WO2023287026A1 - 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물 - Google Patents

헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물 Download PDF

Info

Publication number
WO2023287026A1
WO2023287026A1 PCT/KR2022/008370 KR2022008370W WO2023287026A1 WO 2023287026 A1 WO2023287026 A1 WO 2023287026A1 KR 2022008370 W KR2022008370 W KR 2022008370W WO 2023287026 A1 WO2023287026 A1 WO 2023287026A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
formula
light emitting
Prior art date
Application number
PCT/KR2022/008370
Other languages
English (en)
French (fr)
Inventor
정철훈
이현주
노영석
김동준
Original Assignee
엘티소재주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티소재주식회사 filed Critical 엘티소재주식회사
Priority to CN202280035421.0A priority Critical patent/CN117355530A/zh
Publication of WO2023287026A1 publication Critical patent/WO2023287026A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a heterocyclic compound, an organic light emitting device including the heterocyclic compound, and a composition for an organic material layer.
  • An organic light emitting device is a type of self-luminous display device, and has advantages such as a wide viewing angle, excellent contrast, and fast response speed.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes are combined in the organic thin film to form a pair, and then emit light while disappearing.
  • the organic thin film may be composed of a single layer or multiple layers as needed.
  • the material of the organic thin film may have a light emitting function as needed.
  • a compound capable of constituting the light emitting layer by itself may be used, or a compound capable of serving as a host or dopant of the host-dopant type light emitting layer may be used.
  • a compound capable of performing functions such as hole injection, hole transport, electron blocking, hole blocking, electron transport, and electron injection may be used.
  • the present invention is to provide a heterocyclic compound, an organic light emitting device including the same, and a composition for an organic material layer.
  • the present invention provides a heterocyclic compound represented by Formula 1 below.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • X is S; O; CRaRb; or NRc;
  • n is an integer from 0 to 3, and when n is 2 or more, R15 is the same as or different from each other;
  • At least one of R11 to R15 is a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group.
  • the present invention is a first electrode
  • An organic light emitting device comprising one or more organic material layers provided between the first electrode and the second electrode,
  • At least one layer of the organic material layer provides an organic light emitting device that includes the heterocyclic compound represented by Formula 1 above.
  • the present invention provides an organic light emitting device wherein the organic material layer further includes a heterocyclic compound represented by Chemical Formula 10 below.
  • Ar3 and Ar4 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group.
  • the present invention provides a composition for an organic material layer of an organic light emitting device including the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 10.
  • the compounds described in this specification can be used as a material for an organic material layer of an organic light emitting device.
  • the compound may serve as a hole injection layer material, an electron blocking layer material, a hole transport layer material, an emission layer material, an electron transport layer material, a hole blocking layer material, and an electron injection layer material in an organic light emitting device.
  • the compound may be used as a material for a light emitting layer of an organic light emitting device.
  • the compound may be used as a light emitting material alone or in combination with a P-type host, and may be used as a host material or a dopant material of a light emitting layer.
  • the driving voltage of the organic light emitting device can be lowered, the light emitting efficiency can be improved, and the lifetime characteristics can be improved.
  • the heterocyclic compound represented by Chemical Formula 1 of the present invention can effectively stabilize electrons by increasing the delocalization rate of a HOMO site through the expansion of a resonance structure, thereby improving lifespan characteristics.
  • FIGS. 1 to 3 are diagrams schematically illustrating a stacked structure of an organic light emitting device according to an exemplary embodiment of the present invention.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the hydrogen atom is substituted, that is, the position where the substituent is substituted , When two or more substituents are substituted, two or more substituents may be the same as or different from each other.
  • the halogen may be fluorine, chlorine, bromine or iodine.
  • the alkyl group includes a straight or branched chain having 1 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms of the alkyl group may be 1 to 60, specifically 1 to 40, and more specifically, 1 to 20.
  • Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, n-octyl group,
  • the alkenyl group includes a straight chain or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the alkenyl group may have 2 to 60 carbon atoms, specifically 2 to 40, and more specifically, 2 to 20.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1 -butenyl group, 1,3-butadienyl group, allyl group, 1-phenylvinyl-1-yl group, 2-phenylvinyl-1-yl group, 2,2-diphenylvinyl-1-yl group, 2-phenyl-2 -(naphthyl-1-yl)vinyl-1-yl group, 2,2-bis(diphenyl-1-yl)vinyl-1-yl group, stilbenyl group, styrenyl group, etc., but are not limited thereto .
  • the alkynyl group includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms of the alkynyl group may be 2 to 60, specifically 2 to 40, and more specifically, 2 to 20.
  • the alkoxy group may be straight chain, branched chain or cyclic chain.
  • the number of carbon atoms in the alkoxy group is not particularly limited, but is preferably 1 to 20 carbon atoms.
  • the cycloalkyl group includes a monocyclic or polycyclic group having 3 to 60 carbon atoms, and may be further substituted with other substituents.
  • the polycyclic means a group in which a cycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a cycloalkyl group, but may also be another type of ring group, such as a heterocycloalkyl group, an aryl group, a heteroaryl group, and the like.
  • the number of carbon atoms in the cycloalkyl group may be 3 to 60, specifically 3 to 40, and more specifically 5 to 20.
  • the heterocycloalkyl group includes O, S, Se, N or Si as a hetero atom, and includes a monocyclic or polycyclic group having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic means a group in which a heterocycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a heterocycloalkyl group, but may also be another type of ring group, such as a cycloalkyl group, an aryl group, a heteroaryl group, and the like.
  • the heterocycloalkyl group may have 2 to 60, specifically 2 to 40, and more specifically 3 to 20 carbon atoms.
  • the aryl group includes a monocyclic or polycyclic group having 6 to 60 carbon atoms, and may be further substituted with other substituents.
  • the polycyclic means a group in which an aryl group is directly connected or condensed with another cyclic group.
  • the other ring group may be an aryl group, but may also be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group, and the like.
  • the aryl group may include a spiro group.
  • the number of carbon atoms of the aryl group may be 6 to 60, specifically 6 to 40, and more specifically 6 to 25.
  • aryl group examples include a phenyl group, a biphenyl group, a triphenyl group, a naphthyl group, anthryl group, a chrysenyl group, a phenanthrenyl group, a perylenyl group, a fluoranthenyl group, a triphenylenyl group, a phenalenyl group, and a pyrene group.
  • Nyl group tetracenyl group, pentacenyl group, fluorenyl group, indenyl group, acenaphthylenyl group, benzofluorenyl group, spirobifluorenyl group, 2,3-dihydro-1H-indenyl group, condensed ring groups thereof etc., but is not limited thereto.
  • the phosphine oxide group includes a diphenylphosphine oxide group, a dinaphthylphosphine oxide group, and the like, but is not limited thereto.
  • the silyl group is a substituent that includes Si and the Si atom is directly connected as a radical, and is represented by -SiR101R102R103, R101 to R103 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; an alkyl group; alkenyl group; alkoxy group; cycloalkyl group; aryl group; And it may be a substituent consisting of at least one of a heterocyclic group.
  • silyl group examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like, It is not limited to this.
  • the fluorenyl group may be substituted, and adjacent substituents may bond to each other to form a ring.
  • the heteroaryl group includes S, O, Se, N or Si as a hetero atom, and includes a monocyclic or polycyclic group having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic means a group in which a heteroaryl group is directly connected or condensed with another ring group.
  • the other ring group may be a heteroaryl group, but may also be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, an aryl group, and the like.
  • the heteroaryl group may have 2 to 60 carbon atoms, specifically 2 to 40, and more specifically 3 to 25 carbon atoms.
  • heteroaryl group examples include a pyridyl group, a pyrrolyl group, a pyrimidyl group, a pyridazinyl group, a furanyl group, a thiophenyl group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, and a thiazolyl group.
  • Isothiazolyl group triazolyl group, furazanyl group, oxadiazolyl group, thiadiazolyl group, dithiazolyl group, tetrazolyl group, pyranyl group, thiopyranyl group, diazinyl group, oxazinyl group, Thiazinyl group, dioxynyl group, triazinyl group, tetrazinyl group, quinolyl group, isoquinolyl group, quinazolinyl group, isoquinazolinyl group, quinozolilyl group, naphthyridyl group, acridinyl group, phenanthridinyl group , imidazopyridinyl group, diazanaphthalenyl group, triazanedenyl group, 2-indolyl group, indolizinyl group, benzothiazolyl group, benzoxazolyl group, benzimidazolyl group,
  • the amine group is a monoalkylamine group; monoarylamine group; Monoheteroarylamine group; -NH 2 ; Dialkylamine group; Diaryl amine group; Diheteroarylamine group; an alkyl arylamine group; Alkylheteroarylamine group; And it may be selected from the group consisting of an arylheteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, a dibiphenylamine group, an anthracenylamine group, a 9- Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenylamine group, biphenylfluorene
  • it includes, but is not limited to, a ylamine group, a phenyltriphenylenylamine group, a biphenyltriphenylenylamine group, and the like.
  • the arylene group means that the aryl group has two bonding sites, that is, a divalent group.
  • the description of the aryl group described above can be applied except that each is a divalent group.
  • the heteroarylene group means a heteroaryl group having two bonding sites, that is, a divalent group. The above description of the heteroaryl group may be applied except that each is a divalent group.
  • adjacent refers to a substituent substituted on an atom directly connected to the atom on which the substituent is substituted, a substituent located sterically closest to the substituent, or another substituent substituted on the atom on which the substituent is substituted.
  • two substituents substituted at ortho positions in a benzene ring and two substituents substituted at the same carbon in an aliphatic ring may be interpreted as “adjacent” to each other.
  • "when no substituent is shown in the chemical formula or compound structure” may mean that all positions at which the substituent can occur are hydrogen or deuterium. That is, deuterium is an isotope of hydrogen, and some hydrogen atoms may be an isotope of deuterium, and in this case, the content of deuterium may be 0% to 100%.
  • deuterium is one of the isotopes of hydrogen and is an element having a deuteron composed of one proton and one neutron as an atomic nucleus, hydrogen- It can be expressed as 2, and the element symbol can also be written as D or 2 H.
  • isotopes which mean atoms having the same atomic number (Z) but different mass numbers (A), have the same number of protons, but have neutrons. It can also be interpreted as an element with a different number of neutrons.
  • the meaning of the content T% of a specific substituent is when the total number of substituents that a base compound can have is defined as T1, and the number of specific substituents among them is defined as T2.
  • T2 /T1 ⁇ 100 T%.
  • the phenyl group represented by 20% of the deuterium content may mean that the total number of substituents that the phenyl group may have is 5 (T1 in the formula), and the number of deuterium is 1 (T2 in the formula) . That is, it can be represented by the following structural formula that the content of deuterium in the phenyl group is 20%.
  • a phenyl group having a deuterium content of 0% it may mean a phenyl group that does not contain deuterium atoms, that is, has 5 hydrogen atoms.
  • the C6 to C60 aromatic hydrocarbon ring means a compound containing an aromatic ring composed of C6 to C60 carbons and hydrogen, for example, phenyl, biphenyl, terphenyl, triphenylene, naphthalene, Anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene, etc. may be mentioned, but is not limited thereto, and all aromatic hydrocarbon ring compounds known in the art as those satisfying the above number of carbon atoms include
  • the present invention provides a heterocyclic compound represented by Formula 1 below.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • X is S; O; CRaRb; or NRc;
  • n is an integer from 0 to 3, and when n is 2 or more, R15 is the same as or different from each other;
  • At least one of R11 to R15 is a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R1 to R15 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R1 to R15 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or it may be a substituted or unsubstituted C6 to C20 aryl group.
  • R1 to R15 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; Or it may be a substituted or unsubstituted naphthyl group.
  • At least one of R11 to R15 is a substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • At least one of R11 to R15 is a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • At least one of R11 to R15 may be a substituted or unsubstituted C6 to C20 aryl group.
  • At least one of R11 to R15 is a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; Or it may be a substituted or unsubstituted naphthyl group.
  • At least one of the R11 to R14 is a substituted or unsubstituted C6 to C60 aryl group; Or, in the case of a substituted or unsubstituted C2 to C60 heteroaryl group, R15 is hydrogen; or deuterium.
  • At least one of R11 to R14 is a substituted or unsubstituted C6 to C30 aryl group; Or, in the case of a substituted or unsubstituted C2 to C30 heteroaryl group, R15 is hydrogen; or deuterium.
  • At least one of R11 to R14 is a substituted or unsubstituted C6 to C20 aryl group; Or in the case of a substituted or unsubstituted C2 to C20 heteroaryl group, R15 is hydrogen; or deuterium.
  • R15 when at least one of R11 to R14 is a substituted or unsubstituted C6 to C20 aryl group, R15 is; It may be hydrogen or deuterium.
  • At least one of R11 to R14 is a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; Or, in the case of a substituted or unsubstituted naphthyl group, R15 is hydrogen; or deuterium.
  • the R11 to R14 are the same as or different from each other, and each independently hydrogen; Or, in the case of deuterium, n is 1 or more, and at least one of R15 is a substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • the R11 to R14 are the same as or different from each other, and each independently hydrogen; Or, in the case of deuterium, n is 1 or more, and at least one of R15 is a substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • the R11 to R14 are the same as or different from each other, and each independently hydrogen; Or, in the case of deuterium, n is 1 or more, and at least one of R15 is a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • the R11 to R14 are the same as or different from each other, and each independently hydrogen;
  • n is 1 or more, and at least one of R15 may be a substituted or unsubstituted C6 to C20 aryl group.
  • the R11 to R14 are the same as or different from each other, and each independently hydrogen; or in the case of deuterium, wherein n is 1 or more, and at least one of R15 is a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; Or it may be a substituted or unsubstituted naphthyl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted fluorenyl group; A substituted or unsubstituted triphenylenyl group; A substituted or unsubstituted dibenzofuranyl group; Or it may be a substituted or unsubstituted dibenzothiophenyl group.
  • the Ra to Rc are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • the Ra and Rb are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or it may be a substituted or unsubstituted C1 to C30 alkyl group.
  • Ra and Rb are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or it may be a substituted or unsubstituted C1 to C20 alkyl group.
  • Ra and Rb are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Or it may be a substituted or unsubstituted methyl group.
  • Rc is hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Rc is hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Rc is hydrogen; heavy hydrogen; Or it may be a substituted or unsubstituted C6 to C20 aryl group.
  • Rc is hydrogen; heavy hydrogen; Or it may be a substituted or unsubstituted phenyl group.
  • Rc may be a substituted or unsubstituted phenyl group.
  • the compound represented by Formula 1 may not contain deuterium as a substituent, or the content of deuterium is greater than 0% or 1% based on the total number of hydrogen atoms and deuterium atoms in Formula 1. It may be 10% or more, 20% or more, 30% or more, 40% or more, or 50% or more, and 100% or less, 90% or less, 80% or less, 70% or less, or 60% or less.
  • Formula 1 may not include deuterium, or the content of deuterium may be 1% to 100% based on the total number of hydrogen atoms and deuterium atoms.
  • the content of deuterium based on the total number of hydrogen atoms and deuterium atoms in Formula 1 may be 20% to 90%.
  • the content of deuterium based on the total number of hydrogen atoms and deuterium atoms in Formula 1 may be 30% to 80%.
  • the content of deuterium based on the total number of hydrogen atoms and deuterium atoms in Formula 1 may be 50% to 70%.
  • Formula 1 may be a heterocyclic compound represented by any one of Formulas 2 to 5 below.
  • R1 to R15, Ar1, Ar2, X and n are the same as those in Formula 1 above.
  • Formula 1 may be a heterocyclic compound represented by any one of Formulas 6 to 9 below.
  • R1 to R15, Ar1, Ar2, X and n are the same as those in Formula 1 above.
  • Formula 1 may be a heterocyclic compound represented by any one of the following compounds.
  • substituents in the structure of Chemical Formula 1, compounds having unique characteristics of the introduced substituents can be synthesized.
  • a substituent mainly used in hole injection layer materials, electron blocking layer materials, hole transport layer materials, light emitting layer materials, electron transport layer materials, hole blocking layer materials, and charge generating layer materials used in the manufacture of organic light emitting devices is introduced into the core structure. By doing so, it is possible to synthesize a material that satisfies the conditions required by each organic layer.
  • An organic light emitting device comprising one or more organic material layers provided between the first electrode and the second electrode,
  • At least one layer of the organic material layer relates to an organic light emitting device comprising a heterocyclic compound represented by Chemical Formula 1.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound represented by Formula 1 may be used as a material for the blue organic light emitting material.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for the green organic light emitting material.
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound represented by Formula 1 may be used as a material for the red organic light emitting material.
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for the light emitting layer of the blue organic light emitting device.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for a light emitting layer of the green organic light emitting device.
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for an emission layer of the red organic light emitting device.
  • the organic light emitting diode of the present invention may be manufactured by conventional organic light emitting diode manufacturing methods and materials, except for forming one or more organic material layers using the aforementioned heterocyclic compound.
  • the heterocyclic compound may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution application method refers to spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited to these.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, an electron blocking layer, a hole transport layer, a light emitting layer, an electron transport layer, a hole blocking layer, an electron injection layer, and the like as organic material layers.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the organic material layer including the heterocyclic compound represented by Formula 1 provides an organic light emitting device that further includes a heterocyclic compound represented by Formula 10 below. .
  • Ar3 and Ar4 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group.
  • the R21 to R34 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R21 to R34 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C30 alkyl group; A substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • R21 to R34 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R21 to R34 are the same as or different from each other, and each independently hydrogen; or deuterium.
  • Ar3 and Ar4 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Ar3 and Ar4 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar3 and Ar4 are the same as or different from each other, and each independently represents a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted terphenyl group; A substituted or unsubstituted naphthyl group; A substituted or unsubstituted fluorenyl group; A substituted or unsubstituted spirobifluorenyl group; A substituted or unsubstituted triphenylenyl group; A substituted or unsubstituted dibenzofuranyl group; Or it may be a substituted or unsubstituted dibenzothiophenyl group.
  • the compound represented by Formula 10 may not contain deuterium as a substituent, or the content of deuterium based on the total number of hydrogen atoms and deuterium atoms is greater than 0%, 1% or more, 10 % or more, 20% or more, 30% or more, 40% or more, or 50% or more, and 100% or less, 90% or less, 80% or less, 70% or less, or 60% or less.
  • the compound represented by Formula 10 may not contain deuterium as a substituent, or the content of deuterium may be 1% to 100% based on the total number of hydrogen atoms and deuterium atoms.
  • the compound represented by Formula 10 may not contain deuterium as a substituent, or the content of deuterium may be 20% to 90% based on the total number of hydrogen atoms and deuterium atoms.
  • the compound represented by Formula 10 may not contain deuterium as a substituent, or the content of deuterium may be 30% to 80% based on the total number of hydrogen atoms and deuterium atoms.
  • the compound represented by Formula 10 may not contain deuterium as a substituent, or the content of deuterium may be 50% to 70% based on the total number of hydrogen atoms and deuterium atoms.
  • the exciplex phenomenon is a phenomenon in which energy corresponding to the HOMO energy level of a donor (phost) and the LUMO energy level of an acceptor (n-host) is released through electron exchange between two molecules.
  • RISC reverse intersystem crossing
  • the internal quantum efficiency of fluorescence can be increased to 100%.
  • a donor (p-host) with good hole transport ability and an acceptor (n-host) with good electron transport ability are used as the host of the light emitting layer, holes are injected into the p-host and electrons are injected into the n-host. Since it is injected, the driving voltage can be lowered, thereby helping to improve the lifespan. That is, when the compound represented by Chemical Formula 1 is used as the acceptor and the compound represented by Chemical Formula 10 is used as the donor, excellent device characteristics are exhibited.
  • the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 10 when the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 10 are simultaneously included, at least one of the compounds does not contain deuterium, or hydrogen atoms and deuterium.
  • the content of deuterium, based on the total number of atoms, may be greater than 0%, greater than 1%, greater than 10%, greater than 20%, greater than 30%, greater than 40% or greater than 50%, less than 100%, less than 90%, less than 80% or less, 70% or less, or 60% or less.
  • the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 10 when the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 10 are simultaneously included, at least one of the compounds does not contain deuterium, or hydrogen atoms and deuterium.
  • the deuterium content may be 1% to 100% based on the total number of atoms.
  • the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 10 when the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 10 are simultaneously included, at least one of the compounds does not contain deuterium, or hydrogen atoms and deuterium.
  • the deuterium content may be 20% to 90% based on the total number of atoms.
  • the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 10 when the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 10 are simultaneously included, at least one of the compounds does not contain deuterium, or hydrogen atoms and deuterium.
  • the deuterium content may be 30% to 80% based on the total number of atoms.
  • the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 10 when the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 10 are simultaneously included, at least one of the compounds does not contain deuterium, or hydrogen atoms and deuterium.
  • the deuterium content may be 50% to 70% based on the total number of atoms.
  • the heterocyclic compound represented by Chemical Formula 10 may be any one selected from the following compounds.
  • one embodiment of the present invention provides a composition for an organic material layer of an organic light emitting device including the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 10.
  • the weight ratio of the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 10 in the composition for the organic layer of the organic light emitting device may be 1:10 to 10:1, , 1: 8 to 8: 1, 1: 5 to 5: 1, 1: 2 to 2: 1, but is not limited thereto.
  • composition for the organic material layer of the organic light emitting device can be used when forming the organic material of the organic light emitting device, and in particular, can be more preferably used when forming the host of the light emitting layer.
  • the organic material layer includes the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 10, and may be used together with a phosphorescent dopant.
  • phosphorescent dopant material those known in the art may be used.
  • phosphorescent dopant materials represented by LL'MX', LL'L"M, LMX'X", L 2 MX' and L 3 M may be used, but the scope of the present invention is not limited by these examples. .
  • the M may be iridium, platinum, osmium, or the like.
  • L is an anionic bidentate ligand coordinated to M by sp 2 carbon and a hetero atom, and X may function to trap electrons or holes.
  • Non-limiting examples of L include 2-(1-naphthyl)benzoxazole, 2-phenylbenzoxazole, 2-phenylbenzothiazole, 7,8-benzoquinoline, phenylpyridine, benzothiophenylpyridine, 3- methoxy-2-phenylpyridine, thiophenylpyridine, tolylpyridine and the like.
  • Non-limiting examples of X' and X" include acetylacetonate (acac), hexafluoroacetylacetonate, salicylidene, picolinate, 8-hydroxyquinolinate, and the like.
  • the organic material layer includes the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 10, and may be used together with an iridium-based dopant.
  • the iridium-based dopant is (piq) 2 (Ir) (acac) as a red phosphorescent dopant or Ir (ppy) 3 and (piq) 2 (Ir) as a green phosphorescent dopant. ) (acac) can be used.
  • the content of the dopant may have a content of 1% to 15%, preferably 2% to 10%, more preferably 3% to 7% based on the total weight of the light emitting layer. .
  • the organic material layer may include an electron injection layer or an electron transport layer, and the electron injection layer or electron transport layer may include the heterocyclic compound.
  • the organic material layer may include an electron blocking layer or a hole blocking layer, and the electron blocking layer or hole blocking layer may include the heterocyclic compound.
  • the organic material layer may include an electron transport layer, an emission layer, or a hole blocking layer, and the electron transport layer, the emission layer, or the hole blocking layer may include the heterocyclic compound.
  • the organic material layer may include a light emitting layer, and the light emitting layer may include the heterocyclic compound.
  • the organic material layer includes a light emitting layer
  • the light emitting layer includes a host material
  • the host material may include a heterocyclic compound represented by Chemical Formula 1 above.
  • the light emitting layer may include two or more host materials, at least one of the host materials may include the heterocyclic compound represented by Formula 1, and the other one may include a heterocyclic compound represented by Formula 6 above.
  • the light emitting layer may be used by pre-mixing two or more host materials, and at least one of the two or more host materials is hetero represented by Chemical Formula 1. It may include a cyclic compound, and the other may include a heterocyclic compound represented by Chemical Formula 6.
  • the organic light emitting device further includes one or two or more layers selected from the group consisting of a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an electron blocking layer, and a hole blocking layer. can do.
  • FIG. 1 to 3 illustrate the stacking order of the electrode and the organic material layer of the organic light emitting device according to an embodiment of the present invention.
  • the scope of the present application be limited by these drawings, and structures of organic light emitting devices known in the art may be applied to the present application as well.
  • an organic light emitting device in which an anode 200, an organic material layer 300, and a cathode 400 are sequentially stacked on a substrate 100 is shown.
  • an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented.
  • the organic light emitting device according to FIG. 3 includes a hole injection layer 301, a hole transport layer 302, an emission layer 303, a hole blocking layer 304, an electron transport layer 305, and an electron injection layer 306.
  • a hole injection layer 301 a hole transport layer 302
  • an emission layer 303 a hole transport layer 302
  • a hole blocking layer 304 a hole blocking layer 304
  • an electron transport layer 305 a hole blocking layer 306.
  • the scope of the present application is not limited by such a laminated structure, and layers other than the light emitting layer may be omitted as necessary, and other necessary functional layers may be further added.
  • the forming of the organic material layer is performed by pre-mixing the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 10, and using a thermal vacuum deposition method. It may be formed using
  • the pre-mixing means that the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 10 are first mixed and mixed in one source before depositing the heterocyclic compound represented by Formula 10 on the organic layer.
  • the premixed material may be referred to as a composition for an organic layer according to an exemplary embodiment of the present application.
  • the organic material layer including the heterocyclic compound represented by Chemical Formula 1 may further include other materials as needed.
  • the organic material layer including both the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 10 may further include other materials as needed.
  • materials other than the heterocyclic compound represented by Formula 1 or the heterocyclic compound represented by Formula 10 are exemplified below, but these are for illustrative purposes only. It is not intended to limit the scope of, and may be replaced with materials known in the art.
  • anode material Materials having a relatively high work function may be used as the anode material, and transparent conductive oxides, metals, or conductive polymers may be used.
  • the anode material include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material Materials having a relatively low work function may be used as the cathode material, and metals, metal oxides, or conductive polymers may be used.
  • Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • a known hole injection layer material may be used, for example, a phthalocyanine compound such as copper phthalocyanine disclosed in U.S. Patent No. 4,356,429, or a phthalocyanine compound disclosed in Advanced Material, 6, p.677 (1994).
  • Starburst amine derivatives described such as tris(4-carbazoyl-9-ylphenyl)amine (TCTA), 4,4',4′′-tris[phenyl(m-tolyl)amino]triphenylamine ( m-MTDATA), 1,3,5-tris[4-(3-methylphenylphenylamino)phenyl]benzene (m-MTDAPB), polyaniline/dodecylbenzenesulfonic acid, a soluble conductive polymer, or Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), polyaniline/camphor sulfonic acid, or Polyaniline/Poly(4-styrenesulfonate) or the like can be used.
  • TCTA tris(4-carbazoyl-9
  • pyrazoline derivatives As the material for the hole transport layer, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, and the like may be used, and low-molecular or high-molecular materials may also be used.
  • Materials for the electron transport layer include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone.
  • Derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, etc. may be used, and high molecular materials as well as low molecular materials may be used.
  • LiF is typically used in the art, but the present application is not limited thereto.
  • a red, green or blue light emitting material may be used as a material for the light emitting layer, and if necessary, two or more light emitting materials may be mixed and used. At this time, two or more light emitting materials may be deposited and used as individual sources, or may be pre-mixed and deposited as one source.
  • a fluorescent material may be used as a material for the light emitting layer, but a phosphorescent material may also be used.
  • the material for the light emitting layer a single material that emits light by combining holes and electrons injected from the anode and the cathode may be used, but materials in which a host material and a dopant material are involved in light emission may also be used.
  • hosts of the same series may be mixed and used, or hosts of different series may be mixed and used.
  • two or more materials selected from among n-type host materials and p-type host materials may be selected and used as host materials for the light emitting layer.
  • An organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type depending on the material used.
  • the heterocyclic compound according to an embodiment of the present invention may act on a principle similar to that applied to an organic light emitting device in an organic electronic device including an organic solar cell, an organic photoreceptor, and an organic transistor.
  • Tables 6 and 7 The synthesis results of the compounds described in Preparation Examples 1 to 5 and Tables 1 to 5 are shown in Tables 6 and 7 below.
  • Table 6 below is a measurement value of 1H NMR (CDCl3, 300 MHz)
  • Table 7 below is a measurement value of FD-mass spectrometer (FD-MS: Field desorption mass spectrometry).
  • Compound 2-82-1 (Compound 2-32) 10g (15.7mmol), D 6 -benzene (D 6 -benzene) 1000mL and triflic acid (CF 3 SO 3 H) 170g (1075mmol) were added and 50 It was stirred at °C.
  • Table 10 is a measurement value of 1 H NMR (CDCl3, 300 MHz)
  • Table 11 is a measurement value of FD-mass spectrometer (FD-MS: Field desorption mass spectrometry).
  • a glass substrate coated with ITO thin film to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic cleaning was performed with solvents such as acetone, methanol, and isopropyl alcohol, and after drying, UVO (Ultraviolet Ozone) treatment was performed for 5 minutes using UV in a UV cleaner. Thereafter, the substrate was transferred to a plasma cleaner (PT), plasma treated to remove the ITO work function and residual film in a vacuum state, and transferred to a thermal evaporation equipment for organic deposition.
  • PT plasma cleaner
  • NPB N,N'-bis( ⁇ -naphthyl)-N,N'-diphenyl-4,4'-diamine
  • a light emitting layer was thermally vacuum deposited thereon as follows.
  • the compounds listed in Table 12 were deposited as a green host, Ir(ppy) 3 (tris(2-phenylpyridine)iridium) was used as a green phosphorescent dopant, and the host was doped with 7% Ir(ppy) 3 to obtain a thickness of 400 ⁇ . deposited in thickness.
  • BCP was deposited to a thickness of 60 ⁇ as a hole blocking layer
  • Alq 3 was deposited to a thickness of 200 ⁇ as an electron transport layer thereon.
  • lithium fluoride (LiF) is deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer
  • aluminum (Al) is deposited on the electron injection layer to a thickness of 1,200 ⁇ to form a cathode, thereby forming an organic An electroluminescent device was manufactured.
  • the electroluminescence (EL) characteristics of the organic light emitting device manufactured as described above were measured with McSyers' M7000, and the standard luminance was 6,000 cd through the lifetime equipment measuring equipment (M6000) manufactured by McScience with the measurement result. /m 2 , T 90 was measured.
  • Table 12 shows the results of measuring the driving voltage, luminous efficiency, color coordinates (CIE) and lifetime of the organic light emitting device manufactured according to the present invention.
  • the T 90 denotes a lifetime (unit: time), which is the time when the luminance becomes 90% of the initial luminance.
  • Example 1 1-1 4.77 78.0 (0.238, 0.711) 170
  • Example 2 1-2 4.45 72.5 (0.241, 0.712) 182
  • Example 3 1-3 4.56 69.1 (0.238, 0.711) 179
  • Example 4 1-4 4.57 81.2 0.239, 0.714) 165
  • Example 5 1-5 4.41 57.2 (0.245, 0.715) 250
  • Example 6 1-6 4.60 72.5 (0.241, 0.713) 177
  • Example 8 1-12 4.47 71.8 (0.239, 0.713) 189
  • Example 9 1-13 4.29 66.2 (0.241, 0.712) 234
  • Example 10 1-14 4.58 72.9 (0.241, 0.715) 197
  • Example 11 1-15 4.75 84.4 0.242, 0.712) 155
  • Example 12 1-17 4.71 70.5 (0.245, 0.711) 157
  • Example 13 1-21 4.53 74.5 (0.241, 0.716)
  • heterocyclic compound of the present invention has excellent luminous efficiency, particularly lifespan characteristics.
  • the heterocyclic compound of the present invention can effectively stabilize the electrons by increasing the delocalization rate of the HOMO site through the expansion of the resonance structure.
  • the heterocyclic compound of the present invention acts as a sub-donor so that triazine effectively withdraws electrons from indolocarbazole, thereby stabilizing electrons and thus improving lifespan.
  • heterocyclic compound of the present invention can increase luminous efficiency by forming a similar geometry between the ground state and the excited state by reducing the rotatable region between substituents due to intramolecular steric hindrance.
  • a compound bonded with hydrogen and a compound substituted with deuterium show a difference in thermodynamic behavior. This is because the mass of deuterium atoms is twice as large as that of hydrogen, and due to the difference in mass between atoms, deuterium has a lower vibrational energy.
  • the bond length between carbon and deuterium is shorter than the bond between hydrogen and the dissociation energy used to break the bond is stronger. Because the van der Waals radius of deuterium is smaller than that of hydrogen, the extension amplitude of the carbon-deuterium bond is narrower.
  • the compound of the present invention substituted with deuterium has higher emission due to the weakening of intermolecular van der Waals force caused by the shorter carbon-deuterium bond length than the carbon-hydrogen bond length. can have efficiencies.
  • the zero point energy that is, the energy of the ground state is lowered and the carbon-deuterium bond length is shortened, the molecular core volume is reduced, and thus the electrical polarizability is increased. can be reduced, and by weakening the intermolecular interaction, the volume of the thin film can be increased. This characteristic induces the effect of lowering the crystallinity by creating an amorphous state of the thin film.
  • deuterium substitution can be effective in improving the heat resistance of OLED devices, thereby improving the lifespan and driving characteristics of the device.
  • the effect of improving device characteristics according to deuterium substitution is improved as the deuterium substitution rate in the molecule increases.
  • a glass substrate coated with ITO thin film to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic cleaning was performed with solvents such as acetone, methanol, and isopropyl alcohol, and after drying, UVO (Ultraviolet Ozone) treatment was performed for 5 minutes using UV in a UV cleaner. Thereafter, the substrate was transferred to a plasma cleaner (PT), plasma treated to remove the ITO work function and residual film in a vacuum state, and then transferred to a thermal evaporation equipment for organic deposition.
  • PT plasma cleaner
  • NPB N,N'-bis( ⁇ -naphthyl)-N,N'-diphenyl-4,4'-diamine
  • a light emitting layer was thermally vacuum deposited thereon as follows.
  • the light emitting layer was deposited from one source after preliminary mixing of the two compounds listed in Table 13 as a green host, and using Ir(ppy) 3 as a green phosphorescent dopant, Ir(ppy) 3 was applied to the host at 7 of the deposition thickness of the light emitting layer. % and deposited to a thickness of 400 ⁇ . Thereafter, BCP was deposited to a thickness of 60 ⁇ as a hole blocking layer, and Alq 3 was deposited to a thickness of 200 ⁇ as an electron transport layer thereon.
  • lithium fluoride (LiF) is deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer
  • aluminum (Al) is deposited on the electron injection layer to a thickness of 1,200 ⁇ to form a cathode, thereby forming an organic An electroluminescent device was manufactured.
  • the electroluminescence (EL) characteristics of the organic light emitting device manufactured as described above were measured with McSyers' M7000, and the standard luminance was 6,000 cd through the lifetime equipment measuring equipment (M6000) manufactured by McScience with the measurement result. /m 2 , T 90 was measured.
  • Table 13 shows the results of measuring the driving voltage, luminous efficiency, color coordinates (CIE) and lifetime of the organic light emitting device manufactured according to the present invention.
  • the exciplex phenomenon is an electron exchange between two molecules, and the energy of the HOMO levels of the donor (P-type host) and the LUMO level of the acceptor (N-type host) is a phenomenon that emits When the exciplex between two molecules occurs, Reverse Intersystem Crossing (RISC) occurs, which can increase the fluorescence internal quantum efficiency to 100%.
  • RISC Reverse Intersystem Crossing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

