/DHA成分差异较大,且上述提供的分离纯化方法水平不高,导致最终的产品质量良莠不齐,具体表现为:国产鱼肝油或乳剂产品中的EPA或DHA含量低,市场竞争力不强、经济效益不高。因此,有必要提供高EPA含量的鱼油产品的纯化方法。
发明内容
有鉴于此,本发明的目的在于提供一种鱼油原料中二十碳五烯酸的富集方法。本发明提供的富集方法得到的EPA的纯度≥98.5%。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种鱼油原料中二十碳五烯酸的富集方法,包括以下步骤:
将鱼油原料进入双柱模拟移动床进行富集;
重复富集的过程;
所述重复的次数≥3次;
所述双柱模拟移动床包括第一色谱柱和第二色谱柱;
所述双柱模拟移动床的流动相为醇类水溶液;
所述富集包括依次进行上样、展层、第一内循环、上样-收集、第二内循环和排后杂;
所述上样的参数包括:所述第一色谱柱和第二色谱柱为串联连接,所述 上样的流速为0.1~3BV/h,所述上样的时间为1~30min;
所述展层的参数包括:所述第一色谱柱和第二色谱柱为串联连接,所述展层的试剂与所述流动相一致,所述展层的试剂的流速为为0.1~5BV/h,所述展层的时间为15~40min;
所述第一内循环的参数包括:所述第一色谱柱和第二色谱柱首尾相连形成闭环,所述第一内循环的流速为0.1~5BV/h,所述第一内循环的时间为20~40min;
所述上样-收集的参数包括:所述第一色谱柱和第二色谱柱呈独立状态,所述上样-收集包括第一色谱柱上样和第二色谱柱收集;所述第一色谱柱上样的流速为0.1~3BV/h,所述上样-收集的时间为1~30min;
所述第二内循环的参数包括:所述第一色谱柱和第二色谱柱首尾相连形成闭环,所述第二内循环的流速为0.1~5BV/h,所述第二内循环的时间为5~20min;
所述排后杂的参数包括:所述第一色谱柱和第二色谱柱呈独立状态,所述排后杂包括第一色谱柱排后杂和第二色谱柱排后杂;所述第一色谱柱排后杂和第二色谱柱排后杂的试剂均与所述流动相一致,所述第一色谱柱排后杂的试剂的流速和第二色谱柱排后杂的试剂的流速独立地为0.1~5BV/h,所述排后杂的时间为20~50min。
优选地,所述鱼油原料中二十碳五烯酸的质量百分含量为40~90%。
优选地,所述鱼油原料进入双柱模拟移动床进行富集前,包括将鱼油原料溶解,得到鱼油溶液;所述鱼油原料溶解的试剂与所述双柱模拟移动床的流动相一致。
优选地,所述鱼油溶液中鱼油原料的浓度为100~1000mL/L。
优选地,所述醇类水溶液中醇类为C 1~C 4醇类;所述C 1~C 4醇类包括甲醇、乙醇和异丙醇中的一种或多种。
优选地,所述醇类水溶液中水的体积分数为2~10%。
优选地,所述第一色谱柱和第二色谱柱为C8色谱柱、C16色谱柱或C18色谱柱。
优选地,所述第一色谱柱和第二色谱柱中填料的粒径为10~50μm。
优选地,所述第二色谱柱收集的试剂的流速为0.1~5BV/h。
本发明提供了一种鱼油原料中二十碳五烯酸的富集方法,包括以下步骤:将鱼油原料进入双柱模拟移动床进行富集;重复富集的过程;所述重复的次数≥3次;所述双柱模拟移动床包括第一色谱柱和第二色谱柱;所述双柱模拟移动床的流动相为醇类水溶液;所述富集包括依次进行上样、展层、第一内循环、上样-收集、第二内循环和排后杂;所述上样的参数包括:所述第一色谱柱和第二色谱柱为串联连接,所述上样的流速为0.1~3BV/h,所述上样的时间为1~30min;所述展层的参数包括:所述第一色谱柱和第二色谱柱为串联连接,所述展层的试剂与所述流动相一致,所述展层的试剂的流速为为0.1~5BV/h,所述展层的时间为15~40min;所述第一内循环的参数包括:所述第一色谱柱和第二色谱柱首尾相连形成闭环,所述第一内循环的流速为0.1~5BV/h,所述第一内循环的时间为20