WO2024000540A1 - 材料结构及其制作方法 - Google Patents

材料结构及其制作方法 Download PDF

Info

Publication number
WO2024000540A1
WO2024000540A1 PCT/CN2022/103179 CN2022103179W WO2024000540A1 WO 2024000540 A1 WO2024000540 A1 WO 2024000540A1 CN 2022103179 W CN2022103179 W CN 2022103179W WO 2024000540 A1 WO2024000540 A1 WO 2024000540A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
substrate
material structure
base
epitaxial layer
Prior art date
Application number
PCT/CN2022/103179
Other languages
English (en)
French (fr)
Inventor
程凯
Original Assignee
苏州晶湛半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶湛半导体有限公司 filed Critical 苏州晶湛半导体有限公司
Priority to PCT/CN2022/103179 priority Critical patent/WO2024000540A1/zh
Publication of WO2024000540A1 publication Critical patent/WO2024000540A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present application relates to the field of semiconductor technology, and in particular, to a material structure and a manufacturing method thereof.
  • Gallium nitride is the third generation of new semiconductor materials after the first and second generation semiconductor materials such as Si and GaAs.
  • GaN-based materials and semiconductor devices have been extensively and in-depth researched in recent years, and MOCVD (Metal-organic Chemical Vapor Deposition) technology to grow GaN-based materials has become increasingly mature; in terms of semiconductor device research, GaN Research on optoelectronic devices such as LEDs and LDs, as well as microelectronic devices such as GaN-based HEMTs, has achieved remarkable results and made great progress.
  • MOCVD Metal-organic Chemical Vapor Deposition
  • the demand for the dislocation density of GaN-based materials in end products has further increased.
  • mainstream MOCVD epitaxial equipment is used in the mainstream GaN-based epitaxial substrates.
  • the dislocation surface density of GaN-based materials grown epitaxially on an aluminum oxide (Al2O3) substrate is approximately 1 to 3E8/cm ⁇ 3.
  • Al2O3 aluminum oxide
  • the dislocation density of GaN-based materials must be further reduced.
  • the object of the present invention is to provide a material structure and a manufacturing method thereof to reduce the dislocation density of GaN-based materials.
  • a first aspect of the present invention provides a material structure, including:
  • the window further includes a bottom wall end located on the surface of the base, and an orthographic projection of the opening end on the plane of the base is at least partially offset from the bottom wall end.
  • the orthographic projection of the opening end on the plane of the base is completely offset from the bottom wall end.
  • the window is a slanted column window.
  • the mask layer includes opposite first sidewalls and second sidewalls, the first sidewalls form a first angle with the base exposed by the oblique columnar window, the first sidewalls are The angle is an acute angle; the second side wall and the base exposed by the inclined columnar window form a second angle, and the second angle is an obtuse angle; the first angle is less than or equal to the second angle supplementary angle.
  • the cross-sectional area of the window first increases and then decreases; or in the direction from the base to the open end, the cross-sectional area of the window gradually decrease; or the cross-sectional area of the window is equally large in the direction from the base to the open end.
  • the center line of the cross section of the window is a straight line, a broken line or a curve.
  • the window rises in a bent or twisted shape in a direction from the base to the open end.
  • At least two of the windows have different cross-sectional areas and/or the spacing between at least two pairs of adjacent windows is different.
  • the mask layer has a multi-layer structure.
  • the material structure further includes: an epitaxial layer, including a first epitaxial layer and a second epitaxial layer connected together; the first epitaxial layer grows epitaxially from the substrate to fill the window; A second epitaxial layer is epitaxially grown on the mask layer from the first epitaxial layer located at the open end.
  • the second epitaxial layer corresponding to each window is healed into a plane.
  • the second epitaxial layer first forms separate structures from the opening end of the window, and then gradually heals into a plane.
  • the substrate is a single-layer structure, and the substrate and the epitaxial layer are made of the same material or different materials; or the substrate includes a semiconductor substrate and a transition layer located on the semiconductor substrate, and the transition layer The layer and the epitaxial layer may be of the same material or different materials.
  • a second aspect of the present invention provides a method for manufacturing a material structure, including:
  • a mask layer is formed on the substrate, and a window exposing the substrate is formed in the mask layer.
  • the window includes an open end, so that the area of the orthographic projection of the open end on the plane where the substrate is located is less than The area of the orthographic projection of the window on the plane where the base is located.
  • the window when forming the window, further includes a bottom wall end located on the surface of the base, so that the orthographic projection of the opening end on the plane of the base is at least partially offset from the bottom wall end.
  • the orthographic projection of the opening end on the plane of the base is completely offset from the bottom wall end.
  • the window when forming the window, is a slanted columnar window, and the slanted columnar window is formed by dry etching.
  • the mask layer includes opposite first sidewalls and second sidewalls, the first sidewalls form a first angle with the base exposed by the oblique columnar window, the first sidewalls are The angle is an acute angle; the second side wall and the base exposed by the inclined columnar window form a second angle, and the second angle is an obtuse angle; the first angle is less than or equal to the second angle supplementary angle.
  • the manufacturing method of the material structure further includes: using the mask layer as a mask, performing an epitaxial growth process on the substrate to form an epitaxial layer, where the epitaxial layer includes a first epitaxial layer and a first epitaxial layer connected together. a second epitaxial layer; the first epitaxial layer is epitaxially grown from the substrate to fill the window; the second epitaxial layer is epitaxially grown from the first epitaxial layer located at the opening end on the mask layer grow.
  • the second epitaxial layer corresponding to each window is healed into a plane.
  • the substrate is a single-layer structure, and the epitaxial layer is formed by performing a homoepitaxial growth process or a heteroepitaxial growth process on the substrate; or the substrate includes a semiconductor substrate and a layer located on the semiconductor substrate The transition layer on the transition layer is formed by performing a homoepitaxial growth process or a heteroepitaxial growth process on the transition layer.
  • a substrate with a mask layer is used as the substrate for epitaxial growth of GaN-based materials.
  • the area of the orthographic projection of the opening end of the opening in the mask layer on the plane of the substrate is smaller than the area of the orthographic projection of the window on the plane of the substrate.
  • the sidewalls are retracted so that the dislocations of the epitaxially grown GaN-based material end at the sidewalls of the window and cannot continue to extend with the growth of the GaN-based material. Therefore, the substrate with the above mask layer can reduce the dislocation density of the GaN-based material.
  • Figure 1 is a schematic cross-sectional view of the material structure of the first embodiment of the present invention.
  • Figure 2 is a flow chart of the manufacturing method of the material structure in Figure 1;
  • Figure 3 is a schematic diagram of the intermediate structure corresponding to the process in Figure 2;
  • Figure 4 is a schematic cross-sectional structural diagram of the material structure of the second embodiment of the present invention.
  • Figure 5 is a flow chart of a manufacturing method of a material structure according to a second embodiment of the present invention.
