WO2024000369A1 - 电池单体、电池和用电装置 - Google Patents

电池单体、电池和用电装置 Download PDF

Info

Publication number
WO2024000369A1
WO2024000369A1 PCT/CN2022/102718 CN2022102718W WO2024000369A1 WO 2024000369 A1 WO2024000369 A1 WO 2024000369A1 CN 2022102718 W CN2022102718 W CN 2022102718W WO 2024000369 A1 WO2024000369 A1 WO 2024000369A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
battery cell
battery
electrode terminal
electrode
Prior art date
Application number
PCT/CN2022/102718
Other languages
English (en)
French (fr)
Inventor
陈文伟
刘江
黄瑛
李全坤
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/102718 priority Critical patent/WO2024000369A1/zh
Publication of WO2024000369A1 publication Critical patent/WO2024000369A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell, a battery and an electrical device.
  • Embodiments of the present application provide a battery cell, a battery and a power device, which can effectively improve the performance of the battery with low process complexity.
  • a battery cell including: at least two electrode assemblies; a lithium replenishing device disposed between two adjacent electrode assemblies of the at least two electrode assemblies; and a casing for accommodating the In the at least two electrode assemblies, the housing includes a first wall, a lithium-supplementing electrode terminal is provided on the first wall; and a connecting piece for electrically connecting the lithium-supplementing device and the lithium-supplementing electrode terminal.
  • the battery cell includes a lithium replenishing device.
  • the lithium replenishing device can not only replenish the loss of active lithium during use of the battery including the battery cell, improve the service life of the battery, but also replenish The loss of active lithium during the first charge of the battery increases the energy density of the battery.
  • the lithium replenishment device and the lithium replenishment electrode terminal are electrically connected through the connector to achieve the purpose of replenishing lithium by the lithium replenishment device. The implementation is simple and the process complexity is effectively reduced.
  • the surface of each of the at least two electrode assemblies includes a planar portion, and the planar portions of the two adjacent electrode assemblies are opposite and connected; wherein, the lithium supplement device and At least part of the connecting member is disposed between the planar portions of the two adjacent electrode assemblies.
  • the electrode assembly includes a flat part, which not only allows for better contact between the flat parts, but also makes better use of the space of the battery cells, thus improving the energy density of the battery;
  • the lithium replenishment device and at least part of the connector are arranged between the planar parts of two adjacent electrode assemblies, which increases the contact area between the lithium replenishment device and the connector and the electrode assembly, and improves the lithium replenishment of the lithium replenishment device. Effect.
  • the planar portion is the side surface with the largest area in each electrode assembly.
  • the lithium replenishment device and at least part of the connectors are arranged on the side with the largest area in the electrode assembly.
  • the contact area between the lithium replenishment device and the connectors and the electrode assembly can be further increased, thereby improving the efficiency of the lithium replenishment device.
  • the side with the largest area of the electrode assembly has the largest expansion force when it expands, when the battery is charged and the electrode assembly expands, the expansion between the two adjacent electrode assemblies can be avoided. The force is not strong enough so that the lithium replenishment device and the connector are not compacted, resulting in the problem that a passage is not formed between the lithium replenishment device and the connector and the lithium replenishment device fails to replenish lithium.
  • the lithium replenishing device covers the planar portion.
  • the lithium replenishment device covers the flat part. At this time, the size of the lithium replenishment device can reach the maximum, thereby effectively improving the lithium replenishment effect of the lithium replenishment device and avoiding the fault of the lithium replenishment device during the lithium replenishment process and the loss of lithium replenishment. A question of ability.
  • the lithium replenishing device includes a conductive component and a lithium replenishing agent, and the lithium replenishing agent is disposed inside the conductive component; wherein the connector is used to electrically connect the conductive component and the lithium replenishing agent.
  • the lithium supplement electrode terminal includes a conductive component and a lithium replenishing agent, and the lithium replenishing agent is disposed inside the conductive component; wherein the connector is used to electrically connect the conductive component and the lithium replenishing agent.
  • the conductive component can provide an electronic channel for the lithium replenishment device.
  • the main function of lithium supplements is to lose electrons from metallic elemental lithium, thereby forming lithium ions.
  • the electrons reach the positive or negative electrode of the battery through the conductive component, and the positive active material or negative active material receives electrons and is reduced.
  • lithium ions can pass through the ion channel provided by the electrolyte, and an intercalation reaction occurs at the positive or negative electrode, thereby realizing the active lithium from
  • the purpose of transferring the lithium replenishing agent into the positive active material or negative active material effectively ensures the lithium replenishing effect.
  • the conductive component can also replace the protective glue on the surface of the traditional electrode component, which not only reduces the cost of the battery cell, but also reduces the size of the battery cell along the width direction of the electrode component.
  • the conductive component is made of plastic.
  • the material of the conductive component is plastic. Since plastic is soft and thin, when the electrode component expands and the lithium supplement device is compacted, the lithium supplement device will not cause damage to the electrode component, ensuring that the The battery cells are functioning normally.
  • the thickness of the lithium supplement is 0.001mm-4.9mm.
  • the connector includes a terminal connection part and a lead-out part that are connected to each other.
  • the terminal connection part is electrically connected to the lithium supplement electrode terminal, and one end of the conductive component faces the connector.
  • An accommodating space is formed, and the lead-out portion is disposed in the accommodating space.
  • the lead-out part of the connector is arranged in the accommodation space of the conductive component, which greatly increases the connection area between the connector and the conductive component, greatly improving the connection reliability between the connector and the lithium replenishment device.
  • the terminal connection portion is disposed at a middle position of the first wall in the width direction of the first wall.
  • the terminal connection part of the connector is arranged in the middle position of the first wall.
  • the connector can achieve the purpose of electrically connecting the lithium supplement device and the lithium supplement electrode terminal in the shortest size, effectively reducing the process cost;
  • the implementation is simple, which greatly reduces the process difficulty in manufacturing battery cells.
  • the first wall is a side surface of the housing.
  • arranging the lithium-supplementing electrode terminals on the side of the casing is not only easier to assemble, but also ensures the energy density of the battery.
  • the first wall is an end cap.
  • the lithium-supplementing electrode terminals are arranged on the end cover. Since the end cover is already provided with positive electrode terminals and negative electrode terminals, in this way, it is no longer necessary to occupy additional space to set up lithium-supplementing electrode terminals, which effectively improves the performance of the battery. Energy Density.
  • the end cap is also provided with a positive electrode terminal and a negative electrode terminal; wherein the lithium replenishing electrode terminal is configured to replenish lithium of the battery cell in the lithium replenishing device. , short-circuit with the positive electrode terminal or the negative electrode terminal.
  • the lithium replenishing electrode terminal is short-circuited with the positive electrode terminal or the negative electrode terminal, which avoids the problem of lithium replenishment.
  • the lithium replenishment device replenishes lithium to the battery cells, thus realizing the controllable lithium replenishment and on-demand lithium replenishment of the battery cells by the lithium replenishment device; on the other hand, due to the It is said that lithium ions are relatively easy to embed in the negative electrode. Therefore, the lithium replenishing electrode terminal is configured to be short-circuited with the negative electrode terminal, which can significantly improve the lithium replenishing efficiency of the lithium replenishing device.
  • the lithium replenishing electrode terminal when the lithium replenishing electrode terminal is configured to be short-circuited with the negative electrode terminal when the lithium replenishing device replenishes lithium to the battery cell, relative to the The positive electrode terminal, the lithium supplementing electrode terminal is closer to the negative electrode terminal.
  • connection between the lithium-supplementing electrode terminal and the negative electrode terminal can be kept as short as possible, which is not only simple to implement, but also reduces production costs.
  • the lithium replenishment device and the two adjacent electrode assemblies are connected through conductive glue.
  • the above technical solution by setting the conductive glue, not only ensures the connection performance between the electrode assembly and the lithium replenishment device, but also the connecting piece can more easily contact the lithium replenishing device, further ensuring that the connecting piece is electrically connected to the lithium replenishing device and the lithium replenishing battery.