~40min;所述上样-收集的参数包括:所述第一色谱柱和第二色谱柱呈独立状态,所述上样-收集包括第一色谱柱上样和第二色谱柱收集;所述第一色谱柱上样的流速为0.1~3BV/h,所述上样-收集的时间为1~30min;所述第二内循环的参数包括:所述第一色谱柱和第二色谱柱首尾相连形成闭环,所述第二内循环的流速为0.1~5BV/h,所述第二内循环的时间为5~20min;所述排后杂的参数包括:所述第一色谱柱和第二色谱柱呈独立状态,所述排后杂包括第一色谱柱排后杂和第二色谱柱排后杂;所述第一色谱柱排后杂和第二色谱柱排后杂的试剂均与所述流动相一致,所述第一色谱柱排后杂的试剂的流速和第二色谱柱排后杂的试剂的流速独立地为0.1~5BV/h,所述排后杂的时间为20~50min。本发明提供的富集方法,能够从鱼油原料中分离出纯度≥98.5%的EPA,且本发明提供的富集方法溶剂用量少、收率高,便于实现自动化、连续化的生产。
附图说明
图1为双柱模拟移动床的结构示意图;
图2为上样、展层、第一内循环、上样-收集、第二内循环和排后杂的过程中第一色谱柱和第二色谱柱的连接示意图;
图3为实施例1所得EPA的液相色谱图。
具体实施方式
本发明提供了一种鱼油原料中二十碳五烯酸的富集方法,包括以下步骤:
将鱼油原料进入双柱模拟移动床进行富集;
重复富集的过程;
所述重复的次数≥3次。
在本发明中,如无特殊说明,本发明所用原料均优选为市售产品。
本发明将鱼油原料进入双柱模拟移动床进行富集。
在本发明中,所述鱼油原料中二十碳五烯酸的质量百分含量优选为40~90%,进一步优选为60~80%。
在本发明中,所述鱼油原料进入双柱模拟移动床进行富集前,优选包括将鱼油原料溶解,得到鱼油溶液。在本发明中,所述鱼油原料溶解的试剂与所述双柱模拟移动床的流动相一致;所述双柱模拟移动床的流动相在后续进行介绍。在本发明中,所述鱼油溶液中鱼油原料的浓度优选为100~1000mL/L,进一步优选为100~500mL/L。
在本发明中,所述双柱模拟移动床的结构示意图如图1所示。通过控制图1所示的双柱模拟移动床中的阀门或者泵,实现上样、展层、第一内循环、上样-收集、第二内循环和排后杂。
在本发明中,所述双柱模拟移动床包括第一色谱柱和第二色谱柱。在本发明中,所述第一色谱柱和第二色谱柱优选为C8色谱柱、C16色谱柱或C18色谱柱,进一步优选为C18色谱柱。在本发明中,所述第一色谱柱和第二色谱柱中填料的粒径优选为10~50μm。
在本发明中,所述双柱模拟移动床的流动相为醇类水溶液。在本发明中,所述醇类水溶液中醇类优选为C1~C4醇类。在本发明中,所述C1~C4醇类优选包括甲醇、乙醇和异丙醇中的一种或多种,进一步优选为甲醇。在本发明中,所述醇类水溶液中水的体积分数优选为2~10%,进一步优选为5~10%。
在本发明中,所述富集包括依次进行上样、展层、第一内循环、上样-收集、第二内循环和排后杂。
在本发明中,所述上样的参数包括:所述第一色谱柱和第二色谱柱为串联连接。本发明中,所述上样的上样的流速为0.1~3BV/h,优选为1~2BV/h。在本发明中,所述上样的时间为1~30min,优选为5~15min。在在本发明中, 所述上样的过程中,所述第一色谱柱和第二色谱柱的连接方式如图2所示。
在本发明中,所述展层的参数包括:所述第一色谱柱和第二色谱柱优选为串联连接。在本发明中,所述展层的试剂与所述双柱模拟移动床的流动相一致。在本发明中,所述展层的试剂的流速为0.1~5BV/h,优选为1~3BV/h。在本发明中,所述展层的时间为15~40min,优选为20~30min。在本发明中,所述展层的过程中,所述第一色谱柱和第二色谱柱的连接方式如图2所示。