본 발명은 화학식 1로 표시되는 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물에 관한 것이다.

Description

헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물
본 출원은 2021년 7월 13일자 한국 특허출원 제10-2021-0091450호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물에 관한 것이다.
유기 발광 소자는 자체 발광형 표시 소자의 일종으로서, 시야각이 넓고, 콘트라스트가 우수할 뿐만 아니라 응답속도가 빠르다는 장점을 가지고 있다.
유기 발광 소자는 2개의 전극 사이에 유기 박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기 박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기 박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기 박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기 박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다. 그 외에도, 유기 박막의 재료로서, 정공 주입, 정공 수송, 전자 저지, 정공 저지, 전자 수송, 전자 주입 등의 역할을 수행할 수 있는 화합물이 사용될 수도 있다.
유기 발광 소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기 박막의 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
미국 등록특허 제4,356,429호
본 발명은 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물을 제공하고자 한다.
상기 목적을 달성하기 위하여,
본 발명은 하기 화학식 1로 표시되는 헤테로 고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2022008370-appb-img-000001
상기 화학식 1에 있어서,
상기 R1 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
상기 X는 S; O; CRaRb; 또는 NRc이며,
상기 n은 0 내지 3의 정수이며, n이 2 이상일 경우, R15는 서로 같거나 상이하고,
상기 Ra 내지 Rc는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R201R202; -SiR201R202R203; 및 -NR201R202로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R201, R202 및 R203은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
상기 R11 내지 R15 중 적어도 하나는 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
또한, 본 발명은 제1 전극;
상기 제1 전극과 대향하여 구비된 제2 전극; 및
상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층;을 포함하는 유기 발광 소자로서,
상기 유기물층 중 1 층 이상은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
또한, 본 발명은 상기 유기물층이 하기 화학식 10으로 표시되는 헤테로 고리 화합물을 추가로 포함하는 유기 발광 소자를 제공한다.
[화학식 10]
Figure PCTKR2022008370-appb-img-000002
상기 화학식 10에 있어서,
상기 R21 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R301R302; -SiR301R302R303; 및 -NR301R302로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R301, R302 및 R303은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
상기 Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이이다.
또한, 본 발명은 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 포함하는 유기 발광 소자의 유기물층용 조성물을 제공한다.
본 명세서에 기재된 화합물은 유기 발광 소자의 유기물층 재료로서 사용할 수 있다. 상기 화합물은 유기 발광 소자에서 정공 주입층 재료, 전자 저지층 재료, 정공 수송층 재료, 발광층 재료, 전자 수송층 재료, 정공 저지층 재료, 전자 주입층 재료 등의 역할을 수행할 수 있다. 특히, 상기 화합물이 유기 발광 소자의 발광층 재료로 사용될 수 있다.
구체적으로, 상기 화합물은 단독으로 또는 P타입 호스트와 혼합하여 발광 재료로 사용될 수도 있고, 발광층의 호스트 재료 또는 도펀트 재료로서 사용될 수 있다. 상기 화학식 1로 표시되는 화합물을 유기물층에 사용하는 경우, 유기 발광 소자의 구동전압을 낮추고, 발광 효율을 향상시키며, 수명 특성을 향상시킬 수 있다.
보다 구체적으로, 본 발명의 화학식 1로 표시되는 헤테로 고리 화합물은 공명 구조의 확장으로 호모 사이트(HOMO site)의 비편재화율을 높여 전자를 효과적으로 안정화시킬 수 있어 특히 수명 특성을 향상시킬 수 있다.
도 1 내지 3은 각각 본 발명의 일 실시형태에 따른 유기 발광 소자의 적층구조를 개략적으로 나타낸 도면이다.
이하, 본 발명을 보다 자세히 설명한다.
본 명세서에 있어서, 상기 "치환"이라는 용어는, 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에 있어서, "치환 또는 비치환"이란, 중수소; 할로겐; 시아노기; C1 내지 C60의 직쇄 또는 분지쇄의 알킬기; C2 내지 C60의 직쇄 또는 분지쇄의 알케닐기; C2 내지 C60의 직쇄 또는 분지쇄의 알키닐기; C3 내지 C60의 단환 또는 다환의 시클로알킬기; C2 내지 C60의 단환 또는 다환의 헤테로시클로알킬기; C6 내지 C60의 단환 또는 다환의 아릴기; C2 내지 C60의 단환 또는 다환의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; C1 내지 C20의 알킬아민기; C6 내지 C60의 단환 또는 다환의 아릴아민기; 및 C2 내지 C60의 단환 또는 다환의 헤테로아릴아민기로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중에서 선택된 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미한다.
본 명세서에 있어서, 상기 할로겐은 불소, 염소, 브롬 또는 요오드일 수 있다.
본 명세서에 있어서, 알킬기는 탄소수 1 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알킬기의 탄소수는 1 내지 60, 구체적으로 1 내지 40, 더욱 구체적으로, 1 내지 20일 수 있다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥실메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸 헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 알케닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알케닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다. 구체적인 예로는 비닐기, 1-프로페닐기, 이소프로페닐기, 1-부테닐기, 2-부테닐기, 3-부테닐기, 1-펜테닐기, 2-펜테닐기, 3-펜테닐기, 3-메틸-1-부테닐기, 1,3-부타디에닐기, 알릴기, 1-페닐비닐-1-일기, 2-페닐비닐-1-일기, 2,2-디페닐비닐-1-일기, 2-페닐-2-(나프틸-1-일)비닐-1-일기, 2,2-비스(디페닐-1-일)비닐-1-일기, 스틸베닐기, 스티레닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 알키닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알키닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, n-부톡시기, 이소부톡시기, tert-부톡시기, sec-부톡시기, n-펜틸옥시기, 네오펜틸옥시기, 이소펜틸옥시기, n-헥실옥시기, 3,3-디메틸부틸옥시기, 2-에틸부틸옥시기, n-옥틸옥시기, n-노닐옥시기, n-데실옥시기, 벤질옥시기, p-메틸벤질옥시기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 시클로알킬기는 탄소수 3 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 헤테로시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 시클로알킬기의 탄소수는 3 내지 60, 구체적으로 3 내지 40, 더욱 구체적으로 5 내지 20일 수 있다. 구체적으로, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 3-메틸시클로펜틸기, 2,3-디메틸시클로펜틸기, 시클로헥실기, 3-메틸시클로헥실기, 4-메틸시클로헥실기, 2,3-디메틸시클로헥실기, 3,4,5-트리메틸시클로헥실기, 4-tert-부틸시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로시클로알킬기는 헤테로 원자로서 O, S, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 헤테로시클로알킬기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 20일 수 있다.
본 명세서에 있어서, 아릴기는 탄소수 6 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 헤테로아릴기 등일 수도 있다. 상기 아릴기는 스피로기를 포함할 수 있다. 상기 아릴기의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 상기 아릴기의 구체적인 예로는 페닐기, 비페닐기, 트리페닐기, 나프틸기, 안트릴기, 크라이세닐기, 페난트레닐기, 페릴레닐기, 플루오란테닐기, 트리페닐레닐기, 페날레닐기, 파이레닐기, 테트라세닐기, 펜타세닐기, 플루오레닐기, 인데닐기, 아세나프틸레닐기, 벤조플루오레닐기, 스피로비플루오레닐기, 2,3-디히드로-1H-인데닐기, 이들의 축합고리기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 포스핀옥사이드기는 -P(=O)R101R102로 표시되고, R101 및 R102는 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로 고리기 중 적어도 하나로 이루어진 치환기일 수 있다. 구체적으로 아릴기로 치환될 수 있으며, 상기 아릴기는 전술한 예시가 적용될 수 있다. 예컨대, 포스핀옥사이드기는 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 Si를 포함하고 상기 Si 원자가 라디칼로서 직접 연결되는 치환기이며, -SiR101R102R103로 표시되고, R101 내지 R103은 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로 고리기 중 적어도 하나로 이루어진 치환기일수 있다. 상기 실릴기의 구체적인 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상가ㅣ 플루오레닐기가 치환되는 경우,
Figure PCTKR2022008370-appb-img-000003
등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 헤테로 원자로서 S, O, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60인 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 상기 다환이란 헤테로아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 아릴기 등일 수도 있다. 상기 헤테로아릴기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 상기 헤테로아릴기의 구체적인 예로는 피리딜기, 피롤릴기, 피리미딜기, 피리다지닐기, 푸라닐기, 티오페닐기, 이미다졸릴기, 피라졸릴기, 옥사졸릴기, 이속사졸릴기, 티아졸릴기, 이소티아졸릴기, 트리아졸릴기, 푸라자닐기, 옥사디아졸릴기, 티아디아졸릴기, 디티아졸릴기, 테트라졸릴기, 파이라닐기, 티오파이라닐기, 디아지닐기, 옥사지닐기, 티아지닐기, 디옥시닐기, 트리아지닐기, 테트라지닐기, 퀴놀릴기, 이소퀴놀릴기, 퀴나졸리닐기, 이소퀴나졸리닐기, 퀴노졸리릴기, 나프티리딜기, 아크리디닐기, 페난트리디닐기, 이미다조피리디닐기, 디아자나프탈레닐기, 트리아자인데닐기, 2-인돌릴기, 인돌리지닐기, 벤조티아졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티오페닐기, 벤조퓨라닐기, 디벤조티오페닐기, 디벤조퓨라닐기, 카바졸릴기, 벤조카바졸릴기, 디벤조카바졸릴기, 페나지닐기, 디벤조실롤기, 스피로비(디벤조실롤)기, 디히드로페나지닐기, 페녹사지닐기, 페난트리딜기, 티에닐기, 인돌로[2,3-a]카바졸릴기, 인돌로[2,3-b]카바졸릴기, 인돌리닐기, 10,11-디히드로-디벤조[b,f]아제피닐기, 9,10-디히드로아크리디닐기, 페난트라지닐기, 페노티아지닐기, 프탈라지닐기, 나프틸리디닐기, 페난트롤리닐기, 벤조[c][1,2,5]티아디아졸릴기, 5,10-디히드로디벤조[b,e][1,4]아자실리닐기, 피라졸로[1,5-c]퀴나졸리닐기, 피리도[1,2-b]인다졸릴기, 피리도[1,2-a]이미다조[1,2-e]인돌리닐기, 5,11-디히드로인데노[1,2-b]카바졸릴기 등을 들 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아민기는 모노알킬아민기; 모노아릴아민기; 모노헤테로아릴아민기; -NH2; 디알킬아민기; 디아릴아민기; 디헤테로아릴아민기; 알킬아릴아민기; 알킬헤테로아릴아민기; 및 아릴헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 상기 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 디비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기, 비페닐나프틸아민기, 페닐비페닐아민기, 비페닐플루오레닐아민기, 페닐트리페닐레닐아민기, 비페닐트리페닐레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다. 또한, 헤테로아릴렌기는 헤테로아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 헤테로아릴기의 설명이 적용될 수 있다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한"기로 해석될 수 있다.
본 발명에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 탄소 원자에 수소 원자가 결합된 것을 의미한다. 다만, 중수소(2H, Deuterium)는 수소의 동위원소이므로, 일부 수소 원자는 중수소일 수 있다.
본 발명의 일 실시형태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 치환기로 올 수 있는 위치가 모두 수소 또는 중수소인 것을 의미할 수 있다. 즉, 중수소의 경우 수소의 동위원소로, 일부의 수소 원자는 동위원소인 중수소일 수 있으며, 이 때 중수소의 함량은 0% 내지 100%일 수 있다.
본 발명의 일 실시형태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"에 있어서, "중수소의 함량이 0%", "수소의 함량이 100%", "치환기는 모두 수소" 등 중수소를 명시적으로 배제하지 않는 경우에는 수소와 중수소는 화합물에 있어 혼재되어 사용될 수 있다.
본 발명의 일 실시형태에 있어서, 중수소는 수소의 동위원소(isotope) 중 하나로 양성자(proton) 1개와 중성자(neutron) 1개로 이루어진 중양성자(deuteron)를 원자핵(nucleus)으로 가지는 원소로서, 수소-2로 표현될 수 있으며, 원소기호는 D 또는 2H로 쓸 수도 있다.
본 발명의 일 실시형태에 있어서, 동위원소는 원자 번호(atomic number, Z)는 같지만, 질량수(mass number, A)가 다른 원자를 의미하는 동위원소는 같은 수의 양성자(proton)를 갖지만, 중성자(neutron)의 수가 다른 원소로도 해석할 수 있다.
본 발명의 일 실시형태에 있어서, 특정 치환기의 함량 T%의 의미는 기본이 되는 화합물이 가질 수 있는 치환기의 총 개수를 T1으로 정의하고, 그 중 특정의 치환기의 개수를 T2로 정의하는 경우 T2/T1Х100 = T%로 정의할 수 있다.
즉, 일 예시에 있어서,
Figure PCTKR2022008370-appb-img-000004
로 표시되는 페닐기에 있어서 중수소의 함량 20%라는 것은 페닐기가 가질 수 있는 치환기의 총 개수는 5(식 중 T1)개이고, 그 중 중수소의 개수가 1(식 중 T2)인 경우를 의미할 수 있다. 즉, 페닐기에 있어서 중수소의 함량 20%라는 것인 하기 구조식으로 표시될 수 있다.
Figure PCTKR2022008370-appb-img-000005
또한, 본 발명의 일 실시형태에 있어서, "중수소의 함량이 0%인 페닐기"의 경우 중수소 원자가 포함되지 않은, 즉 수소 원자 5개를 갖는 페닐기를 의미할 수 있다.
본 발명에 있어서, C6 내지 C60의 방향족 탄화수소 고리는 C6 내지 C60개의 탄소와 수소로 이루어진 방향족 고리를 포함하는 화합물을 의미하며, 예를 들어, 페닐, 비페닐, 터페닐, 트리페닐렌, 나프탈렌, 안트라센, 페날렌, 페난트렌, 플루오렌, 피렌, 크리센, 페릴렌, 아줄렌 등을 들 수 있으나, 이에 한정되는 것은 아니며, 상기 탄소수를 충족하는 것으로서 이 분야에 공지된 방향족 탄화수소 고리 화합물을 모두 포함한다.
본 발명은 하기 화학식 1로 표시되는 헤테로 고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2022008370-appb-img-000006
상기 화학식 1에 있어서,
상기 R1 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
상기 X는 S; O; CRaRb; 또는 NRc이며,
상기 n은 0 내지 3의 정수이며, n이 2 이상일 경우, R15는 서로 같거나 상이하고,
상기 Ra 내지 Rc는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R201R202; -SiR201R202R203; 및 -NR201R202로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R201, R202 및 R203은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
상기 R11 내지 R15 중 적어도 하나는 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
본 발명의 일 실시형태에 있어서, 상기 R1 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C2 내지 C30의 알케닐기; 치환 또는 비치환된 C2 내지 C30의 알키닐기; 치환 또는 비치환된 C1 내지 C30의 알콕시기; 치환 또는 비치환된 C3 내지 C30의 시클로알킬기; 치환 또는 비치환된 C2 내지 C30의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R1 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C2 내지 C20의 알케닐기; 치환 또는 비치환된 C2 내지 C20의 알키닐기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R1 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R1 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 C6 내지 C20의 아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R1 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 또는 치환 또는 비치환된 나프틸기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 R11 내지 R15 중 적어도 하나는 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11 내지 R15 중 적어도 하나는 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11 내지 R15 중 적어도 하나는 치환 또는 비치환된 C6 내지 C20의 아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11 내지 R15 중 적어도 하나는 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 또는 치환 또는 비치환된 나프틸기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 R11 내지 R14 중 적어도 하나가 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기인 경우, 상기 R15는 수소; 또는 중수소일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11 내지 R14 중 적어도 하나가 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기인 경우, 상기 R15는 수소; 또는 중수소일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11 내지 R14 중 적어도 하나가 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기인 경우, 상기 R15는 수소; 또는 중수소일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11 내지 R14 중 적어도 하나가 치환 또는 비치환된 C6 내지 C20의 아릴기인 경우, 상기 R15는; 수소 또는 중수소일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11 내지 R14 중 적어도 하나가 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 또는 치환 또는 비치환된 나프틸기인 경우, 상기 R15는 수소; 또는 중수소일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 R11 내지 R14가 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소인 경우, 상기 n은 1 이상이며, R15 중 적어도 하나는 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11 내지 R14가 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소인 경우, 상기 n은 1 이상이며, R15 중 적어도 하나는 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11 내지 R14가 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소인 경우, 상기 n은 1 이상이며, R15 중 적어도 하나는 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11 내지 R14가 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소인 경우, 상기 n은 1 이상이며, R15 중 적어도 하나는 치환 또는 비치환된 C6 내지 C20의 아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11 내지 R14가 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소인 경우, 상기 n은 1 이상이며, R15 중 적어도 하나는 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 또는 치환 또는 비치환된 나프틸기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 트리페닐레닐기; 치환 또는 비치환된 디벤조퓨라닐기; 또는 치환 또는 비치환된 디벤조티오페닐기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 Ra 내지 Rc는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C2 내지 C30의 알케닐기; 치환 또는 비치환된 C2 내지 C30의 알키닐기; 치환 또는 비치환된 C1 내지 C30의 알콕시기; 치환 또는 비치환된 C3 내지 C30의 시클로알킬기; 치환 또는 비치환된 C2 내지 C30의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기; -P(=O)R201R202; -SiR201R202R203; 또는 -NR201R202로 표시되는 기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ra 내지 Rc는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C2 내지 C20의 알케닐기; 치환 또는 비치환된 C2 내지 C20의 알키닐기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기; -P(=O)R201R202; -SiR201R202R203; 또는 -NR201R202로 표시되는 기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ra 내지 Rc는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 Ra 및 Rb는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 C1 내지 C30의 알킬기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ra 및 Rb는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 C1 내지 C20의 알킬기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ra 및 Rb는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 메틸기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 Rc는 수소; 중수소; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Rc는 수소; 중수소; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Rc는 수소; 중수소; 또는 치환 또는 비치환된 C6 내지 C20의 아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Rc는 수소; 중수소; 또는 치환 또는 비치환된 페닐기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Rc는 치환 또는 비치환된 페닐기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 화학식 1 중 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 0% 초과, 1% 이상, 10% 이상, 20% 이상, 30% 이상, 40% 이상 또는 50% 이상일 수 있고, 100% 이하, 90% 이하, 80% 이하, 70% 이하, 60%이하일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1은 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 1% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1 중 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 20% 내지 90%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1 중 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 30% 내지 80%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1 중 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 50% 내지 70%일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1은 하기 화학식 2 내지 5 중 어느 하나로 표시되는 헤테로 고리 화합물일 수 있다.
[화학식 2]
Figure PCTKR2022008370-appb-img-000007
[화학식 3]
Figure PCTKR2022008370-appb-img-000008
[화학식 4]
Figure PCTKR2022008370-appb-img-000009
[화학식 5]
Figure PCTKR2022008370-appb-img-000010
상기 화학식 2 내지 5에 있어서,
상기 R1 내지 R15, Ar1, Ar2, X 및 n의 정의는 상기 화학식 1의 정의와 동일하다.
또한, 본 발명의 일 실시형태에 있어서, 상기 화학식 1은 하기 화학식 6 내지 9 중 어느 하나로 표시되는 헤테로 고리 화합물일 수 있다.
[화학식 6]
Figure PCTKR2022008370-appb-img-000011
[화학식 7]
Figure PCTKR2022008370-appb-img-000012
[화학식 8]
Figure PCTKR2022008370-appb-img-000013
[화학식 9]
Figure PCTKR2022008370-appb-img-000014
상기 화학식 6 내지 9에 있어서,
상기 R1 내지 R15, Ar1, Ar2, X 및 n의 정의는 상기 화학식 1의 정의와 동일하다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는 헤테로 고리 화합물일 수 있다.
Figure PCTKR2022008370-appb-img-000015
Figure PCTKR2022008370-appb-img-000016
Figure PCTKR2022008370-appb-img-000017
Figure PCTKR2022008370-appb-img-000018
Figure PCTKR2022008370-appb-img-000019
Figure PCTKR2022008370-appb-img-000020
Figure PCTKR2022008370-appb-img-000021
Figure PCTKR2022008370-appb-img-000022
Figure PCTKR2022008370-appb-img-000023
Figure PCTKR2022008370-appb-img-000024
Figure PCTKR2022008370-appb-img-000025
Figure PCTKR2022008370-appb-img-000026
Figure PCTKR2022008370-appb-img-000027
Figure PCTKR2022008370-appb-img-000028
Figure PCTKR2022008370-appb-img-000029
Figure PCTKR2022008370-appb-img-000030
Figure PCTKR2022008370-appb-img-000031
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 전자 저지층 물질, 정공 수송층 물질, 발광층 물질, 전자 수송층 물질, 정공 저지층 물질 및 전하 생성층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 에너지 밴드갭을 미세하게 조절이 가능하게 하며, 한편으로 유기물 사이에서의 계면에서의 특성을 향상되게 하며 물질의 용도를 다양하게 할 수 있다.