  • the performance of the terminal ensures the lithium replenishment performance of the lithium replenishment device. For example, when the electrode assembly expands due to battery charging, after the connector and the lithium replenishment device are compacted, a path can be formed between the lithium replenishment device and the connector, ensuring the lithium replenishment performance of the lithium replenishment device.
  • the lithium supplement device is in a sheet shape.
  • the lithium replenishment device since the lithium replenishment device is arranged between two adjacent electrode assemblies, the lithium replenishment device is set as a lithium replenishment sheet, which has a small impact on the overall thickness of the battery cell, so that the lithium replenishment device does not occupy too much space.
  • the internal space of the battery cell is conducive to ensuring the energy density of the battery including the battery cell.
  • a battery including: the battery cell in the above-mentioned first aspect or its respective implementations; and a box used to accommodate the battery cell.
  • an electrical device including: the battery in the second aspect, where the battery is used to provide electrical energy.
  • Figure 1 is a schematic diagram of a vehicle according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • Figure 3 is a schematic exploded view of a battery cell according to an embodiment of the present application.
  • Figure 4 is a schematic top view of a battery cell according to an embodiment of the present application.
  • Figure 5 is a partial cross-sectional structural diagram of the battery cell shown in Figure 4 along A-A'.
  • Figure 6 is an enlarged view of the battery cell shown in Figure 5 at position B.
  • Figure 7 is a schematic exploded view of the end cap according to the embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • the battery cell may include a lithium ion secondary battery, a lithium ion primary battery, a lithium-sulfur battery, a sodium lithium ion battery, a sodium ion battery or a magnesium ion battery, etc., which are not limited in the embodiment of the present application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this. Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, rectangular battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell may include an electrode assembly and an electrolyte.
  • the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector that is not coated with the positive electrode active material layer protrudes from the current collector that is coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector that is not coated with the negative electrode active material layer protrudes from the current collector that is coated with the negative electrode active material layer.
  • the current collector coated with the negative active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be graphite, carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the separator can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • SEI solid electrolyte interphase
  • the positive electrode lithium The irreversible consumption of ions usually exceeds 10%, resulting in a low first-cycle charge and discharge efficiency, which may be only 50%-77%, thus reducing the energy density of the battery.
  • the battery will continue to consume active lithium during normal use, resulting in a greatly reduced battery life.
  • the battery cell includes: at least two electrode assemblies, a lithium replenishing device, a casing and a connector, wherein the lithium replenishing device is disposed between two adjacent electrode assemblies in the at least two electrode assemblies, and the casing includes a first wall, The first wall is provided with lithium-supplementing electrode terminals, and the connecting piece is used to electrically connect the lithium-supplementing device and the lithium-supplementing electrode terminals.
  • the lithium replenishing device can not only replenish the loss of active lithium during use of the battery including the battery cell, improve the service life of the battery, but also replenish the loss of active lithium during the first charging process of the battery.
  • the loss of active lithium increases the energy density of the battery. Furthermore, the embodiment of the present application electrically connects the lithium replenishing device and the lithium replenishing electrode terminal through the connector, so as to achieve the purpose of replenishing lithium by the lithium replenishing device.
  • the implementation is simple and the process complexity is effectively reduced.
  • Electrical devices may be, for example, vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys, electric tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to provide power to the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells.
  • multiple battery cells can be connected in series, parallel, or mixed.
  • Hybrid refers to a mixture of series and parallel.
  • Batteries may also be called battery packs.
  • multiple battery cells can be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel, or mixed to form a battery.
  • multiple battery cells can directly form a battery, or they can first form a battery module, and then the battery module can form a battery.
  • FIG. 2 it is a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a box (or cover), the inside of the box is a hollow structure, and a plurality of battery cells 10 are accommodated in the box.
  • the box body may include two parts, here respectively referred to as the first part 111 and the second part 112.
  • the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 may be determined according to the combined shape of the plurality of battery cells 20 , and each of the first part 111 and the second part 112 may have an opening.
  • both the first part 111 and the second part 112 may be hollow rectangular parallelepipeds with only one open surface.
  • the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 and the second part 112 are interlocked with each other.
  • the box body may include a bottom plate 112a, a side plate 112b and a beam.
  • a plurality of battery cells 20 are connected in parallel or in series or in mixed combination and then placed in a box formed by the first part 111 and the second part 112 being fastened together.
  • the battery 10 may also include other structures, which will not be described in detail here.
  • the battery 10 may further include a bus component, which is used to realize electrical connection between multiple battery cells 20 , such as parallel connection, series connection, or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus part may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the electrically conductive means can also be part of the busbar.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed connection to achieve larger capacity or power.
  • the battery cell 20 may include at least two electrode assemblies 21 , a lithium replenishing device 22 , a casing and a connector 23 .
  • the lithium replenishing device 22 is disposed between two adjacent electrode assemblies 21 of at least two electrode assemblies 21, and the casing is used to accommodate at least two electrode assemblies 21.
  • the casing includes a first wall, and a first wall is provided with The lithium-supplementing electrode terminal 241 and the connecting piece 23 are used to electrically connect the lithium-supplementing device 22 and the lithium-supplementing electrode terminal 241.
  • the battery cell 20 includes a lithium replenishing device 22.
  • the lithium replenishing device 22 can not only supplement the loss of active lithium during use of the battery including the battery cell 20, but also improve the service life of the battery. It can also replenish the loss of active lithium during the first charging process of the battery and improve the energy density of the battery.
  • the lithium replenishment device 22 and the lithium replenishment electrode terminal 241 are electrically connected through the connector 23 to achieve the purpose of replenishing lithium by the lithium replenishment device 22.
  • the implementation is simple and the process complexity is effectively reduced.
  • the shape of the connecting member 23 may be a "7" shape.
  • the shape of the connecting piece 23 may also be an "L" shape, a straight shape, etc.
  • the material of the connecting piece 23 may be aluminum, copper, etc.
  • the connector 23 can electrically connect the lithium supplement device 22 and the lithium supplement electrode terminal 241 by welding.
  • the lithium replenishing device 22 and two adjacent electrode assemblies 21 may be connected through conductive glue.
  • the connecting member 23 can be in contact with the conductive glue, thereby achieving the purpose of electrically connecting the lithium supplement device 22 and the lithium supplement electrode terminal 241 .
  • connection member 23 and the conductive glue can be compacted, thereby realizing the connection between the connection member 23 and the lithium replenishment.
  • the passage between the devices 22 is thus achieved to achieve the purpose of lithium replenishment by the lithium replenishment device 22.
  • the expansion method can effectively reduce the process cost.
  • the above technical solution by providing conductive glue, not only ensures the connection performance between the electrode assembly 21 and the lithium supplement device 22, but also allows the connector 23 to more easily contact the lithium supplement device 22, further ensuring that the connector 23 is electrically connected and replenished.
  • the performance of the lithium device 22 and the lithium replenishing electrode terminal 241 further ensures the lithium replenishing performance of the lithium replenishing device 22 .
  • a passage can be formed between the lithium replenishing device 22 and the connecting member 23, ensuring the lithium replenishing performance of the lithium replenishing device 22.
  • each electrode assembly 21 of at least two electrode assemblies 21 may include a planar portion 211 , and the planar portions 211 of two adjacent electrode assemblies 21 are opposite and connected, wherein the complementary The lithium device 22 and at least part of the connecting member 23 are provided on the planar portions 211 of two adjacent electrode assemblies 21 .
  • the battery cell 20 may be a prismatic battery cell.
  • blade battery cells The battery cells 20 are configured as blade-type battery cells, which can increase the energy density of the battery within the limited space of the battery.
