WO2023286702A1 - 偏光素子、偏光板、及び画像表示装置 - Google Patents

偏光素子、偏光板、及び画像表示装置 Download PDF

Info

Publication number
WO2023286702A1
WO2023286702A1 PCT/JP2022/027067 JP2022027067W WO2023286702A1 WO 2023286702 A1 WO2023286702 A1 WO 2023286702A1 JP 2022027067 W JP2022027067 W JP 2022027067W WO 2023286702 A1 WO2023286702 A1 WO 2023286702A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing
polarizing element
polarizing plate
layer
image display
Prior art date
Application number
PCT/JP2022/027067
Other languages
English (en)
French (fr)
Inventor
裕史 太田
慎也 萩原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280048989.6A priority Critical patent/CN117677873A/zh
Priority to KR1020247004225A priority patent/KR20240035512A/ko
Publication of WO2023286702A1 publication Critical patent/WO2023286702A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1276Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives water-based adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/02Homopolymers or copolymers of unsaturated alcohols
    • C09J129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a polarizing element, a polarizing plate provided with the polarizing element, and an image display device provided with the polarizing plate.
  • Liquid crystal display devices are widely used not only for liquid crystal televisions, but also for personal computers, mobile phones such as mobile phones, and in-vehicle applications such as car navigation systems.
  • a liquid crystal display device has a liquid crystal panel member in which polarizing plates are attached to both sides of a liquid crystal cell using an adhesive, and display is performed by controlling light from a backlight member with the liquid crystal panel member.
  • organic electroluminescence (EL) display devices have been widely used for mobile applications such as televisions and mobile phones, and vehicle applications such as car navigation systems.
  • EL organic electroluminescence
  • a circular polarizing plate (a polarizing element and a ⁇ /4 plates) may be arranged.
  • polarizing plates are increasingly being mounted on vehicles as components of liquid crystal display devices and organic EL display devices.
  • polarizing plates used in vehicle-mounted image display devices are often exposed to high-temperature environments, and their characteristics change at higher temperatures. Smallness (high temperature durability) is required.
  • a front transparent plate such as a transparent resin plate or a glass plate (“window layer ”, etc.) may be provided.
  • the touch panel may be provided on the viewer side of the polarizing plate included in the image display panel, and the front transparent plate may be provided on the viewer side of the touch panel.
  • an image display device if there is an air layer between the image display panel and a transparent member such as a front transparent plate or a touch panel, reflection of external light occurs due to light reflection at the interface with the air layer, resulting in poor screen visibility. tends to decrease. Therefore, the space between the polarizing plate and the transparent member constituting the viewing side surface of the image display panel is filled with a layer other than the air layer, usually a solid layer (hereinafter sometimes referred to as "interlayer filler"). In some cases, a configuration in which a material having a refractive index close to that of the polarizing plate and/or the transparent member is filled may be adopted. As the interlayer filler, a pressure-sensitive adhesive or a UV-curable adhesive is used to suppress deterioration in visibility due to light reflection at the interface with the air layer and to adhere and fix the members (for example, Patent Document 1).
  • An increasing number of image display devices having a structure filled with an interlayer filler as described above are being used for mobile applications such as mobile phones, which are often used outdoors.
  • a front transparent plate is placed on the image display panel surface, and an adhesive layer or the like is provided between the image display panel and the front transparent plate for in-vehicle applications such as car navigation devices.
  • Employing a filled configuration is being considered.
  • Patent Document 2 when an image display device having a structure filled with an interlayer filler is left in an environment at a temperature of 95° C. for, for example, 200 hours, a significant decrease in transmittance is observed in the in-plane central portion of the polarizing plate. It is disclosed that a single polarizing plate does not exhibit a significant decrease in transmittance even after being left in an environment at a temperature of 95° C. for 1000 hours. From these results, in Patent Document 2, the significant decrease in the transmittance of the polarizing plate in an environment at a temperature of 95 ° C. is due to the fact that one surface of the polarizing plate is attached to the image display cell, and the other surface is a touch panel or a transparent front surface. It is considered that this problem is peculiar to the case where an image display device that employs a configuration in which a transparent member such as a plate is laminated is exposed to an environment at a temperature of 95°C.
  • the water content per unit area of the polarizing plate is set to a predetermined amount or less, and further, the saturated water absorption amount of the transparent protective film laminated adjacent to the polarizing element is set to a predetermined amount or less. It discloses that it is possible to suppress the decrease in the transmittance of the polarizing plate under the environment.
  • the luminosity correction single transmittance It is an object of the present invention to provide a polarizing element capable of satisfactorily suppressing a decrease in , a polarizing plate provided with the polarizing element, and an image display apparatus provided with the polarizing plate.
  • the present invention provides the following polarizing element, polarizing plate, and image display device.
  • a polarizing element in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin layer Of the three regions divided by dividing the polarizing element into three equal parts in the thickness direction, when the staining degree of the region with the highest staining degree is S1 and the staining degree of the region with the lowest staining degree is S2, A polarizing element that satisfies the relationship of the following formula (1). 0 ⁇ S2/S1 ⁇ 0.95 (1)
  • the polarizing element according to [1] wherein the region with the lowest degree of staining among the three regions is the region located at the center in the thickness direction.
  • the polarizing element contains boron, The polarizing element according to [1] or [2], wherein the content of boron in the polarizing element is 4.0% by mass or more and 8.0% by mass or less.
  • a polarizing plate comprising the polarizing element of any one of [1] to [4] and a transparent protective film.
  • [6] further comprising an adhesive layer for bonding the polarizing element and the transparent protective film;
  • the polarizing plate of [5] wherein the adhesive layer is a layer obtained by curing a water-based adhesive.
  • the water-based adhesive contains methanol, The polarizing plate according to [6], wherein the content of the methanol in the water-based adhesive is 10% by mass or more and 70% by mass or less. [8] The polarizing plate of [6] or [7], wherein the water-based adhesive further contains a polyvinyl alcohol-based resin. [9] The polarizing plate according to any one of [6] to [8], wherein the adhesive layer has a thickness of 0.01 ⁇ m or more and 7 ⁇ m or less.
  • the polarizing plate is used in an image display device, The polarizing plate according to any one of [5] to [9], wherein in the image display device, solid layers are provided on both sides of the polarizing plate so as to be in contact with each other.
  • the method according to [11] further comprising a second adhesive layer laminated on the viewer-side surface of the polarizing plate, and a transparent member laminated on the viewer-side surface of the second adhesive layer.
  • Image display device [13] The image display device according to [12], wherein the transparent member is a glass plate or a transparent resin plate.