  • Figure 6(a) and Figure 6(b) are respectively schematic cross-sectional structural diagrams of two material structures according to the third embodiment of the present invention.
  • Figure 7 is a schematic cross-sectional structural diagram of the material structure of the fourth embodiment of the present invention.
  • Figure 8 is a schematic cross-sectional structural diagram of the material structure of the fifth embodiment of the present invention.
  • Figure 9 is a schematic cross-sectional structural diagram of the material structure of the sixth embodiment of the present invention.
  • Figure 10 is a schematic cross-sectional structural diagram of the material structure of the seventh embodiment of the present invention.
  • Figure 11(a) and Figure 11(b) are respectively schematic cross-sectional structural diagrams of two material structures according to the eighth embodiment of the present invention.
  • Figure 12 is a schematic cross-sectional view of the material structure of the ninth embodiment of the present invention.
  • Inclined columnar window 111 First side wall 11a
  • Figure 1 is a schematic cross-sectional view of the material structure of the first embodiment of the present invention.
  • the material structure 1 includes:
  • Mask layer 11 is located on the substrate 10; the mask layer 11 has a window 110 that exposes the substrate 10.
  • the window 110 includes an open end 110a, and the area of the orthographic projection of the open end 110a on the plane where the substrate 10 is located is smaller than the area where the window 110 is located on the substrate 10. The area of the orthographic projection on the plane.
  • the substrate 10 has a multi-layer structure, and the substrate 10 includes, for example, a semiconductor substrate 100 and a nucleation layer (not shown) located on the semiconductor substrate 100 .
  • the material of the semiconductor substrate 100 may be at least one of sapphire, silicon carbide and single crystal silicon, and the material of the nucleation layer may be AlN.
  • the substrate 10 may be a single-layer structure, for example, the substrate 10 is a semiconductor substrate 100 .
  • the material of the semiconductor substrate 100 may be silicon carbide, gallium nitride, etc.
  • the material of the mask layer 11 may be at least one of silicon dioxide and silicon nitride.
  • the mask layer 11 has a single-layer structure.
  • the mask layer 11 may also have a multi-layer structure, including at least two different material layers.
  • each window 110 is an inclined columnar window 111 .
  • the vertical section of the inclined columnar window 111 is an inclined parallelogram.
  • the vertical section here refers to the section along the plane where the vertical base 10 is located.
  • the cross-section of the oblique columnar window 111 is rectangular, and the cross-section here refers to the cross-section along the plane parallel to the base 10 .
  • the cross-sectional areas of each inclined columnar window 111 are equal, and the distances between adjacent inclined columnar windows 111 are equal.
  • the mask layer 11 includes opposite first sidewalls 11a and second sidewalls 11b.
  • a first angle ⁇ is formed between the first sidewall 11a and the base 10 exposed by the oblique columnar window 111.
  • the first angle ⁇ is an acute angle;
  • a second angle ⁇ is formed between the side wall 11 b and the base 10 exposed by the oblique columnar window 111 .
  • the second angle ⁇ is an obtuse angle; the first angle ⁇ is equal to the supplementary angle of the second angle ⁇ .
  • the oblique cylindrical window 111 also includes a bottom wall end 110b located on the surface of the substrate 10.
  • the orthographic projection of the open end 110a on the plane of the substrate 10 is completely staggered from the bottom wall end 110b.
  • the dislocations of the GaN material are mainly linear dislocations in the [0001] crystal direction, that is, linear dislocations extending along the thickness direction of the mask layer 11.
  • the orthographic projection of the opening end 110a on the plane of the base 10 and the bottom wall end 110b may also be at least partially offset.
  • the window 110 may have one, and the cross-section of the window 110 may be a triangle, a hexagon, a circle, or other shapes.
  • the material structure 1 is a new epitaxial substrate structure.
  • the first embodiment of the present invention also provides a method for manufacturing the material structure in Figure 1.
  • Figure 2 is a flow chart of the manufacturing method;
  • Figure 3 is a schematic diagram of an intermediate structure corresponding to the process in Figure 2.
  • a substrate 10 is provided.
  • the substrate 10 has a multi-layer structure, and the substrate 10 includes, for example, a semiconductor substrate 100 and a nucleation layer (not shown) located on the semiconductor substrate 100 .
  • the material of the semiconductor substrate 100 may be at least one of sapphire, silicon carbide and single crystal silicon, and the material of the nucleation layer may be AlN.
  • the substrate 10 may be a single-layer structure, for example, the substrate 10 is a semiconductor substrate 100 .
  • the material of the semiconductor substrate 100 may be silicon carbide.
  • a mask layer 11 is formed on the substrate 10, and a window 110 exposing the substrate 10 is formed in the mask layer 11.
  • the window 110 includes an open end 110a, so that The area of the orthographic projection of the opening end 110 a on the plane of the base 10 is smaller than the area of the orthographic projection of the window 110 on the plane of the base 10 .
  • the material of the mask layer 11 may be at least one of silicon dioxide and silicon nitride, and may be formed using a physical vapor deposition method or a chemical vapor deposition method.
  • the mask layer 11 has a single-layer structure.
  • the single-layer structure can be formed in one process or in multiple processes.
  • the mask layer 11 may also have a multi-layer structure, including at least two different material layers, and be formed using multiple processes.
  • each window 110 is a slanted columnar window 111.
  • the inclined columnar window 111 can be realized by controlling the etching gas type and flow rate or controlling the plasma direction during dry etching.
  • Figure 4 is a schematic cross-sectional structural diagram of the material structure of the second embodiment of the present invention.
  • the difference between the material structure 2 of the second embodiment and the material structure 1 of the first embodiment is that it also includes: an epitaxial layer 12, including a first epitaxial layer 121 and a second epitaxial layer 122 connected together;
  • the first epitaxial layer 121 is epitaxially grown from the substrate 10 to fill the window 110;
  • the second epitaxial layer 122 is epitaxially grown from the first epitaxial layer 121 located at the opening end 110a on the mask layer 11.
  • the materials of the first epitaxial layer 121 and the second epitaxial layer 122 are the same, and can be at least one of GaN, AlGaN, InGaN, and AlInGaN, which is not limited in this embodiment.
  • the material structure 2 is a semiconductor structure.
  • Figure 5 is a flow chart of a method for manufacturing a material structure according to the second embodiment of the present invention.
  • the difference between the manufacturing method of the material structure 2 of the second embodiment and the manufacturing method of the material structure 1 of the first embodiment is that: it also includes: step S3 to mask.
  • the film layer 11 is a mask, and the epitaxial growth process is performed on the substrate 10 to form the epitaxial layer 12.
  • the epitaxial layer 12 includes a first epitaxial layer 121 and a second epitaxial layer 122 connected together; the first epitaxial layer 121 is epitaxially grown from the substrate 10 to The window 110 is filled; the second epitaxial layer 122 is epitaxially grown on the mask layer 11 from the first epitaxial layer 121 located at the opening end 110a.
  • the formation process of the epitaxial layer 12 may include: Atomic layer deposition (ALD), Chemical Vapor Deposition (CVD), MBE (Molecular Beam Epitaxy), or plasma. Volume enhanced chemical vapor deposition (PECVD, Plasma Enhanced Chemical Vapor Deposition), or low pressure chemical evaporation deposition (LPCVD, Low Pressure Chemical Vapor Deposition), or metal organic compound chemical vapor deposition (MOCVD, Metal-Organic Chemical Vapor Deposition) , or a combination thereof.