또한, 본 발명은
제1 전극;
상기 제1 전극과 대향하여 구비된 제2 전극; 및
상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층;을 포함하는 유기 발광 소자로서,
상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함하는 것인, 유기 발광 소자에 관한 것이다.
본 발명의 일 실시형태에 있어서, 상기 제1 전극은 양극일 수 있고, 상기 제2 전극은 음극일 수 있다.
또 다른 일 실시형태에 있어서, 상기 제1 전극은 음극일 수 있고, 상기 제2 전극은 양극일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 청색 유기 발광 소재의 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 녹색 유기 발광 소재의 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 적색 유기 발광 소재의 재료로 사용될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 청색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 녹색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 적색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
상기 화학식 1로 표시되는 헤테로 고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
본 발명의 유기 발광 소자는 전술한 헤테로 고리 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 헤테로 고리 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공 주입층, 전자 저지층, 정공 수송층, 발광층, 전자 수송층, 정공 저지층, 전자 주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함하는 유기물층은 하기 화학식 10으로 표시되는 헤테로 고리 화합물을 추가로 포함하는 것인 유기 발광 소자를 제공한다.
[화학식 10]
Figure PCTKR2022008370-appb-img-000032
상기 화학식 10에 있어서,
상기 R21 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R301R302; -SiR301R302R303; 및 -NR301R302로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R301, R302, 및 R303은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
상기 Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
본 발명의 일 실시형태에 있어서, 상기 R21 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R21 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R21 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R21 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 스피로비플루오레닐기; 치환 또는 비치환된 트리페닐레닐기; 치환 또는 비치환된 디벤조퓨라닐기; 또는 치환 또는 비치환된 디벤조티오페닐기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 10으로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 0% 초과, 1% 이상, 10% 이상, 20% 이상, 30% 이상, 40% 이상 또는 50% 이상일 수 있고, 100% 이하, 90% 이하, 80% 이하, 70% 이하, 60%이하일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 10으로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 1% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 10으로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 20% 내지 90%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 10으로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 30% 내지 80%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 10으로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 50% 내지 70%일 수 있다.
상기 화학식 1로 표시되는 화합물 및 상기 화학식 10으로 표시되는 화합물을 동시에 포함하는 경우, 더 우수한 효율 및 수명 효과를 나타낸다. 이로부터 두 화합물을 동시에 포함하는 경우 엑시플렉스(exciplex) 현상이 일어남을 예상할 수 있다.
상기 엑시플렉스(exciplex) 현상은 두 분자간 전자 교환으로 도너(donor, phost)의 HOMO 에너지 레벨, 억셉터(acceptor, n-host) LUMO 에너지 레벨 크기의 에너지를 방출하는 현상이다. 두 분자간 엑시플렉스(exciplex) 현상이 일어나면 역항간 교차(Reverse Intersystem Crossing, RISC)가 일어나게 되고, 이로 인하여 형광의 내부양자 효율이 100%까지 증가할 수 있다. 정공 수송 능력이 좋은 도너(donor, p-host)와 전자 수송 능력이 좋은 억셉터(acceptor, n-host)가 발광층의 호스트로 사용될 경우, 정공은 p-host로 주입되고, 전자는 n-host로 주입되기 때문에 구동 전압을 낮출 수 있고, 그로 인해 수명 향상에 도움을 줄 수 있다. 즉, 상기 억셉터(acceptor) 로서 상기 화학식 1로 표시되는 화합물을 사용하고, 상기 도너(donor)로서 상기 화학식 10으로 표시되는 화합물을 사용하는 경우, 우수한 소자 특성을 나타낸다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 동시에 포함하는 경우, 상기 화합물 중 적어도 하나는 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 0% 초과, 1% 이상, 10% 이상, 20% 이상, 30% 이상, 40% 이상 또는 50% 이상일 수 있고, 100% 이하, 90% 이하, 80% 이하, 70% 이하, 60% 이하일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 동시에 포함하는 경우, 상기 화합물 중 적어도 하나는 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 동시에 포함하는 경우, 상기 화합물 중 적어도 하나는 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 20% 내지 90%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 동시에 포함하는 경우, 상기 화합물 중 적어도 하나는 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 30% 내지 80%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 동시에 포함하는 경우, 상기 화합물 중 적어도 하나는 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 50% 내지 70%일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 10으로 표시되는 헤테로 고리 화합물은 하기 화합물 중 선택되는 어느 하나일 수 있다.
Figure PCTKR2022008370-appb-img-000033
Figure PCTKR2022008370-appb-img-000034
Figure PCTKR2022008370-appb-img-000035
Figure PCTKR2022008370-appb-img-000036
Figure PCTKR2022008370-appb-img-000037
Figure PCTKR2022008370-appb-img-000038
또한, 본 발명의 일 실시형태는 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 포함하는 유기 발광 소자의 유기물층용 조성물을 제공한다.
상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자의 유기물층용 조성물 내 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물의 중량비는 1 : 10 내지 10 : 1일 수 있고, 1 : 8 내지 8 : 1일 수 있고, 1 : 5 내지 5 : 1 일 수 있으며, 1 : 2 내지 2 : 1일 수 있으나, 이에만 한정되는 것은 아니다.
상기 유기 발광 소자의 유기물층용 조성물은 유기 발광 소자의 유기물 형성시 이용할 수 있고, 특히, 발광층의 호스트 형성시 보다 바람직하게 이용할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 유기물층은 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 포함하고, 인광 도펀트와 함께 사용할 수 있다.
상기 인광 도펀트 재료로는 당 기술분야에 알려져 있는 것들을 사용할 수 있다. 예컨대, LL'MX', LL'L"M, LMX'X", L2MX' 및 L3M로 표시되는 인광 도펀트 재료를 사용할 수 있으나, 이들 예에 의하여 본 발명의 범위가 한정되는 것은 아니다.
상기 M은 이리듐, 백금, 오스뮴 등이 될 수 있다.
상기 L은 sp2 탄소 및 헤테로 원자에 의하여 상기 M에 배위되는 음이온성 2좌 배위자이고, X는 전자 또는 정공을 트랩하는 기능을 수행할수 있다. L의 비한정적인 예로는 2-(1-나프틸)벤조옥사졸, 2-페닐벤조옥사졸, 2-페닐벤조티아졸, 7,8-벤조퀴놀린, 페닐피리딘, 벤조티오페닐피리딘, 3-메톡시-2-페닐피리딘, 티오페닐피리딘, 톨릴피리딘 등이 있다. X' 및 X"의 비한정적인 예로는 아세틸아세토네이트(acac), 헥사플루오로아세틸아세토네이트, 살리실리덴, 피콜리네이트, 8-히드록시퀴놀리네이트 등이 있다.
상기 인광 도펀트의 구체적인 예를 하기에 표시하나, 이들 예로만 한정되는 것은 아니다.
Figure PCTKR2022008370-appb-img-000039
본 발명의 일 실시형태에 있어서, 상기 유기물층은 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 포함하고, 이리듐계 도펀트와 함께 사용할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 이리듐계 도펀트로는 적색 인광 도펀트로 (piq)2(Ir)(acac) 또는 녹색 인광 도펀트로 Ir(ppy)3 및 적색 인광 도펀트로 (piq)2(Ir)(acac)이 사용될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 도펀트의 함량은 발광층 전체 중량을 기준으로 1% 내지 15%, 바람직하게는 2% 내지 10%, 보다 바람직하게는 3% 내지 7%의 함량을 가질 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 전자 주입층 또는 전자 수송층을 포함하고, 상기 전자 주입층 또는 전자 수송층은 상기 헤테로 고리 화합물을 포함할 수 있다.
본 발명의 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 전자 저지층 또는 정공 저지층을 포함하고, 상기 전자 저지층 또는 정공 저지층은 상기 헤테로 고리 화합물을 포함할 수 있다.
또 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 전자 수송층, 발광층 또는 정공 저지층을 포함하고, 상기 전자 수송층, 발광층 또는 정공 저지층은 상기 헤테로 고리 화합물을 포함할 수 있다.
또 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 헤테로 고리 화합물을 포함할 수 있다.
또 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트 물질을 포함하며, 상기 호스트 물질은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
또 다른 실시형태에 따른 유기 발광 소자에서, 상기 발광층은 2개 이상의 호스트 물질을 포함할 수 있으며, 상기 호스트 물질 중 적어도 1개는 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있으며, 다른 하나는 상기 화학식 6으로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
또 다른 실시형태에 따른 유기 발광 소자에서, 상기 발광층은 2개 이상의 호스트 물질을 예비 혼합(pre-mixed)하여 사용할 수 있으며, 상기 2개 이상의 호스트 물질 중 적어도 1개는 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있으며, 다른 하나는 상기 화학식 6으로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
상기 예비 혼합(pre-mixed)은 상기 발광층은 2개 이상의 호스트 물질을 유기물층에 증착하기 전에 먼저 재료를 섞어서 하나의 공원에 담아 혼합하는 것을 의미한다.
본 발명의 일 실시형태에 따른 유기 발광 소자는 발광층, 정공 주입층, 정공 수송층, 전자 주입층, 전자 수송층, 전자 저지층 및 정공 저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함할 수 있다.
도 1 내지 도 3에 본 발명의 일 실시형태에 따른 유기 발광 소자의 전극과 유기물층의 적층 순서를 예시하였다. 그러나, 이들 도면에 의하여 본 출원의 범위가 한정될 것을 의도한 것은 아니며, 당 기술분야에 알려져 있는 유기 발광 소자의 구조가 본 출원에도 적용될 수 있다.
도 1에 따르면, 기판(100) 상에 양극(200), 유기물층(300) 및 음극(400)이 순차적으로 적층된 유기 발광 소자가 도시된다. 그러나, 이와 같은 구조에만 한정되는 것은 아니고, 도 2와 같이, 기판 상에 음극, 유기물층 및 양극이 순차적으로 적층된 유기 발광 소자가 구현될 수도 있다.
도 3은 유기물층이 다층인 경우를 예시한 것이다. 도 3에 따른 유기 발광 소자는 정공 주입층(301), 정공 수송층(302), 발광층(303), 정공 저지층(304), 전자 수송층(305) 및 전자 주입층(306)을 포함한다. 그러나, 이와 같은 적층 구조에 의하여 본 출원의 범위가 한정되는 것은 아니며, 필요에 따라 발광층을 제외한 나머지 층은 생략될 수도 있고, 필요한 다른 기능층이 더 추가될 수 있다.
본 발명의 일 실시형태에 있어서,
기판을 준비하는 단계;
상기 기판 상에 제1 전극을 형성하는 단계;
상기 제1 전극 상에 1층 이상의 유기물층을 형성하는 단계; 및
상기 1층 이상의 유기물층 상에 제2 전극을 형성하는 단계;를 포함하는 유기 발광 소자의 제조 방법으로서, 상기 1층 이상의 유기물층을 형성하는 단계가 본 발명의 일 실시형태에 따른 유기물층용 조성물을 이용하여 1층 이상의 유기물층을 형성하는 단계를 포함하는 것인 유기 발광 소자의 제조 방법을 제공한다.
본 발명의 일 실시형태에 있어서, 상기 유기물층을 형성하는 단계는 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 예비 혼합(pre-mixed)하고, 열 진공 증착 방법을 이용하여 형성하는 것일 수 있다.
상기 예비 혼합(pre-mixed)은, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 유기물층에 증착하기 전 먼저 재료를 섞어서 하나의 공급원에 담아 혼합하는 것을 의미한다.
예비 혼합된 재료는 본 출원의 일 실시상태에 따른 유기물층용 조성물로 언급될 수 있다.
상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함하는 유기물층은, 필요에 따라 다른 물질을 추가로 포함할수 있다.
상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물을 동시에 포함하는 유기물층은, 필요에 따라 다른 물질을 추가로 포함할 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 또는 상기 화학식 10으로 표시되는 헤테로 고리 화합물 이외의 재료를 하기에 예시하지만, 이들은 예시를 위한 것일 뿐 본 출원의 범위를 한정하기 위한 것은 아니며, 당 기술분야에 공지된 재료들로 대체될 수 있다.
양극 재료로는 비교적 일함수가 큰 재료들을 이용할 수 있으며, 투명 전도성 산화물, 금속 또는 전도성 고분자 등을 사용할 수 있다. 상기 양극 재료의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다.
음극 재료로는 비교적 일함수가 낮은 재료들을 이용할 수 있으며, 금속, 금속 산화물 또는 전도성 고분자 등을 사용할 수 있다. 상기 음극 재료의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이에 한정되는 것은 아니다.
정공 주입층 재료로는 공지된 정공 주입층 재료를 이용할 수도 있는데, 예를 들면, 미국 특허 제4,356,429호에 개시된 구리프탈로시아닌 등의 프탈로시아닌 화합물 또는 문헌 [Advanced Material, 6, p.677 (1994)]에 기재되어 있는 스타버스트형 아민 유도체류, 예컨대 트리스(4-카바조일-9-일페닐)아민(TCTA), 4,4',4"-트리스[페닐(m-톨릴)아미노]트리페닐아민(m-MTDATA), 1,3,5-트리스[4-(3-메틸페닐페닐아미노)페닐]벤젠(m-MTDAPB), 용해성이 있는 전도성 고분자인 폴리아닐린/도데실벤젠술폰산(Polyaniline/Dodecylbenzenesulfonic acid) 또는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), 폴리아닐린/캠퍼술폰산(Polyaniline/Camphor sulfonic acid) 또는 폴리아닐린/폴리(4-스티렌술포네이트)(Polyaniline/Poly(4-styrenesulfonate)) 등을 사용할 수 있다.
정공 수송층 재료로는 피라졸린 유도체, 아릴아민계 유도체, 스틸벤 유도체, 트리페닐디아민 유도체 등이 사용될 수 있으며, 저분자 또는 고분자 재료가 사용될 수도 있다.
전자 수송층 재료로는 옥사디아졸 유도체, 안트라퀴노디메탄 및 이의 유도체, 벤조퀴논 및 이의 유도체, 나프토퀴논 및 이의 유도체, 안트라퀴논 및 이의 유도체, 테트라시아노안트라퀴노디메탄 및 이의 유도체, 플루오레논 유도체, 디페닐디시아노에틸렌 및 이의 유도체, 디페노퀴논 유도체, 8-히드록시퀴놀린 및 이의 유도체의 금속 착체 등이 사용될 수 있으며, 저분자 물질뿐만 아니라 고분자 물질이 사용될 수도 있다.
전자 주입층 재료로는 예를 들어, LiF가 당업계 대표적으로 사용되나, 본 출원이 이에 한정되는 것은 아니다.
발광층 재료로는 적색, 녹색 또는 청색 발광재료가 사용될 수 있으며, 필요한 경우, 2 이상의 발광 재료를 혼합하여 사용할 수 있다. 이 때, 2 이상의 발광 재료를 개별적인 공급원으로 증착하여 사용하거나, 예비 혼합하여 하나의 공급원으로 증착하여 사용할 수 있다. 또한, 발광층 재료로서 형광 재료를 사용할 수도 있으나, 인광 재료를 사용할 수도 있다. 발광층 재료로는 단독으로서 양극과 음극으로부터 각각 주입된 정공과 전자를 결합하여 발광시키는 재료가 사용될 수도 있으나, 호스트 재료와 도펀트 재료가 함께 발광에 관여하는 재료들이 사용될 수도 있다.
발광층 재료의 호스트를 혼합하여 사용하는 경우에는, 동일 계열의 호스트를 혼합하여 사용할 수도 있고, 다른 계열의 호스트를 혼합하여 사용할 수도 있다. 예를 들어, n 타입 호스트 재료 또는 p 타입 호스트 재료 중 어느 두 종류 이상의 재료를 선택하여 발광층의 호스트 재료로 사용할 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 발명의 일 실시형태에 따른 헤테로 고리 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.
<제조예>
제조예 1. 화합물 1-1의 제조
Figure PCTKR2022008370-appb-img-000040
제조예 1-1. 화합물 1-1-1의 제조
4-클로로-2-페닐디벤조[b,d]퓨란(A)(4-chloro-2-phenyldibenxo[b,d]furan) 25.1g(90mM), 11,12-디하이드로인돌로[2,3-a]카바졸(11,12-dihydroindolo[2,3-a]carbazole) 25.6g(100mM), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 4.57g(5mM), 트리-터트-부틸포스핀(Tri-tert-butylphosphine, P(t-Bu)3) 2.02g(10mM) 및 소듐 터트-부톡사이드(Sodium tert-butoxide, NatOBu) 19.22g(200mM)를 톨루엔 250mL에 녹인 후 24시간 동안 환류하였다.
반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고, 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하여 메탄올로 재결정하여 목적 화합물 1-1-1을 31.4g 얻었다.
제조예 1-2. 화합물 1-1의 제조
화합물 1-1-1 31g(62.1mM)을 디메틸포름아마이드(dimethylformamide, DMF) 300mL에 녹인 후, 수소화나트륨(Sodium hydride, NaH) 2.98g(124.2mM)를 천천히 넣어주었다. 1시간 후 2-클로로-4,6-디페닐-1,3,5-트리아진(B)(2-chloro-4,6-diphenyl-1,3,5-triazine) 21.6g(80.7mM)을 넣어 6시간 동안 반응을 진행하였다.
반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하고, 메탄올로 재결정하여 목적 화합물 1-1을 39.5g(수율 87%) 얻었다.
상기 제조예 1에서 4-클로로-2-페닐디벤조[b,d]퓨란(A) 대신 하기 표 1의 화합물 A를 사용하고, 2-클로로-4,6-디페닐-1,3,5-트리아진(B) 대신 하기 표 1의 화합물 B를 사용한 것을 제외하고 제조예 1의 제조와 동일한 방법으로 제조하여 하기 표 1과 같이 목적 화합물을 합성하였다.
Figure PCTKR2022008370-appb-img-000041
Figure PCTKR2022008370-appb-img-000042
Figure PCTKR2022008370-appb-img-000043
Figure PCTKR2022008370-appb-img-000044
Figure PCTKR2022008370-appb-img-000045
Figure PCTKR2022008370-appb-img-000046
Figure PCTKR2022008370-appb-img-000047
Figure PCTKR2022008370-appb-img-000048
Figure PCTKR2022008370-appb-img-000049
Figure PCTKR2022008370-appb-img-000050
Figure PCTKR2022008370-appb-img-000051
Figure PCTKR2022008370-appb-img-000052
Figure PCTKR2022008370-appb-img-000053
Figure PCTKR2022008370-appb-img-000054
Figure PCTKR2022008370-appb-img-000055
Figure PCTKR2022008370-appb-img-000056
Figure PCTKR2022008370-appb-img-000057
제조예 2. 화합물 1-193의 제조
Figure PCTKR2022008370-appb-img-000058
제조예 2-1. 화합물 1-193-1의 제조
4-클로로-2-페닐디벤조[b,d]퓨란(C) 25.1g(90mM), 5,12-디하이드로인돌로[3,2-a]카바졸(5,12-dihydroindolo[3,2-a]carbazole) 25.6g(100mM), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 4.57g(5mM), 트리-터트-부틸포스핀(Tri-tert-butylphosphine, P(t-Bu)3) 2.02g(10mM), 소듐 터트-부톡사이드(Sodium tert-butoxide, NatOBu) 19.22g(200mM)를 톨루엔 250mL에 녹인 후 24시간 환류하였다.
반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고, 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하여 메탄올로 재결정하여 목적 화합물 1-193-1을 34.8g 얻었다.
제조예 2-2. 화합물 1-193의 제조
화합물 1-193-1 34g(68.2mM)을 디메틸포름아마이드(dimethylformamide, DMF) 300mL에 녹인 후, 수소화나트륨(Sodium hydride, NaH) 3.27g(136.4mM)를 천천히 넣어주었다. 1시간 후 2-클로로-4,6-디페닐-1,3,5-트리아진(D)(2-chloro-4,6-diphenyl-1,3,5-triazine) 23.7g(88.7mM)을 넣어 6시간 동안 반응을 진행하였다.
반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하고, 메탄올로 재결정하여 목적 화합물 1-193을 35.9g(수율 72.1%) 얻었다.
상기 제조예 2에서 4-클로로-2-페닐디벤조[b,d]퓨란(C) 대신 하기 표 2의 화합물 C를 사용하고, 2-클로로-4,6-디페닐-1,3,5-트리아진(D) 대신 하기 표 2의 화합물 D를 사용한 것을 제외하고 제조예 2의 제조와 동일한 방법으로 제조하여 하기 표 2와 같이 목적 화합물을 합성하였다.
Figure PCTKR2022008370-appb-img-000059
제조예 3. 화합물 1-205의 제조
Figure PCTKR2022008370-appb-img-000060
제조예 3-1. 화합물 1-205-1의 제조
4-클로로-1-페닐디벤조[b,d]퓨란(E)(4-chloro-1-phenyldibenxo[b,d]furan) 12.6g(50mM), 5,12-디하이드로인돌로[3,2-a]카바졸(5,12-dihydroindolo[3,2-a]carbazole) 12.8g(50mM), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 2.28g(2.5mM), 트리-터트-부틸포스핀(Tri-tert-butylphosphine, P(t-Bu)3) 1.01g(5mM) 및 소듐 터트-부톡사이드(Sodium tert-butoxide, NatOBu) 9.61g(100mM)를 톨루엔 130mL에 녹인 후 24시간 동안 환류하였다.
반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고, 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하여 메탄올로 재결정하여 목적 화합물 1-205-1을 15.4g 얻었다.
제조예 3-2. 화합물 1-205의 제조
화합물 1-205-1 15g(30mM)을 디메틸포름아마이드(dimethylformamide, DMF) 150mL에 녹인 후, 수소화나트륨(Sodium hydride, NaH) 1.44g(60mM)를 천천히 넣어주었다. 1시간 후 2-([1,1'-디페닐]-5-일)-4-클로로-6-페닐-1,3,5-트리아진(F)(2-([1,1'-diphenyl]-5-yl)4-chloro-6-phenyl-1,3,5-trizine) 13.4g(39mM)을 넣어 6시간 동안 반응을 진행하였다.
반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하고, 메탄올로 재결정하여 목적 화합물 1-205을 21.7g(수율 86%) 얻었다.
상기 제조예 3에서 4-클로로-1-페닐디벤조[b,d]퓨란(E) 대신 하기 표 3의 화합물 E를 사용하고, 2-([1,1'-디페닐]-5-일)-4-클로로-6-페닐-1,3,5-트리아진(F) 대신 하기 표 3의 화합물 F를 사용한 것을 제외하고 제조예 3의 제조와 동일한 방법으로 제조하여 하기 표 3과 같이 목적 화합물을 합성하였다.
Figure PCTKR2022008370-appb-img-000061
Figure PCTKR2022008370-appb-img-000062
제조예 4. 화합물 1-221의 제조
Figure PCTKR2022008370-appb-img-000063
제조예 4-1. 화합물 1-221-1의 제조
4-클로로-2-페닐디벤조[b,d]퓨란(G)(4-chloro-1-phenyldibenxo[b,d]furan) 12.6g(50mM), 5,12-디하이드로인돌로[3,2-a]카바졸(5,12-dihydroindolo[3,2-a]carbazole) 12.8g(50mM), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 2.28g(2.5mM), 트리-터트-부틸포스핀(Tri-tert-butylphosphine, P(t-Bu)3) 1.01g(5mM) 및 소듐 터트-부톡사이드(Sodium tert-butoxide, NatOBu) 9.61g(100mM)를 톨루엔 130mL에 녹인 후 24시간 동안 환류하였다.
반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고, 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하여 메탄올로 재결정하여 목적 화합물 1-221-1을 15.4g 얻었다.
제조예 4-2. 화합물 1-221의 제조
화합물 1-221-1 15g(30mM)을 디메틸포름아마이드(dimethylformamide, DMF) 150mL에 녹인 후, 수소화나트륨(Sodium hydride, NaH) 1.44g(60mM)를 천천히 넣어주었다. 1시간 후 2-클로로-4-(디벤조[b,d]티오펜-1-일)-6-페닐-1,3,5-트리아진(H)(2-chloro-4-(dibenzo[b,d]thiophene-1-yl)-6-phenyl-1,3,5-triazine) 13.4g(39mM)을 넣어 6시간 동안 반응을 진행하였다.
반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하고, 메탄올로 재결정하여 목적 화합물 1-221을 21.7g(수율 86%) 얻었다.
상기 제조예 4에서 4-클로로-2-페닐디벤조[b,d]퓨란(G) 대신 하기 표 4의 화합물 G를 사용하고, 2-클로로-4-(디벤조[b,d]티오펜-1-일)-6-페닐-1,3,5-트리아진(H) 대신 하기 표 4의 화합물 H를 사용한 것을 제외하고 제조예 4의 제조와 동일한 방법으로 제조하여 하기 표 4와 같이 목적 화합물을 합성하였다.
Figure PCTKR2022008370-appb-img-000064
Figure PCTKR2022008370-appb-img-000065
제조예 5. 화합물 1-229의 제조
Figure PCTKR2022008370-appb-img-000066
제조예 5-1. 화합물 1-229-2의 제조
11,12-디하이드로인돌로[2,3-a]카바졸(I)(11,12-dihydroindolo[2,3-a]carbazole) 10g(39.0mmol)을 D6-벤젠 1000mL에 넣은 후 트리플릭산(triflic acid, CF3SO3H) 170g(1075mmol)을 넣고 50℃에서 교반하였다.
반응이 완료되면 D2O로 중화한 후, 실온에서 탄산소듐(Na2CO3) 수용액 및 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하여 메탄올로 재결정하여 목적 화합물 1-229-2을 9.9g(수율 95%) 얻었다.