  • a polarizing element capable of satisfactorily suppressing a decrease in luminosity correction single transmittance even when exposed to a high-temperature environment as a member constituting an image display device having an interlayer filling structure,
  • a polarizing plate having a polarizing element and an image display device having the polarizing plate can be provided.
  • FIG. 1 is a schematic cross-sectional view schematically showing a polarizing element according to an embodiment of the invention
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing which shows typically the polarizing plate which concerns on one Embodiment of this invention.
  • (a) and (b) are explanatory diagrams for explaining the procedure for measuring the degree of staining.
  • FIG. 4 is an explanatory diagram for explaining a method of calculating an integrated intensity distribution from a Raman spectrum;
  • FIG. 1 is a schematic cross-sectional view schematically showing a polarizing element according to this embodiment.
  • the polarizing element 1 is an absorptive polarizing film having a property of absorbing linearly polarized light having a plane of vibration parallel to its absorption axis and transmitting linearly polarized light having a plane of vibration perpendicular to the absorption axis (parallel to the transmission axis). is.
  • the polarizing element 1 has a polyvinyl alcohol-based resin layer (hereinafter sometimes referred to as a "PVA-based resin layer”) with a dichroic dye adsorbed and oriented.
  • the polarizing element 1 may be a one-layer polarizing layer in which a dichroic dye is adsorbed and oriented on a PVA-based resin layer, or may have a multilayer structure in which two or three or more of the polarizing layers are laminated. good.
  • two or more polarizing layers included in the polarizing element 1 may be laminated via a bonding layer.
  • the polarizing element 1 has three regions 11 to 13 divided by dividing the polarizing element 1 into three equal parts in the thickness direction 100, and the staining degree of the region with the highest staining degree is S1 and the staining intensity of the region with the lowest staining intensity is S2, the relationship of the following formula (1) is satisfied. 0 ⁇ S2/S1 ⁇ 0.95 (1)
  • the three regions 11 to 13 of the polarizing element 1 are regions arranged along the thickness direction 100 of the polarizing element 1, as shown in FIG. Of the three regions 11 to 13, regions 11 and 13 are regions located on the surface side in the thickness direction 100 of the polarizing element 1, and region 12 is a region located in the center of the polarizing element 1 in the thickness direction 100. .
  • S2/S1 in formula (1) is preferably 0.90 or less, more preferably 0.85 or less, still more preferably 0.75 or less, and may be 0.1 or more. , 0.3 or more.
  • the polarizing element 1 satisfactorily suppresses a decrease in the luminosity correction single transmittance Ty (hereinafter sometimes referred to as "transmittance Ty") in a high-temperature environment. can be done.
  • the reason for this is considered as follows. It is presumed that the dichroic dye contained in the polarizing element 1 accelerates a reaction in which the polyvinyl alcohol-based resin (hereinafter sometimes referred to as "PVA-based resin”) constituting the PVA-based resin layer undergoes dehydration to form polyene. .
  • the transmittance Ty of the polarizing element is likely to decrease.
  • a region with a low degree of staining in the polarizing element 1 is considered to indicate that the amount of the dichroic dye present in that region is small. Therefore, when the polarizing element 1 has a region with a small degree of dyeing so as to satisfy the relationship of the above formula (1), it is possible to satisfactorily suppress polyene formation of the PVA-based resin in a high-temperature environment. It is considered that a decrease in the transmittance Ty can be suppressed.
  • the polarizing element 1 that satisfies the relationship of formula (1) also suppresses a decrease in the visibility correction polarization degree Py (hereinafter sometimes referred to as “polarization degree Py”) and a decrease in the hue ab in a high-temperature environment. can.
  • the region having the degree of staining S1 (the region with the highest degree of staining) may be any of the regions 11 to 13, but among the regions 11 and 13 located on the surface of the polarizing element 1 in the thickness direction 100 is preferably at least one of
  • the region having the degree of staining S2 (the region with the lowest degree of staining) may be any of the regions 11 to 13, but is preferably the region 12 located in the center in the thickness direction 100 of the polarizing element 1. . It is considered that polyene formation of the PVA-based resin tends to proceed from the central portion of the polarizing element 1 in the thickness direction 100 . Therefore, it is presumed that the area having the degree of staining S2 is the area 12 located at the center in the thickness direction 100, so that polyene formation of the PVA-based resin constituting the polarizing element 1 can be easily suppressed efficiently.
  • the degree of staining can be measured by the following procedures [i] to [iv], and more specifically by the method described in Examples below.
  • [i] A Raman spectrum is obtained at each measurement point set at a pitch of 1 ⁇ m in the thickness direction 100 of the polarizing element 1 .
  • [ii] Calculate the integrated intensity in the wave number range of 80 cm ⁇ 1 to 180 cm ⁇ 1 of the obtained Raman spectrum.
  • [iii] An integrated intensity distribution is obtained by plotting the calculated integrated intensity against the position in the thickness direction 100 of the polarizing element 1 .
  • the integrated area obtained for each of the three regions divided by dividing the polarizing element 1 into three equal parts in the thickness direction 100 is obtained, and these are used as the staining degrees of each region. .
  • polarizing element 1 As a method for obtaining the polarizing element 1 that satisfies the relationship of formula (1), two or more polarizing layers with different dyeing degrees are prepared, and these polarizing layers are laminated via a bonding layer; A method of preparing a multi-layered PVA-based resin layer having two or more layers with different degree of degree of saponification and manufacturing the polarizing element 1 using this layer; A method of making the device 1 can be mentioned.
  • the concentration of the dichroic dye when dyeing the PVA-based resin layer with the dichroic dye Method of adjusting at least one of dyeing temperature and dyeing time; boric acid concentration and temperature of boric acid aqueous solution for treating PVA-based resin layer with dichroic dye adsorbed in method for manufacturing polarizing layer described later , and a method of adjusting at least one of the treatment time; a polarizing layer is produced using a laminated film in which a base film is arranged on one side of a PVA resin layer, and treatment conditions for the laminated film (dyeing conditions, boric acid treatment conditions using an aqueous solution, etc.).
  • the polarizing element 1 preferably contains boron.
  • the content of boron in the polarizing element 1 is preferably 4.0% by mass or more, more preferably 4.2% by mass or more, still more preferably 4.4% by mass or more, and preferably 8 0% by mass or less, more preferably 7.0% by mass or less, and even more preferably 6.0% by mass or less.
  • the content of boron in the polarizing element 1 is the content ratio of boron when the polarizing element 1 is taken as 100% by mass, and can be measured by the method described in Examples below.
  • Boron is considered to exist in the polarizing element 1 as boric acid or in a state in which boric acid forms a crosslinked structure with the constituent elements of the PVA-based resin.
  • B) is the amount.
  • the boron content in the polarizing element 1 can be adjusted by a method for adjusting the boron content in the polarizing layer, which will be described later.