  • the electrode assembly 21 includes a planar portion 211, which not only enables better contact between the planes, but also makes better use of the space of the battery cell 20, thus improving the energy density of the battery;
  • the lithium replenishment device 22 and at least part of the connector 23 are disposed between the planar portions 211 of two adjacent electrode assemblies 21 , thereby increasing the contact between the lithium replenishment device 22 and the connector 23 and the electrode assembly 21 area, thereby improving the lithium replenishing effect of the lithium replenishing device 22.
  • the electrode assembly 21 can more easily compact the lithium replenishing device 22 and the connector 23 when the electrode assembly 21 expands.
  • the planar portion 211 may be a side surface of the electrode assembly 21 .
  • the flat portion 211 may be the side surface with the smallest area in the electrode assembly 21 .
  • the planar portion 211 may be the side surface with the largest area in the electrode assembly 21 shown in FIG. 3 .
  • the lithium replenishment device 22 and at least part of the connector 23 are arranged on the side with the largest area in the electrode assembly 21.
  • the contact area between the lithium replenishment device 22 and the connector 23 and the electrode assembly 21 can be further increased.
  • the expansion force of the side with the largest area of the electrode assembly 21 is the largest when it expands, in this way, when the electrode assembly 21 expands, it can avoid the expansion of the lithium replenishing device 22 due to the expansion of the two adjacent electrodes.
  • the expansion force between the components 21 is not large enough so that the lithium replenishment device 22 and the connector 23 are not compacted, resulting in the problem that a passage is not formed between the lithium replenishment device 22 and the connector 23 and the lithium replenishment device 22 fails to replenish lithium. .
  • the lithium replenishment device 22 and at least part of the connector 23 are disposed between the planar portions 211 of two adjacent electrode assemblies 21, the lithium replenishment device 22 may be disposed on part of the planar portions of the two adjacent electrode assemblies 21. 211 , as long as the connector 23 can electrically connect the lithium supplement device 22 and the lithium supplement electrode terminal 241 . In this way, the cost of the lithium replenishment device 22 can be reduced.
  • the lithium replenishing device 22 can cover the planar portion 211 , that is, the lithium replenishing device 22 can cover the entire planar portion 211 . At this time, the size of the lithium replenishment device 22 can reach the maximum. In this technical solution, the lithium replenishment device 22 covers the flat part 211. At this time, the size of the lithium replenishment device 22 can reach the maximum, thereby effectively improving the lithium replenishment effect of the lithium replenishment device 22 and avoiding the occurrence of the lithium replenishment device 22 during the lithium replenishment process. Fault and loss of lithium replenishment ability.
  • each of the at least two electrode assemblies 21 may include a curved portion 212 .
  • the battery cell 20 may be a cylindrical battery cell.
  • the lithium replenishing device 22 and the connecting member 23 may be disposed between the curved portions 212 of two adjacent electrode assemblies 21 .
  • each electrode assembly 21 of at least two electrode assemblies 21 may include not only a planar portion 211 but also a curved portion 212 , and the planar portion 211 and the curved portion 212 are connected.
  • the lithium replenishment device 22 may be in a sheet shape, that is, the lithium replenishment device 22 may be a lithium replenishment tablet. That is to say, along the width direction of the electrode assembly 21, the size of the lithium replenishing device 22 is thin.
  • the lithium replenishing device 22 is disposed between two adjacent electrode assemblies 21, the lithium replenishing device 22 is set as a lithium replenishing sheet, which has little impact on the overall thickness of the battery cell 20, so that the lithium replenishing device 22 It will not occupy too much internal space of the battery cell 20 , which is beneficial to ensuring the energy density of the battery including the battery cell 20 .
  • the lithium replenishing device 22 may be in the shape of a block, that is, the lithium replenishing device 22 may be a lithium replenishing block.
  • the lithium replenishing block has a certain thickness. Generally, the thicker the lithium replenishing device 22, the better the lithium replenishing effect 22. That is, setting the lithium replenishing device 22 as a lithium replenishing block can ensure the lithium replenishing ability of the lithium replenishing device 22 and greatly improve the lithium replenishing effect. The lithium supplementation effect of the lithium supplementation device 22 is greatly improved.
  • Figure 4 is a schematic top view of the battery cell 20.
  • Figure 5 is a partial cross-sectional structural diagram of the battery cell 20 shown in Figure 4 along AA'.
  • Figure 6 is a view of the battery cell 20 shown in Figure 5 at B. enlarged image of.
  • the lithium replenishing device 22 may include a conductive component 221 and a lithium replenishing agent 222 , and the lithium replenishing agent 222 is disposed inside the conductive component 221 .
  • the connecting member 23 can be used to electrically connect the conductive component 221 and the lithium-complementing electrode terminal 241 .
  • the contact surfaces of two adjacent electrode assemblies are generally provided with protection.
  • Glue such as blue glue, to protect the electrode assembly.
  • a lithium replenishing device 22 is provided between two adjacent electrode assemblies 21 , and the outermost side of the lithium replenishing device 22 is a conductive component 221 . Therefore, the conductive component 221 can replace the traditional protective glue on the surface of the electrode component, which not only reduces the cost of the battery cell 20 but also reduces the size of the battery cell 20 along the width direction of the electrode component 21 . Further, the conductive component 221 can provide an electron channel for the lithium replenishing device 22 .
  • the lithium replenishing agent 222 and the conductive component 221 can be compounded by electroplating, mechanical rolling, or other methods.
  • the conductive component 221 may be made of metal, such as one or more of copper, aluminum, nickel, iron and their alloys.
  • the conductive component 221 may be made of plastic.
  • a base material such as PP or polycarbonate (PC) can be mixed with a conductive mixture to form the conductive component 221 .
  • the conductive component 221 is made of plastic. Since plastic is soft and thin, when the electrode component 21 expands and the lithium replenishing device 22 is compacted, the lithium replenishing device 22 will not cause any damage to the electrode assembly 21 . damage, ensuring the normal operation of the battery cell 20.
  • the conductive component 221 may be in a sheet shape.
  • the shape of the conductive component 221 may be spiral. This technical solution uses a spiral conductive component 221, which can increase the contact area between the conductive component 221 and the lithium replenishing agent 222, and avoid the occurrence of faults between the lithium replenishing agent 222 and the conductive component 221 in the subsequent reaction during the lithium replenishing process. The problem of causing the lithium replenishment device 22 to lose its lithium replenishment capability.
  • the lithium replenishing agent 222 can be lithium powder, lithium ingot, lithium tablet, lithium alloy, etc. It should be understood that the capacity of the lithium replenishing agent 222 to provide active lithium is approximately 0.1%-99% of the negative electrode graphite.
  • the main function of lithium supplement 222 is to lose electrons from metallic elemental lithium, thereby forming lithium ions.
  • the electrons reach the positive electrode or negative electrode of the battery through the conductive component 221, and the positive active material or negative active material receives electrons and is reduced.
  • lithium ions can pass through the ion channel provided by the electrolyte, and an intercalation reaction occurs at the positive or negative electrode, thereby realizing active lithium.
  • the purpose of transferring the lithium replenishing agent 222 to the positive active material or the negative active material effectively ensures the lithium replenishing effect.
  • the thickness of the lithium supplement 222 may be 0.001mm-4.9mm. It has been proved through a large number of experiments that setting the thickness of the lithium replenishing agent 222 to 0.001mm-4.9mm can relatively easily combine the lithium replenishing agent 222 and the conductive component 221, thereby effectively reducing the process difficulty.
  • the connector 23 may include a terminal connection portion 231 and a lead-out portion 232 that are connected to each other.
  • the terminal connection part 231 is electrically connected to the lithium-supplementing electrode terminal 241.
  • An accommodation space 223 is formed on one end of the conductive component 221 facing the connector, and the lead-out part 232 is disposed in the accommodation space 223.
  • the terminal connection part 231 is provided on the first wall, and the lead-out part 232 is provided between two adjacent electrode assemblies 21.
  • the compaction connection part 23 and the lithium replenishing device 22 are actually The lead-out part 232 and the lithium replenishing device 22 are compacted.