在本发明中,所述第一内循环的参数包括:所述第一色谱柱和第二色谱柱优选首尾相连形成闭环。在本发明中,所述第一内循环的流速为0.1~5BV/h。在本发明中,所述第一内循环的时间为20~40min,优选为25~30min。在本发明中,所述第一内循环的过程中,所述第一色谱柱和第二色谱柱的连接方式如图2所示。
在本发明中,所述上样-收集的参数包括:所述第一色谱柱和第二色谱柱呈独立状态。在本发明中,所述上样-收集包括第一色谱柱上样和第二色谱柱收集。在本发明中,所述第一色谱柱上样的流速为0.1~3BV/h,优选为1~2BV/h。在本发明中,所述第二色谱柱收集的试剂的流速优选为0.1~5BV/h,进一步优选为1~3BV/h。在本发明中,所述第二色谱柱收集的试剂优选与所述双柱模拟移动床的流动相一致。在本发明中,所述上样-收集的时间为1~30min,优选为5~15min。在本发明中,所述上样-收集的过程中,所述第一色谱柱和第二色谱柱的连接方式如图2所示。
在本发明中,所述第二内循环的参数包括:所述第一色谱柱和第二色谱柱首尾相连形成闭环。在本发明中,所述第二内循环的流速为0.1~5BV/h。在本发明中,所述第二内循环的时间为5~20min,优选为5~15min。在本发明中,所述第二内循环的过程中,所述第一色谱柱和第二色谱柱的连接方式如图2所示。
在本发明中,所述排后杂的参数包括:所述第一色谱柱和第二色谱柱呈独立状态。在本发明中,所述排后杂包括第一色谱柱排后杂和第二色谱柱排后杂。在本发明中,所述第一色谱柱排后杂和第二色谱柱排后杂的试剂均与所述双柱模拟移动床的流动相一致。在本发明中,所述第一色谱柱排后杂的试剂的流速和第二色谱柱排后杂的试剂的流速独立地为0.1~5BV/h。在本发 明中,所述排后杂的时间为20~50min。在本发明中,所述排后杂的过程中,所述第一色谱柱和第二色谱柱的连接方式如图2所示。
在本发明中,重复富集的过程;所述重复的次数≥3次;即重复三次富集的过程即可在上样-收集过程收集得到纯度≥98.5的EPA产品。
在本发明中,为实现自动化、连续化的生产,多次(≥3次)重复富集的过程即可实现。
下面结合实施例对本发明提供的鱼油原料中二十碳五烯酸的富集方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
将EPA质量百分含量为80%的鱼油原料用体积分数为92%甲醇水(流动相)稀释配置成500mL/L。
将所述鱼油溶液进入双柱模拟移动床进行富集;
双柱模拟移动床有2个色谱柱,分别为第一色谱柱和第二色谱柱,第一色谱柱和第二色谱柱的尺寸均为250mm×10mm,填料均为粒径为10μm的C18。
所述富集包括依次进行上样、展层、第一内循环、上样-收集、第二内循环和排后杂。
上样的参数包括:第一色谱柱和第二色谱柱为串联连接,上样的料泵流速为1mL/min,时间为8min。
展层的参数包括:第一色谱柱和第二色谱柱为串联连接,展层的试剂为所述体积分数为92%甲醇水,体积分数为92%甲醇水的流速为3mL/min,展层的时间为23min。
第一内循环的参数包括:第一色谱柱和第二色谱柱首尾相连形成闭环,循环泵流速为3mL/min,时间为25min。
上样-收集的参数包括:第一色谱柱和第二色谱柱呈独立状态,包括第一色谱柱上样和第二色谱柱收集,第一色谱柱上样的料泵流速为1mL/min;第二色谱柱收集的流动相(体积分数为92%甲醇水)流速为2mL/min;上样-收集的时间为8min;第二色谱柱出EPA。
第二内循环的参数包括:第一色谱柱和第二色谱柱首尾相连形成闭环, 循环泵流速为3mL/min,时间为10min。
排后杂的参数包括:第一色谱柱和第二色谱柱呈独立状态,包括第一色谱柱排后杂和第二色谱柱排后杂,第一色谱柱排后杂和第二色谱柱排后杂的试剂均为所述体积分数为92%甲醇水,第一色谱柱排后杂的试剂的流速为0.3mL/min,第二色谱柱排后杂的试剂的流速为3mL/min;排后杂的时间为40min。