  • the content of boron in the polarizing element 1 is within the above range, so that polyene formation of the PVA-based resin is less likely to occur in a high-temperature environment. Therefore, even when exposed to a high-temperature environment as a member constituting an image display device having an interlayer-filled structure, which will be described later, it is thought that the decrease in the transmittance Ty of the polarizing element 1 can be suppressed more satisfactorily. be done.
  • the content of boron in the polarizing element 1 is larger than the above range, the shrinkage force of the polarizing element 1 becomes large, and the polarizing element 1 is attached to another member such as a transparent member when incorporated into an image display device. Problems such as peeling are more likely to occur. If the boron content in the polarizing element 1 is less than the above range, it becomes difficult to obtain a polarizing element having desired optical properties.
  • the polarizing element 1 preferably contains potassium.
  • the content of potassium in the polarizing element 1 is preferably 0.28% by mass or more, more preferably 0.32% by mass or more, from the viewpoint of suppressing deterioration of the optical properties of the polarizing element 1 in a high-temperature environment. , more preferably 0.34% by mass or more.
  • the content of potassium in the polarizing element 1 is preferably 0.60% by mass or less, more preferably 0.55% by mass or less, from the viewpoint of suppressing hue change of the polarizing element 1 in a high-temperature environment. Preferably, it is 0.50% by mass or less.
  • the content of potassium in the polarizing element 1 is the content ratio of potassium when the polarizing element 1 is 100% by mass. It can be calculated as the mass fraction (mass%) of potassium with respect to
  • the content of potassium in the polarizing element 1 can be adjusted by a method for adjusting the content of potassium contained in the polarizing layer, which will be described later.
  • the content of boron and the content of potassium in the polarizing element 1 are within the above ranges, the content of boron tends to be higher and the content of potassium to be lower than in conventional polarizing elements. Therefore, it is presumed that the hydroxyl groups of polyvinyl alcohol in the polarizing element 1 can be protected (stabilized) by boric acid cross-linking. Further, particularly when the dichroic dye contained in the polarizing element 1 is iodine, which will be described later, the iodine ion serving as a counter ion in the polarizing element 1 can be stabilized by containing an appropriate amount of potassium in the polarizing element 1. presumed to be possible. Therefore, when the content of boron and the content of potassium are within the above ranges, it is believed that polyene formation of the PVA-based resin constituting the polarizing element 1 is likely to be more favorably suppressed.
  • the transmittance Ty of the polarizing element 1 is preferably 38.8% or more, more preferably 40.4% or more, still more preferably 40.7% or more, and preferably 44.8% or less. , more preferably 43.2% or less, and still more preferably 43.0% or less. If the transmittance Ty exceeds 44.8%, the deterioration of the optical characteristics of the polarizing element 1 may become significant, such as the polarizing element turning red in a high-temperature environment (this phenomenon is sometimes referred to as red discoloration). . If the transmittance Ty is less than 38.8%, polyene formation of the PVA-based resin tends to progress in a high-temperature environment, and the deterioration of the optical properties of the polarizing element 1 may increase.
  • the transmittance Ty of the polarizing element 1 can be obtained by measuring the Y value corrected for visibility with a 2-degree field of view (C light source) specified in JIS Z8701-1982.
  • the transmittance Ty can be easily measured using, for example, a spectrophotometer (model number: V7100) manufactured by JASCO Corporation, as described in Examples below.
  • the thickness of the polarizing element 1 is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, still more preferably 5 ⁇ m or more, preferably 35 ⁇ m or less, more preferably 30 ⁇ m or less, and still more preferably 25 ⁇ m or less.
  • the thickness of the polarizing element 1 is 35 ⁇ m or less, it becomes easy to suppress deterioration of the optical properties of the polarizing element 1 due to polyene conversion of the PVA-based resin in a high-temperature environment.
  • the thickness of the polarizing element 1 is 3 ⁇ m or more, it becomes easier to obtain the polarizing element 1 having desired optical properties.
  • the PVA-based resin layer can be formed using a PVA-based resin obtained by saponifying a polyvinyl acetate-based resin.
  • Polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers copolymerizable therewith.
  • Other copolymerizable monomers include, for example, unsaturated carboxylic acids, olefins such as ethylene, vinyl ethers, unsaturated sulfonic acids and the like.
  • the degree of saponification of the PVA-based resin is preferably 85 mol% or more, more preferably 90 mol% or more, and still more preferably 99 mol% or more and 100 mol% or less.
  • the degree of polymerization of the PVA-based resin is, for example, 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.
  • the PVA-based resin may be modified, for example, aldehyde-modified polyvinyl formal, polyvinyl acetal, polyvinyl butyral, or the like.
  • Iodine or dichroic dyes are examples of dichroic dyes that are adsorbed and oriented on the PVA-based resin layer.
  • the dichroic dye is iodine.
  • the polarizing layer constituting the polarizing element 1 uses, for example, a polyvinyl alcohol-based resin film (hereinafter sometimes referred to as "PVA-based resin film”) serving as a PVA-based resin layer.
  • PVA-based resin film a polyvinyl alcohol-based resin film serving as a PVA-based resin layer.
  • the polarizing element 1 may be obtained by using the polarizing layer as it is, or the polarizing element 1 may be obtained by bonding two or more polarizing layers using a bonding layer. When laminating two or more polarizing layers, it is preferable to laminate such that the absorption axes of the polarizing layers are parallel to each other.
  • the manufacturing method of the polarizing layer that constitutes the polarizing element 1 is not particularly limited.
  • a method for producing the polarizing layer a method in which a pre-rolled PVA-based resin film is sent out and subjected to stretching, dyeing, cross-linking, etc. (hereinafter referred to as "manufacturing method 1"); PVA-based resin.
  • a typical example is a method including a step of stretching a laminated film formed by coating a coating liquid containing the above on a base film to form a coating layer (hereinafter referred to as "manufacturing method 2").
  • Production method 1 includes a step of uniaxially stretching a PVA-based resin film, a step of dyeing the PVA-based resin film with a dichroic dye such as iodine to adsorb the dichroic dye, and a step of adsorbing the dichroic dye.
  • a step of treating the PVA-based resin film with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution can be included.
  • the content of boron and the content of potassium in the polarizing layer depend on the amount of boric acid, borate, and boron contained in any of the treatment baths in the swelling step, dyeing step, cross-linking step, stretching step, and water washing step. It can be controlled by the concentration of a boron component-donating substance such as a boron compound such as sand, the concentration of a potassium component-donating substance such as potassium halide such as potassium iodide, and the treatment temperature and treatment time in each of the above treatment baths.