  • the lead-out portion 232 of the connector 23 is arranged in the accommodation space 223 of the conductive component 221, so that the connection area between the connector 23 and the conductive component 221 is greatly increased, which greatly improves the efficiency of the connector 23 and the lithium replenishment device. 22 connection reliability.
  • the terminal connection part 231 may be disposed at the middle position of the first wall in the width direction of the first wall.
  • the terminal connection portion 231 of the connector 23 is arranged in the middle of the first wall.
  • the connector 23 can be compacted by the electrode assembly 21 and connected to the lithium replenishment device 22 with the shortest size.
  • the purpose is to effectively reduce the process cost; on the other hand, the implementation is simple, which greatly reduces the process difficulty in manufacturing the battery cells 20 .
  • the first wall in the above content may be a side surface of the housing. Compared with the large surface, arranging the lithium-supplementing electrode terminal 241 on the side of the casing is not only easier to install, but also ensures the energy density of the battery.
  • the first wall may be an end cap 24 .
  • the end cap 24 can be made of metal, such as aluminum, steel, etc.
  • the shape of the end cover 24 can be circular; when the battery cell 20 is a square battery cell, the shape of the end cover 24 can be a polygon, as shown in Figure 3 rectangle.
  • the lithium-supplementing electrode terminal 241 is arranged on the end cover 24. Since the end cover 24 is originally provided with a positive electrode terminal and a negative electrode terminal, in this way, there is no need to occupy additional space to set the lithium-supplementing electrode terminal 241, which is effective. Improved battery energy density.
  • the end cap 24 is also provided with a positive electrode terminal 242a and a negative electrode terminal 242b.
  • each electrode assembly 21 has a first tab 214 a and a second tab 214 b, and the first tab 214 a and the second tab 214 b have opposite polarities.
  • first tab 214a is a positive tab
  • second tab 214b is a negative tab.
  • the first tab 214a of the electrode assembly 21 is connected to one electrode terminal through a connecting member
  • the second tab 214b of the electrode assembly 21 is connected to the other electrode terminal through another connecting member.
  • the positive electrode terminal 242a is connected to the positive electrode tab through one connecting member
  • the negative electrode terminal 242b is connected to the negative electrode tab through another connecting member.
  • the lithium replenishment device 22 may still replenish lithium to the battery cell 20 , resulting in a waste of resources. In order to avoid this situation, in the embodiment of the present application, when lithium replenishment is required, the lithium replenishment device 22 can replenish lithium to the battery cell 20 .
  • the lithium replenishing electrode terminal 241 may be configured to be short-circuited with the positive electrode terminal 242a or the negative electrode terminal 242b when the lithium replenishing device 22 replenishes lithium to the battery cell 20 .
  • the lithium-replenishing electrode terminal 241 can be short-circuited with the positive electrode terminal 242a; if the active lithium of the negative electrode is insufficient, the lithium-replenishing electrode terminal 241 can be short-circuited with the negative electrode terminal 242b.
  • the lithium-replenishing electrode terminal 241 can be configured to be short-circuited with the fixed electrode terminal. For example, it is short-circuited to the negative electrode terminal 242b.
  • the lithium replenishing electrode terminal 241 is configured to be short-circuited with the negative electrode terminal 242b, which can significantly improve the lithium replenishing efficiency of the lithium replenishing device 22.
  • the lithium replenishing device 22 replenishes lithium to the battery cell 20, that is, when the battery cell 20 needs to replenish lithium, the lithium replenishing electrode terminal 241 and the negative electrode terminal 242b are short-circuited, thereby avoiding the need for replenishing lithium.
  • the lithium replenishing device 22 replenishes lithium to the battery cells 20, which causes a waste of resources.
  • the lithium replenishing device 22 replenishes lithium to the battery cells 20 in a controllable and on-demand manner.
  • the lithium-replenishing electrode terminal 241 When the lithium-replenishing electrode terminal 241 is configured to be short-circuited with the negative electrode terminal 242b when the lithium-replenishing device 22 replenishes lithium to the battery cell 20, the lithium-replenishing electrode terminal 241 is disposed relative to the positive electrode terminal 242a. The terminal 241 is closer to the negative electrode terminal 242b. In this way, the connection between the lithium-supplementing electrode terminal 241 and the negative electrode terminal 242b can be minimized, which is not only simple to implement, but also reduces production costs.
  • the embodiment of the present application can implement the lithium replenishment device 22 to replenish lithium of the battery cell 20 through an external control circuit.
  • the end cover 24 may further include a first sealing ring 243a, a second sealing ring 243b and a third sealing ring 243c.
  • the first sealing ring 243a is used to form a seal between the positive electrode terminal 242a and the end cover 24
  • the second sealing ring 243b is used to form a seal between the negative electrode terminal 242b and the end cover 24, and the third sealing ring 243c is used.
  • a seal is formed between the lithium replenishing electrode terminal 241 and the end cap 24 .
  • the first sealing ring 243a, the second sealing ring 243b and the third sealing ring 243c may be annular, for example.
  • the end cap 24 may also include a lower plastic 244 disposed on a side of the end cap 24 facing the electrode assembly 21 for spacing the end cap 24 from at least two electrode assemblies 21 .
  • the end cap 24 may also include a third riveting block 245 for fixing the lithium supplement electrode terminal 241 protruding from the end cap 24 .
  • the end cap 24 may also include a third upper plastic 246 for isolating the end cap 24 and the third riveting block 245 .
  • the end cover 24 may also be provided with a pressure relief mechanism 247 .
  • the pressure relief mechanism 247 is used to be activated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold value.
  • This threshold design varies based on design requirements. The threshold value may depend on one or more materials of the positive electrode piece, the negative electrode piece, the electrolyte, and the separator in the battery cell 20 .
  • the pressure relief mechanism 247 may take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, etc., and may specifically adopt a pressure-sensitive or temperature-sensitive component or structure.
  • the pressure relief mechanism 247 takes action or the weak structure provided in the pressure relief mechanism 247 is destroyed, thereby forming an opening or channel for the internal pressure or temperature to be released.
  • the “activation” mentioned in this application means that the pressure relief mechanism 247 acts or is activated to a certain state, so that the internal pressure and temperature of the battery cell 20 can be released.
  • the actions generated by the pressure relief mechanism 247 may include, but are not limited to: at least a portion of the pressure relief mechanism 247 ruptures, shatters, is torn or opens, and the like.
  • the pressure relief mechanism 247 is actuated, the high-temperature and high-pressure substances inside the battery cells 20 will be discharged outward from the actuated part as emissions. In this way, the battery cell 20 can be depressurized under controllable pressure or temperature, thereby avoiding potentially more serious accidents.
  • the emissions from the battery cells 20 mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode plates, fragments of the isolation film, high-temperature and high-pressure gases generated by reactions, flames, etc. .
  • An embodiment of the present application also provides a battery, which may include the battery cells 20 in the aforementioned embodiments.
  • the battery may also include a box, a bus component, and other structures, which will not be described in detail here.
  • An embodiment of the present application also provides an electrical device.
  • the electrical device may include the battery in the previous embodiment, and the battery is used to provide electrical energy to the electrical device.