  • ALD Atomic layer deposition
  • CVD Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • LPCVD low pressure chemical evaporation deposition
  • MOCVD Metal-Organic Chemical Vapor Deposition
  • the substrate 10 is a multi-layer structure, for example, including a semiconductor substrate 100 and a nucleation layer located on the semiconductor substrate 100, the first epitaxial layer 121 and the second epitaxial layer 122 are epitaxially grown on the substrate 10 as heteroepitaxial growth.
  • the substrate 10 has a single-layer structure.
  • the substrate 10 is a silicon carbide semiconductor substrate 100, the first epitaxial layer 121 and the second epitaxial layer 122 are homoepitaxial.
  • the first epitaxial layer 121 and the second epitaxial layer 122 are made of the same material, which may be a GaN-based material.
  • the dislocations in the GaN-based material have an angle along the thickness direction of the mask layer 11 or with the thickness direction.
  • the area of the orthographic projection of the window opening end 110a on the plane of the base 10 is smaller than the area of the orthographic projection of the window 110 on the plane of the base 10, which means that the window 110 has an inward movement in the direction from the bottom wall end 110b toward the opening end 110a. side wall.
  • the retracted sidewalls of the window 110 can cause the dislocations of the epitaxially grown GaN-based material to terminate at the sidewalls of the window 110 and cannot continue to extend with the growth of the GaN-based material. Therefore, the substrate 10 having the above-mentioned mask layer 11 can reduce dislocations of the epitaxial layer 12 .
  • the manufacturing method of the material structure 2 of the second embodiment can refer to the corresponding process steps of the material structure 1 of the first embodiment.
  • Figure 6(a) and Figure 6(b) are respectively schematic cross-sectional structural views of two material structures according to the third embodiment of the present invention.
  • the difference between the material structure 3 of the third embodiment and the material structures 1 and 2 of the first and second embodiments is that the second epitaxial layer 122 corresponding to each window 110 is smaller. Synthetic plane.
  • the mask layer 11 may be in a mesh shape or a strip shape.
  • the difference between Figure 6(b) and Figure 6(a) is that after the second epitaxial layer 122 epitaxially grows to a certain thickness on the first epitaxial layer 121, it gradually heals into a plane, that is, in the epitaxial growth direction, the second epitaxial layer 122 first formed separate structures and then gradually healed into a flat surface. There are gaps between separate structures.
  • GaN-based devices such as LD, LED or HEMT devices, may be formed on the second epitaxial layer 122 .
  • other structures of the material structure 3 of the third embodiment can refer to the corresponding structures of the material structures 1 and 2 of the first and second embodiments.
  • step S3 the process time can be increased so that each window 110 corresponds to The second epitaxial layer 122 is healed into a plane, or the second epitaxial layer 122 with gaps is obtained by controlling epitaxial growth conditions.
  • steps of the manufacturing method of the material structure 3 of the third embodiment can refer to the corresponding steps of the manufacturing method of the material structure 2 of the second embodiment.
  • Figure 7 is a schematic cross-sectional view of the material structure of the fourth embodiment of the present invention.
  • the difference between the material structure 4 and the manufacturing method of the fourth embodiment and the material structures 1, 2, 3 and the manufacturing method of the first, second and third embodiments is that: in the inclined columnar window 111, the first The angle ⁇ is less than the supplementary angle of the second angle ⁇ .
  • Decreasing the first angle ⁇ can increase the area of the first sidewall 11a that terminates dislocation extension, so the dislocation termination effect in the epitaxial layer 12 is better.
  • Figure 8 is a schematic cross-sectional view of the material structure of the fifth embodiment of the present invention.
  • the difference between the material structure 5 and the manufacturing method of the fifth embodiment and the material structures 1, 2, 3, 4 and the manufacturing method of the first to fourth embodiments is only in the direction from the base 10 to the opening end 110a. , the cross-sectional area of the window 110 first increases and then decreases.
  • the cross-sectional area of the window 110 refers to the area of the cross-section parallel to the plane of the base 10 .
  • Figure 9 is a schematic cross-sectional structural diagram of the material structure of the sixth embodiment of the present invention.
  • the difference between the material structure 6 and the manufacturing method of the sixth embodiment and the material structures 1, 2, 3, 4, 5 and the manufacturing methods of the first to fifth embodiments is only that: from the base 10 to the opening end In the direction 110a, the cross-sectional areas of the windows 110 are equally large and the center line connecting the cross-sections of the windows 110 is a curve.
  • the cross-sectional area of the window 110 may first decrease and then increase or gradually decrease in the direction from the base 10 to the open end 110a; and/or the cross-section of the window 110 may be a figure with a symmetrical center, from the base 110 to the open end 110a. In the direction from 10 to the opening end 110a, the center line of the cross section of the window 110 is a straight line.
  • Figure 10 is a schematic cross-sectional view of the material structure of the seventh embodiment of the present invention.
  • the difference between the material structure 7 and the manufacturing method of the seventh embodiment and the material structures 1, 2, 3, 4, 5, 6 and the manufacturing methods of the first to sixth embodiments is only that: from the base 10 to In the direction of the opening end 110a, the center line connecting the cross-sections of the window 110 is a fold line. In other words, the window 110 rises in a bending manner from the base 10 to the opening end 110a.
  • the window 110 may rise in a twisted shape in the direction from the base 10 to the opening end 110a.
  • Figures 11(a) and 11(b) are respectively schematic cross-sectional structural views of two material structures according to the eighth embodiment of the present invention.
  • the only difference between the material structure 8 and the manufacturing method of the eighth embodiment and the material structures 1, 2, 3, 4, 5, 6, 7 and the manufacturing method of the first to seventh embodiments is that: there are multiple windows 110.
  • the cross-sectional areas of at least two windows 110 are not equal in size.
  • the spacing between at least two pairs of adjacent windows 110 is not equal.
  • the cross-sectional areas of each window 110 may also be unequal, and the spacing between two pairs of adjacent windows 110 may also be unequal.
  • the size and spacing of the windows 110 can enrich the quality or properties of the material to be epitaxially extended.
  • Figure 12 is a schematic cross-sectional view of the material structure of the ninth embodiment of the present invention.
  • the substrate 10 includes a semiconductor substrate 100 and a transition layer 101 located on the semiconductor substrate 100 .
  • the transition layer 101 and the epitaxial layer 12 may be made of the same material or different materials.
  • the material of the transition layer 101 is, for example, GaN. Compared with the embodiment in which the transition layer 101 is omitted and the epitaxial layer 12 whose material is AlGaN, InGaN, or AlInGaN is directly epitaxially grown on the sapphire or single crystal silicon semiconductor substrate 100, this embodiment can further reduce the dislocation density in the epitaxial layer 12. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本申请提供了一种材料结构及其制作方法,材料结构包括:基底与位于基底上的掩膜层;掩膜层具有暴露基底的窗口,窗口包括开口端,开口端在基底所在平面上的正投影的面积小于窗口在基底所在平面上的正投影的面积。根据本发明的实施例,使用具有掩膜层的基底作为外延生长GaN基材料的基底,掩膜层中的开口在自基底朝向开口端方向上具有内收的侧壁,利用窗口的内收侧壁,使得外延生长的GaN基材料的位错终止在窗口的侧壁,无法继续随GaN基材料的生长而延伸。因而,具有上述掩膜层的基底可以降低GaN基材料的位错密度。