  • a boron component-donating substance such as a boron compound such as sand
  • concentration of a potassium component-donating substance such as potassium halide such as potassium iodide
  • the swelling step is a treatment step in which the PVA-based resin film is immersed in a swelling bath, which can remove stains, blocking agents, etc. on the surface of the PVA-based resin film. can be suppressed.
  • a medium containing water as a main component such as water, distilled water, or pure water, is usually used for the swelling bath. Surfactants, alcohols and the like may be appropriately added to the swelling bath according to conventional methods.
  • potassium iodide may be used in the swelling bath. In this case, the content of potassium iodide in the swelling bath is 1.5% by weight or less. is preferably 1.0% by weight or less, and even more preferably 0.5% by weight or less.
  • the temperature of the swelling bath is preferably 10-60°C, more preferably 15-45°C, even more preferably 18-30°C.
  • the immersion time in the swelling bath cannot be unconditionally determined because the degree of swelling of the PVA-based resin film is affected by the temperature of the swelling bath, but it is preferably 5 to 300 seconds, more preferably 10 to 200 seconds. More preferably, it is still more preferably 20 to 100 seconds.
  • the swelling step may be performed only once, or may be performed multiple times as necessary.
  • the dyeing process is a treatment process in which the PVA-based resin film is immersed in a dyeing bath, and the dichroic dye can be adsorbed and oriented on the PVA-based resin film.
  • the dyeing bath is preferably an iodine solution.
  • the iodine solution is usually preferably an aqueous iodine solution containing iodine and iodide as a dissolution aid.
  • iodides examples include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. is mentioned. Among these, potassium iodide is preferable from the viewpoint of controlling the content of potassium in the polarizing layer.
  • the concentration of the dichroic dye in the dyeing bath is preferably 0.01-1% by weight, more preferably 0.02-0.5% by weight.
  • the concentration of iodide in the dyeing bath is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight, even more preferably 0.1 to 3% by weight. .
  • the temperature of the dyeing bath is preferably 10-50°C, more preferably 15-45°C, even more preferably 18-30°C.
  • the immersion time in the dyeing bath cannot be unconditionally determined because the degree of dyeing of the PVA-based resin film is affected by the temperature of the dyeing bath, but it is preferably 10 to 300 seconds, more preferably 20 to 240 seconds. more preferred.
  • the dyeing step may be performed only once, or may be performed multiple times as necessary.
  • the cross-linking step is a treatment step in which the PVA-based resin film dyed in the dyeing step is immersed in a treatment bath (cross-linking bath) containing a boron compound, and the PVA-based resin in the PVA-based resin film is cross-linked by the boron compound.
  • a treatment bath cross-linking bath
  • Boron compounds include, for example, boric acid, borates, and borax.
  • the cross-linking bath is generally an aqueous solution, but may be, for example, a mixed solution of an organic solvent miscible with water and water.
  • the cross-linking bath preferably contains potassium iodide from the viewpoint of controlling the potassium content in the polarizing layer.
  • the concentration of the boron compound in the cross-linking bath is preferably 1-15% by weight, more preferably 1.5-10% by weight, and more preferably 2-5% by weight. Further, when potassium iodide is contained in the cross-linking bath, the concentration of potassium iodide in the cross-linking bath is preferably 1 to 15% by weight, more preferably 1.5 to 10% by weight. More preferably ⁇ 5% by weight.
  • the temperature of the cross-linking bath is preferably 20-70°C, more preferably 30-60°C.
  • the immersion time in the cross-linking bath cannot be determined unconditionally because the degree of cross-linking of the PVA-based resin in the PVA-based resin film is affected by the temperature of the cross-linking bath. Seconds are more preferred.
  • the cross-linking step may be performed only once, or may be performed multiple times as necessary.
  • the stretching step is a processing step of stretching the PVA-based resin film in at least one direction to a predetermined magnification.
  • a PVA-based resin film is uniaxially stretched in the transport direction (longitudinal direction).
  • the drawing method is not particularly limited, and either a wet drawing method or a dry drawing method can be employed.
  • the stretching step may be performed only once, or may be performed multiple times as necessary.
  • the stretching process may be performed at any stage of the manufacturing process of the polarizing layer.
  • the treatment bath (stretching bath) in the wet stretching method can usually use a solvent such as water or a mixed solution of an organic solvent miscible with water and water.
  • the stretching bath preferably contains potassium iodide from the viewpoint of controlling the potassium content in the polarizing layer.
  • the concentration of potassium iodide in the drawing bath is preferably 1 to 15% by weight, more preferably 2 to 10% by weight, and 3 to 6% by weight. % is more preferable.
  • the treatment bath (stretching bath) may contain a boron compound from the viewpoint of suppressing film breakage during stretching. In this case, the concentration of the boron compound in the stretching bath is 1 to 15% by weight. is preferred, 1.5 to 10% by weight is more preferred, and 2 to 5% by weight is more preferred.
  • the temperature of the drawing bath is preferably 25 to 80°C, more preferably 40 to 75°C, even more preferably 50 to 70°C.
  • the immersion time in the stretching bath cannot be unconditionally determined because the degree of stretching of the PVA-based resin film is affected by the temperature of the stretching bath, but it is preferably 10 to 800 seconds, more preferably 30 to 500 seconds. more preferred.
  • the stretching treatment in the wet stretching method may be performed together with any one or more of the swelling process, the dyeing process, the cross-linking process, and the washing process.
  • Examples of the dry drawing method include a roll-to-roll drawing method, a heating roll drawing method, a compression drawing method, and the like.
  • the stretching process may be performed in a drying process.
  • the total draw ratio (cumulative draw ratio) applied to the PVA-based resin film can be appropriately set according to the purpose, but it is preferably 2 to 7 times, more preferably 3 to 6.8 times. More preferably, it is 3.5 to 6.5 times.
  • the washing process is a treatment process in which the PVA-based resin film is immersed in a washing bath, and foreign matter remaining on the surface of the PVA-based resin film can be removed.
  • a medium containing water as a main component such as water, distilled water, or pure water, is usually used for the cleaning bath.
  • the cleaning bath preferably contains potassium iodide.
  • the concentration of potassium iodide in the cleaning bath is preferably 1 to 10% by weight. It is preferably 1.5 to 4% by weight, more preferably 1.8 to 3.8% by weight.
  • the temperature of the washing bath is preferably 5-50°C, more preferably 10-40°C, even more preferably 15-30°C.
  • the immersion time in the cleaning bath cannot be unconditionally determined because the degree of cleaning of the PVA-based resin film is affected by the temperature of the cleaning bath, but it is preferably 1 to 100 seconds, more preferably 2 to 50 seconds. More preferably, it is 3 to 20 seconds.
  • the washing step may be performed only once, or may be performed multiple times as necessary.