  • the electrical device may be the vehicle 1, ship or spacecraft in Figure 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供了一种电池单体、电池和用电装置,能够以较低的工艺复杂度有效提高电池的性能。该电池单体包括:至少两个电极组件(21);补锂装置(22),设置于所述至少两个电极组件(21)中相邻的两个电极组件(21)之间;外壳,用于容纳所述至少两个电极组件(21),所述外壳包括第一壁,所述第一壁上设置有补锂电极端子(241);连接件(23),用于电连接所述补锂装置(22)和所述补锂电极端子(241)。

Description

电池单体、电池和用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池和用电装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,电池的性能是一个不可忽视的问题。电池的性能不仅影响电池电池相关产品的发展和应用,而且还影响消费者对电动车辆的接受度。因此,如何提高电池的性能,是一项亟待解决的问题。
发明内容
本申请实施例提供一种电池单体、电池和用电装置,能够以较低的工艺复杂度有效提高电池的性能。
第一方面,提供了一种电池单体,包括:至少两个电极组件;补锂装置,设置于所述至少两个电极组件中相邻的两个电极组件之间;外壳,用于容纳所述至少两个电极组件,所述外壳包括第一壁,所述第一壁上设置有补锂电极端子;连接件,用于电连接所述补锂装置和所述补锂电极端子。
本申请实施例,电池单体包括补锂装置,如此,补锂装置不仅可以补充包括有该电池单体的电池在使用过程中的活性锂的损耗,提高了电池的使用寿命,并且还能补充电池在首次充电过程中的活性锂的损失,提高了电池的能量密度。进一步地,本申请实施例通过连接件电连接补锂装置和补锂电极端子,以实现补锂装置补锂的目的,实现简单,有效降低了工艺复杂度。
在一些可能的实现方式中,所述至少两个电极组件中每个电极组件的表面包括平面部,所述相邻的两个电极组件的平面部相对且连接;其中,所述补锂装置和至少部分所述连接件设置于所述相邻的两个电极组件的平面部之间。
上述技术方案,一方面,电极组件包括平面部,平面之间不仅能更好地进行接触,而且还能将电池单体的空间更好地利用起来,因此能提高电池的能量密度;另一方面,补锂装置和至少部分连接件设置于相邻的两个电极组件的平面部之间,增大了补锂装置和连接件与电极组件之间的接触面积,提高了补锂装置的补锂效果。
在一些可能的实现方式中,所述平面部为所述每个电极组件中面积最大的侧面。
上述技术方案,将补锂装置和至少部分连接件设置于电极组件中面积最大的侧面,一方面,能够进一步增大补锂装置和连接件与电极组件之间的接触面积,进而提 高补锂装置的补锂效果;另一方面,由于电极组件在膨胀时面积最大的侧面的膨胀力最大,这样,在对电池充电且电极组件膨胀时,能够避免由于相邻的两个电极组件之间的膨胀力不够大而使补锂装置和连接件未被压实,从而导致补锂装置和连接件之间未形成通路而使补锂装置补锂失败的问题。
在一些可能的实现方式中,所述补锂装置覆盖所述平面部。
上述技术方案,补锂装置覆盖平面部,此时补锂装置的尺寸能够达到最大,从而有效提高了补锂装置的补锂效果,避免了补锂装置在补锂过程中出现断层,失去补锂能力的问题。
在一些可能的实现方式中,所述补锂装置包括导电组件和补锂剂,所述补锂剂设置在所述导电组件的内侧;其中,所述连接件用于电连接所述导电组件和所述补锂电极端子。
上述技术方案,导电组件可以为补锂装置提供建立电子通道。补锂剂的主要作用是金属单质锂失去电子,从而形成锂离子。电子通过导电组件到达电池的正极或者负极,正极活性物质或负极活性物质得到电子而被还原,同时锂离子可以通过电解液提供的离子通道,在正极或负极处发生嵌入反应,从而实现活性锂从补锂剂转移到正极活性物质或负极活性物质中的目的,有效保证了补锂效果。进一步地,导电组件还可以代替传统的电极组件表面上的保护胶,不仅可以降低电池单体的成本,而且减小了电池单体沿电极组件的宽度方向的尺寸。
在一些可能的实现方式中,所述导电组件的材料为塑胶。
上述技术方案,导电组件的材料为塑胶,由于塑胶较软并且较薄,因此,在电极组件膨胀且补锂装置被压实的过程中,补锂装置不会对电极组件造成损伤,保证了该电池单体的正常工作。
在一些可能的实现方式中,所述补锂剂的厚度为0.001mm-4.9mm。
通过大量实验证明,将补锂剂的厚度设置为0.001mm-4.9mm,能够比较容易地将补锂剂与导电组件复合在一起,进而有效降低了工艺难度。
在一些可能的实现方式中,所述连接件包括相互连接的端子连接部和引出部,所述端子连接部与所述补锂电极端子电连接,所述导电组件的朝向所述连接件的一端形成有容纳空间,所述引出部设置于所述容纳空间内。
上述技术方案,将连接件的引出部设置于导电组件的容纳空间内,使得连接件和导电组件之间的连接面积大幅增加,极大地提高了连接件和补锂装置连接可靠性。
在一些可能的实现方式中,在所述第一壁的宽度方向上,所述端子连接部设置在所述第一壁的中间位置。
上述技术方案,将连接件的端子连接部设置在第一壁的中间位置,一方面,连接件可以以最短的尺寸实现电连接补锂装置和补锂电极端子的目的,有效降低了工艺成本;另一方面,实现简单,大大减小了制造电池单体时的工艺难度。
在一些可能的实现方式中,所述第一壁为所述外壳的侧面。
相对于大面来说,将补锂电极端子设置在外壳的侧面上不仅比较容易装配,而且还能够保证电池的能量密度。
在一些可能的实现方式中,所述第一壁为端盖。
上述技术方案,将补锂电极端子设置在端盖上,由于端盖本来就设置有正电极端子和负电极端子,这样,不必再占用额外的空间来设置补锂电极端子,有效提高了电池的能量密度。
在一些可能的实现方式中,所述端盖上还设置有正电极端子和负电极端子;其中,所述补锂电极端子被配置为在所述补锂装置对所述电池单体进行补锂时,与所述正电极端子或所述负电极端子进行短接。
上述技术方案,一方面,在补锂装置对电池单体进行补锂时,即在电池单体需要补锂时,补锂电极端子与正电极端子或负电极端子进行短接,避免了在不需要补锂的情况下但补锂装置对电池单体进行补锂的问题,从而实现了补锂装置对电池单体的可控补锂、按需补锂;另一方面,由于相对于正极来说,锂离子在负极相对比较容易嵌入。因此,补锂电极端子被配置为与负电极端子短接,能够显著提升补锂装置的补锂效率。
在一些可能的实现方式中,在所述补锂电极端子被配置为在所述补锂装置对所述电池单体进行补锂时,与所述负电极端子短接的情况下,相对于所述正电极端子,所述补锂电极端子更靠近所述负电极端子。
如此,补锂电极端子与负电极端子之间的连线可以做到最短,不仅实现简单,而且降低了生产成本。
在一些可能的实现方式中,所述补锂装置和所述相邻的两个电极组件之间通过导电胶连接。
上述技术方案,通过设置导电胶,不仅保证了电极组件与补锂装置之间的连接性能,而且连接件可以更容易地与补锂装置接触,进一步保证了连接件电连接补锂装置和补锂电极端子的性能,进而保证了补锂装置的补锂性能。比如在对电池充电导致电极组件膨胀时,连接件与补锂装置被压实后,补锂装置与连接件之间能够形成通路,保证了补锂装置的补锂性能。
在一些可能的实现方式中,所述补锂装置的形状为片状。
上述技术方案,由于补锂装置设置在相邻的两个电极组件之间,将补锂装置设置为补锂片,对电池单体的整体厚度影响较小,使得补锂装置不会占用太多的电池单体的内部空间,有利于保证包括该电池单体的电池的能量密度。
第二方面,提供了一种电池,包括:上述第一方面或其各实现方式中的电池单体;箱体,所述箱体用于容纳所述电池单体。
第三方面,提供了一种用电装置,包括:第二方面中的电池,所述电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施 例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一种实施例的车辆的示意图。
图2是本申请一种实施例的电池的结构示意图。
图3是本申请实施例的电池单体的示意性分解图。
图4是本申请实施例的电池单体的示意性俯视图。
图5是图4所示的电池单体沿A-A’的部分剖面结构示意图。
图6图5所示的电池单体在B处的放大图。
图7是本申请实施例的端盖的示意性分解图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均 是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请实施例中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体可以包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为石墨、碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命等性能参数。