重复两个富集的过程中,系统达到平衡。
从第三次循环富集的过程,即可上样-富集的过程中,在第二色谱柱的萃取口获得EPA甲醇水溶液,萃余口收集杂质;用高效液相色谱法进行分析。
采用高效液相色谱法测定EPA含量,液相条件包括:
waters2695型高效液相色谱;2698型DAD检测器;色谱柱ODS-25μm,250mm*4.6mm;流动相乙腈-水溶液(90:10);流速1mL/min;柱温30℃;进样量20μL;外标法测定EPA含量。
所得液相色谱图如图3所示。具体的色谱信息如表1所示。
表1具体的色谱信息
保留时间(min) 峰面积(pA·s) 峰面积% 开始时间(min)
17.162 7.335 0.070 17.012
18.203 8.672 0.083 17.994
18.802 10353.061 99.038 18.339
19.006 17.873 0.171 18.923
19.244 12.881 0.123 19.151
19.377 31.174 0.298 19.294
20.325 2.157 0.021 20.224
20.633 5.791 0.055 20.436
21.162 6.269 0.060 21.012
21.391 1.478 0.014 21.301
从图3和表1可以看出:根据收集萃取液及所进原料计算,得到本次实验EPA纯度98.5%、收率90.53%。
实施例2
EPA质量百分含量为80%的鱼油原料不稀释上样。
将所述鱼油原料进入双柱模拟移动床进行富集;
双柱模拟移动床有2个色谱柱,分别为第一色谱柱和第二色谱柱,第一色谱柱和第二色谱柱的尺寸均为250mm×10mm,填料均为粒径为10μm的C18。
所述富集包括依次进行上样、展层、第一内循环、上样-收集、第二内循环和排后杂。
上样的参数包括:第一色谱柱和第二色谱柱为串联连接,上样的料泵流速为0.3mL/min,时间为9min。
展层的参数包括:第一色谱柱和第二色谱柱为串联连接,展层的试剂为所述体积分数为92%甲醇水,体积分数为92%甲醇水的流速为3mL/min,展层的时间为24min。
第一内循环的参数包括:第一色谱柱和第二色谱柱首尾相连形成闭环,循环泵流速为3mL/min,时间为26min。
上样-收集的参数包括:第一色谱柱和第二色谱柱呈独立状态,包括第一色谱柱上样和第二色谱柱收集,第一色谱柱上样的料泵流速为0.3mL/min,第二色谱柱收集的流动相(体积分数为92%甲醇水)的流速为1.8mL/min,上样-收集的时间为9min,第二色谱柱出EPA。
第二内循环的参数包括:第一色谱柱和第二色谱柱首尾相连形成闭环,循环泵流速为3mL/min,时间为12min。
排后杂的参数包括:第一色谱柱和第二色谱柱呈独立状态,包括第一色谱柱排后杂和第二色谱柱排后杂,第一色谱柱排后杂和第二色谱柱排后杂的试剂均为体积分数为92%甲醇水,第一色谱柱排后杂的试剂的流速为0.3mL/min,第二色谱柱排后杂的试剂的流速为3mL/min,排后杂的时间为35min。
重复两个富集的过程中,系统达到平衡。
从第三次循环富集的过程,即可上样-富集的过程中,在第二色谱柱的萃取口获得EPA甲醇水溶液,萃余口收集杂质;用高效液相色谱法进行分析。
结果为EPA纯度98.5%,EPA收率98%。
实施例3
将EPA质量百分含量为80%的鱼油原料用体积分数为92%甲醇水(流动相)稀释配置成300mL/L。
将所述鱼油溶液进入双柱模拟移动床进行富集;
双柱模拟移动床有2个色谱柱,分别为第一色谱柱和第二色谱柱,第一色谱柱和第二色谱柱的尺寸均为250mm×10mm,填料均为粒径为10μm的C18。
所述富集包括依次进行上样、展层、第一内循环、上样-收集、第二内循环和排后杂。
上样的参数包括:第一色谱柱和第二色谱柱为串联连接,上样的料泵流速为2mL/min,时间为10min。