  • the drying process is a process of drying the PVA-based resin film washed in the washing process to obtain a polarizing layer. Drying is performed by any appropriate method, and examples thereof include natural drying, air drying, and heat drying.
  • Production method 2 includes a step of applying a coating liquid containing the PVA-based resin onto a base film, a step of uniaxially stretching the obtained laminated film, and dyeing the coating layer of the uniaxially stretched laminated film with a dichroic dye.
  • a step of adsorbing a dichroic dye a step of treating the laminated film on which the dichroic dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.
  • the base film used for forming the polarizing layer may be used as a transparent protective film for the polarizing plate. If necessary, the base film may be peeled off from the polarizing layer.
  • FIG. 2 is a schematic cross-sectional view schematically showing a polarizing plate according to this embodiment.
  • Polarizing plate 2 has polarizing element 1 and transparent protective film 21 .
  • the transparent protective film 21 is provided on one side or both sides of the polarizing element 1, preferably on both sides as shown in FIG.
  • the polarizing plate 2 may have an adhesive layer (not shown) for bonding the polarizing element 1 and the transparent protective film 21 together.
  • the adhesive layer is normally in direct contact with the polarizing element 1 and the transparent protective film 21 .
  • the transparent protective film 21 may have a single layer structure or a multilayer structure.
  • the transparent protective film itself may have a single-layer structure having an optical function, or may have a multilayer structure having at least one layer having an optical function. From the viewpoint of optical properties, the thickness of the transparent protective film 21 is preferably thin.
  • the thickness of the transparent protective film 21 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and is, for example, 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 70 ⁇ m or less. be.
  • the transparent protective film 21 may be a cellulose acylate film, a polycarbonate resin film, a film made of cycloolefin resin such as norbornene, a (meth)acrylic polymer film, a film made of polyester resin such as polyethylene terephthalate, or the like. can be done.
  • a water-based adhesive such as an adhesive containing PVA-based resin, from the viewpoint of moisture permeability
  • At least one transparent protective film 21 included in the polarizing plate 2 is preferably a cellulose acylate film or a (meth)acrylic polymer film, and more preferably a cellulose acylate film.
  • At least one transparent protective film 21 included in the polarizing plate 2 may have a retardation function for the purpose of viewing angle compensation, etc.
  • the film itself constituting the transparent protective film 21 has a retardation function.
  • the transparent protective film 21 may have a layer having no retardation function and a retardation layer (layer having a retardation function).
  • the transparent protective film 21 has a retardation layer, it can be a laminate of a layer having no retardation function and a retardation layer. good.
  • the adhesive layer Any appropriate adhesive can be used as the adhesive used to form the adhesive layer for bonding the polarizing element 1 and the transparent protective film 21 together.
  • a water-based adhesive, a solvent-based adhesive, an active energy ray-curable adhesive, or the like can be used, but a water-based adhesive is preferable.
  • the adhesive layer preferably contains at least one urea-based compound selected from urea, urea derivatives, thiourea, and thiourea derivatives.
  • the thickness of the adhesive when applied can be set to any appropriate value. For example, it is set so that an adhesive layer having a desired thickness is obtained after curing or after heating (drying).
  • the thickness of the adhesive layer is preferably 0.01 ⁇ m or more, preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 2 ⁇ m or less, and most preferably 1 ⁇ m or less.
  • water-based adhesive Any appropriate water-based adhesive can be employed as the water-based adhesive.
  • a water-based adhesive containing a PVA-based resin (PVA-based adhesive) is preferably used.
  • the average degree of polymerization of the PVA-based resin contained in the water-based adhesive is preferably 100 or more and 5500 or less, more preferably 1000 or more and 4500 or less, from the viewpoint of adhesiveness.
  • the average degree of saponification is preferably 85 mol % or more and 100 mol % or less, more preferably 90 mol % or more and 100 mol % or less, from the viewpoint of adhesion.
  • the PVA-based resin contained in the water-based adhesive one containing an acetoacetyl group is preferable. This is because the adhesion between the PVA-based resin layer and the transparent protective film is excellent, and the durability is excellent.
  • a PVA-based resin containing an acetoacetyl group can be obtained, for example, by reacting a PVA-based resin with diketene by any method.
  • the degree of acetoacetyl group modification of the PVA-based resin containing acetoacetyl groups is typically 0.1 mol % or more, preferably 0.1 mol % or more and 20 mol % or less.
  • the content of the PVA-based resin in the water-based adhesive is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and preferably 15% by mass or less, more preferably 10% by mass. % by mass or less.
  • the water-based adhesive may contain a cross-linking agent.
  • a known cross-linking agent can be used as the cross-linking agent. Examples include water-soluble epoxy compounds, dialdehydes, isocyanates, and the like.
  • the cross-linking agent is preferably glyoxal, glyoxylate, or methylolmelamine, more preferably glyoxal or glyoxylate. and more preferably glyoxal.
  • the water-based adhesive may contain organic solvents.
  • the organic solvent is preferably alcohols because it is miscible with water.
  • alcohols at least one of methanol and ethanol is more preferable, and methanol is even more preferable.
  • the urea-based compounds that may be included in the adhesive layer there are those that have low solubility in water but sufficient solubility in alcohols. In that case, the urea-based compound is dissolved in alcohol to prepare an alcohol solution of the urea-based compound, and then the alcohol solution of the urea-based compound is added to the aqueous solution of the PVA-based resin to prepare a water-based adhesive. is also one of the preferred embodiments.
  • the content of methanol in the water-based adhesive is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and , preferably 70% by mass or less, more preferably 60% by mass or less.
  • the content of methanol is 10% by mass or more, it becomes easier to suppress polyene formation of the PVA-based resin constituting the polarizing element in a high-temperature environment.
  • the content of methanol is 70% by mass or less, deterioration of the hue of the polarizing element can be suppressed.
  • the content of methanol in the water-based adhesive is the content ratio of methanol when the water-based adhesive is 100% by mass.
  • Active energy ray-curable adhesives are adhesives that are cured by irradiation with active energy rays such as ultraviolet rays.
  • adhesives containing a polymerizable compound and a photopolymerization initiator adhesives containing a photoreactive resin , an adhesive containing a binder resin and a photoreactive cross-linking agent, and the like.
  • the polymerizable compound include photopolymerizable monomers such as photocurable epoxy monomers, photocurable acrylic monomers, and photocurable urethane monomers, and oligomers derived from these monomers.
  • photopolymerization initiators include compounds that generate active species such as neutral radicals, anion radicals, and cation radicals upon irradiation with active energy rays such as ultraviolet rays.
  • the adhesive layer contains a urea-based compound
  • it contains at least one selected from urea, urea derivatives, thiourea, and thiourea derivatives.