Description

材料结构及其制作方法 技术领域
本申请涉及半导体技术领域,尤其涉及一种材料结构及其制作方法。
背景技术
氮化镓(GaN)是继Si、GaAs等第一、第二代半导体材料之后的第三代新型半导体材料,其作为宽禁带半导体材料有许多优点,诸如饱和漂移速度高、击穿电压大、载流子输运性能优异以及能够形成AlGaN、InGaN三元合金和AlInGaN四元合金等,容易制作GaN基的PN结。鉴于此,近几年来GaN基材料和半导体器件得到了广泛和深入的研究,MOCVD(Metal-organic Chemical Vapor Deposition,金属有机物化学气相沉积)技术生长GaN基材料日趋成熟;在半导体器件研究方面,GaN基LED、LDs等光电子器件以及GaN基HEMT等微电子器件方面的研究都取得了显著的成绩和长足的发展。
随着GaN基材料在功率器件/显示器件上的应用的逐步深入,终端产品对GaN基材料的位错密度的需求进一步提高,而按照传统模式使用主流MOCVD外延设备在主流的GaN基外延基板三氧化二铝(Al2O3)衬底外延生长的GaN基材料的位错面密度约为1~3E8/cm^3。为了制造耐更高压的GaN基功率器件和更长波段的GaN基LED,必须进一步降低GaN基材料的位错密度。
有鉴于此,实有必要提供一种新的材料结构及其制作方法,以满足上述需求。
发明内容
本发明的发明目的是提供一种材料结构及其制作方法,降低GaN基材料的位错密度。
为实现上述目的,本发明的第一方面提供一种材料结构,包括:
基底;
掩膜层,位于所述基底上;所述掩膜层具有暴露所述基底的窗口,所述窗口包括开口端,所述开口端在所述基底所在平面上的正投影的面积小于所述窗口在所述基底所在平面上的正投影的面积。
可选地,所述窗口还包括位于所述基底的表面的底壁端,所述开口端在所述基底所在平面上的正投影与所述底壁端至少部分错开。
可选地,所述开口端在所述基底所在平面上的正投影与所述底壁端完全错开。
可选地,所述窗口为斜柱状窗口。
可选地,所述掩膜层包括相对的第一侧壁与第二侧壁,所述第一侧壁与所述斜柱状窗口暴露的所述基底之间成第一角度,所述第一角度为锐角;所述第二侧壁与所述斜柱状窗口暴露的所述基底之间成第二角度,所述第二角度为钝角;所述第一角度小于或等于所述第二角度的补角。
可选地,自所述基底至所述开口端方向上,所述窗口的横截面积先增大后减小;或自所述基底至所述开口端方向上,所述窗口的横截面积逐渐减小;或自所述基底至所述开口端方向上,所述窗口的横截面积等大。
可选地,自所述基底至所述开口端方向上,所述窗口的横截面的中心连线为直线、折线或者曲线。
可选地,自所述基底至所述开口端方向上,所述窗口呈弯折状或扭曲状上升。
可选地,所述窗口具有多个,至少两个所述窗口的横截面积大小不等和/或至少两对相邻所述窗口之间的间距不等。
可选地,所述掩膜层为多层结构。
可选地,所述材料结构还包括:外延层,包括连接在一起的第一外延层与第二外延层;所述第一外延层自所述基底外延生长至填满所述窗口;所述第二外延层自位于所述开口端的所述第一外延层在所述掩膜层上外延生长。
可选地,所述窗口具有多个,各个所述窗口对应的所述第二外延层愈合成平面。
可选地,所述第二外延层自所述窗口的开口端先形成各自分立的结构,再逐渐愈合成平面。
可选地,所述基底为单层结构,所述基底与所述外延层为相同材料或不同材料;或所述基底包括半导体衬底与位于所述半导体衬底上的过渡层,所述过渡层与所述外延层为相同材料或不同材料。
本发明的第二方面提供一种材料结构的制作方法,包括:
提供基底;
在所述基底上形成掩膜层,在所述掩膜层内形成暴露所述基底的窗口,所述窗口包括开口端,使得所述开口端在所述基底所在平面上的正投影的面积小于所述窗口在所述基底所在平面上的正投影的面积。
可选地,所述形成窗口时,所述窗口还包括位于所述基底的表面的底壁端,使得所述开口端在所述基底所在平面上的正投影与所述底壁端至少部分错开。
可选地,所述形成窗口时,使得所述开口端在所述基底所在平面上的正投影与所述底壁端完全错开。
可选地,所述形成窗口时,所述窗口为斜柱状窗口,所述斜柱状窗口采用干法刻蚀形成。
可选地,所述掩膜层包括相对的第一侧壁与第二侧壁,所述第一侧壁与所述斜柱状窗口暴露的所述基底之间成第一角度,所述第一角度为锐角;所述第二侧壁与所述斜柱状窗口暴露的所述基底之间成第二角度,所述第二角度为钝角;所述第一角度小于或等于所述第二角度的补角。
可选地,所述材料结构的制作方法还包括:以所述掩膜层为掩膜,对所述基底进行外延生长工艺形成外延层,所述外延层包括连接在一起的第一外延层与第二外延层;所述第一外延层自所述基底外延生长至填满所述窗口;所述第二外延层自位于所述开口端的所述第一外延层在所述掩膜层上外延生长。
可选地,所述窗口具有多个,各个所述窗口对应的所述第二外延层愈合成平面。
可选地,所述基底为单层结构,所述外延层通过对所述基底进行同质外延生长工艺或异质外延生长工艺形成;或所述基底包括半导体衬底与位于所述半导体衬底上的过渡层,所述外延层通过对过渡层进行同质外延生长工艺或异质外延生长工艺形成。
与现有技术相比,本发明的有益效果在于:
使用具有掩膜层的基底作为外延生长GaN基材料的基底,掩膜层中开口的开口端在基底所在平面上的正投影的面积小于窗口在基底所在平面上的正投影的面积,利用窗口的内收侧壁,使得外延生长的GaN基材料的位错终止在窗口的侧壁,无法继续随GaN基材料的生长而延伸。因而,具有上述掩膜层的基底可以降低GaN基材料的位错密度。
附图说明
图1是本发明第一实施例的材料结构的截面结构示意图;
图2是图1中的材料结构的制作方法的流程图;
图3是图2中的流程对应的中间结构示意图;
图4是本发明第二实施例的材料结构的截面结构示意图;
图5是本发明第二实施例的材料结构的制作方法的流程图;
图6(a)与图6(b)分别是本发明第三实施例的两种材料结构的截面结构示意图;
图7是本发明第四实施例的材料结构的截面结构示意图;
图8是本发明第五实施例的材料结构的截面结构示意图;
图9是本发明第六实施例的材料结构的截面结构示意图;
图10是本发明第七实施例的材料结构的截面结构示意图;
图11(a)与图11(b)分别是本发明第八实施例的两种材料结构的截面结构示意图;
图12是本发明第九实施例的材料结构的截面结构示意图。
为方便理解本发明,以下列出本发明中出现的所有附图标记:
材料结构1、2、3、4、5、6、7、8、9       基底10