展层的参数包括:第一色谱柱和第二色谱柱为串联连接,展层的试剂为所述体积分数为92%甲醇水,体积分数为92%甲醇水的流速为3mL/min,展层的时间为24min。
第一内循环的参数包括:第一色谱柱和第二色谱柱首尾相连形成闭环,循环泵流速为3mL/min,时间为22min。
上样-收集的参数包括:第一色谱柱和第二色谱柱呈独立状态,包括第一色谱柱上样和第二色谱柱收集;第一色谱柱料上样的料泵流速为2mL/min,第二色谱柱收集的流动相(体积分数为92%甲醇水)的流速为1.5mL/min,上样-收集的时间为10min,第二色谱柱进流动相出EPA。
第二内循环的参数包括:第一色谱柱和第二色谱柱首尾相连形成闭环,循环泵流速为3mL/min,时间为13min。
排后杂的参数包括:第一色谱柱和第二色谱柱呈独立状态,包括第一色谱柱排后杂和第二色谱柱排后杂,第一色谱柱排后杂和第二色谱柱排后杂的试剂均为体积分数为92%甲醇水,第一色谱柱排后杂的试剂的流速为0.25mL/min,第二色谱柱排后杂的试剂的流速为3mL/min,排后杂的时间为45min。
重复两个富集的过程中,系统达到平衡。
从第三次循环富集的过程,即可上样-富集的过程中,在第二色谱柱的 萃取口获得EPA甲醇水溶液,萃余口收集杂质;用高效液相色谱法进行分析。
结果为EPA纯度为98.5%,EPA收率为80%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种鱼油原料中二十碳五烯酸的富集方法,其特征在于,包括以下步骤:
    将鱼油原料进入双柱模拟移动床进行富集;
    重复富集的过程;
    所述重复的次数≥3次;
    所述双柱模拟移动床包括第一色谱柱和第二色谱柱;
    所述双柱模拟移动床的流动相为醇类水溶液;
    所述富集包括依次进行上样、展层、第一内循环、上样-收集、第二内循环和排后杂;
    所述上样的参数包括:所述第一色谱柱和第二色谱柱为串联连接,所述上样的流速为0.1~3BV/h,所述上样的时间为1~30min;
    所述展层的参数包括:所述第一色谱柱和第二色谱柱为串联连接,所述展层的试剂与所述流动相一致,所述展层的试剂的流速为为0.1~5BV/h,所述展层的时间为15~40min;
    所述第一内循环的参数包括:所述第一色谱柱和第二色谱柱首尾相连形成闭环,所述第一内循环的流速为0.1~5BV/h,所述第一内循环的时间为20~40min;
    所述上样-收集的参数包括:所述第一色谱柱和第二色谱柱呈独立状态,所述上样-收集包括第一色谱柱上样和第二色谱柱收集;所述第一色谱柱上样的流速为0.1~3BV/h,所述上样-收集的时间为1~30min;
    所述第二内循环的参数包括:所述第一色谱柱和第二色谱柱首尾相连形成闭环,所述第二内循环的流速为0.1~5BV/h,所述第二内循环的时间为5~20min;
    所述排后杂的参数包括:所述第一色谱柱和第二色谱柱呈独立状态,所述排后杂包括第一色谱柱排后杂和第二色谱柱排后杂;所述第一色谱柱排后杂和第二色谱柱排后杂的试剂均与所述流动相一致,所述第一色谱柱排后杂的试剂的流速和第二色谱柱排后杂的试剂的流速独立地为0.1~5BV/h,所述排后杂的时间为20~50min。
  2. 根据权利要求1所述的富集方法,其特征在于,所述鱼油原料中二 十碳五烯酸的质量百分含量为40~90%。
  3. 根据权利要求1所述的富集方法,其特征在于,所述鱼油原料进入双柱模拟移动床进行富集前,包括将鱼油原料溶解,得到鱼油溶液;所述鱼油原料溶解的试剂与所述双柱模拟移动床的流动相一致。
  4. 根据权利要求3所述的富集方法,其特征在于,所述鱼油溶液中鱼油原料的浓度为100~1000mL/L。