  • a method of incorporating a urea-based compound into the adhesive layer there is a method of incorporating a urea-based compound into the above adhesive.
  • the adhesive used for bonding the polarizing element 1 and the transparent protective film 21 contains a urea-based compound
  • one of the urea-based compounds is removed during the process of forming the adhesive layer by applying and drying the adhesive.
  • the part may move from the adhesive to the polarizing element 1 or the like. That is, the polarizing element 1 may contain a urea-based compound.
  • Urea-based compounds include those that are water-soluble and those that are poorly water-soluble, and both urea-based compounds can be used.
  • a poorly water-soluble urea-based compound is used in a water-based adhesive, it is preferable to devise a method of dispersing the urea-based compound so that haze does not increase when the adhesive layer is formed.
  • the adhesive is a water-based adhesive containing a PVA-based resin and a urea-based compound
  • the content of the urea-based compound with respect to 100% by mass of the PVA-based resin is preferably 0.1% by mass or more, more preferably 1% by mass. % or more, more preferably 3 mass % or more, preferably 400 mass % or less, more preferably 200 mass % or less, still more preferably 100 mass % or less.
  • a urea derivative is a compound in which at least one of the four hydrogen atoms in a urea molecule is substituted with a substituent.
  • the substituent is not particularly limited, but is preferably a substituent containing a carbon atom and at least one of a hydrogen atom and an oxygen atom.
  • urea derivatives include monosubstituted urea such as methylurea, ethylurea, propylurea, butylurea, isobutylurea, N-octadecylurea, 2-hydroxyethylurea, hydroxyurea, acetylurea, allylurea, and 2-propynyl.
  • Urea cyclohexyl urea, phenyl urea, 3-hydroxyphenyl urea, (4-methoxyphenyl) urea, benzyl urea, benzoyl urea, o-tolyl urea, p-tolyl urea.
  • Disubstituted urea 1,1-dimethylurea, 1,3-dimethylurea, 1,1-diethylurea, 1,3-diethylurea, 1,3-bis(hydroxymethyl)urea, 1,3-tert- Butyl urea, 1,3-dicyclohexyl urea, 1,3-diphenyl urea, 1,3-bis(4-methoxyphenyl) urea, 1-acetyl-3-methyl urea.
  • Tetramethylurea, 1,1,3,3-tetraethylurea, 1,1,3,3-tetrabutylurea, and 1,3-dimethoxy-1,3-dimethylurea can be mentioned as tetrasubstituted urea.
  • a thiourea derivative is a compound in which at least one of four hydrogen atoms in a thiourea molecule is substituted with a substituent.
  • the substituent is not particularly limited, but is preferably a substituent containing a carbon atom and at least one of a hydrogen atom and an oxygen atom.
  • thiourea derivatives include monosubstituted thiourea such as N-methylthiourea, ethylthiourea, propylthiourea, isopropylthiourea, 1-butylthiourea, cyclohexylthiourea, N-acetylthiourea, N-allylthiourea, (2 -methoxyethyl)thiourea, N-phenylthiourea, (4-methoxyphenyl)thiourea, N-(2-methoxyphenyl)thiourea, N-(1-naphthyl)thiourea, (2-pyridyl)thiourea, Examples include o-tolylthiourea and p-tolylthiourea.
  • Disubstituted thiourea 1,1-dimethylthiourea, 1,3-dimethylthiourea, 1,1-diethylthiourea, 1,3-diethylthiourea, 1,3-dibutylthiourea, 1,3-diisopropylthiourea, 1 ,3-dicyclohexylthiourea, N,N-diphenylthiourea, N,N'-diphenylthiourea, 1,3-di(o-tolyl)thiourea, 1,3-di(p-tolyl)thiourea, 1-benzyl-3-phenylthiourea, 1-methyl-3-phenylthiourea, N-allyl-N'-(2-hydroxyethyl)thiourea.
  • Tri-substituted urea includes trimethylthiourea, and tetra-substituted urea includes tetramethylthiourea
  • the urea-based compound is preferably a urea derivative or a thiourea derivative from the viewpoint of satisfactorily suppressing a decrease in transmittance Ty in a high-temperature environment when the polarizing plate 2 is applied to an image display device having an interlayer filling structure, which will be described later.
  • urea derivatives are more preferred.
  • mono-substituted urea or di-substituted urea is preferable, and mono-substituted urea is more preferable.
  • Disubstituted urea may be either 1,1-substituted urea or 1,3-substituted urea, but 1,3-substituted urea is more preferred.
  • the adhesive layer for bonding the polarizing element 1 and the transparent protective film 21 together may be a urea-based compound-containing layer containing a urea-based compound, as described above.
  • a layer other than the adhesive layer may constitute the urea-based compound-containing layer.
  • a polarizing plate having a transparent protective film 21 only on one side of the polarizing element 1 has been developed in order to meet the demand for thinner polarizing plates.
  • a hardening layer can be laminated on the surface of the polarizing element 1 that does not have the transparent protective film 21 for the purpose of improving the physical strength.
  • This hardened layer may be a urea-based compound-containing layer.
  • the cured layer may be formed from a curable composition containing an organic solvent, or may be formed from an aqueous solution of an active energy ray-curable polymer composition (JP-A-2017-075986, paragraph [0020] ⁇ [0042]).
  • the hardening layer is a layer containing a urea-based compound
  • the hardening layer may be formed using a mixture of the above aqueous solution and a water-soluble urea-based compound.
  • the method for manufacturing the polarizing plate 2 includes a lamination step of laminating the polarizing element 1 and the transparent protective film 21, and may further include a moisture content adjustment step.
  • the lamination step may be a step of laminating the polarizing element 1 and the transparent protective film 21 using an adhesive.
  • the water content adjusting step is a step of adjusting the water content of the polarizing element 1.
  • the water content of the polarizing element 1 is equal to or higher than the equilibrium water content at a temperature of 20°C and a relative humidity of 30%, and at a temperature of 20°C and a relative humidity of 80%.
  • a step of adjusting the moisture content to be equal to or less than the equilibrium moisture content may be employed.
  • the water content of the polarizing element 1 may be equal to or less than the equilibrium water content at a temperature of 20° C. and a relative humidity of 50%, or may be equal to or less than the equilibrium water content at a temperature of 20° C. and a relative humidity of 45%.
  • a method of storing the polarizing element for a certain period of time in an environment adjusted to the humidity range and confirming that there is no change in mass, or the equilibrium moisture content of the polarizing element in an environment adjusted to the above temperature and relative humidity ranges is calculated in advance, and the water content of the polarizing element is compared with the equilibrium water content calculated in advance.
  • the method for adjusting the water content of the polarizing element 1 to be equal to or higher than the equilibrium water content at a temperature of 20° C. and a relative humidity of 30% and to be equal to or lower than the equilibrium water content at a temperature of 20° C. and a relative humidity of 80% is not particularly limited.