제조예 5-2. 화합물 1-229-1의 제조
4-클로로-2-페닐디벤조[b,d]퓨란(J)(4-chloro-1-phenyldibenxo[b,d]furan) 12.6g(50mM), 11,12-디하이드로인돌로[2,3-a]카바졸-1,2,3,4,5,6,7,8,9,10-d10 (5,12-dihydroindolo[3,2-a]carbazole-1,2,3,4,5,6,7,8,9,10-d10) 9.5g(36mM), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 1.65g(1.8mM), 트리-터트-부틸포스핀(Tri-tert-butylphosphine, P(t-Bu)3) 0.73g(3.6mM) 및 소듐 터트-부톡사이드(Sodium tert-butoxide, NatOBu) 5.96g(62mM)를 톨루엔 120 mL에 녹인 후 24시간 동안 환류하였다.
반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고, 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하여 메탄올로 재결정하여 목적 화합물 1-229-1을 11.1g(수율 61%) 얻었다.
제조예 5-3. 화합물 1-229의 제조
화합물 1-229-1 11g(21.6mM)을 디메틸포름아마이드(dimethylformamide, DMF) 100mL에 녹인 후, 수소화나트륨(Sodium hydride, NaH) 1.04g(43.2mM)를 천천히 넣어주었다. 1시간 후 2-클로로-4,6-디페닐-1,3,5-트리아진(K)(2-chloro-4,6-(diphenyl-1,3,5-triazine) 7.52g(28.1mM)을 넣어 6시간 동안 반응을 진행하였다.
반응이 완결된 후 실온에서 증류수와 디클로로메탄(dichloromethane, DCM)을 넣어 추출하였고 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하고, 메탄올로 재결정하여 목적 화합물 1-229을 12.4g(수율 87%) 얻었다.
상기 제조예 5에서 11,12-디하이드로인돌로[2,3-a]카바졸(I) 대신 하기 표 5의 화합물 I를 사용하고, 4-클로로-2-페닐디벤조[b,d]퓨란(J) 대신 하기 표 5의 화합물 J를 사용하고, 2-클로로-4,6-디페닐-1,3,5-트리아진(K) 대신 하기 표 5의 화합물 K를 사용한 것을 제외하고 제조예 5의 제조와 동일한 방법으로 제조하여 하기 표 5와 같이 목적 화합물을 합성하였다.
Figure PCTKR2022008370-appb-img-000067
Figure PCTKR2022008370-appb-img-000068
Figure PCTKR2022008370-appb-img-000069
Figure PCTKR2022008370-appb-img-000070
Figure PCTKR2022008370-appb-img-000071
상기 제조예 1 내지 제조예 5, 표 1 내지 표 5에 기재된 화합물의 합성 결과를 하기 표 6 및 표 7에 나타내었다. 하기 표 6은 1H NMR(CDCl3, 300MHz)의 측정값이고, 하기 표 7은 FD-질량분석계(FD-MS: Field desorption mass spectrometry)의 측정값이다.
화합물 번호 1H NMR(CDCl3, 300MHz)
1-1 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.98-7.94(m, 3H), 7.79-7.75(m, 3H), 7.65(s, 1H), 7.54-7.31(m, 15H), 7.16(t, 2H)
1-2 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.98-7.94(m, 4H), 7.79(d, 2H), 7.57-7.31(m, 16H), 7.16(t, 2H)
1-3 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.98-7.94(m, 3H), 7.79(d, 2H), 7.64-7.39(m, 17H), 7.16(t, 2H)
1-4 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.98-7.94(m, 3H), 7.71(s, 1H), 7.65(s, 1H), 7.57-7.31(m, 17H), 7.16(t, 2H)
1-5 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 8.02(d, 1H), 7.98-7.94(m, 3H), 7.57-7.31(m, 18H), 7.16(t, 2H),
1-6 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.98-7.94(m, 3H), 7.75-7.72(m, 3H), 7.57-7.35(m, 16H), 7.16(t, 2H)
1-11 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.98-7.94(m, 3H), 7.82-7.79(m, 3H), 7.69(d, 1H), 7.57-7.35(m, 14H), 7.25(d, 1H), 7.16(t, 2H)
1-12 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.98-7.75(m, 8H), 7.57-7.35(13H), 7.25(d, 1H), 7.16(t, 2H)
1-13 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 8.03-7.94(m, 4H), 7.82-7.75(m, 4H), 7.57-7.35(m, 13H), 7.25(d, 1H), 7.16(t, 2H)
1-14 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12-7.94(m, 6H), 7.57-7.35(m, 16H), 7.25(d, 1H), 7.16(t, 2H)
1-15 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12-8.02(m, 3H), 7.94(d, 2H), 7.74(d, 1H), 7.57-7.31(m, 17H), 7.16(t, 2H)
1-17 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.94-7.74(m, 8H), 7.50-7.35(m, 14H), 7.16(t, 2H)
1-21 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.94-7.75(m, 7H), 7.57-7.35(m, 14H), 7.25(d, 1H) 7.16(t, 2H),
1-22 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.94(d, 2H), 7.82-7.79(m, 3H), 7.69(d, 1H), 7.57-7.35(m, 15H), 7.25(d, 1H), 7.16(t, 2H)
1-23 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.98-7.94(m, 3H), 7.79-7.75(m, 3H), 7.65(s, 1H), 7.57-7.25(m, 19H), 7.16(t, 2H)
1-24 δ = 8.55(d, 2H), 8.36(d, 4H), 8.12(d, 1H), 7.98-7.94(m, 4H), 7.79-7.73(m, 4H), 7.57-7.35(m, 18H), 7.16(t, 2H)
1-27 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.94(m, 5H), 7.79-7.75(m, 5H), 7.65(s, 1H), 7.57-7.35(m, 17H), 7.16(t, 2H)
1-33 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.94(m, 4H), 7.82-7.65(m, 6H), 7.57-7.31(m, 16H), 7.16(t, 2H)
1-34 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.94(m, 5H), 7.82-7.79(m, 3H), 7.69(d, 1H), 7.57-7.31(m, 17H), 7.16(t, 2H)
1-35 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.94(m, 4H), 7.82-7.79(m, 3H), 7.57-7.31(m, 19H), 7.16(t, 2H)
1-36 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.94(m, 4H), 7.82(d, 1H), 7.71-7.65(m, 3H), 7.57-7.31(m, 18H), 7.16(t, 2H)
1-37 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 8.02-7.94(m, 5H), 7.82(d, 1H), 7.69(d, 1H), 7.57-7.31(m, 19H), 7.16(t, 2H)
1-38 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.94(m, 4H), 7.82-7.72(m, 5H), 7.59-7.31(m, 17H), 7.16(t, 2H)
1-43 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.94(m, 4H), 7.82-7.79(m, 4H), 7.69(d, 2H), 7.57-7.31(m, 16H), 7.16(t, 2H)
1-44 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.75(m, 11H), 7.57-7.31(m, 15H), 7.16(t, 2H)
1-47 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12-7.94(m, 6H), 7.82(d, 1H), 7.74-7.69(m, 2H), 7.57-7.31(m, 18H), 7.16(t, 2H)
1-48 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.94(m, 4H), 7.82-7.69(m, 7H), 7.61-7.31(m, 15H), 7.16(t, 2H)
1-51 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12-7.94(m, 6H), 7.82(d, 1H), 7.69(d, 1H), 7.57-7.31(m, 19H), 7.16(t, 2H)
1-52 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.94(m, 4H), 7.82-7.69(m, 6H), 7.57-7.25(m, 16H), 7.16(t, 2H)
1-55 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.94(m, 4H), 7.82-7.65(m, 6H), 7.57-7.25(m, 20H), 7.16(t, 2H)
1-56 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.94(m, 5H), 7.82-7.31(m, 25H), 7.16(t, 2H)
1-61 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.75(m, 10H), 7.65(s, 1H), 7.54-7.25(m, 19H), 7.16(t, 2H)
1-62 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.73(m, 12H), 7.65-7.31(m, 18H), 7.16(t, 2H)
1-65 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.94(m, 5H), 7.82-7.75(m, 5H), 7.65(s, 1H), 7.57-7.31(m, 15H), 7.16(t, 2H)
1-66 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.94(m, 5H), 7.82-7.69(m, 6H), 7.57-7.31(m, 15H), 7.16(t, 2H)
1-67 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.94(m, 5H), 7.82-7.75(m, 5H). 7.65(s, 1H), 7.57-7.25(m, 19H), 7.16(t, 2H)
1-68 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.94(m, 6H), 7.82-7.73(m, 6H), 7.57-7.31(m, 18H), 7.16(t, 2H)
1-77 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.93(m, 6H), 7.79-7.65(m, 5H), 7.57-7.31(m, 14H), 7.16(t, 2H)
1-78 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.93(m, 7H), 7.79(d, 2H), 7.68(t, 1H), 7.57-7.31(m, 15H), 7.16(t, 2H)
1-79 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.93(m, 6H), 7.79(d, 2H), 7.68-7.31(m, 17H), 7.16(t, 2H)
1-80 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.93(m, 6H), 7.71-7.65(m, 3H), 7.57-7.31(m, 16H), 7.16(t, 2H)
1-81 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.93(m, 7H), 7.68(t, 1H), 7.57-7.31(m, 17H), 7.16(t, 2H)
1-82 δ =8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.93(m, 6H), 7.75-7.68(m, 4H), 7.59-7.31(m, 15H), 7.16(t, 2H)
1-83 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03(d, 1H), 7.94-7.93(m, 5H), 7.82-7.79(m, 3H), 7.69-7.68(t, 2H), 7.57-7.31(m, 14H), 7.16(t, 2H)
1-84 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03(d, 1H), 7.94-7.68(m, 11H), 7.57-7.31(m, 13H), 7.16(t, 2H)
1-87 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.93(m, 6H), 7.82-7.79(m, 3H), 7.69-7.68(t, 2H), 7.57-7.35(m, 13H), 7.25(d, 1H), 7.16(t, 2H)
1-88 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.68(m, 12H), 7.57-7.35(m, 12H), 7.25(d, 1H), 7.16(t, 2H)
1-91 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12-8.02(m, 4H), 7.94-7.93(m, 4H), 7.68-7.31(m,, 18H), 7.16(t, 2H),
1-92 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03(d, 2H), 7.94-7.93(m, 4H), 7.82-7.31(m, 19H), 7.16(t, 2H)
1-95 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12-8.02(m, 4H), 7.94-7.93(m, 4H), 7.68(t, 1H), 7.57-7.35(m, 16H), 7.25(d, 1H), 7.16(t, 2H)
1-96 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03(d, 2H), 7.94-7.93(m, 4H), 7.82-7.68(m, 5H), 7.57-7.35(m, 13H), 7.25(d, 1H), 7.16(t, 2H)
1-99 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.93(m, 6H), 7.79-7.65(m, 5H), 7.57-7.16(m, 20H).
1-100 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(d, 1H), 8.03-7.93(m, 7H), 7.79-7.35(m, 22H), 7.16(t, 2H)
1-105 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(m, 2H), 7.99-7.92(m, 6H), 7.79-7.75(m, 3H), 7.65(s, 1H), 7.57-7.16(m, 20H)
1-106 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.12(m, 2H), 7.99-7.92(m, 7H), 7.79-7.73(m, 4H), 7.61-7.31(m, 17H), 7.16(t, 2H)
1-109 δ = 8.55(d, 2H), 8.45(d, 1H), 8.36(m, 2H), 8.24-8.20(m, 2H), 8.12(d, 1H), 7.98-7.93(m, 5H), 7.79-7.75(m, 3H), 7.65(s, 1H), 7.57-7.31(m, 14H), 7.16(t, 2H)
1-121 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(m, 1H), 7.98-7.90(m, 4H), 7.79-7.75(m, 4H), 7.65(m, 2H), 7.57-7.28(m, 16H), 7.16(t, 2H), 1.69(s, 6H)
1-122 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.90(m, 5H), 7.79-7.78(m, 3H), 7.65(d, 1H), 7.57-7.28(m, 17H), 7.16(t, 2H), 1.69(s, 6H)
1-123 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.90(m, 4H), 7.79-7.78(m, 3H), 7.57-7.28(m, 19H), 7.16(t, 2H), 1.69(s, 6H)
1-124 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.90(m, 4H), 7.78(d, 1H), 7.71-7.65(m, 3H), 7.57-7.28(m, 18H), 7.16(t, 2H), 1.69(s, 6H)
1-131 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.90(m, 4H), 7.82-7.78(m, 4H), 7.57-7.25(m, 18H), 7.16(t, 2H), 1.69(s, 6H)
1-132 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.75(m, 10H), 7.65(d, 1H), 7.57-7.25(m, 15H), 7.16(t, 2H), 1.69(s, 6H)
1-135 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12-8.02(m, 3H), 7.94-7.90(m, 3H), 7.78-7.74(m, 2H), 7.65-7.28(m, 19H), 7.16(t, 2H), 1.69(s, 6H)
1-136 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 8.03(d, 1H), 7.94-7.90(m, 3H), 7.82-7.74(m, 6H), 7.65-7.31(m, 16H), 7.16(t, 2H). 1.69(s, 6H)
1-141 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.94-7.75(m, 9H), 7.65(d, 1H), 7.57-7.25(m, 16H), 7.16(t, 2H), 1.69(s, 6H)
1-142 δ =8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.94-7.90(m, 3H), 7.82-7.78(m, 4H), 7.57-7.25(m, 19H), 7.16(t, 2H), 1.69(s, 6H)
1-143 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.90(m, 4H), 7.79-7.75(m, 4H), 7.65(m, 2H), 7.57-7.25(m, 20H), 7.16(t, 2H), 1.69(s, 6H)
1-144 δ = 8.55(d, 2H), 8.36(m, 2H), 8.12(d, 1H), 7.98-7.90(m, 5H), 7.78-7.31(m, 25H), 7.16(t, 2H), 1.69(s, 6H)
1-153 δ = 8.55(d, 2H), 8.36(d, 2H), 8.12-8.09(m, 2H), 7.98-7.89(m, 4H), 7.79-7.75(m, 3H), 7.65(s, 1H), 7.55-7.28(m, 15H), 7.16(t, 2H), 1.69(s, 6H)
1-193 δ = 8.55(d, 1H), 8.36(m, 4H), 8.19(d, 1H), 7.98-7.94(m, 4H), 7.79-7.75(m, 3H), 7.65(s, 1H) 7.58-7.31(m, 15H), 7.20-7.16(m, 2H)
1-194 δ = 8.55(d, 1H), 8.36(m, 4H), 8.19(d, 1H), 7.96-7.94(m, 4H), 7.82-7.79(m, 3H), 7.69(d, 1H), 7.58-7.31(m, 15H), 7.20-7.16(m, 2H)
1-195 δ = 8.55(d, 1H), 8.36(m, 4H), 8.19(d, 1H), 8.03-7.94(m, 5H), 7.82-7.75(m, 4H), 7.58-7.35(m, 13H), 7.25-7.16(m, 3H)
1-196 δ = 8.55(d, 1H), 8.36(m, 4H), 8.19(d, 1H), 8.08-7.94(m, 5H), 7.58-7.41(m, 17H), 7.25-7.16(m, 3H),
1-205 δ = 8.55(d, 1H), 8.36(m, 2H), 8.19(d, 1H), 7.98-7.94(m, 5H), 7.79-7.75(m, 4H), 7.58-7.16(m, 22H)
1-206 δ = 8.55(d, 1H), 8.36(m, 2H), 8.19(d, 1H), 7.96-7.75(m, 11H), 7.55-7.16(m, 20H)
1-207 δ = 8.55(d, 1H), 8.36(m, 2H), 8.19(d, 1H), 8.08-7.94(m, 6H), 7.75(d, 2H), 7.58-7.35(m, 18H), 7.25-7.16(m, 5H)
1-208 δ = 8.55(d, 1H), 8.36(m, 2H), 8.19(d, 1H), 8.03-7.94(m, 4H), 7.82-7.75(m, 6H), 7.58-7.35(m, 16H), 7.25-7.16(m, 5H)
1-221 δ = 8.55(d, 1H), 8.45(d, 1H), 8.36(m, 2H), 8.19(d, 1H), 8.03-7.93(m, 5H), 7.79-7.65(m, 5H), 7.58-7.31(m, 16H), 7.20-7.16(m, 2H)
1-222 δ = 8.55(d, 1H), 8.45(d, 1H), 8.36(m, 2H), 8.19(d, 1H), 8.03(d, 1H), 7.94-7.93(m, 4H), 7.82-7.79(m, 3H) 7.69-7.68(m, 2H), 7.58-7.35(m, 16H), 7.20-7.16(m, 2h)
1-223 δ = 8.55(d, 1H), 8.45(d, 1H), 8.36(m, 2H), 8.19(d, 1H), 8.03-7.93(m, 6H), 7.82-7.68(m, 5H), 7.58-7.35(m, 14H), 7.25-7.16(m, 3H)
1-224 δ = 8.55(d, 1H), 8.45(d, 1H), 8.36(m, 2H), 8.19(d, 1H), 8.08-8.02(m, 3H), 7.94-7.93(m, 3H), 7.68(t, 1H), 7.58-7.35(m, 18H), 7.25-7.16(m, 3H)
1-229 δ = 8.36(m, 4H), 7.98(d, 1H), 7.79-7.75(m, 3H), 7.65(s, 1H), 7.54-7.31(m, 12H)
1-230 δ = 8.55(m, 2H), 8.12(d, 1H), 7.94(d, 2H), 7.57(d, 1H), 7.35(t, 2H), 7.16(t, 2H)
1-241 δ = 8.36(m, 4H), 8.02-7.98(m, 2H), 7.54-7.31(m, 15H)
1-242 δ = 8.55(m, 2H), 8.12(d, 1H), 7.94(d, 2H), 7.57(d, 1H), 7.35(t, 2H), 7.16(t, 2H)
1-244 δ = 8.36(m, 4H), 7.98(d, 1H), 7.75-7.72(m, 3H), 7.59-7.31(m, 13H)
1-245 δ = 8.55(m, 2H), 8.12(d, 1H), 7.94(d, 2H), 7.57(d, 1H), 7.35(t, 2H), 7.16(t, 2H)
1-247 δ = 8.36(m, 4H), 7.94(d, 1H), 7.82-7.79(m, 3H), 7.69(d, 1H), 7.57-7.41(m, 11H), 7.31(d, 1H)
1-248 δ = 8.55(m, 2H), 8.12(d, 1H), 7.94(d, 2H), 7.57(d, 1H), 7.35(t, 2H), 7.16(t, 2H)
1-265 δ = 8.36(m, 4H), 8.03-7.98(m, 2H), 7.82-7.75(m, 4H), 7.54-7.41(m, 10H), 7.25(d, 1H)
1-266 δ = 8.55(m, 2H), 8.12(d, 1H), 7.94(d, 2H), 7.57(d, 1H), 7.35(t, 2H), 7.16(t, 2H)
1-268 δ = 8.36(m, 4H), 8.08-7.98(m, 3H), 7.54-7.41(m, 13H), 7.25(d, 1H)
1-269 δ = 8.55(m, 2H), 8.12(d, 1H), 7.94(d, 2H), 7.57(d, 1H), 7.35(t, 2H), 7.16(t, 2H)
1-316 δ = 8.55(m, 2H), 8.12(d, 1H), 7.94(d, 2H), 7.57(d, 1H), 7.35(t, 2H), 7.16(t, 2H)
1-317 δ = 8.36(m, 2H), 8.03-7.98(m, 3H), 7.78-7.69(m, 6H), 7.57-7.25(m, 12H)
1-319 δ = 8.55(m, 2H), 8.12(d, 1H), 7.94(d, 2H), 7.57(d, 1H), 7.35(t, 2H), 7.16(t, 2H)
1-320 δ = 8.36(m, 2H), 7.98-7.96(m, 4H), 7.79-7.75(m, 4H), 7.54-7.25(m, 15H)
1-322 δ = 8.55(d, 1H), 8.19(d, 1H), 7.94(d, 1H), 7.58-7.50(m, 3H), 7.40-7.35(m, 2H), 7.20-7.16(m, 2H)
1-323 δ = 8.55(d, 1H), 8.45(d, 1H), 8.36(m, 2H), 7.98-7.92(m, 3H), 7.71-7.65(m, 3H), 7.56-7.31(m, 13H)
1-325 δ = 8.55(d, 1H), 8.19(d, 1H), 7.94(d, 1H), 7.58-7.50(m, 3H), 7.40-7.35(m, 2H), 7.20-7.16(m, 2H).
1-326 8.36(m, 2H), 7.98(d, 2H), 7.82-7.79(m, 3H), 7.59-7.31(m, 16H)
1-331 9.60(m 1H), 9.27(s, 1H), 8.55(d, 2H), 8.36-8.33(m, 3H), 8.15-8.12(m, 2H), 7.98-7.94(m, 3H), 7.70-7.31(m, 21H), 7.16(t, 2H)
1-332 9.60(m 1H), 9.27(s, 1H), 8.55(d, 2H), 8.36-8.30(m, 4H), 8.15-8.12(m, 2H), 7.98-7.94(m, 4H), 7.70-7.31(m, 21H), 7.16(t, 2H)
1-335 9.27(s, 1H), 8.79(d, 1H), 8.55(d, 2H), 8.45(d, 1H), 8.36-8.30(m, 5H), 8.15-8.06(m, 3H), 7.94-7.93(m, 3H), 7.70-7.35(m, 19H), 7.16(t, 2H)
화합물 번호 FD-MS 화합물 번호 FD-MS
1-1 m/z: 729.25 (C51H31N5O=729.84) 1-2 m/z: 729.25 (C51H31N5O=729.84)
1-3 m/z: 729.25 (C51H31N5O=729.84) 1-4 m/z: 729.25 (C51H31N5O=729.84)
1-5 m/z: 729.25 (C51H31N5O=729.84) 1-6 m/z: 729.25 (C51H31N5O=729.84)
1-11 m/z: 729.25 (C51H31N5O=729.84) 1-12 m/z: 729.25 (C51H31N5O=729.84)
1-13 m/z: 729.25 (C51H31N5O=729.84) 1-14 m/z: 729.25 (C51H31N5O=729.84)
1-15 m/z: 729.25 (C51H31N5O=729.84) 1-17 m/z: 729.25 (C51H31N5O=729.84)
1-21 m/z: 729.25 (C51H31N5O=729.84) 1-22 m/z: 729.25 (C51H31N5O=729.84)
1-23 m/z: 805.28 (C57H35N5O=805.94) 1-24 m/z: 805.28 (C57H35N5O=805.94)
1-27 m/z: 805.28 (C57H35N5O= 805.94) 1-33 m/z: 819.26 (C57H33N5O2=819.92)
1-34 m/z: 819.26 (C57H33N5O2=819.92) 1-35 m/z: 819.26 (C57H33N5O2=819.92)
1-36 m/z: 819.26 (C57H33N5O2=819.92) 1-37 m/z: 819.26 (C57H33N5O2=819.92)
1-38 m/z: 819.26 (C57H33N5O2=819.92) 1-43 m/z: 819.26 (C57H33N5O2=819.92)
1-44 m/z: 819.26 (C57H33N5O2=819.92) 1-47 m/z: 819.26 (C57H33N5O2=819.92)
1-48 m/z: 819.26 (C57H33N5O2=819.92) 1-51 m/z: 819.26 (C57H33N5O2=819.92)
1-52 m/z: 819.26 (C57H33N5O2=819.92) 1-55 m/z: 895.29 (C63H37N5O2=896.02)
1-56 m/z: 895.29 (C63H37N5O2=896.02) 1-61 m/z: 895.29 (C63H37N5O2=896.02)
1-62 m/z: 895.29 (C63H37N5O2=896.02) 1-65 m/z: 819.26 (C57H33N5O2=819.92)
1-66 m/z: 819.26 (C57H33N5O2=819.92) 1-67 m/z: 895.29 (C63H37N5O2=896.02)
1-68 m/z: 895.29 (C63H37N5O2=896.02) 1-77 m/z: 835.24 (C57H33N5OS=835.98)
1-78 m/z: 835.24 (C57H33N5OS=835.98) 1-79 m/z: 835.24 (C57H33N5OS=835.98)
1-80 m/z: 835.24 (C57H33N5OS=835.98) 1-81 m/z: 835.24 (C57H33N5OS=835.98)
1-82 m/z: 835.24 (C57H33N5OS=835.98) 1-83 m/z: 835.24 (C57H33N5OS=835.98)
1-84 m/z: 835.24 (C57H33N5OS=835.98) 1-87 m/z: 835.24 (C57H33N5OS=835.98)
1-88 m/z: 835.24 (C57H33N5OS=835.98) 1-91 m/z: 835.24 (C57H33N5OS=835.98)
1-92 m/z: 835.24 (C57H33N5OS=835.98) 1-95 m/z: 835.24 (C57H33N5OS=835.98)
1-96 m/z: 835.24 (C57H33N5OS=835.98) 1-99 m/z: 911.27 (C63H37N5OS= 912.08)
1-100 m/z: 911.27 (C63H37N5OS= 912.08) 1-105 m/z: 911.27 (C63H37N5OS= 912.08)
1-106 m/z: 911.27 (C63H37N5OS= 912.08) 1-109 m/z: 835.24 (C57H33N5OS= 835.24)