电池,例如锂离子电池,目前存在的普遍问题是在首次充电过程中会消耗大量从正极脱出的锂离子以形成负极表面的固体电解质界面(solid electrolyte interphase,SEI)膜,首次充电过程中正极锂离子的不可逆消耗通常会超过10%,致使首周期充放电效率较低,可能只有50%-77%,从而会降低电池的能量密度。另一方面,电池在正常使用过程中也会持续消耗活性锂,导致电池的使用寿命大大减少。
鉴于此,本申请实施例提供了一种电池单体,能够有效解决上述问题。该电池单体包括:至少两个电极组件、补锂装置、外壳和连接件,其中,补锂装置设置于至少两个电极组件中相邻的两个电极组件之间,外壳包括第一壁,第一壁上设置有补锂电极端子,连接件用于电连接补锂装置和补锂电极端子。通过设置补锂装置,如此,补锂装置不仅可以补充包括有该电池单体的电池在使用过程中的活性锂的损耗,提高了电池的使用寿命,并且还能补充电池在首次充电过程中的活性锂的损失,提高了电池的能量密度。进一步地,本申请实施例通过连接件电连接补锂装置和补锂电极端子, 以实现补锂装置补锂的目的,实现简单,有效降低了工艺复杂度。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。
用电设备例如可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体。其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体(或称罩体),箱体内部为中空结构,多个电池单体10容纳于箱体内。如图2所示,箱体可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体。其中,箱体可以包括底板112a、侧板112b和梁。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电 池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。
如图3所示,为本申请一个实施例的一种电池单体20的结构示意图。该电池单体20可以包括至少两个电极组件21、补锂装置22、外壳和连接件23。其中,补锂装置22设置于至少两个电极组件21中相邻的两个电极组件21之间,外壳用于容纳至少两个电极组件21,该外壳包括第一壁,第一壁上设置有补锂电极端子241,连接件23用于电连接补锂装置22和补锂电极端子241。
本申请实施例,电池单体20包括补锂装置22,如此,补锂装置22不仅可以补充包括有该电池单体20的电池在使用过程中的活性锂的损耗,提高了电池的使用寿命,并且还能补充电池在首次充电过程中的活性锂的损失,提高了电池的能量密度。进一步地,本申请实施例通过连接件23电连接补锂装置22和补锂电极端子241,以实现补锂装置22补锂的目的,实现简单,有效降低了工艺复杂度。
可选地,如图3所示,连接件23的形状可以为“7”字形。或者,连接件23的形状也可以为“L”形、一字形等。
可选地,连接件23的材料可以为铝、铜等。
可选地,连接件23可以通过焊接的方式电连接补锂装置22和补锂电极端子241。
或者,补锂装置22和相邻的两个电极组件21之间可以通过导电胶连接。这样,连接件23可以和导电胶接触,从而实现电连接补锂装置22和补锂电极端子241的目的。
在补锂装置22和相邻的两个电极组件21之间通过导电胶连接的情况下,当电极组件21膨胀时,可以将连接件23与导电胶压实,从而实现连接件23和补锂装置22之间的通路,进而实现补锂装置22补锂的目的。
相对于焊接等其他方式实现连接件23与补锂装置22之间的通路,通过膨胀的方式能够有效降低工艺成本。
上述技术方案,通过设置导电胶,不仅保证了电极组件21与补锂装置22之间的连接性能,而且连接件23可以更容易地与补锂装置22接触,进一步保证了连接件23电连接补锂装置22和补锂电极端子241的性能,进而保证了补锂装置22的补锂性能。比如在电极组件膨胀时,连接件23与补锂装置22被挤压后,补锂装置22与连接件23之间能够形成通路,保证了补锂装置22的补锂性能。
在一些实施例中,再次参考图3,至少两个电极组件21中每个电极组件21的表面可以包括平面部211,相邻的两个电极组件21的平面部211相对且连接,其中,补锂装置22和至少部分连接件23设置于相邻的两个电极组件21的平面部211。
在这种情况下,电池单体20可以为方形电池单体。例如,刀片式电池单体。将电池单体20设置为刀片式电池单体,在电池有限的空间内,能够提高电池的能量密度。
上述技术方案,一方面,电极组件21包括平面部211,平面之间不仅能更好地 进行接触,而且还能将电池单体20的空间更好地利用起来,因此能提高电池的能量密度;另一方面,补锂装置22和至少部分连接件23设置于相邻的两个电极组件21的平面部211之间,增大了补锂装置22和连接件23与电极组件21之间的接触面积,提高了补锂装置22的补锂效果。另外,在电极组件21膨胀时电极组件21能够更容易地压实补锂装置22和连接件23。
该平面部211可以为电极组件21的侧面。例如,平面部211可以为电极组件21中面积最小的侧面。
再例如,考虑到电极组件21在膨胀时面积最大的侧面的膨胀力最大,因此,平面部211可以为图3所示的电极组件21中面积最大的侧面。该技术方案,将补锂装置22和至少部分连接件23设置于电极组件21中面积最大的侧面,一方面,能够进一步增大补锂装置22和连接件23与电极组件21之间的接触面积,进而提高补锂装置22的补锂效果;另一方面,由于电极组件21在膨胀时面积最大的侧面的膨胀力最大,这样,在电极组件21膨胀时,能够避免由于相邻的两个电极组件21之间的膨胀力不够大而使补锂装置22和连接件23未被压实,从而导致补锂装置22和连接件23之间未形成通路而使补锂装置22补锂失败的问题。
在补锂装置22和至少部分连接件23设置于相邻的两个电极组件21的平面部211之间的情况下,补锂装置22可以设置于相邻的两个电极组件21的部分平面部211之间,只要连接件23能够电连接补锂装置22和补锂电极端子241即可。如此,能够减小补锂装置22的成本。
或者,再次参考图3,补锂装置22可以覆盖平面部211,即补锂装置22可以覆盖整个平面部211。此时补锂装置22的尺寸可达到最大。该技术方案,补锂装置22覆盖平面部211,此时补锂装置22的尺寸能够达到最大,从而有效提高了补锂装置22的补锂效果,避免了补锂装置22在补锂过程中出现断层,失去补锂能力的问题。
在另一种实施例中,至少两个电极组件21中每个电极组件21的表面可以包括曲面部212。在这种情况下,该电池单体20可以为圆柱形电池单体。补锂装置22和连接件23可以设置于相邻的两个电极组件21的曲面部212之间。
或者,如图3所示,至少两个电极组件21中每个电极组件21的表面不仅可以包括平面部211,也可以包括曲面部212,平面部211和曲面部212相连。
在一些实施例中,补锂装置22的形状可以为片状,即补锂装置22可以为补锂片。也就是说,沿电极组件21的宽度方向,补锂装置22的尺寸较薄。
该技术方案,由于补锂装置22设置在相邻的两个电极组件21之间,将补锂装置22设置为补锂片,对电池单体20的整体厚度影响较小,使得补锂装置22不会占用太多的电池单体20的内部空间,有利于保证包括该电池单体20的电池的能量密度。
或者,补锂装置22的形状可以为块状,即补锂装置22可以为补锂块。补锂块具有一定的厚度,通常情况下,补锂装置22越厚,则补锂效果22越好,即将补锂装置22设置为补锂块,能够保证补锂装置22的补锂能力,极大地提高了补锂装置22的补锂效果。
图4为电池单体20的示意性俯视图,图5为图4所示的电池单体20沿A-A’的 部分剖面结构示意图,图6为图5所示的电池单体20在B处的放大图。
在一些实施例中,如图6所示,补锂装置22可以包括导电组件221和补锂剂222,补锂剂222设置在导电组件221的内侧。此时,连接件23可以用于电连接导电组件221和补锂电极端子241。
在传统的电池单体中,在将电极组件卷绕完成后,为了防止金属丝等物质对电极组件造成损伤,如扎破电极组件,相邻的两个电极组件接触的表面一般会设置有保护胶,如蓝胶,以保护电极组件。
在本申请实施例中,相邻的两个电极组件21之间设置有补锂装置22,且补锂装置22的最外侧为导电组件221。因此,导电组件221可以代替传统的电极组件表面上的保护胶,不仅可以降低电池单体20的成本,而且减小了电池单体20沿电极组件21的宽度方向的尺寸。进一步地,导电组件221可以为补锂装置22提供建立电子通道。
可选地,可以通过电镀、机械辊压等方式将补锂剂222与导电组件221进行复合。
导电组件221的材质可以为金属,如铜、铝、镍、铁及其合金中的一种或几种。
或者,考虑到金属材质的硬度一般情况下较硬,若导电组件221的材质为金属,在电极组件21膨胀时,金属容易对电极组件21造成损伤,如压伤电极组件21。因此,导电组件221的材料可以为塑胶。例如,可以将PP或聚碳酸酯(Polycarbonate,PC)等基材与导电混合剂进行混合,从而形成导电组件221。
该技术方案,导电组件221的材料为塑胶,由于塑胶较软并且较薄,因此,在电极组件21膨胀且补锂装置22被压实的过程中,补锂装置22不会对电极组件21造成损伤,保证了该电池单体20的正常工作。