  5. 根据权利要求1所述的富集方法,其特征在于,所述醇类水溶液中醇类为C 1~C 4醇类;所述C 1~C 4醇类包括甲醇、乙醇和异丙醇中的一种或多种。
  6. 根据权利要求1或5所述的富集方法,其特征在于,所述醇类水溶液中水的体积分数为2~10%。
  7. 根据权利要求1所述的富集方法,其特征在于,所述第一色谱柱和第二色谱柱为C8色谱柱、C16色谱柱或C18色谱柱。
  8. 根据权利要求7所述的富集方法,其特征在于,所述第一色谱柱和第二色谱柱中填料的粒径为10~50μm。
  9. 根据权利要求1所述的富集方法,其特征在于,所述第二色谱柱收集的试剂的流速为0.1~5BV/h。
PCT/CN2022/129279 2022-07-01 2022-11-02 一种鱼油原料中二十碳五烯酸的富集方法 WO2024000977A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210774224.2 2022-07-01
CN202210774224.2A CN115010596B (zh) 2022-07-01 2022-07-01 一种鱼油原料中二十碳五烯酸的富集方法

Publications (1)

Publication Number Publication Date
WO2024000977A1 true WO2024000977A1 (zh) 2024-01-04

Family

ID=83079308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129279 WO2024000977A1 (zh) 2022-07-01 2022-11-02 一种鱼油原料中二十碳五烯酸的富集方法

Country Status (2)

Country Link
CN (1) CN115010596B (zh)
WO (1) WO2024000977A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592268B (zh) * 2020-12-18 2022-12-09 江苏汉邦科技股份有限公司 一种利用连续色谱系统分离鱼油中epa的方法
CN115010596B (zh) * 2022-07-01 2024-01-30 江苏汉邦科技股份有限公司 一种鱼油原料中二十碳五烯酸的富集方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508876A (zh) * 2012-06-27 2014-01-15 江苏汉邦科技有限公司 模拟移动床分离提纯epa的方法
CN103787863A (zh) * 2012-11-02 2014-05-14 江苏汉邦科技有限公司 制备型高效液相色谱法制备epa的方法
CN105980026A (zh) * 2013-12-19 2016-09-28 通用电气健康护理生物科学股份公司 色谱系统和方法
CN115010596A (zh) * 2022-07-01 2022-09-06 江苏汉邦科技股份有限公司 一种鱼油原料中二十碳五烯酸的富集方法
CN115073292A (zh) * 2022-07-01 2022-09-20 江苏汉邦科技股份有限公司 一种二十碳五烯酸乙酯的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2097047T3 (es) * 1993-04-29 1997-03-16 Norsk Hydro As Procedimientos para el fraccionamiento cromatografico de acidos grasos y sus derivados.