1-121 m/z: 845.32 (C60H39N5O=846.01) 1-122 m/z: 845.32 (C60H39N5O=846.01)
1-123 m/z: 845.32 (C60H39N5O=846.01) 1-124 m/z: 845.32 (C60H39N5O=846.01)
1-131 m/z: 845.32 (C60H39N5O=846.01) 1-132 m/z: 845.32 (C60H39N5O=846.01)
1-135 m/z: 845.32 (C60H39N5O=846.01) 1-136 m/z: 845.32 (C60H39N5O=846.01)
1-141 m/z: 845.32 (C60H39N5O=846.01) 1-142 m/z: 845.32 (C60H39N5O=846.01)
1-143 m/z: 921.35 (C66H43N5O= 922.10) 1-144 m/z: 921.35 (C66H43N5O= 922.10)
1-153 m/z: 845.32 (C60H39N5O= 845.32) 1-193 m/z: 729.25 (C51H31N5O=729.84)
1-194 m/z: 729.25 (C51H31N5O=729.84) 1-195 m/z: 729.25 (C51H31N5O=729.84)
1-196 m/z: 729.25 (C51H31N5O=729.84) 1-205 m/z: 805.28 (C57H35N5O=805.94)
1-206 m/z: 805.28 (C57H35N5O=805.94) 1-207 m/z: 805.28 (C57H35N5O=805.94)
1-208 m/z: 805.28 (C57H35N5O=805.94) 1-221 m/z: 835.24 (C57H33N5OS=835.98)
1-222 m/z: 835.24 (C57H33N5OS=835.98) 1-223 m/z: 835.24 (C57H33N5OS=835.98)
1-224 m/z: 835.24 (C57H33N5OS=835.98) 1-229 m/z: 739.32 (C51H21D10N5O=739.90)
1-230 m/z: 750.38 (C51H10D21N5O=750.97) 1-231 m/z: 760.45 (C51D31N5O=761.03)
1-241 m/z: 739.32 (C51H21D10N5O=739.90) 1-242 m/z: 750.38 (C51H10D21N5O=750.97)
1-243 m/z: 760.45 (C51D31N5O=761.03) 1-244 m/z: 739.32 (C51H21D10N5O=739.90)
1-245 m/z: 750.38 (C51H10D21N5O=750.97) 1-246 m/z: 760.45 (C51D31N5O=761.03)
1-247 m/z: 739.32 (C51H21D10N5O=739.90) 1-248 m/z: 750.38 (C51H10D21N5O=750.97)
1-249 m/z: 760.45 (C51D31N5O=761.03) 1-265 m/z: 739.32 (C51H21D10N5O=739.90)
1-266 m/z: 750.38 (C51H10D21N5O=750.97) 1-267 m/z: 760.45 (C51D31N5O=761.03)
1-268 m/z: 739.32 (C51H21D10N5O=739.90) 1-269 m/z: 750.38 (C51H10D21N5O=750.97)
1-270 m/z: 760.45 (C51D31N5O=761.03) 1-316 m/z: 842.41 (C57H10D23N5O2=843.06)
1-317 m/z: 829.33 (C57H23D10N5O2=829.99) 1-318 m/z: 852.47 (C57D33N5O2=853.13)
1-319 m/z: 830.44 (C57H10D25N5O=831.09) 1-320 m/z: 815.35 (C57H25D10N5O=816.00)
1-321 m/z: 840.50 (C57D35N5O=841.15) 1-322 m/z: 858.38 (C57H10D23N5OS= 859.13)
1-323 m/z: 845.30 (C57H23D10N5OS=846.05) 1-324 m/z: 868.45 (C57D33N5OS=869.19)
1-325 m/z: 842.41 (C57H10D23N5O2=843.06) 1-326 m/z: 829.33 (C57H23D10N5O2s=829.99)
1-327 m/z: 852.47 (C57D33N5O2=853.13) 1-331 m/z: 879.30 (C63H37N5O=880.02)
1-332 m/z: 879.30 (C63H37N5O=880.02) 1-335 m/z: 895.28 (C63H37N5S= 896.08)
제조예 6. 화합물 2-1의 제조
Figure PCTKR2022008370-appb-img-000072
제조예 6-1. 화합물 2-1-1의 제조
반응 플라스크에 3-브로모-9H-카바졸(3-bromo-9H-carbazole) 10g(49.59mmol), 2-브로모벤젠-1-일리움(a)(2-bromobenzene-1-ylium) 24.2g(148.77mmol), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 2.27g(2.48mmol), 트리-터트-부틸포스핀(Tri-tert-butylphosphine, P(t-Bu)3) 2.42mL(9.92mmol) 및 소듐 터트-부톡사이드(Sodium tert-butoxide, NatOBu) 9.53g(99.18mmol)을 넣은 후 톨루엔 100mL을 넣고 135℃에서 15시간 동안 가열하였다. 반응이 종료되면 메틸렌클로라이드(methylene chloride, MC) 및 물로 추출한 후 컬럼크로마토그래피로 정제하여 화합물 2-1-1을 14g(수율 98%) 얻었다.
제조예 6-2. 화합물 2-1의 제조
반응 플라스크에 화합물 2-1-1 14g(43.4mmol), (9-페닐-9H-카보졸-3-일)보론산((9-phenyl-9H-carbazol-3-yl)boronic acid)(b) 14.9g(52mmol), 테트라키스(트리페닐포스핀)팔라듐(0)(tetrakis(triphenylphosphine)palladium(0), Pd(PPh3)4) 2.5g(2.17mmol) 및 탄산칼륨(K2CO3) 17.9g(130mmol)을 넣은 후 1,4-디옥세인(1,4-Dioxane) 140mL 및 증류수 35mL에 첨가하여 120℃에서 4시간 동안 교반하였다.
그 후 상온으로 온도를 낮추어 생성된 고체를 증류수 및 메탄올로 세척하여 화합물 2-1을 17g(수율 80%) 얻었다.
상기 제조예 6에서 2-브로모벤젠-1-일리움(a) 대신 하기 표 8의 화합물 a를 사용하고, (9-페닐-9H-카보졸-3-일)보론산(b) 대신 하기 표 8의 화합물 b를 사용한 것을 제외하고 제조예 6의 제조와 동일한 방법으로 제조하여 하기 표 8과 같이 목적 화합물을 합성하였다.
Figure PCTKR2022008370-appb-img-000073
Figure PCTKR2022008370-appb-img-000074
Figure PCTKR2022008370-appb-img-000075
Figure PCTKR2022008370-appb-img-000076
Figure PCTKR2022008370-appb-img-000077
Figure PCTKR2022008370-appb-img-000078
Figure PCTKR2022008370-appb-img-000079
Figure PCTKR2022008370-appb-img-000080
Figure PCTKR2022008370-appb-img-000081
Figure PCTKR2022008370-appb-img-000082
제조예 7. 화합물 2-61의 제조
Figure PCTKR2022008370-appb-img-000083
제조예 7-1. 화합물 2-61-4의 제조
3-브로모-9H-카바졸(3-bromo-9H-carbazole) 10g(40.23mmol), D6-벤젠(D6-benzene) 1000mL 및 트리플릭산(triflic acid, CF3SO3H) 170g(1075mmol)을 넣고 50℃에서 교반하였다.
반응이 완료되면 D2O로 중화한 후, 실온에서 탄산소듐(Na2CO3) 수용액 및 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하여 메탄올로 재결정하여 목적 화합물 2-61-4을 10g(수율 98%)을 얻었다.
제조예 7-2. 화합물 2-61-3의 제조
화합물 2-61-4 10g(39.5mmol), 브로모벤젠(c)(Bromobenzene) 12.4g(79mmol), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 1.81g(1.98mmol), 트리-터트-부틸포스핀(Tri-tert-butylphosphine, P(t-Bu)3) 1.93mL(7.9mmol), 소듐 터트-부톡사이드(Sodium tert-butoxide, NatOBu) 11.4g(118.51mmol)을 넣은 후 톨루엔 100mL을 넣고 135℃에서 15시간 동안 가열하였다. 반응이 종료되면 메틸렌클로라이드(methylene chloride, MC) 및 물로 추출한 후 컬럼크로마토그래피로 정제하여 화합물 2-61-3을 11g(수율 84%) 얻었다.
제조예 7-3. 화합물 2-61-2의 제조
9H-카바졸-3-일보론산(9H-carbazol-3-ylboronic acid) 10g(47.3mmol), D6-벤젠(D6-benzene) 1000mL 및 트리플릭산(triflic acid, CF3SO3H) 170g(1075mmol)을 넣고 50℃에서 교반하였다.
반응이 완료되면 D2O로 중화한 후, 실온에서 탄산소듐(Na2CO3) 수용액 및 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하여 메탄올로 재결정하여 목적 화합물 2-61-2을 9g(수율 87%) 얻었다.
제조예 7-4. 화합물 2-61-1의 제조
화합물 2-61-2 9g(41.3mmol), 브로모벤젠(d)(Bromobenzene) 12.9g(82.5mmol), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 1.89g(2.06mmol), 트리-터트-부틸포스핀(Tri-tert-butylphosphine, P(t-Bu)3) 2mL(8.25mmol), 소듐 터트-부톡사이드(Sodium tert-butoxide, NatOBu) 7.93g(82.574mmol)을 넣은 후 톨루엔 100mL을 넣고 135℃에서 10시간 동안 가열하였다. 반응이 종료되면 메틸렌클로라이드(methylene chloride, MC) 및 물로 추출한 후 컬럼크로마토그래피로 정제하여 화합물 2-61-1을 10g(수율 82%) 얻었다.
제조예 7-5. 화합물 2-61의 제조
화합물 2-61-3 10g(30.37mmol), 화합물 2-61-1 17.87g(60.75mmol), 테트라키스(트리페닐포스핀)팔라듐(0)(tetrakis(triphenylphosphine)palladium(0), Pd(PPh3)4) 1.39g(1.52mmol) 및 탄산칼륨(K2CO3) 12.59g(91.13mmol)를 넣은 후 1,4-디옥세인(1,4-Dioxane) 140mL 및 증류수 35mL에 첨가하여 120℃에서 4시간 동안 교반하였다.
그 후 상온으로 온도를 낮추어 생성된 고체를 증류수 및 메탄올로 세척하여 화합물 2-61을 13g(수율 85%) 얻었다.
상기 제조예 7에서 브로모벤젠(c) 대신 하기 표 9의 화합물 c를 사용하고, 브로모벤젠(d) 대신 하기 표 9의 화합물 d를 사용한 것을 제외하고 제조예 7의 제조와 동일한 방법으로 제조하여 하기 표 9와 같이 목적 화합물을 합성하였다.
Figure PCTKR2022008370-appb-img-000084
Figure PCTKR2022008370-appb-img-000085
Figure PCTKR2022008370-appb-img-000086
Figure PCTKR2022008370-appb-img-000087
Figure PCTKR2022008370-appb-img-000088
Figure PCTKR2022008370-appb-img-000089
Figure PCTKR2022008370-appb-img-000090
제조예 8. 화합물 2-82의 제조
Figure PCTKR2022008370-appb-img-000091
화합물 2-82-1(화합물 2-32) 10g(15.7mmol), D6-벤젠(D6-benzene) 1000mL 및 트리플릭산(triflic acid, CF3SO3H) 170g(1075mmol)을 넣고 50℃에서 교반하였다.
반응이 완료되면 D2O로 중화한 후, 실온에서 탄산소듐(Na2CO3) 수용액 및 디클로로메탄(dichloromethane, DCM)을 넣고 추출하였고, 유기층은 무수 황산마그네슘(MgSO4)으로 건조시킨 후 회전 증발기로 용매를 제거하였다. 반응물은 컬럼 크로마토그래피(디클로로메탄:헥산=1:2)로 정제하여 메탄올로 재결정하여 목적 화합물 2-82를 10.0g(수율 95%) 얻었다.
상기 제조예 6 내지 제조예 8, 표 8 및 표 9에 기재된 화합물의 합성 결과 및 상기 화학식 10에 해당하는 헤테로 고리 화합물의 합성 결과를 하기 표 10 및 표 11에 나타내었다. 하기 표 10은 1H NMR(CDCl3, 300MHz)의 측정값이고, 하기 표 11은 FD-질량분석계(FD-MS: Field desorption mass spectrometry)의 측정값이다.
화합물 번호 1H NMR(CDCl3, 300MHz)
2-1 δ =8.55(d, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.62-7.50(m, 12H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-2 δ =8.55(d, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 6H), 7.80-7.77(m, 2H), 7.62-7.35(m, 10H), 7.20-7.16(m, 6H)
2-3 δ =8.55(d, 1H), 8.18-8.09(m, 3H), 8.00-7.87(m, 3H), 7.77(s, 2H), 7.58-7.25(m, 18H)
2-4 δ =8.55(d, 1H), 8.18-8.12(m, 2H), 8.00-7.84(m, 3H), 7.79-7.77(m, 4H), 7.68-7.25(m, 22H)
2-5 δ =8.55(d, 1H), 8.30(d, 1H), 8.21-8.13(m, 3H), 7.99-7.89(m, 4H), 7.77-7.35(m, 17H), 7.25-7.16(m, 6H)
2-6 δ =8.55(d, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.94-7.89(m, 8H), 7.77-7.75(m, 3H), 7.62-7.35(m, 11H), 7.25-7.16(m, 6H)
2-7 δ =8.55(d, 1H), 8.18-8.09(m, 4H), 8.00-7.94(m, 2H), 7.87(m, 1H), 7.77(m, 2H), 7.69-7.63(m, 2H), 7.52-7.25(m, 20H)
2-10 δ =8.55(d, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 5H), 7.77(d, 1H), 7.58-7.28(m, 16H), 1.69(s, 6H)
2-16 δ =9.05(s, 1H), 8.55(d, 1H), 8.33-8.13(m, 7H), 7.99-7.89(m, 5H), 7.77-7.50(m, 13H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-19 δ =8.55(d, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 8H), 7.80-7.77(m, 3H), 7.58(d, 1H), 7.50-7.35(m, 6H), 7.20-7.16(m, 10H)
2-20 δ =8.55(d, 1H), 8.30(d, 1H), 8.21-8.13(m, 3H), 7.99-7.89(m, 6H), 7.80-7.35(m, 15H), 7.20-7.16(6H)
2-21 δ =8.55(d, 1H), 8.30(d, 1H), 8.19-8.13(m, 2h), 7.99-7.89(m, 10H), 7.80-7.75(m, 4H), 7.50-7.35(m, 8H), 7.20-7.16(m, 6H)
2-22 δ =8.55(d, 1H), 8.30(d, 1H), 8.21-8.13(m, 3H), 7.99-7.89(m, 6H), 7.80-7.35(m, 15H), 7.25-7.16(10H)
2-23 δ =8.55(d, 1H), 8.30(d, 1H), 8.19-8.13(m, 2h), 7.99-7.89(m, 10H), 7.80-7.75(m, 4H), 7.50-7.35(m, 8H), 7.25-7.16(m, 10H)
2-26 δ =8.55(m, 1H), 8.30(d, 1H), 8.21-8.13(m, 4h), 7.99-7.89(m, 4H), 7.77-7.35(m, 20H), 7.25-7.16(6H)
2-27 δ =8.55(m, 1H), 8.30(d, 1H), 8.21-8.13(m, 4h), 7.99-7.89(m, 4H), 7.77-7.35(m, 20H), 7.20-7.16(2H)
2-28 δ =8.55(m, 1H), 8.18-8.09(m, 3H), 8.00-8.79(m, 2H), 7.87(m, 1H), 7.79-7.77(m, 4H), 7.69-7.63(m, 4H), 7.52-7.25(m, 12H)
2-29 δ =8.55(m, 1H), 8.18-8.09(m, 3H), 8.00-7.94(m, 2H0, 7.87(m, 1H), 7.87(m, 1H), 7.79-7.77(m, 4H), 7.69-7.63(m, 4H), 7.52-7.25(m, 21H)
2-30 δ =8.55(m, 1H), 8.31-8.30(m, 3H), 8.21-8.13(m, 3h), 7.99-7.89(m, 3H), 7.75-7.35(m, 22H), 7.20-7.16(m, 2H)
2-32 δ =8.55(m, 1H), 8.18-8.12(m, 2H), 8.00-7.87(m, 3H), 7.79-7.77(m, 6H), 7.69-7.63(m, 6H), 7.52-7.25(m, 14H)
2-33 δ =8.55(m, 1H), 8.30(d, 1H), 8.21-8.13(m, 3H), 7.99-7.89(m, 8H), 7.77-7.35(m, 17H), 7.25-7.16(6H)
2-34 δ =8.55(m, 1H), 8.18-8.12(m, 2H), 8.00-7.87(m, 3H), 7.79-7.77(m, 6H), 7.67-7.63(m, 6H), 7.52-7.25(m, 18H)
2-38 δ =8.55(m, 1H), 8.18-8.12(m, 2H), 8.05-7.87(m, 6H), 7.79-7.77(m, 4H), 7.69-7.63(m, 4H), 7.52-7.25(m, 23H)
2-40 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 8.03-7.75(m, 15H), 7.58-7.35(m, 9H), 7.25-7.16(m, 6H)
2-41 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-42 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-43 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-45 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-46 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-48 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-49 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-50 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-51 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-52 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-55 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-57 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-60 δ =8.55(m, 1H), 8.30(d, 1H), 8.19-8.13(m, 2H), 7.99-7.89(m, 4H), 7.77(d, 1H), 7.58-7.50(m, 2H), 7.35(t, 1H), 7.20-7.16(m, 2H)
2-61 δ =7.62-7.50(m, 10H)
2-62 δ =7.79(m, 4H), 7.68(m. 4H), 7.52-7.41(m, 10H)
2-63 δ =8.21(s, 1H) 7.75-7.41(m, 13H)
2-64 δ =9.05(s, 1H), 8.33-8.25(m, 4H), 7.94(d, 1H), 7.70-7.50(m, 10H)
2-65 δ =7.79(m, 2H), 7.70-7.68(m, 3H), 7.58-7.41(m, 13H)
2-66 δ =7.92-7.91(m, 4H), 7.75(d, 2H), 7.62-7.41(m, 8H), 7.25(s, 4H)
2-68 δ =8.21(s, 2H), 7.75-7.60(m, 8H), 7.49-7.41(8H)
2-69 δ =8.21(s, 1H), 7.92-7.91(m, 4H), 7.75-7.60(m, 6H), 7.49-7.41(m, 7H)
2-70 δ =8.21(s, 1H), 7.94-7.91(m, 5H), 7.75-7.61(m, 9H), 7.49-7.41(m, 7H)
2-74 δ =7.94-7.91(m, 9H), 7.75-7.73(m, 5H), 7.61(d, 2H), 7.49-7.41(m, 6H)
2-75 δ =7.92-7.91(m, 8H), 7.75(d, 4H), 7.49-7.41(m, 6H), 7.25(s, 4H)
화합물 번호 FD-MS 화합물 번호 FD-MS
2-1 m/z= 484.59(C36H24N2=484.19) 2-2 m/z= 560.69(C42H28N2=560.23)
2-3 m/z= 560.69(C42H28N2=560.23) 2-4 m/z= 560.69(C42H28N2=560.23)
2-5 m/z= 636.78(C48H32N2=636.26) 2-6 m/z= 636.78(C48H32N2=636.26)
2-7 m/z= 636.78(C48H32N2=636.26) 2-8 m/z= 543.65(C40H26N2=543.21)
2-9 m/z= 543.65(C40H26N2=543.21) 2-10 m/z= 600.75(C45H35N2=600.26)
2-11 m/z= 600.75(C45H35N2=600.26) 2-12 m/z= 724.89(C55H36N2=724.29)
2-13 m/z= 724.89(C55H36N2=724.29) 2-14 m/z= 724.89(C55H36N2=724.29)
2-15 m/z= 724.89(C55H36N2=724.29) 2-16 m/z= 634.77(C48H30N2=634.24)
2-17 m/z= 509.60(C37H23N3=509.19) 2-18 m/z= 742.98(C54H38N2Si=742.28)
2-19 m/z= 636.78(C48H32N2=636.26) 2-20 m/z= 636.78(C48H32N2=636.26)
2-21 m/z= 636.78(C48H32N2=636.26) 2-22 m/z= 712.88(C54H36N2=712.29)
2-23 m/z= 712.88(C54H36N2=712.29) 2-24 m/z= 712.88(C54H36N2=712.29)
2-25 m/z= 710.86(C54H34N2=710.27) 2-26 m/z= 712.88(C54H36N2=712.29)
2-27 m/z= 712.88(C54H36N2=712.29) 2-28 m/z= 712.88(C54H36N2=712.29)
2-29 m/z= 712.88(C54H36N2=712.29) 2-30 m/z= 712.88(C54H36N2=712.29)
2-31 m/z= 710.86(C54H34N2=710.27) 2-32 m/z= 636.78(C48H32N2=636.26)
2-33 m/z= 712.88(C54H36N2=712.29) 2-34 m/z= 712.88(C54H36N2=712.29)
2-35 m/z= 788.97(C60H40N2=788.32) 2-36 m/z= 686.84(C52H34N2=686.27)
2-37 m/z= 788.97(C60H40N2=788.32) 2-38 m/z= 788.97(C60H40N2=788.32)
2-39 m/z= 686.84(C52H34N2=686.27) 2-40 m/z= 686.84(C52H34N2=686.27)
2-41 m/z= 494.65(C36H14D10N2=494.26) 2-42 m/z= 654.89(C48H14D18N2=654.37)
2-43 m/z= 574.77(C41H14D14N2=574.31) 2-44 m/z= 650.86(C48H14D16N2=650.34)
2-45 m/z= 654.89(C48H14D18N2=654.37) 2-46 m/z= 654.89(C48H14D18N2=654.37)
2-47 m/z= 654.89(C48H14D18N2=654.37) 2-48 m/z=654.89(C48H14D18N2=654.37)
2-49 m/z= 654.89(C48H14D18N2=654.37) 2-50 m/z: 734.43(C54H14D22N2=735.03)
2-51 m/z= 735.01(C54H14D22N2=734.43) 2-52 m/z= 735.01(C54H14D22N2=734.43)
2-53 m/z= 730.98(C54H14D20N2=730.40) 2-54 m/z= 735.01(C54H14D22N2=734.43)
2-55 m/z=735.01(C54H14D22N2=734.43) 2-56 m/z= 815.13(C60H14D26N2=814.48)
2-57 m/z= 815.13(C60H14D26N2=814.48) 2-58 m/z= 815.13(C60H14D26N2=814.48)
2-59 m/z= 815.13(C60H14D26N2=814.48) 2-60 m/z= 666.86(C48H14D16N2O=666.34)
2-61 m/z= 498.68(C36H10D14N2=498.28) 2-62 m/z= 650.87(C48H18D14N2=650.34)
2-63 m/z= 574.77(C41H14D14N2=574.31) 2-64 m/z= 648.85(C48H16D14N2=648.33)
2-65 m/z= 650.87(C48H18D14N2=650.34) 2-66 m/z= 650.87(C48H18D14N2=650.34)
2-67 m/z= 650.87(C48H18D14N2=650.34) 2-68 m/z= 650.87(C48H18D14N2=650.34)
2-69 m/z= 650.87(C48H18D14N2=650.34) 2-70 m/z=726.38(C54H22D14N2=726.98)
2-71 m/z= 726.96(C54H22D14N2=726.38) 2-72 m/z= 726.96(C54H22D14N2=726.38)
2-73 m/z= 724.95(C54H20D14N2=724.36) 2-74 m/z= 726.96(C54H22D14N2=726.38)
2-75 m/z= 726.96(C54H22D14N2=726.38) 2-76 m/z= 803.06(C60H26D14N2=802.41)
2-77 m/z= 803.06(C60H26D14N2=802.41) 2-78 m/z= 803.06(C60H26D14N2=802.41)
2-79 m/z= 803.06(C60H26D14N2=802.41) 2-80 m/z= 803.06(C60H26D14N2=802.41)
2-81 m/z= 508.74(C36D24N2=508.34) 2-82 m/z= 668.98(C48D32N2=668.46)
2-83 m/z= 588.86(C42D28N2=588.40) 2-84 m/z= 664.95(C48D30N2=664.43)
2-85 m/z= 668.98(C48D32N2=668.46) 2-86 m/z= 668.98(C48D32N2=668.46)
2-87 m/z= 668.98(C48D32N2=668.46) 2-88 m/z= 668.98(C48D32N2=668.46)
2-89 m/z= 668.98(C48D32N2=668.46) 2-90 m/z= 748.518(C54D36N2=749.12)
2-91 m/z= 749.10(C54D36N2=748.51) 2-92 m/z= 749.10(C54D36N2=748.51)
2-93 m/z= 745.07(C54D34N2=744.49) 2-94 m/z= 749.10(C54D36N2=748.51)
2-95 m/z= 749.10(C54D36N2=748.51) 2-96 m/z= 829.22(C60D40N2=828.57)
2-97 m/z= 829.22(C60D40N2=828.57) 2-98 m/z= 829.22(C60D40N2=828.57)
2-99 m/z= 829.22(C60D40N2=828.57) 2-100 m/z= 680.95(C48D30N2O=680.42)
2-101 m/z= 697.02(C48D30N2S=696.40) 2-102 m/z= 829.22(C60D40N2=828.57)
2-103 m/z= 632.95(C45D32N2=632.46) 2-104 m/z= 713.07(C51D36N2=712.51)
실험예 1.
실험예 1-1. 유기 발광 소자의 제작
1,500Å의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올 및 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO(Ultraviolet Ozone)처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
이어서 챔버 내의 진공도가 10-6 torr에 도달할 때까지 배기시킨 후, 셀에 전류를 인가하여 4,4',4''-트리스[2-나프틸(페닐)아미노] 트리페닐아민(4,4',4''-Tris[2-naphthyl(phenyl)amino] triphenylamine), 2-TNATA)를 증발시켜 ITO 기판 상에 600Å의 두께로 정공 주입층을 증착하였다. 진공 증착 장비 내의 다른 셀에 하기 N,N'-비스(α-나프틸)-N,N'-디페닐-4,4'-디아민(N,N'-bis(α-naphthyl)-N,N'-diphenyl-4,4'-diamine: NPB)을 넣고, 셀에 전류를 인가하여 증발시켜 정공 주입층 위에 300Å의 두께로 정공 수송층을 증착하였다.
Figure PCTKR2022008370-appb-img-000092
Figure PCTKR2022008370-appb-img-000093
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 녹색 호스트로 하기 표 12에 기재된 화합물을 증착하였고, 녹색 인광 도펀트로 Ir(ppy)3 (tris(2-phenylpyridine)iridium)을 사용하였으며 호스트에 Ir(ppy)3를 7% 도핑하여 400Å의 두께로 증착하였다. 이후 정공 저지층으로 BCP를 60Å의 두께로 증착하였으며, 그 위에 전자 수송층으로 Alq3를 200Å의 두께로 증착하였다. 마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å의 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al)을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
Figure PCTKR2022008370-appb-img-000094
Figure PCTKR2022008370-appb-img-000095
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-6~10-8torr 하에서 진공 승화 정제하여 OLED(Organic Light Emitting Device) 제작에 사용하였다.
실험예 1-2. 유기 발광 소자의 구동 전압 및 발광 효율
상기와 같이 제작된 유기 발광 소자에 대하여 맥사이어스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명장비측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, T90을 측정하였다. 본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색좌표(CIE) 및 수명을 측정한 결과를 하기 표 12에 나타내었다.
상기 T90은 초기 휘도 대비 90%가 되는 시간인 수명(단위: 시간)을 의미한다.
화합물 구동전압
(V)
발광 효율
(cd/A)
색좌표(CIE)
(x, y)
수명
(T90)
비교예 1 Ref. 1 5.60 40.7 (0.246, 0.717) 31