半导体衬底100                           过渡层101
掩膜层11                                窗口110
开口端110a                              底壁端110b
斜柱状窗口111                           第一侧壁11a
第二侧壁11b                             第一角度α
第二角度β                              外延层12
第一外延层121                           第二外延层122
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明第一实施例的材料结构的截面结构示意图。
参照图1所示,材料结构1包括:
基底10;
掩膜层11,位于基底10上;掩膜层11具有暴露基底10的窗口110,窗口110包括开口端110a,开口端110a在基底10所在平面上的正投影的面积小于窗口110在基底10所在平面上的正投影的面积。
本实施例中,基底10为多层结构,基底10例如包括半导体衬底100以及位于半导体衬底100上的成核层(未图示)。半导体衬底100的材料可以为蓝宝石、碳化硅和单晶硅中的至少一种,成核层的材料可以为AlN。
其它实施例中,基底10可以为单层结构,例如基底10为半导体衬底100。半导体衬底100的材料可以为碳化硅、氮化镓等。
掩膜层11的材料可以为二氧化硅与氮化硅中的至少一种。本实施例中,掩膜层11为单层结构。其它实施例中,掩膜层11也可以为多层结构,至少包括两种不同材料层。
本实施例中,窗口110具有多个,每个窗口110为斜柱状窗口111,斜柱状窗口111的竖截面为倾斜的平行四边形,这里的竖截面是指沿垂直基底10所在平面的截面。斜柱状窗口111的横截面为矩形,这里的横截面是指沿平行基底10所在平面的截面。各个斜柱状窗口111的横截面积相等,相邻斜 柱状窗口111之间的距离相等。
掩膜层11包括相对的第一侧壁11a与第二侧壁11b,第一侧壁11a与斜柱状窗口111暴露的基底10之间成第一角度α,第一角度α为锐角;第二侧壁11b与斜柱状窗口111暴露的基底10之间成第二角度β,第二角度β为钝角;第一角度α等于第二角度β的补角。
斜柱状窗口111还包括位于基底10的表面的底壁端110b,开口端110a在基底10所在平面上的正投影与底壁端110b完全错开,好处在于:当在斜柱状窗口111内外延生长的材料的位错沿掩膜层11的厚度方向或与厚度方向具有夹角时,斜柱状窗口111的侧壁与基底10所在平面的方向之间的夹角越小,终止位错延伸的侧壁的面积越大,因而终止效果越好。例如外延生长的材料为GaN时,GaN材料的位错主要为[0001]晶向的线位错,即沿掩膜层11的厚度方向延伸的线位错,此时,第一侧壁11a与斜柱状窗口111暴露的基底10之间所成第一角度α越小,能终止位错延伸的第一侧壁11a面积越大,因而终止效果越好。
其它实施例中,开口端110a在基底10所在平面上的正投影与底壁端110b两者也可以至少部分错开。
其它实施例中,窗口110可以具有一个,窗口110的横截面可以为三角形、六边形、圆形等其它形状。
本实施例中,材料结构1为一种新的外延衬底结构。
本发明第一实施例还提供了图1中的材料结构的一种制作方法。图2是制作方法的流程图;图3是图2中的流程对应的中间结构示意图。
首先,参照图2中的步骤S1以及图3所示,提供基底10。
本实施例中,基底10为多层结构,基底10例如包括半导体衬底100以及位于半导体衬底100上的成核层(未图示)。半导体衬底100的材料可以为蓝宝石、碳化硅和单晶硅中的至少一种,成核层的材料可以为AlN。
其它实施例中,基底10可以为单层结构,例如基底10为半导体衬底100。半导体衬底100的材料可以为碳化硅。
接着,参照图2中的步骤S2以及图3与图1所示,在基底10上形成掩膜层11,在掩膜层11内形成暴露基底10的窗口110,窗口110包括开口端110a,使得开口端110a在基底10所在平面上的正投影的面积小于窗口110在基底10所在平面上的正投影的面积。
掩膜层11的材料可以为二氧化硅与氮化硅中的至少一种,对应采用物理气相沉积法或化学气相沉积法形成。本实施例中,掩膜层11为单层结构。单层结构可以采用一个工序形成,也可以采用多个工序形成。其它实施例中,掩膜层11也可以为多层结构,至少包括两种不同材料层,对应采用多个工序形成。
本实施例中,形成窗口110时,窗口110具有多个,且每个窗口110为斜柱状窗口111。斜柱状窗口111可以通过控制干法刻蚀时的刻蚀气体种类、流速或控制等离子方向实现。
图4是本发明第二实施例的材料结构的截面结构示意图。
参照图4所示,本实施例二的材料结构2与实施例一的材料结构1的区别在于:还包括:外延层12,包括连接在一起的第一外延层121与第二外延层122;第一外延层121自基底10外延生长至填满窗口110;第二外延层122自位于开口端110a的第一外延层121在掩膜层11上外延生长。
第一外延层121与第二外延层122的材料相同,都可以为GaN、AlGaN、InGaN、AlInGaN中的至少一种,本实施例对此不加以限制。
除了上述区别,本实施例二的材料结构2的其它结构可以参照实施例一的材料结构1的对应结构。
本实施例中,材料结构2为一种半导体结构。
图5是本发明第二实施例的材料结构的制作方法的流程图。参照图5 与图2所示,相应地,对于制作方法,本实施例二的材料结构2的制作方法与实施例一的材料结构1的制作方法的区别在于:还包括:步骤S3,以掩膜层11为掩膜,对基底10进行外延生长工艺形成外延层12,外延层12包括连接在一起的第一外延层121与第二外延层122;第一外延层121自基底10外延生长至填满窗口110;第二外延层122自位于开口端110a的第一外延层121在掩膜层11上外延生长。
外延层12的形成工艺可以包括:原子层沉积法(ALD,Atomic layer deposition)、或化学气相沉积法(CVD,Chemical Vapor Deposition)、或分子束外延生长法(MBE,Molecular Beam Epitaxy)、或等离子体增强化学气相沉积法(PECVD,Plasma Enhanced Chemical Vapor Deposition)、或低压化学蒸发沉积法(LPCVD,Low Pressure Chemical Vapor Deposition),或金属有机化合物化学气相沉积法(MOCVD,Metal-Organic Chemical Vapor Deposition)、或其组合方式。