GB201111595D0 (en) * 2011-07-06 2011-08-24 Equateq Ltd Improved process
GB201300354D0 (en) * 2013-01-09 2013-02-20 Basf Pharma Callanish Ltd Multi-step separation process
US9163198B2 (en) * 2014-01-17 2015-10-20 Orochem Technologies, Inc. Process for purification of EPA (eicosapentanoic acid) ethyl ester from fish oil
CN107311866B (zh) * 2017-06-15 2020-12-29 浙江大学宁波理工学院 用模拟移动床色谱分离纯化二十碳五烯酸酯和二十二碳六烯酸酯的方法
TWI648258B (zh) * 2017-07-10 2019-01-21 喬璞科技有限公司 純化不飽和脂肪酸以及二十碳五烯酸的方法
CN111362790B (zh) * 2020-04-17 2022-12-13 辽宁科技大学 一种分离epa和dha的色谱方法
CN113698984A (zh) * 2021-08-27 2021-11-26 常熟纳微生物科技有限公司 一种鱼油中二十碳五烯酸的分离纯化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508876A (zh) * 2012-06-27 2014-01-15 江苏汉邦科技有限公司 模拟移动床分离提纯epa的方法
CN103787863A (zh) * 2012-11-02 2014-05-14 江苏汉邦科技有限公司 制备型高效液相色谱法制备epa的方法
CN105980026A (zh) * 2013-12-19 2016-09-28 通用电气健康护理生物科学股份公司 色谱系统和方法
CN115010596A (zh) * 2022-07-01 2022-09-06 江苏汉邦科技股份有限公司 一种鱼油原料中二十碳五烯酸的富集方法
CN115073292A (zh) * 2022-07-01 2022-09-20 江苏汉邦科技股份有限公司 一种二十碳五烯酸乙酯的制备方法

Also Published As

Publication number Publication date
CN115010596A (zh) 2022-09-06
CN115010596B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2024000977A1 (zh) 一种鱼油原料中二十碳五烯酸的富集方法
Wei et al. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology
Favati et al. Supercritical carbon dioxide extraction of evening primrose oil
CN104651422B (zh) 一种从深海鱼中提取甘油三酯型dha和epa的方法
CN102311882B (zh) 一种不饱和脂肪酸的提取方法
US4144229A (en) Process for preparing a flour and the product obtained thereby
CN112592268B (zh) 一种利用连续色谱系统分离鱼油中epa的方法
CN103881807A (zh) 一种大豆不饱和脂肪酸的提取方法
CN111362790B (zh) 一种分离epa和dha的色谱方法
CN105753689A (zh) 胡麻油中提取纯化α-亚麻酸的方法
CN102492539A (zh) 一种利用连续逆流超声提取机提取南极磷虾虾油的方法
CN115073292B (zh) 一种二十碳五烯酸乙酯的制备方法
CN107586259B (zh) 纯化不饱和脂肪酸以及二十碳五烯酸的方法
CN209456407U (zh) 一种低过氧化值零塑化剂ω-3,ω-6系列油脂的制备设备
US11535583B1 (en) Preparation method of eicosapentaenoic acid ethyl ester
CN110760376B (zh) 一种新的藻油提纯法
CN108164415B (zh) 一种从鱼油中完全分离epa和dha的方法
CN107778337B (zh) 超临界二氧化碳萃取螺旋藻中糖脂的方法
Dhara et al. Garden cress oil as a vegan source of PUFA: Achieving through optimized supercritical carbon dioxide extraction
CN107090357A (zh) 一种在水飞蓟油中提取纯化不饱和脂肪酸的方法
Liu et al. Continuous separation of puerarin from Pueraria crude extract by fractional Extraction: Simulation and optimization
CN111979051A (zh) 一种从微藻藻油中提取多烯不饱和脂肪酸的方法
CN112521270A (zh) 一种通过高真空连续精馏法分离dha和epa的方法
CN102634416A (zh) 一种紫苏子油酶解富集α-亚麻酸的方法
CN111044626B (zh) 一种人参花提取物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949060

Country of ref document: EP

Kind code of ref document: A1