비교예 2 Ref. 2 5.55 42.4 (0.254, 0.716) 40
비교예 3 Ref. 3 5.15 48.1 (0.254, 0.711) 45
비교예 4 Ref. 4 5.04 51.2 (0.236, 0.699) 51
비교예 5 Ref. 5 5.17 47.5 (0.246, 0.696) 44
비교예 6 Ref. 6 5.06 52.3 (0.251, 0.683) 52
비교예 7 Ref. 7 5.05 50.5 (0.239, 0.725) 50
비교예 8 Ref. 8 5.14 51.1 (0.243, 0.712) 49
비교예 9 Ref. 9 5.42 43.3 (0.230, 0.690) 33
비교예 10 Ref. 10 5.48 42.7 (0.242, 0.719) 35
비교예 11 Ref. 11 5.52 40.9 (0.249, 0.713) 38
비교예 12 Ref. 12 5.35 45.5 (0.239, 0.711) 31
비교예 13 Ref. 13 5.10 53.3 (0.242, 0.712) 49
비교예 14 Ref. 14 5.12 51.8 (0.239, 0.715) 44
비교예 15 Ref. 15 5.42 45.1 (0.245, 0.721) 37
비교예 16 Ref. 16 5.44 46.7 (0.244, 0.719) 33
비교예 17 Ref. 17 5.01 35.1 (0.239, 0.711) 52
비교예 18 Ref. 18 5.13 33.7 (0.233, 0.715) 56
비교예 19 Ref. 19 5.05 37.6 (0.243, 0.722) 55
비교예 20 Ref. 20 5.09 30.9 (0.242, 0.725) 51
비교예 21 Ref. 21 5.03 52.3 (0.238, 0.712) 75
비교예 22 Ref. 22 4.99 53.1 (0.238, 0.711) 66
비교예 23 Ref. 23 5.43 39.3 (0.241, 0.711) 59
비교예 24 Ref. 24 5.32 41.7 (0.241, 0.712) 48
실시예 1 1-1 4.77 78.0 (0.238, 0.711) 170
실시예 2 1-2 4.45 72.5 (0.241, 0.712) 182
실시예 3 1-3 4.56 69.1 (0.238, 0.711) 179
실시예 4 1-4 4.57 81.2 (0.239, 0.714) 165
실시예 5 1-5 4.41 57.2 (0.245, 0.715) 250
실시예 6 1-6 4.60 72.5 (0.241, 0.713) 177
실시예 7 1-11 4.23 62.1 (0.243, 0.714) 205
실시예 8 1-12 4.47 71.8 (0.239, 0.713) 189
실시예 9 1-13 4.29 66.2 (0.241, 0.712) 234
실시예 10 1-14 4.58 72.9 (0.241, 0.715) 197
실시예 11 1-15 4.75 84.4 (0.242, 0.712) 155
실시예 12 1-17 4.71 70.5 (0.245, 0.711) 157
실시예 13 1-21 4.53 74.5 (0.241, 0.716) 203
실시예 14 1-22 4.31 60.9 (0.238, 0.715) 221
실시예 15 1-23 4.59 85.0 (0.238, 0.713) 143
실시예 16 1-24 4.65 79.9 (0.241, 0.711) 149
실시예 17 1-27 4.60 80.1 (0.240, 0.714) 185
실시예 18 1-33 4.69 81.1 (0.239, 0.714) 155
실시예 19 1-34 4.57 74.7 (0.245, 0.713) 183
실시예 20 1-35 4.45 69.8 (0.244, 0.712) 201
실시예 21 1-36 4.75 80.4 (0.241, 0.711) 161
실시예 22 1-37 4.38 69.1 (0.241, 0.715) 240
실시예 23 1-38 4.51 71.9 (0.239, 0.721) 201
실시예 24 1-43 4.27 65.0 (0.241, 0.711) 252
실시예 25 1-44 4.60 76.3 (0.238, 0.725) 199
실시예 26 1-47 4.78 83.2 (0.238, 0.714) 138
실시예 27 1-48 4.73 75.9 (0.239, 0.712) 170
실시예 28 1-51 4.52 73.5 (0.240, 0.711) 202
실시예 29 1-52 4.23 59.6 (0.241, 0.715) 219
실시예 30 1-55 4.61 82.1 (0.241, 0.716) 162
실시예 31 1-56 4.59 78.8 (0.240, 0.711) 166
실시예 32 1-61 4.52 70.9 (0.243, 0.711) 169
실시예 33 1-62 4.64 81.0 (0.242, 0.714) 157
실시예 34 1-65 4.75 77.9 (0.245, 0.720) 153
실시예 35 1-66 4.71 70.8 (0.239, 0.719) 161
실시예 36 1-67 4.52 84.5 (0.238, 0.714) 166
실시예 37 1-68 4.58 81.9 (0.241, 0.713) 159
실시예 38 1-77 4.71 71.1 (0.241, 0.713) 149
실시예 39 1-78 4.55 78.0 (0.239, 0.714) 201
실시예 40 1-79 4.53 74.7 (0.238, 0.717) 198
실시예 41 1-80 4.62 80.2 (0.245, 0.715) 141
실시예 42 1-81 4.24 62.9 (0.245, 0.717) 228
실시예 43 1-82 4.48 71.8 (0.239, 0.716) 174
실시예 44 1-83 4.73 83.3 (0.241, 0.712) 157
실시예 45 1-84 4.70 75.6 (0.240, 0.712) 159
실시예 46 1-87 4.29 67.7 (0.243, 0.713) 217
실시예 47 1-88 4.57 69.9 (0.242, 0.715) 178
실시예 48 1-91 4.60 81.4 (0.241, 0.711) 142
실시예 49 1-92 4.73 82.1 (0.239, 0.711) 148
실시예 50 1-95 4.57 74.5 (0.241, 0.712) 195
실시예 51 1-96 4.25 68.6 (0.241, 0.717) 234
실시예 52 1-99 4.50 72.6 (0.242, 0.718) 155
실시예 53 1-100 4.57 76.7 (0.243, 0.715) 153
실시예 54 1-105 4.73 71.8 (0.241, 0.711) 161
실시예 55 1-106 4.75 80.6 (0.248, 0.712) 158
실시예 56 1-109 4.58 77.2 (0.240, 0.714) 177
실시예 57 1-121 4.52 83.4 (0.244, 0.713) 144
실시예 58 1-122 4.60 77.4 (0.238, 0.713) 171
실시예 59 1-123 4.58 72.9 (0.241, 0.711) 178
실시예 60 1-124 4.71 85.0 (0.244, 0.714) 149
실시예 61 1-131 4.27 59.9 (0.241, 0.713) 235
실시예 62 1-132 4.45 65.5 (0.242, 0.712) 204
실시예 63 1-135 4.59 80.8 (0.243, 0.711) 154
실시예 64 1-136 4.51 70.9 (0.241, 0.711) 159
실시예 65 1-141 4.49 72.2 (0.239, 0.714) 188
실시예 66 1-142 4.23 61.8 (0.238, 0.714) 235
실시예 67 1-143 4.51 83.4 (0.241, 0.715) 161
실시예 68 1-144 4.73 81.1 (0.241, 0.718) 163
실시예 69 1-153 4.63 80.1 (0.240, 0.714) 181
실시예 70 1-193 4.83 71.5 (0.243, 0.715) 164
실시예 71 1-194 4.68 70.7 (0.242, 0.716) 166
실시예 72 1-195 4.62 58.8 (0.243, 0.715) 244
실시예 73 1-196 4.71 69.5 (0.242, 0.716) 196
실시예 74 1-205 4.69 72.5 (0.242, 0.715) 188
실시예 75 1-206 4.63 70.1 (0.243, 0.713) 143
실시예 76 1-207 4.57 73.2 (0.242, 0.714) 199
실시예 77 1-208 4.40 59.9 (0.244, 0.716) 257
실시예 78 1-221 4.71 73.3 (0.243, 0.715) 160
실시예 79 1-222 4.77 75.1 (0.242, 0.712) 145
실시예 80 1-223 4.45 68.1 (0.245, 0.712) 207
실시예 81 1-224 4.59 67.9 (0.244, 0.715) 180
실시예 82 1-229 4.75 72.5 (0.236, 0.711) 183
실시예 83 1-230 4.77 77.9 (0.237, 0.712) 175
실시예 84 1-231 4.77 80.5 (0.238, 0.712) 188
실시예 85 1-241 4.40 57.2 (0.245, 0.715) 256
실시예 86 1-242 4.41 56.8 (0.243, 0.715) 250
실시예 87 1-243 4.40 57.5 (0.245, 0.715) 259
실시예 88 1-244 4.61 72.5 (0.241, 0.713) 181
실시예 89 1-245 4.60 71.8 (0.240, 0.713) 170
실시예 90 1-246 4.62 73.1 (0.242, 0.713) 183
실시예 91 1-247 4.75 84.6 (0.241, 0.712) 158
실시예 92 1-248 4.77 85.4 (0.242, 0.712) 150
실시예 93 1-249 4.74 83.1 (0.243, 0.713) 153
실시예 94 1-265 4.29 67.2 (0.242, 0.712) 245
실시예 95 1-266 4.30 66.8 (0.241, 0.712) 233
실시예 96 1-267 4.29 66.5 (0.241, 0.712) 241
실시예 97 1-268 4.57 69.5 (0.240, 0.715) 188
실시예 98 1-269 4.57 70.9 (0.241, 0.715) 199
실시예 99 1-270 4.58 71.1 (0.240, 0.714) 197
실시예 100 1-316 4.62 59.9 (0.242, 0.713) 249
실시예 101 1-317 4.62 60.5 (0.243, 0.713) 257
실시예 102 1-318 4.63 61.8 (0.242, 0.715) 262
실시예 103 1-319 4.69 71.7 (0.241, 0.714) 180
실시예 104 1-320 4.69 75.9 (0.241, 0.715) 189
실시예 105 1-321 4.68 73.8 (0.241, 0.715) 190
실시예 106 1-322 4.61 69.5 (0.243, 0.713) 143
실시예 107 1-323 4.60 70.1 (0.243, 0.713) 143
실시예 108 1-324 4.61 70.1 (0.243, 0.713) 143
실시예 109 1-325 4.57 70.1 (0.243, 0.715) 190
실시예 110 1-326 4.56 71.5 (0.243, 0.715) 188
실시예 111 1-327 4.56 70.6 (0.244, 0.715) 195
실시예 112 1-331 4.65 82.0 (0.240, 0.712) 170
실시예 113 1-332 4.52 77.0 (0.240, 0.713) 193
실시예 114 1-335 4.23 61.5 (0.241, 0.712) 235
[비교 화합물 Ref. 1 내지 Ref. 24]
Figure PCTKR2022008370-appb-img-000096
상기 표 12의 결과,
본 발명의 헤테로 고리 화합물은 발광 효율, 특히 수명 특성이 우수함을 확인할 수 있었다.
재료의 상용화를 위해서는 장수명 특성은 가장 중요한 요소이다. 본 발명의 헤테로 고리 화합물은 공명구조의 확장으로 호모 자리(HOMO site)의 비편재화율을 높여 전자를 효과적으로 안정화시켜줄 수 있다. 또한, 본 발명의 헤테로 고리 화합물은 sub-donor로 작용하여 트리아진이 인돌로카바졸로부터 효과적으로 전자를 잡아당기게 하여 전자를 안정화시키고 그에 따라 수명이 향상되는 것으로 판단된다.
반면, 비교예 1 내지 16는 호모 자리(HOMO site)가 인돌로카바졸과 아릴기까지만 편재화되어 전자를 효과적으로 안정화시키지 못하고 이로 인해 수명이 저하됨을 확인할 수 있었다.
또한, 본 발명의 헤테로 고리 화합물은 분자 내 입체장애로 치환기간의 회전할 수 있는 영역이 감소하여, 바닥상태에서 들뜬 상태간 유사한 기하학(Geometry)을 형성함에 따라 발광 효율을 증가시킬 수 있다.
그러나 약한 입체장애를 가진 비교예 17 내지 24의 화합물은 바닥상태에서 들뜬 상태가 될 때, 다양한 기하학(Geometry)을 형성하고, 다양한 경로 발생으로 에너지가 손실되어 발광 효율이 감소한 것을 확인할 수 있었다.
또한, 일반적으로 수소로 결합된 화합물과 중수소로 치환된 화합물은 열역할적인 거동에서 차이를 보인다. 이러한 이유는 중수소 원자의 질량이 수소에 비해 2배 크기 때문인 것으로, 원자의 질량 차이로 인해 중수소의 경우 더 낮은 진동에너지를 갖는 특징이 있다. 또한, 탄소와 중수소의 결합 길이는 수소와의 결합에 비해 더 짧고 결합을 끊는데 사용되는 해리 에너지(Dissociation energy)도 더 강하다. 왜냐하면 중수소의 반데르발스 반경이 수소보다 작아 탄소-중수소 사이 결합의 신장 진폭이 더 좁아지기 때문이다.
중수소로 치환된 본 발명의 화합물은 중수소로 치환되지 않은 화합물과 비교할 때, 탄소-중수소의 결합길이가 탄소-수소의 결합길이 보다 짧음에 따라 발생하는 분자간 반데르발스 힘의 약화로 인해 더 높은 발광효율을 가질 수 있다. 또한 제로포인트 에너지(Zero Point Energy) 즉, 바닥상태의 에너지가 낮아지며, 탄소-중수소의 결합길이가 짧아짐에 따라, 분자 중심 부피(Molecular hardcore volume)가 줄어들고, 이에 따라 전기적 극성화도(Electronical polarizability)를 줄일 수 있으며, 분자간 상호작용(Intermolecular interaction)을 약하게 함으로써, 박막 부피를 증가시킬 수 있다. 이러한 특성은 박막의 비결정성(Amorphous) 상태를 만들어 결정화도를 낮추는 효과를 유도한다. 결론적으로 중수소 치환은 OLED 소자 내열성 향상에 효과적일 수 있으며, 이로 인해 소자의 수명과 구동특성이 개선될 수 있다. 또한, 중수소 치환에 따른 소자 특성 향상효과는 분자 내 중수소 치환율이 증가함에 따라 개선된다.
실험예 2.
실험예 2-1. 유기 발광 소자의 제작
1,500Å의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올 및 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO(Ultraviolet Ozone)처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
이어서 챔버 내의 진공도가 10-6 torr에 도달할 때까지 배기시킨 후, 셀에 전류를 인가하여 4,4',4''-트리스[2-나프틸(페닐)아미노] 트리페닐아민(4,4',4''-Tris[2-naphthyl(phenyl)amino] triphenylamine), 2-TNATA)를 증발시켜 ITO 기판 상에 600Å의 두께로 정공 주입층을 증착하였다. 진공 증착 장비 내의 다른 셀에 하기 N,N'-비스(α-나프틸)-N,N'-디페닐-4,4'-디아민(N,N'-bis(α-naphthyl)-N,N'-diphenyl-4,4'-diamine: NPB)을 넣고, 셀에 전류를 인가하여 증발시켜 정공 주입층 위에 300Å의 두께로 정공 수송층을 증착하였다.
Figure PCTKR2022008370-appb-img-000097
Figure PCTKR2022008370-appb-img-000098
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 녹색 호스트로 하기 표 13에 기재된 2종의 화합물을 예비 혼합 후 하나의 공급원에서 증착하였고, 녹색 인광 도펀트로 Ir(ppy)3을 사용하여 호스트에 Ir(ppy)3을 발광층 증착 두께의 7%가 되도록 도핑하여 400Å의 두께로 증착하였다. 이후 정공 저지층으로 BCP를 60Å의 두께로 증착하였으며, 그 위에 전자 수송층으로 Alq3를 200Å의 두께로 증착하였다. 마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å의 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al)을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
Figure PCTKR2022008370-appb-img-000099
Figure PCTKR2022008370-appb-img-000100
Figure PCTKR2022008370-appb-img-000101
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-6~10-8torr 하에서 진공 승화 정제하여 OLED(Organic Light Emitting Device) 제작에 사용하였다.
실험예 2-2. 유기 발광 소자의 구동 전압 및 발광 효율
상기와 같이 제작된 유기 발광 소자에 대하여 맥사이어스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명장비측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, T90을 측정하였다. 본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색좌표(CIE) 및 수명을 측정한 결과를 하기 표 13에 나타내었다.
화합물 1
(N타입)
화합물 2
(P타입)
비율
(N/P)
구동전압
(V)
발광효율
(cd/A)
색좌표
(x, y)
수명
(T90)
비교예 25 Ref. 1 2-3 1 : 1 5.10 44.7 (0.245, 0.716) 48
비교예 26 Ref. 1 2-3 1 : 2 5.16 46.5 (0.245, 0.717) 51
비교예 27 Ref. 1 2-3 1 : 3 5.21 47.1 (0.246, 0.717) 55
비교예 28 Ref. 3 2-32 1 : 1 4.61 50.4 (0.253, 0.711) 77
비교예 29 Ref. 3 2-32 1 : 2 4.69 52.9 (0.254, 0.711) 81
비교예 30 Ref. 3 2-32 1 : 3 4.73 56.1 (0.254, 0.711) 88
비교예 31 Ref. 6 2-88 1 : 1 4.49 49.4 (0.251, 0.683) 64
비교예 32 Ref. 6 2-88 1 : 2 4.58 52.5 (0.251, 0.683) 73
비교예 33 Ref. 6 2-88 1 : 3 4.63 57.1 (0.251, 0.683) 77
비교예 34 Ref. 11 2-85 1 : 1 4.97 41.5 (0.249, 0.713) 48
비교예 35 Ref. 11 2-85 1 : 2 5.06 44.8 (0.249, 0.713) 55
비교예 36 Ref. 11 2-85 1 : 3 5.11 46.1 (0.249, 0.713) 59
비교예 37 Ref. 17 2-32 1 : 1 4.57 37.2 (0.239, 0.711) 85
비교예 38 Ref. 17 2-32 1 : 2 4.62 40.6 (0.239, 0.711) 91
비교예 39 Ref. 17 2-32 1 : 3 4.67 41.7 (0.239, 0.711) 98
비교예 40 Ref. 19 2-100 1 : 1 4.55 39.8 (0.243, 0.722) 81
비교예 41 Ref. 19 2-100 1 : 2 4.61 40.7 (0.243, 0.722) 85
비교예 42 Ref. 19 2-100 1 : 3 4.68 42.3 (0.243, 0.722) 88
실시예 115 1-1 2-3 1 : 1 4.17 82.9 (0.238, 0.711) 293
실시예 116 1-1 2-3 1 : 2 4.30 88.3 (0.238, 0.711) 309
실시예 117 1-1 2-3 1 : 3 4.35 92.6 (0.238, 0.711) 317
실시예 118 1-1 2-83 1 : 1 4.09 84.2 (0.238, 0.711) 365
실시예 119 1-1 2-83 1 : 2 4.19 89.4 (0.238, 0.711) 383
실시예 120 1-1 2-83 1 : 3 4.25 93.8 (0.238, 0.711) 420
실시예 121 1-3 2-89 1 : 1 3.91 80.1 (0.235, 0.711) 375
실시예 122 1-3 2-89 1 : 2 4.05 84.8 (0.238, 0.711) 401
실시예 123 1-3 2-89 1 : 3 4.20 88.3 (0.238, 0.711) 432
실시예 124 1-11 2-32 1 : 1 3.80 71.6 (0.242, 0.714) 350
실시예 125 1-11 2-32 1 : 2 3.84 74.7 (0.242, 0.714) 362
실시예 126 1-11 2-32 1 : 3 3.92 77.8 (0.242, 0.714) 369
실시예 127 1-11 2-100 1 : 1 3.67 73.6 (0.243, 0.714) 444
실시예 128 1-11 2-100 1 : 2 3.73 76.0 (0.243, 0.714) 462
실시예 129 1-11 2-100 1 : 3 3.80 80.6 (0.243, 0.714) 481
실시예 130 1-12 2-100 1 : 1 3.95 82.3 (0.239, 0.713) 370
실시예 131 1-12 2-100 1 : 2 4.01 86.9 (0.239, 0.713) 399
실시예 132 1-12 2-100 1 : 3 4.15 89.2 (0.239, 0.713) 406
실시예 133 1-13 2-32 1 : 1 3.79 76.6 (0.240, 0.712) 404
실시예 134 1-13 2-32 1 : 2 3.85 80.4 (0.240, 0.712) 416
실시예 135 1-13 2-32 1 : 3 3.97 86.8 (0.241, 0.712) 425
실시예 136 1-13 2-85 1 : 1 3.66 78.3 (0.240, 0.712) 467
실시예 137 1-13 2-85 1 : 2 3.73 83.2 (0.240, 0.712) 507
실시예 138 1-13 2-85 1 : 3 3.89 88.9 (0.241, 0.712) 526
실시예 139 1-23 2-82 1 : 1 4.07 92.3 (0.238, 0.714) 282
실시예 140 1-23 2-82 1 : 2 4.16 97.6 (0.239, 0.714) 313
실시예 141 1-23 2-82 1 : 3 4.33 101.8 (0.239, 0.714) 342
실시예 142 1-27 2-3 1 : 1 4.10 92.4 (0.240, 0.714) 226
실시예 143 1-27 2-3 1 : 2 4.20 95.6 (0.240, 0.714) 232
실시예 144 1-27 2-3 1 : 3 4.26 98.7 (0.240, 0.714) 246
실시예 145 1-27 2-83 1 : 1 3.98 93.5 (0.240, 0.714) 307
실시예 146 1-27 2-83 1 : 2 4.09 97.1 (0.240, 0.714) 319
실시예 147 1-27 2-83 1 : 3 4.14 99.4 (0.240, 0.714) 342
실시예 148 1-33 2-83 1 : 1 4.17 87.9 (0.240, 0.714) 306
실시예 149 1-33 2-83 1 : 2 4.24 93.0 (0.240, 0.714) 349
실시예 150 1-33 2-83 1 : 3 4.39 99.8 (0.240, 0.714) 369
실시예 151 1-35 2-89 1 : 1 3.89 77.7 (0.244, 0.712) 480
실시예 152 1-35 2-89 1 : 2 3.96 82.6 (0.244, 0.712) 501
실시예 153 1-35 2-89 1 : 3 4.11 87.9 (0.244, 0.712) 527
실시예 154 1-43 2-100 1 : 1 3.68 69.3 (0.241, 0.711) 526
실시예 155 1-43 2-100 1 : 2 3.79 75.1 (0.241, 0.711) 555
실시예 156 1-43 2-100 1 : 3 3.92 82.3 (0.241, 0.711) 565
실시예 157 1-44 2-100 1 : 1 4.12 85.1 (0.239, 0.721) 375
실시예 158 1-44 2-100 1 : 2 4.19 89.7 (0.239, 0.721) 391
실시예 159 1-44 2-100 1 : 3 4.35 92.5 (0.239, 0.721) 433
실시예 160 1-65 2-83 1 : 1 3.90 85.7 (0.241, 0.720) 309
실시예 161 1-65 2-83 1 : 2 4.04 91.4 (0.241, 0.720) 325
실시예 162 1-65 2-83 1 : 3 4.15 96.5 (0.241, 0.720) 346
실시예 163 1-79 2-89 1 : 1 4.03 82.9 (0.238, 0.717) 397
실시예 164 1-79 2-89 1 : 2 4.13 87.7 (0.238, 0.717) 424
실시예 165 1-79 2-89 1 : 3 4.26 89.7 (0.238, 0.717) 445
실시예 166 1-109 2-3 1 : 1 3.94 84.8 (0.241, 0.720) 249
실시예 167 1-109 2-3 1 : 2 4.02 89.5 (0.241, 0.720) 268
실시예 168 1-109 2-3 1 : 3 4.15 95.3 (0.241, 0.720) 279
실시예 169 1-109 2-83 1 : 1 3.82 87.0 (0.241, 0.720) 319
실시예 170 1-109 2-83 1 : 2 3.91 92.7 (0.241, 0.720) 332
실시예 171 1-109 2-83 1 : 3 4.10 98.9 (0.241, 0.720) 351
실시예 172 1-141 2-82 1 : 1 4.01 78.7 (0.239, 0.714) 364
실시예 173 1-141 2-82 1 : 2 4.11 82.4 (0.239, 0.714) 388
실시예 174 1-141 2-82 1 : 3 4.24 87.3 (0.239, 0.714) 406
실시예 175 1-142 2-82 1 : 1 3.76 71.8 (0.238, 0.714) 486
실시예 176 1-142 2-82 1 : 2 3.82 77.1 (0.238, 0.714) 497
실시예 177 1-142 2-82 1 : 3 3.90 84.4 (0.238, 0.714) 534
실시예 178 1-153 2-83 1 : 1 3.99 95.7 (0.239, 0.714) 318
실시예 179 1-153 2-83 1 : 2 4.06 99.3 (0.239, 0.714) 330
실시예 180 1-153 2-83 1 : 3 4.19 101.6 (0.239, 0.714) 351
실시예 181 1-193 2-82 1 : 1 4.35 79.3 (0.243, 0.715) 313
실시예 182 1-193 2-82 1 : 2 4.42 85.4 (0.243, 0.715) 328
실시예 183 1-193 2-82 1 : 3 4.51 88.3 (0.243, 0.715) 319
실시예 184 1-195 2-82 1 : 1 4.16 64.7 (0.244, 0.715) 451
실시예 185 1-195 2-82 1 : 2 4.33 66.3 (0.244, 0.715) 460
실시예 186 1-195 2-82 1 : 3 4.45 69.6 (0.244, 0.715) 477
실시예 187 1-208 2-88 1 : 1 3.95 64.6 (0.244, 0.716) 474
실시예 188 1-208 2-88 1 : 2 4.11 66.4 (0.244, 0.716) 501
실시예 189 1-208 2-88 1 : 3 4.17 70.5 (0.244, 0.716) 519
실시예 190 1-222 2-82 1 : 1 4.29 82.6 (0.242, 0.712) 271
실시예 191 1-222 2-82 1 : 2 4.40 87.9 (0.242, 0.712) 298
실시예 192 1-222 2-82 1 : 3 4.50 89.3 (0.242, 0.712) 304
실시예 193 1-229 2-83 1 : 1 3.90 93.0 (0.238, 0.711) 411
실시예 194 1-229 2-83 1 : 2 3.92 91.6 (0.238, 0.711) 421
실시예 195 1-229 2-83 1 : 3 3.97 100.4 (0.238, 0.711) 448
실시예 196 1-230 2-83 1 : 1 3.79 93.6 (0.238, 0.711) 421
실시예 197 1-230 2-83 1 : 2 3.92 98.3 (0.238, 0.711) 435
실시예 198 1-230 2-83 1 : 3 3.93 101.5 (0.238, 0.711) 456
실시예 199 1-231 2-83 1 : 1 3.77 95.4 (0.238, 0.711) 432
실시예 200 1-231 2-83 1 : 2 3.91 99.1 (0.238, 0.711) 445
실시예 201 1-231 2-83 1 : 3 3.92 103.0 (0.238, 0.711) 465
실시예 202 1-265 2-85 1 : 1 3.36 89.0 (0.240, 0.712) 509
실시예 203 1-265 2-85 1 : 2 3.41 91.7 (0.240, 0.712) 535
실시예 204 1-265 2-85 1 : 3 3.48 96.4 (0.241, 0.712) 556
실시예 205 1-266 2-85 1 : 1 3.36 88.4 (0.240, 0.712) 505
실시예 206 1-266 2-85 1 : 2 3.40 93.9 (0.240, 0.712) 541
실시예 207 1-266 2-85 1 : 3 3.48 95.2 (0.241, 0.712) 564
실시예 208 1-267 2-85 1 : 1 3.34 89.0 (0.240, 0.712) 519
실시예 209 1-267 2-85 1 : 2 3.38 89.9 (0.240, 0.712) 561
실시예 210 1-267 2-85 1 : 3 3.44 95.6 (0.241, 0.712) 571
실시예 211 1-331 2-88 1 : 1 4.06 88.8 (0.240, 0.712) 382
실시예 212 1-331 2-88 1 : 2 4.20 91.7 (0.240, 0.712) 385
실시예 213 1-331 2-88 1 : 3 4.26 93.6 (0.240, 0.712) 409
실시예 214 1-332 2-88 1 : 1 4.04 84.7 (0.240, 0.713) 388
실시예 215 1-332 2-88 1 : 2 4.08 87.3 (0.240, 0.713) 406
실시예 216 1-332 2-88 1 : 3 4.16 94.2 (0.240, 0.713) 426
[비교 화합물]
Figure PCTKR2022008370-appb-img-000102
상기 표 13의 결과에서, 화합물 1(화학식 1로 표시되는 헤테로 고리 화합물) 및 화합물 2(화학식 10으로 표시되는 헤테로 고리 화합물)을 동시에 포함하는 경우 더 우수한 효율 및 수명 효과를 보였다. 상기 결과로부터 두 화합물을 동시에 포함하는 경우 엑시플렉스(Exciplex)현상이 일어남을 예상할 수 있다.
상기 엑시플렉스(exciplex) 현상은 두 분자간 전자 교환으로 도너(Donor, P-type 호스트)의 호모레벨(HOMO levels) 및 억셉터(Acceptor, N-type 호스트)의 루모레벨(LUMO level) 크기의 에너지를 방출하는 현상이다. 두 분자간 엑시플렉스(exciplex) 현상이 일어나면 Reverse Intersystem Crossing(RISC)이 일어나고, 이로 인해 형광 내부양자 효율이 100%까지 올라갈 수 있다.
정공 수송 능력이 좋은 도너(donor)(p-host)와 전자 수송 능력이 좋은 억셉터(acceptor)(n-host)가 발광층의 호스트로 사용될 경우 정공은 p-host로 주입되고, 전자는 n-host로 주입되기 때문에 구동 전압을 낮출 수 있고, 그로 인해 수명 향상에 도움을 줄 수 있다.
본 발명에서는 도너 역할을 상기 화학식 10으로 표시되는 헤테로 고리 화합물, 억셉터 역할을 상기 화학식 1로 표시되는 헤테로 고리 화합물이 발광층 호스트로 사용되었을 경우에 보다 우수한 소자 특성을 나타냄을 확인할 수 있었다.
[부호의 설명]
100 : 기판
200: 양극
300: 유기물층
301: 정공 주입층
302: 정공 수송층
303: 발광층
304: 정공 저지층
305: 전자 수송층
306: 전자 주입층
400: 음극