基底10为多层结构,例如包括半导体衬底100以及位于半导体衬底100上的成核层时,第一外延层121与第二外延层122在基底10上外延生长为异质外延。基底10为单层结构,例如基底10为碳化硅半导体衬底100时,第一外延层121与第二外延层122为同质外延。
第一外延层121与第二外延层122的材料相同,可以为GaN基材料。GaN基材料中的位错沿掩膜层11的厚度方向或与厚度方向具有夹角。窗口开口端110a在基底10所在平面上的正投影的面积小于窗口110在基底10所在平面上的正投影的面积意味着:在自底壁端110b朝向开口端110a方向上,窗口110具有内收的侧壁。窗口110的内收侧壁,可使外延生长的GaN基材料的位错终止在窗口110的侧壁,无法继续随GaN基材料的生长而延伸。因而,具有上述掩膜层11的基底10可以降低外延层12的位错。
除了上述区别,本实施例二的材料结构2的制作方法可以参照实施例一的材料结构1的对应工艺步骤。
图6(a)与图6(b)分别是本发明第三实施例的两种材料结构的截面结构示意图。
参照图6(a)与图6(b)所示,本实施例三的材料结构3与实施例一、二的材料结构1、2的区别在于:各个窗口110对应的第二外延层122愈合成平面。
参照图6(a)与图6(b)所示,掩膜层11可以呈网状或条状。图6(b)与图6(a)的区别在于:第二外延层122在第一外延层121上外延生长一定厚度之后,再逐渐愈合成平面,即在外延生长方向上,第二外延层122先形成相互分立的结构后逐渐愈合成平面。相互分立的结构之间具有空隙。
第二外延层122上可以形成GaN基器件,例如LD、LED或HEMT器件。
除了上述区别,本实施例三的材料结构3的其它结构可以参照实施例一、二的材料结构1、2的对应结构。
相应地,本实施例三的材料结构3的制作方法与实施例一、二的材料结构1、2的制作方法的区别仅在于:在步骤S3中,可以通过增长工艺时间,使得各个窗口110对应的第二外延层122愈合成平面,或通过控制外延生长条件获得具有空隙的第二外延层122。
除了上述区别,本实施例三的材料结构3的制作方法的其它步骤可以参照实施例二的材料结构2的制作方法的对应步骤。
图7是本发明第四实施例的材料结构的截面结构示意图。
参照图7所示,本实施例四的材料结构4及其制作方法与实施例一、二、三的材料结构1、2、3及其制作方法的区别在于:斜柱状窗口111中,第一角度α小于第二角度β的补角。
减小第一角度α,能增大终止位错延伸的第一侧壁11a面积,因而外延层12中的位错终止效果越好。
除了上述区别,本实施例四的材料结构4的其它结构及工艺步骤可以参照实施例一、二、三的材料结构1、2、3的对应结构及工艺步骤。
图8是本发明第五实施例的材料结构的截面结构示意图。
参照图8所示,本实施例五的材料结构5及其制作方法与实施例一至四的材料结构1、2、3、4及其制作方法的区别仅在于:自基底10至开口端110a方向上,窗口110的横截面积先增大后减小。
窗口110的横截面积是指沿平行基底10所在平面的截面的面积。
除了上述区别,本实施例五的材料结构5的其它结构及工艺步骤可以参照实施例一至四的材料结构1、2、3、4的对应结构及工艺步骤。
图9是本发明第六实施例的材料结构的截面结构示意图。
参照图9所示,本实施例六的材料结构6及其制作方法与实施例一至五的材料结构1、2、3、4、5及其制作方法的区别仅在于:自基底10至开口端110a方向上,窗口110的横截面积等大且窗口110的横截面的中心连线为曲线。
其它实施例中,自基底10至开口端110a方向上,窗口110的横截面积可以先减小后增大或逐渐减小;和/或窗口110的横截面为具有对称中心的图形,自基底10至开口端110a方向上,窗口110的横截面的中心连线为直线。
除了上述区别,本实施例六的材料结构6的其它结构及工艺步骤可以参照实施例一至五的材料结构1、2、3、4、5的对应结构及工艺步骤。
图10是本发明第七实施例的材料结构的截面结构示意图。
参照图10所示,本实施例七的材料结构7及其制作方法与实施例一至六的材料结构1、2、3、4、5、6及其制作方法的区别仅在于:自基底10至开口端110a方向上,窗口110的横截面的中心连线为折线。换言之,自基底 10至开口端110a方向上,窗口110呈弯折状上升。
其它实施例中,自基底10至开口端110a方向上,窗口110可以呈扭曲状上升。
除了上述区别,本实施例七的材料结构7的其它结构及工艺步骤可以参照实施例一至六的材料结构1、2、3、4、5、6的对应结构及工艺步骤。
图11(a)与图11(b)分别是本发明第八实施例的两种材料结构的截面结构示意图。
本实施例八的材料结构8及其制作方法与实施例一至七的材料结构1、2、3、4、5、6、7及其制作方法的区别仅在于:窗口110具有多个,参照图11(a)所示,至少两个窗口110的横截面积大小不等,参照图11(b)所示,至少两对相邻窗口110之间的间距不等。
每组的三个窗口110中,也可以各个窗口110的横截面积大小不等,两对相邻窗口110之间的间距也不等。
窗口110的大小与间距设置可以丰富待外延的材料的质量或性能。
图12是本发明第九实施例的材料结构的截面结构示意图。
参照图12所示,本实施例九的材料结构9及其制作方法与实施例一至八的材料结构1、2、3、4、5、6、7、8及其制作方法的区别仅在于:基底10包括半导体衬底100与位于半导体衬底100上的过渡层101。
过渡层101与外延层12可以为相同材料,也可以为不同材料。
过渡层101的材料例如为GaN。相对于省略过渡层101,直接在蓝宝石或单晶硅半导体衬底100上外延生长材料为AlGaN、InGaN、AlInGaN的外延层12的实施例,本实施例可以进一步降低外延层12中的位错密度。
除了上述区别,本实施例九的材料结构9的其它结构及工艺步骤可以参照实施例一至八的材料结构1、2、3、4、5、6、7、8的对应结构及工艺步 骤。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (20)