  • a method of storing the polarizing element in an environment adjusted to the above relative humidity range for 10 minutes or more and 3 hours or less, or a method of heat treatment at 30° C. or more and 90° C. or less can be used.
  • the moisture content of the polarizing plate 2 may be adjusted to be equal to or higher than the equilibrium moisture content at a temperature of 20°C and a relative humidity of 30% and below an equilibrium moisture content at a temperature of 20°C and a relative humidity of 80%.
  • the moisture content of the polarizing plate 2 may be equal to or less than the equilibrium moisture content at a temperature of 20° C. and a relative humidity of 50%, or may be equal to or less than the equilibrium moisture content at a temperature of 20° C. and a relative humidity of 45%.
  • a method for adjusting the water content of the polarizing plate 2 the same method as the method for adjusting the water content of the polarizing element 1 described above can be used.
  • the order of performing the moisture content adjustment process and the lamination process is not limited, and the moisture content adjustment process and the lamination process may be performed in parallel.
  • the polarizing plate 2 is used in various image display devices such as liquid crystal display devices and organic EL display devices.
  • the image display device has a configuration in which both sides of the polarizing plate are in contact with a layer other than an air layer, specifically a solid layer such as an adhesive layer (hereinafter sometimes referred to as an "interlayer filling configuration")
  • the transmittance Ty of the polarizing element tends to decrease in a high-temperature environment.
  • An image display device using the polarizing plate 2 can also suppress a decrease in the degree of polarization Py and a decrease in the hue ab of the polarizing element 1 in a high-temperature environment.
  • the solid layer includes an adhesive layer or an adhesive layer.
  • the solid layer is an adhesive layer, it is preferably an adhesive layer formed of a UV curable adhesive.
  • the image display device is exemplified by a configuration having an image display cell, a first adhesive layer laminated on the viewer-side surface of the image display cell, and a polarizing plate laminated on the viewer-side surface of the first adhesive layer.
  • Such an image display device may further have a second pressure-sensitive adhesive layer laminated on the viewing side surface of the polarizing plate, and a transparent member laminated on the surface of the second pressure-sensitive adhesive layer.
  • the image display device preferably has an interlayer filling structure in which the polarizing plate and the image display cell are bonded together by the first adhesive layer, and the polarizing plate and the transparent member are bonded together by the second adhesive layer.
  • the polarizing plate and the image display cell may be bonded together not only by the first adhesive layer but also by an adhesive layer.
  • the polarizing plate and the transparent member may be bonded together not only by the second pressure-sensitive adhesive layer but also by an adhesive layer.
  • the adhesive layer includes the adhesive layers described above.
  • image display cell Examples of image display cells include liquid crystal cells and organic EL cells.
  • Liquid crystal cells include reflective liquid crystal cells that use external light, transmissive liquid crystal cells that use light from a light source such as a backlight, and semi-transmissive semi-reflective liquid crystal cells that use both external light and light from a light source. any of the cells.
  • the image display device liquid crystal display device
  • the image display device has a polarizing plate arranged on the opposite side of the image display cell (liquid crystal cell) from the viewing side, and a light source is further arranged. be done.
  • the polarizing plate on the light source side and the liquid crystal cell are preferably bonded together via an appropriate bonding layer.
  • any type such as VA mode, IPS mode, TN mode, STN mode, bend orientation ( ⁇ type), or the like is used.
  • a light-emitting body (organic electroluminescence light-emitting body) formed by laminating a transparent electrode, an organic light-emitting layer and a metal electrode in this order on a transparent substrate is preferably used.
  • the organic light-emitting layer is a laminate of various organic thin films.
  • Various layer configurations can be employed, such as a laminate of a layer and an electron injection layer made of a perylene derivative or the like, or a laminate of a hole injection layer, a light emitting layer and an electron injection layer.
  • a first adhesive layer (adhesive sheet) is preferably used for bonding the image display cell and the polarizing plate.
  • a method of bonding a polarizing plate with a pressure-sensitive adhesive layer, in which the first pressure-sensitive adhesive layer is attached to one surface of the polarizing plate, to the image display cell is preferable from the viewpoint of workability and the like. Attachment of the first pressure-sensitive adhesive layer to the polarizing plate can be performed by an appropriate method.
  • a pressure-sensitive adhesive solution is prepared by dissolving or dispersing 10% by mass or more and 40% by mass or less of a base polymer or a composition thereof in a solvent consisting of an appropriate solvent such as toluene or ethyl acetate, or a mixture thereof.
  • a method of directly attaching it on the polarizing plate by an appropriate development method such as a casting method or a coating method, a method of forming the first adhesive layer on the separator and transferring (transferring) it to the polarizing plate etc.
  • the first pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer may each independently consist of one layer or two or more layers, but preferably consists of one layer.
  • the adhesive layer can be composed of an adhesive composition containing (meth)acrylic resin, rubber resin, urethane resin, ester resin, silicone resin, or polyvinyl ether resin as a main component. Among them, a pressure-sensitive adhesive composition using a (meth)acrylic resin as a base polymer, which is excellent in transparency, weather resistance, heat resistance, etc., is preferable.
  • the adhesive composition may be active energy ray-curable or heat-curable.
  • the (meth)acrylic resin (base polymer) used in the adhesive composition includes butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and the like. Polymers or copolymers containing one or more of the (meth)acrylic acid esters as monomers are preferably used.
  • the base polymer is preferably a copolymer obtained by copolymerizing polar monomers.
  • Polar monomers include (meth)acrylic acid compounds, 2-hydroxypropyl (meth)acrylate compounds, hydroxyethyl (meth)acrylate compounds, (meth)acrylamide compounds, and N,N-dimethylaminoethyl (meth)acrylate compounds. , glycidyl (meth)acrylate compounds, and other monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, and the like.
  • the adhesive composition may contain only the above base polymer, but usually further contains a cross-linking agent.
  • a cross-linking agent a metal ion having a valence of 2 or more and forming a carboxylic acid metal salt with a carboxyl group, a polyamine compound forming an amide bond with a carboxyl group, and a carboxyl group
  • examples include polyepoxy compounds or polyols that form ester bonds with and polyisocyanate compounds that form amide bonds with carboxyl groups. Among them, polyisocyanate compounds are preferred.
  • the active energy ray-curable pressure-sensitive adhesive composition has the property of being cured by being irradiated with an active energy ray such as an ultraviolet ray or an electron beam. It has the property that it can be adhered to an adherend and can be cured by irradiation with active energy rays to adjust the adhesion force.
  • the active energy ray-curable pressure-sensitive adhesive composition is preferably UV-curable.