可选地,导电组件221的形状可以为片状。或者,当补锂装置22为补锂块的情况下,导电组件221的形状可以为螺旋状。该技术方案采用螺旋状的导电组件221,能够增加导电组件221和补锂剂222之间的接触面积,避免了在补锂过程中补锂剂222与导电组件221在后续反应中存在断层,而使补锂装置22失去补锂能力的问题。
补锂剂222可以为锂粉、锂锭、锂片、锂合金等。应理解,补锂剂222提供活性锂的容量大概为负极石墨的0.1%-99%。
补锂剂222的主要作用是金属单质锂失去电子,从而形成锂离子。电子通过导电组件221到达电池的正极或者负极,正极活性物质或负极活性物质得到电子而被还原,同时锂离子可以通过电解液提供的离子通道,在正极或负极处发生嵌入反应,从而实现活性锂从补锂剂222转移到正极活性物质或负极活性物质中的目的,有效保证了补锂效果。
可选地,补锂剂222的厚度可以为0.001mm-4.9mm。通过大量实验证明,将补锂剂222的厚度设置为0.001mm-4.9mm,能够比较容易地将补锂剂222与导电组件221复合在一起,进而有效降低了工艺难度。
在一些实施例中,再次参考图6,连接件23可以包括相互连接的端子连接部231和引出部232。其中,端子连接部231与补锂电极端子241电连接,导电组件221的朝向连接件的一端形成有容纳空间223,引出部232设置于容纳空间223内。
也就是说,端子连接部231设置在第一壁上,引出部232设置在相邻的两个电极组件21之间,在电极组件21膨胀时压实连接件23和补锂装置22实际上是压实引出部232和补锂装置22。
该技术方案,将连接件23的引出部232设置于导电组件221的容纳空间223内,使得连接件23和导电组件221之间的连接面积大幅增加,极大地提高了连接件23和补锂装置22连接可靠性。
由于连接件23的引出部232设置在相邻的两个电极组件21之间,且端子连接部231和引出部231连接。因此,在本申请实施例中,在第一壁的宽度方向上,端子连接部231可以设置在第一壁的中间位置。
将连接件23的端子连接部231设置在第一壁的中间位置,一方面,在电极组件21膨胀时,连接件23能够以最短的尺寸实现被电极组件21压实进而与补锂装置22相连的目的,有效降低了工艺成本;另一方面,实现简单,大大减小了制造电池单体20时的工艺难度。
在一种可能的实施例中,上述内容中的第一壁可以是外壳的侧面。相对于大面来说,将补锂电极端子241设置在外壳的侧面上,不仅比较容易装置,而且还能够保证电池的能量密度。
在另一种可能的实施例中,如图3-图7所示,第一壁可以为端盖24。
可选地,端盖24的材质可以为金属材质,例如铝材、钢材等。
当电池单体20为圆柱形电池单体时,端盖24的形状可以为圆形;当电池单体20为方形电池单体时,端盖24的形状可以为多边形,如图3所示的矩形。
上述技术方案,将补锂电极端子241设置在端盖24上,由于端盖24本来就设置有正电极端子和负电极端子,这样,不必再占用额外的空间来设置补锂电极端子241,有效提高了电池的能量密度。
进一步地,除了补锂电极端子241和连接件23之外,如图3、图4和图7所示,端盖24上还设置有正电极端子242a和负电极端子242b。
参考图3,每个电极组件21具有第一极耳214a和第二极耳214b,第一极耳214a和第二极耳214b的极性相反。例如,当第一极耳214a为正极极耳时,第二极耳214b为负极极耳。电极组件21的第一极耳214a通过一个连接构件与一个电极端子连接,电极组件21的第二极耳214b通过另一个连接构件与另一个电极端子连接。例如,正电极端子242a通过一个连接构件与正极极耳连接,负电极端子242b通过另一个连接构件与负极极耳连接。
考虑到在电池单体20的活性锂充足不需要补锂的情况下,可能会出现补锂装置22仍然对电池单体20进行补锂,从而造成资源浪费的情况。为了避免这种情况,本申请实施例中,在需要补锂的情况下,补锂装置22可对电池单体20进行补锂。
在一种可能的实现方式中,补锂电极端子241可以被配置为在补锂装置22对电池单体20进行补锂时,与正电极端子242a或负电极端子242b短接。
若正极的活性锂不足,则补锂电极端子241可以与正电极端子242a进行短接;若负极的活性锂不足,则补锂电极端子241可以与负电极端子242b进行短接。
或者,由于活性锂在电解液中是不停移动的,因此,不论是正极的活性锂不足还是负极的活性锂不足,补锂电极端子241可以被配置为与固定的电极端子短接。例如,与负电极端子242b短接。
由于相对于正极来说,活性锂在负极相对比较容易嵌入。因此,补锂电极端子241被配置为与负电极端子242b短接,能够显著提升补锂装置22的补锂效率。另一方面,在补锂装置22对电池单体20进行补锂时,即在电池单体20需要补锂时,补锂电极端子241与负电极端子242b进行短接,避免了在不需要补锂的情况下但补锂装置22对电池单体20进行补锂而造成资源浪费的问题,实现了补锂装置22对电池单体20的可控补锂、按需补锂。
在补锂电极端子241被配置为在补锂装置22对所述电池单体20进行补锂时,与负电极端子242b短接的情况下的情况下,相对于正电极端子242a,补锂电极端子241更靠近负电极端子242b。如此,补锂电极端子241与负电极端子242b之间的连线可以做到最短,不仅实现简单,而且降低了生产成本。
在另一种可能的实现方式中,在需要补锂时,本申请实施例可以通过外部控制电路实现补锂装置22对电池单体20的补锂。
进一步地,参考图7,端盖24还可以包括第一密封圈243a、第二密封圈243b和第三密封圈243c。其中,第一密封圈243a用于在正电极端子242a和端盖24之间形成密封,第二密封圈243b用于在负电极端子242b和端盖24之间形成密封,第三密封圈243c用于在补锂电极端子241和端盖24之间形成密封。第一密封圈243a、第二密封圈243b和第三密封圈243c例如可以为环状。
端盖24还可以包括下塑胶244,设置在端盖24的朝向电极组件21的一侧,用于间隔端盖24和至少两个电极组件21。
端盖24还可以包括第三铆接块245,用于固定凸出端盖24的补锂电极端子241。此外,端盖24还可以包括第三上塑胶246,用于隔离端盖24和第三铆接块245。
除了上述内容提到的构件之外,端盖24上还可以设置有泄压机构247。泄压机构247用于在电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。该阈值设计根据设计需求不同而不同。所述阈值可能取决于电池单体20中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构247可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体20的内部压力或温度达到预定阈值时,泄压机构247执行动作或者泄压机构247中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
本申请中所提到的“致动”是指泄压机构247产生动作或被激活至一定的状态,从而使得电池单体20的内部压力及温度得以被泄放。泄压机构247产生的动作可以包括但不限于:泄压机构247中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构247在致动时,电池单体20的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体20发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体20的排放物包括但不限于:电解液、被溶解 或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
本申请实施例还提供一种电池,该电池可以包括前述各实施例中的电池单体20。在一些实施例中,该电池还可以包括箱体、汇流部件等其他结构,在此不再一一赘述。
本申请实施例还提供了一种用电装置,该用电装置可以包括前述实施例中的电池,电池用于向该用电装置提供电能。
在一些实施例中,用电装置可以为图1中的车辆1、船舶或航天器。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种电池单体(20),其特征在于,包括:
    至少两个电极组件(21);
    补锂装置(22),设置于所述至少两个电极组件(21)中相邻的两个电极组件(21)之间;
    外壳,用于容纳所述至少两个电极组件(21),所述外壳包括第一壁,所述第一壁上设置有补锂电极端子(241);
    连接件(23),用于电连接所述补锂装置(22)和所述补锂电极端子(241)。
  2. 根据权利要求1所述的电池单体(20),其特征在于,所述至少两个电极组件(21)中每个电极组件(21)的表面包括平面部(211),所述相邻的两个电极组件(21)的平面部(211)相对且连接;
    其中,所述补锂装置(22)和至少部分所述连接件(23)设置于所述相邻的两个电极组件(21)的平面部(211)之间。
  3. 根据权利要求2所述的电池单体(20),其特征在于,所述平面部(211)为所述每个电极组件(21)中面积最大的侧面。