  1. 一种材料结构,其特征在于,包括:
    基底(10);
    掩膜层(11),位于所述基底(10)上;所述掩膜层(11)具有暴露所述基底(10)的窗口(110),所述窗口(110)包括开口端(110a),所述开口端(110a)在所述基底(10)所在平面上的正投影的面积小于所述窗口(110)在所述基底(10)所在平面上的正投影的面积。
  2. 根据权利要求1所述的材料结构,其特征在于,所述窗口(110)还包括位于所述基底(10)的表面的底壁端(110b),所述开口端(110a)在所述基底(10)所在平面上的正投影与所述底壁端(110b)至少部分错开。
  3. 根据权利要求2所述的材料结构,其特征在于,所述开口端(110a)在所述基底(10)所在平面上的正投影与所述底壁端(110b)完全错开。
  4. 根据权利要求1至3任一项所述的材料结构,其特征在于,所述窗口(110)为斜柱状窗口(111)。
  5. 根据权利要求4所述的材料结构,其特征在于,所述掩膜层(11)包括相对的第一侧壁(11a)与第二侧壁(11b),所述第一侧壁(11a)与所述斜柱状窗口(111)暴露的所述基底(10)之间成第一角度(α),所述第一角度(α)为锐角;所述第二侧壁(11b)与所述斜柱状窗口(111)暴露的所述基底(10)之间成第二角度(β),所述第二角度(β)为钝角;所述第一角度(α)小于或等于所述第二角度(β)的补角。
  6. 根据权利要求1所述的材料结构,其特征在于,自所述基底(10)至所述开口端(110a)方向上,所述窗口(110)的横截面积先增大后减小;或自所述基底(10)至所述开口端(110a)方向上,所述窗口(110)的横截面积逐渐减小;或自所述基底(10)至所述开口端(110a)方向上,所述窗口(110)的横截面积等大。
  7. 根据权利要求1所述的材料结构,其特征在于,自所述基底(10)至 所述开口端(110a)方向上,所述窗口(110)的横截面的中心连线为直线、折线或者曲线。
  8. 根据权利要求1所述的材料结构,其特征在于,所述窗口(110)具有多个,至少两个所述窗口(110)的横截面积大小不等和/或至少两对相邻所述窗口(110)之间的间距不等。
  9. 根据权利要求1所述的材料结构,其特征在于,所述掩膜层(11)为多层结构。
  10. 根据权利要求1所述的材料结构,其特征在于,还包括:外延层(12),包括连接在一起的第一外延层(121)与第二外延层(122);所述第一外延层(121)自所述基底(10)外延生长至填满所述窗口(110);所述第二外延层(122)自位于所述开口端(110a)的所述第一外延层(121)在所述掩膜层(11)上外延生长。
  11. 根据权利要求10所述的材料结构,其特征在于,所述窗口(110)具有多个,各个所述窗口(110)对应的所述第二外延层(122)愈合成平面。
  12. 根据权利要求11所述的材料结构,其特征在于,所述第二外延层(122)自所述窗口(110)的开口端(110a)先形成各自分立的结构,再逐渐愈合成平面。
  13. 根据权利要求10至12任一项所述的材料结构,其特征在于,所述基底(10)为单层结构,所述基底(10)与所述外延层(12)为相同材料或不同材料;或所述基底(10)包括半导体衬底(100)与位于所述半导体衬底(100)上的过渡层(101),所述过渡层(101)与所述外延层(12)为相同材料或不同材料。
  14. 一种材料结构的制作方法,其特征在于,包括:
    提供基底(10);
    在所述基底(10)上形成掩膜层(11),在所述掩膜层(11)内形成暴露所述基底(10)的窗口(110),所述窗口(110)包括开口端(110a),使得所述开口端(110a)在所述基底(10)所在平面上的正投影的面积小于所述窗口 (110)在所述基底(10)所在平面上的正投影的面积。
  15. 根据权利要求14所述的材料结构的制作方法,其特征在于,所述形成窗口(110)时,所述窗口(110)还包括位于所述基底(10)的表面的底壁端(110b),使得所述开口端(110a)在所述基底(10)所在平面上的正投影与所述底壁端(110b)至少部分错开。
  16. 根据权利要求14或15所述的材料结构的制作方法,其特征在于,所述形成窗口(110)时,所述窗口(110)为斜柱状窗口(111),所述斜柱状窗口(111)采用干法刻蚀形成。
  17. 根据权利要求16所述的材料结构的制作方法,其特征在于,所述掩膜层(11)包括相对的第一侧壁(11a)与第二侧壁(11b),所述第一侧壁(11a)与所述斜柱状窗口(111)暴露的所述基底(10)之间成第一角度(α),所述第一角度(α)为锐角;所述第二侧壁(11b)与所述斜柱状窗口(110)暴露的所述基底(10)之间成第二角度(β),所述第二角度(β)为钝角;所述第一角度(α)小于或等于所述第二角度(β)的补角。
  18. 根据权利要求14所述的材料结构的制作方法,其特征在于,还包括:以所述掩膜层(11)为掩膜,对所述基底(10)进行外延生长工艺形成外延层(12),所述外延层(12)包括连接在一起的第一外延层(121)与第二外延层(122);所述第一外延层(121)自所述基底(10)外延生长至填满所述窗口(110);所述第二外延层(122)自位于所述开口端(110a)的所述第一外延层(121)在所述掩膜层(11)上外延生长。
  19. 根据权利要求18所述的材料结构的制作方法,其特征在于,所述窗口(110)具有多个,各个所述窗口(110)对应的所述第二外延层(122)愈合成平面。
  20. 根据权利要求18或19所述的材料结构的制作方法,其特征在于,所述基底(10)为单层结构,所述外延层(12)通过对所述基底(10)进行同质外延生长工艺或异质外延生长工艺形成;或所述基底(10)包括半导体衬底(100)与位于所述半导体衬底(100)上的过渡层(101),所述外延层 (12)通过对过渡层(101)进行同质外延生长工艺或异质外延生长工艺形成。
PCT/CN2022/103179 2022-06-30 2022-06-30 材料结构及其制作方法 WO2024000540A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103179 WO2024000540A1 (zh) 2022-06-30 2022-06-30 材料结构及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103179 WO2024000540A1 (zh) 2022-06-30 2022-06-30 材料结构及其制作方法