Claims (16)

  1. 하기 화학식 1로 표시되는 헤테로 고리 화합물:
    [화학식 1]
    Figure PCTKR2022008370-appb-img-000103
    상기 화학식 1에 있어서,
    상기 R1 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    상기 X는 S; O; CRaRb; 또는 NRc이며,
    상기 n은 0 내지 3의 정수이며, n이 2 이상일 경우, R15는 서로 같거나 상이하고,
    상기 Ra 내지 Rc는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R201R202; -SiR201R202R203; 및 -NR201R202로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R201, R202 및 R203은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    상기 R11 내지 R15 중 적어도 하나는 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 2 내지 5 중 어느 하나로 표시되는, 헤테로 고리 화합물:
    [화학식 2]
    Figure PCTKR2022008370-appb-img-000104
    [화학식 3]
    Figure PCTKR2022008370-appb-img-000105
    [화학식 4]
    Figure PCTKR2022008370-appb-img-000106
    [화학식 5]
    Figure PCTKR2022008370-appb-img-000107
    상기 화학식 2 내지 5에 있어서,
    상기 R1 내지 R15, Ar1, Ar2, X 및 n의 정의는 상기 화학식 1의 정의와 동일하다.
  3. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 6 내지 9 중 어느 하나로 표시되는, 헤테로 고리 화합물:
    [화학식 6]
    Figure PCTKR2022008370-appb-img-000108
    [화학식 7]
    Figure PCTKR2022008370-appb-img-000109
    [화학식 8]
    Figure PCTKR2022008370-appb-img-000110
    [화학식 9]
    Figure PCTKR2022008370-appb-img-000111
    상기 화학식 6 내지 9에 있어서,
    상기 R1 내지 R15, Ar1, Ar2, X 및 n의 정의는 상기 화학식 1의 정의와 동일하다.
  4. 제1항에 있어서,
    상기 R11 내지 R14 중 적어도 하나가 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기인 경우, 상기 R15는 수소; 또는 중수소이고,
    상기 R11 내지 R14가 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소인 경우, 상기 n은 1 이상이며, R15 중 적어도 하나는 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기인, 헤테로 고리 화합물.
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 치환기로서 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%인, 헤테로 고리 화합물.
  6. 제1항에 있어서,
    상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는, 헤테로 고리 화합물:
    Figure PCTKR2022008370-appb-img-000112
    Figure PCTKR2022008370-appb-img-000113
    Figure PCTKR2022008370-appb-img-000114
    Figure PCTKR2022008370-appb-img-000115
    Figure PCTKR2022008370-appb-img-000116
    Figure PCTKR2022008370-appb-img-000117
    Figure PCTKR2022008370-appb-img-000118
    Figure PCTKR2022008370-appb-img-000119
    Figure PCTKR2022008370-appb-img-000120
    Figure PCTKR2022008370-appb-img-000121
    Figure PCTKR2022008370-appb-img-000122
    Figure PCTKR2022008370-appb-img-000123
    Figure PCTKR2022008370-appb-img-000124
    Figure PCTKR2022008370-appb-img-000125
    Figure PCTKR2022008370-appb-img-000126
    Figure PCTKR2022008370-appb-img-000127
    Figure PCTKR2022008370-appb-img-000128
    .
  7. 제1 전극;
    상기 제1 전극과 대향하여 구비된 제2 전극; 및
    상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층;을 포함하는 유기 발광 소자로서,
    상기 유기물층 중 1 층 이상은 제1항 내지 제6항 중 어느 한 항에 따른 헤테로 고리 화합물을 포함하는 것인, 유기 발광 소자.
  8. 제7항에 있어서,
    상기 유기물층은 발광층을 포함하고,
    상기 발광층은 상기 헤테로 고리 화합물을 포함하는 것인, 유기 발광 소자.
  9. 제7항에 있어서,
    상기 유기물층은 발광층을 포함하고,
    상기 발광층은 호스트 물질을 포함하며,
    상기 호스트 물질은 상기 헤테로 고리 화합물을 포함하는 것인, 유기 발광 소자.
  10. 제7항에 있어서,
    상기 유기물층은 하기 화학식 10으로 표시되는 헤테로 고리 화합물을 추가로 포함하는, 유기 발광 소자:
    [화학식 10]
    Figure PCTKR2022008370-appb-img-000129
    상기 화학식 10에 있어서,
    상기 R21 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R301R302; -SiR301R302R303; 및 -NR301R302로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R301, R302 및 R303은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    상기 Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
  11. 제10항에 있어서,
    상기 화학식 10으로 표시되는 헤테로 고리 화합물이 치환기로서 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%인, 유기 발광 소자.
  12. 제10항에 있어서,
    싱기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 10으로 표시되는 헤테로 고리 화합물 중 적어도 하나는 치환기로서 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100% 이하인, 유기 발광 소자.
  13. 제10항에 있어서,
    상기 화학식 10으로 표시되는 헤테로 고리 화합물은 하기 화합물 중 선택되는 어느 하나인, 유기 발광 소자:
    Figure PCTKR2022008370-appb-img-000130
    Figure PCTKR2022008370-appb-img-000131
    Figure PCTKR2022008370-appb-img-000132
    Figure PCTKR2022008370-appb-img-000133
    Figure PCTKR2022008370-appb-img-000134
    Figure PCTKR2022008370-appb-img-000135
    .
  14. 제7항에 있어서,
    상기 유기 발광 소자는 발광층, 정공 주입층, 정공 수송층, 전자 주입층, 전자 수송층, 전자 저지층 및 정공 저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함하는, 유기 발광 소자.
  15. 제1항 내지 제6항 중 어느 한 항에 따른 헤테로 고리 화합물 및 하기 화학식 10으로 표시되는 헤테로 고리 화합물을 포함하는, 유기 발광 소자의 유기물층용 조성물:
    [화학식 10]
    Figure PCTKR2022008370-appb-img-000136
    상기 화학식 10에 있어서,
    상기 R21 내지 R34는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R301R302; -SiR301R302R303; 및 -NR301R302로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R301, R302 및 R303은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이며,
    상기 Ar3 및 Ar4는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이이다.
  16. 제15항에 있어서,
    상기 화학식 1로 표시되는 헤테로 고리 화합물: 상기 화학식 10으로 표시되는 헤테로 고리 화합물의 중량비가 1:10 내지 10:1인, 유기 발광 소자의 유기물층용 조성물.
PCT/KR2022/008370 2021-07-13 2022-06-14 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물 WO2023287026A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280035421.0A CN117355530A (zh) 2021-07-13 2022-06-14 杂环化合物、包括其的有机发光元件以及有机层的组成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210091450A KR20230010978A (ko) 2021-07-13 2021-07-13 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
KR10-2021-0091450 2021-07-13