  4. 根据权利要求2或3所述的电池单体(20),其特征在于,所述补锂装置(22)覆盖所述平面部(211)。
  5. 根据权利要求1至4中任一项所述的电池单体(20),其特征在于,所述补锂装置(22)包括导电组件(221)和补锂剂(222),所述补锂剂(222)设置在所述导电组件(221)的内侧;
    其中,所述连接件(23)用于电连接所述导电组件(221)和所述补锂电极端子(241)。
  6. 根据权利要求5所述的电池单体(20),其特征在于,所述导电组件(221)的材料为塑胶。
  7. 根据权利要求5或6所述的电池单体(20),其特征在于,所述补锂剂(222)的厚度为0.001mm-4.9mm。
  8. 根据权利要求5至7中任一项所述的电池单体(20),其特征在于,所述连接件(23)包括相互连接的端子连接部(231)和引出部(232),所述端子连接部(231)与所述补锂电极端子(241)电连接,所述导电组件(221)的朝向所述连接件(23)的一端形成有容纳空间(223),所述引出部(232)设置于所述容纳空间(223)内。
  9. 根据权利要求8所述的电池单体(20),其特征在于,在所述第一壁的宽度方向上,所述端子连接部(231)设置在所述第一壁的中间位置。
  10. 根据权利要求1至9中任一项所述的电池单体(20),其特征在于,所述第一壁为所述外壳的侧面。
  11. 根据权利要求1至9中任一项所述的电池单体(20),其特征在于,所述第 一壁为端盖(24)。
  12. 根据权利要求11所述的电池单体(20),其特征在于,所述端盖(24)上还设置有正电极端子(242a)和负电极端子(242b);
    其中,所述补锂电极端子(241)被配置为在所述补锂装置(22)对所述电池单体(20)进行补锂时,与所述正电极端子(242a)或所述负电极端子(242b)进行短接。
  13. 根据权利要求12所述的电池单体(20),其特征在于,在所述补锂电极端子(241)被配置为在所述补锂装置(22)对所述电池单体(20)进行补锂时,与所述负电极端子(242b)短接的情况下,相对于所述正电极端子(242a),所述补锂电极端子(241)更靠近所述负电极端子(242b)。
  14. 根据权利要求1至13中任一项所述的电池单体(20),其特征在于,所述补锂装置(22)和所述相邻的两个电极组件(21)之间通过导电胶连接。
  15. 根据权利要求1至14中任一项所述的电池单体(20),其特征在于,所述补锂装置(22)的形状为片状。
  16. 一种电池,其特征在于,包括:
    根据权利要求1至15中任一项所述的电池单体(20);
    箱体,所述箱体用于容纳所述电池单体(20)。
  17. 一种用电装置,其特征在于,包括:根据权利要求16所述的电池,所述电池用于提供电能。
PCT/CN2022/102718 2022-06-30 2022-06-30 电池单体、电池和用电装置 WO2024000369A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102718 WO2024000369A1 (zh) 2022-06-30 2022-06-30 电池单体、电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102718 WO2024000369A1 (zh) 2022-06-30 2022-06-30 电池单体、电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024000369A1 true WO2024000369A1 (zh) 2024-01-04

Family

ID=89383527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102718 WO2024000369A1 (zh) 2022-06-30 2022-06-30 电池单体、电池和用电装置

Country Status (1)

Country Link
WO (1) WO2024000369A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101138058A (zh) * 2005-03-31 2008-03-05 富士重工业株式会社 锂离子电容器
JP2010287641A (ja) * 2009-06-10 2010-12-24 Nec Tokin Corp 蓄電デバイス
CN108511199A (zh) * 2017-02-27 2018-09-07 太阳诱电株式会社 电化学器件
CN109817473A (zh) * 2018-12-13 2019-05-28 中国科学院电工研究所 一种锂离子电化学储能器件的预嵌锂方法
CN110326074A (zh) * 2017-02-27 2019-10-11 太阳诱电株式会社 电化学器件
CN111403640A (zh) * 2020-03-31 2020-07-10 上海豫源电力科技有限公司 高能量锂电池及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101138058A (zh) * 2005-03-31 2008-03-05 富士重工业株式会社 锂离子电容器
JP2010287641A (ja) * 2009-06-10 2010-12-24 Nec Tokin Corp 蓄電デバイス
CN108511199A (zh) * 2017-02-27 2018-09-07 太阳诱电株式会社 电化学器件
CN110326074A (zh) * 2017-02-27 2019-10-11 太阳诱电株式会社 电化学器件
CN109817473A (zh) * 2018-12-13 2019-05-28 中国科学院电工研究所 一种锂离子电化学储能器件的预嵌锂方法
CN111403640A (zh) * 2020-03-31 2020-07-10 上海豫源电力科技有限公司 高能量锂电池及其制作方法

Similar Documents

Publication Publication Date Title
WO2023098258A1 (zh) 电池单体、电池以及用电装置
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
US11757161B2 (en) Battery cell, battery and electricity consuming device
US20230344068A1 (en) End cap, battery cell, battery, and power consuming device
EP4092818A1 (en) Battery box body, battery, electric device, method and apparatus for preparing box body
WO2023134479A1 (zh) 电池和用电设备
WO2023179192A1 (zh) 电池和用电设备
US20230223641A1 (en) Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
WO2023193334A1 (zh) 电池和用电设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023236220A1 (zh) 电池单体、电池及用电设备
WO2023130266A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
WO2024000369A1 (zh) 电池单体、电池和用电装置
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
WO2024000367A1 (zh) 电池单体、电池和用电装置
WO2024000366A1 (zh) 电池单体、电池和用电装置
JP2023547006A (ja) 電池単体、その製造方法および製造システム、電池および電力使用装置
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2023230880A1 (zh) 电池单体、电池以及用电装置
CN118044038A (zh) 电池单体、电池和用电装置
CN118044025A (zh) 电池单体、电池和用电装置
WO2023197133A1 (zh) 电池单体的壳体、电池单体、电池以及用电装置
WO2024007130A1 (zh) 电池单体、电池以及用电装置
CN220121974U (zh) 电池单体、电池及用电装置
WO2024031255A1 (zh) 电极组件、电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022948481

Country of ref document: EP

Effective date: 20240426