Publications (1)

Publication Number Publication Date
WO2024000540A1 true WO2024000540A1 (zh) 2024-01-04

Family

ID=89383885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103179 WO2024000540A1 (zh) 2022-06-30 2022-06-30 材料结构及其制作方法

Country Status (1)

Country Link
WO (1) WO2024000540A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182010A (ja) * 2008-01-29 2009-08-13 Kyocera Corp 3族窒化物化合物半導体の製造方法、発光素子、照明装置及び3族窒化物化合物半導体成長用の基板
CN101924021A (zh) * 2010-07-02 2010-12-22 北京北方微电子基地设备工艺研究中心有限责任公司 半导体装置及其制造方法和发光器件
CN102492986A (zh) * 2011-12-02 2012-06-13 北京大学 一种选区异质外延衬底结构及其制备和外延层生长方法
CN106469648A (zh) * 2015-08-31 2017-03-01 中国科学院微电子研究所 一种外延结构及方法
CN112301325A (zh) * 2019-08-01 2021-02-02 北京飓芯科技有限公司 一种3d叠层掩模衬底结构及其制备方法和外延生长方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182010A (ja) * 2008-01-29 2009-08-13 Kyocera Corp 3族窒化物化合物半導体の製造方法、発光素子、照明装置及び3族窒化物化合物半導体成長用の基板
CN101924021A (zh) * 2010-07-02 2010-12-22 北京北方微电子基地设备工艺研究中心有限责任公司 半导体装置及其制造方法和发光器件
CN102492986A (zh) * 2011-12-02 2012-06-13 北京大学 一种选区异质外延衬底结构及其制备和外延层生长方法
CN106469648A (zh) * 2015-08-31 2017-03-01 中国科学院微电子研究所 一种外延结构及方法
CN112301325A (zh) * 2019-08-01 2021-02-02 北京飓芯科技有限公司 一种3d叠层掩模衬底结构及其制备方法和外延生长方法

Similar Documents

Publication Publication Date Title
US6864160B2 (en) Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts
US6265289B1 (en) Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
CN1155993C (zh) 用横向生长制备氮化镓层
US6051849A (en) Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
JP5323792B2 (ja) 窒化ガリウム半導体構造体の製造方法、半導体構造体の製造方法および半導体構造体
US20010009167A1 (en) Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth through offset masks
KR20140107797A (ko) 질화물 기판 제조 방법
CN106783533B (zh) 含Al氮化物半导体结构及其外延生长方法
WO2024000540A1 (zh) 材料结构及其制作方法
US20230053953A1 (en) Group iii nitride structures and manufacturing methods thereof
US20240071761A1 (en) Semicondutor structure and manufacturing method thereof
WO2021237528A1 (zh) Ⅲ族氮化物结构及其制作方法
US20240072199A1 (en) Semiconductor structures and manufacturing methods thereof
US20240006853A1 (en) Laser diode and method for manufacturing the same
WO2024000542A1 (zh) 发光器件及其制作方法
WO2022099519A1 (zh) LED结构及其GaN基衬底、GaN基衬底的制作方法
TWI833198B (zh) 半導體結構及其製作方法
CN117374171A (zh) 半导体结构的制作方法
JP2023092803A (ja) 結晶成長用基板、窒化ガリウム基板、半導体基板、および窒化ガリウム基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948642

Country of ref document: EP

Kind code of ref document: A1