Publications (1)

Publication Number Publication Date
WO2023287026A1 true WO2023287026A1 (ko) 2023-01-19

Family

ID=84919486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008370 WO2023287026A1 (ko) 2021-07-13 2022-06-14 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물

Country Status (4)

Country Link
KR (1) KR20230010978A (ko)
CN (1) CN117355530A (ko)
TW (1) TW202317575A (ko)
WO (1) WO2023287026A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230145832A (ko) * 2022-04-11 2023-10-18 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
KR20160069934A (ko) * 2014-12-09 2016-06-17 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
KR20190055122A (ko) * 2016-09-30 2019-05-22 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
KR20210058691A (ko) * 2019-11-14 2021-05-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20210062771A (ko) * 2019-11-21 2021-06-01 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN113004287A (zh) * 2021-02-09 2021-06-22 陕西莱特光电材料股份有限公司 含氮化合物、有机电致发光器件和电子装置
KR20210091450A (ko) 2020-01-14 2021-07-22 계명대학교 산학협력단 섬쑥부쟁이 추출물을 포함하는 간 보호용 조성물
CN113501823A (zh) * 2021-04-01 2021-10-15 陕西莱特光电材料股份有限公司 主体材料组合物和有机电致发光器件及电子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
KR20160069934A (ko) * 2014-12-09 2016-06-17 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
KR20190055122A (ko) * 2016-09-30 2019-05-22 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
KR20210058691A (ko) * 2019-11-14 2021-05-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20210062771A (ko) * 2019-11-21 2021-06-01 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20210091450A (ko) 2020-01-14 2021-07-22 계명대학교 산학협력단 섬쑥부쟁이 추출물을 포함하는 간 보호용 조성물
CN113004287A (zh) * 2021-02-09 2021-06-22 陕西莱特光电材料股份有限公司 含氮化合物、有机电致发光器件和电子装置
CN113501823A (zh) * 2021-04-01 2021-10-15 陕西莱特光电材料股份有限公司 主体材料组合物和有机电致发光器件及电子装置

Also Published As

Publication number Publication date
CN117355530A (zh) 2024-01-05
TW202317575A (zh) 2023-05-01
KR20230010978A (ko) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2019245262A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2022065761A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물
WO2022025515A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2022092625A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조방법
WO2022035097A1 (ko) 유기 발광 소자 및 유기물층 형성용 조성물
WO2017018795A2 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2021091259A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2020122576A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2015034140A1 (ko) 피라졸 함유 다환고리 화합물 및 이를 이용한 유기발광소자
WO2020138959A1 (ko) 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2021071247A1 (ko) 유기 발광 소자, 이의 제조 방법 및 유기 발광 소자의 유기물층용 조성물
WO2016137068A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021034039A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022270741A1 (ko) 헤테로고리 화합물, 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물
WO2020138961A1 (ko) 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2022131547A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
WO2021215742A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2021132982A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2023287026A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물
WO2020096421A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019245264A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2022244983A1 (ko) 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022250228A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022119116A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2021101220A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842289

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18285401

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280035421.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22842289

Country of ref document: EP

Kind code of ref document: A1