  • the active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. If necessary, a photopolymerization initiator, a photosensitizer, etc. may be contained.
  • the adhesive composition contains fine particles for imparting light scattering properties, beads (resin beads, glass beads, etc.), glass fibers, resins other than base polymers, tackifiers, fillers (metal powders and other inorganic powders). etc.), antioxidants, ultraviolet absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators, and other additives.
  • the pressure-sensitive adhesive layer can be formed by applying an organic solvent-diluted solution of the above pressure-sensitive adhesive composition onto the surface of a substrate film, an image display cell or a polarizing plate, and drying.
  • the base film is generally a thermoplastic resin film, and a typical example thereof is a separator to which a release treatment has been applied.
  • the separator can be, for example, a film made of a resin such as polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyalate, etc., and the surface on which the pressure-sensitive adhesive layer is formed is subjected to release treatment such as silicone treatment.
  • the pressure-sensitive adhesive composition may be directly applied to the release-treated surface of the separator to form a pressure-sensitive adhesive layer, and this pressure-sensitive adhesive layer with separator may be laminated on the surface of the polarizing plate.
  • the pressure-sensitive adhesive composition may be directly applied to the surface of the polarizing plate to form a pressure-sensitive adhesive layer, and the separator may be laminated on the outer surface of the pressure-sensitive adhesive layer.
  • the bonding surface of the polarizing plate and/or the bonding surface of the pressure-sensitive adhesive layer is provided on the surface of the polarizing plate, it is preferable to subject the bonding surface of the polarizing plate and/or the bonding surface of the pressure-sensitive adhesive layer to surface activation treatment such as plasma treatment and corona treatment. Treatment is more preferred.
  • the adhesive composition was applied on the second separator to form an adhesive layer
  • a pressure-sensitive adhesive sheet was prepared by laminating a separator on the formed pressure-sensitive adhesive layer, and the separator was peeled off from the pressure-sensitive adhesive sheet.
  • the separator-attached pressure-sensitive adhesive layer may be laminated on the polarizing plate.
  • the second separator has weaker adhesion to the pressure-sensitive adhesive layer than the separator and is easily peeled off.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited. It is below.
  • a front plate (window layer), a touch panel, and the like are examples of the transparent member arranged on the viewing side of the image display device.
  • a transparent plate having appropriate mechanical strength and thickness is used as the front plate.
  • Examples of such a transparent plate include a transparent resin plate such as a polyimide resin, acrylic resin, or polycarbonate resin, or a glass plate.
  • a functional layer such as an antireflection layer may be laminated on the visible side of the transparent plate.
  • a hard coat layer for increasing physical strength and a low moisture permeable layer for decreasing moisture permeability may be laminated.
  • touch panels include various types of touch panels such as resistive type, capacitive type, optical type, and ultrasonic type touch panels, as well as glass plates and transparent resin plates having a touch sensor function.
  • touch panels include various types of touch panels such as resistive type, capacitive type, optical type, and ultrasonic type touch panels, as well as glass plates and transparent resin plates having a touch sensor function.
  • capacitive touch panel is used as the transparent member, it is preferable to provide a transparent plate made of glass or a transparent resin plate on the viewing side of the touch panel.
  • a second pressure-sensitive adhesive layer or an active energy ray-curable adhesive is preferably used for bonding the polarizing plate and the transparent member together.
  • attachment of the second pressure-sensitive adhesive layer can be performed by an appropriate method.
  • the attachment method of the first pressure-sensitive adhesive layer used in bonding the image display cell and the polarizing plate described above can be mentioned.
  • a dam material is provided so as to surround the peripheral edge of the image display panel, and a transparent member is placed on the dam material in order to prevent the spread of the adhesive solution before curing. Then, a method of injecting the adhesive solution is preferably used. After the injection of the adhesive solution, alignment and defoaming are performed as necessary, and the active energy ray is irradiated to cure the adhesive solution.
  • the lamination layer is an adhesive layer or a pressure-sensitive adhesive layer.
  • the adhesive layer and the pressure-sensitive adhesive layer in addition to the above-described adhesive layer and pressure-sensitive adhesive layer (first pressure-sensitive adhesive layer, second pressure-sensitive adhesive layer), an adhesive layer formed using a known adhesive, and a pressure-sensitive adhesive layer formed using a known pressure-sensitive adhesive.
  • the luminosity correction single transmittance measured for the polarizing plate can be regarded as the luminosity-correcting single transmittance, the luminosity-correcting degree of polarization, and hue of the polarizing element.
  • the boron content in the polarizing element was measured by the following procedure. First, 0.2 g of a polarizing element was dissolved in 200 g of a 1.9% by mass mannitol aqueous solution. Next, the resulting aqueous solution was titrated with a 1 mol/L sodium hydroxide aqueous solution, and the amount of sodium hydroxide aqueous solution required for neutralization was compared with the calibration curve to calculate the boron content in the polarizing element.
  • FIGS. 3A and 3B are explanatory diagrams for explaining the procedure for measuring the degree of staining.
  • FIG. 3(a) is a diagram for explaining how to cut out a measurement sample 20t from a polarizing plate 20 manufactured by a procedure described later
  • FIG. 3(b) is a diagram for explaining Raman spectroscopic measurement of the measurement sample 20t. , which shows an enlarged cut surface portion of the polarizing element 10t.
  • FIG. 4 is an explanatory diagram for explaining a method of calculating the integrated intensity distribution from the Raman spectrum.
  • measurement points p are set at intervals of 1 ⁇ m in the thickness direction (plane direction of the cut surface) 100 of the polarizing element 10, and Raman A spectral measurement was performed.
  • the laser light L was made incident so that its plane of polarization was parallel to the absorption axis direction (stretching direction) 101 of the polarizing element 10t and perpendicular to the cut surface of the measurement sample 20t.
  • An analyzer was installed on the surface side (rear side of the measurement sample 20t) opposite to the incident surface side of the laser beam L of the measurement sample 20t.
  • the plane of polarization of the analyzer was parallel to the plane of polarization of the laser light L.
  • the baseline of the Raman spectrum was linearly approximated by a straight line connecting the value at the wavenumber of 80 cm ⁇ 1 and the value at the wavenumber of 130 cm ⁇ 1 in the Raman spectrum (straight line ef in FIG. 4).
  • the slope of the baseline during the measurement of the Raman spectrum is corrected, and the integral area of the wave number 80 cm -1 to 130 cm -1 section (in FIG. 4, the straight line ef and , corresponding to the area of the hatched portion surrounded by the Raman spectrum from e to f) was obtained, and this was taken as the integrated intensity of I 3 ⁇ .
  • the baseline of the Raman spectrum was linearly approximated by a straight line connecting the value at the wavenumber of 130 cm ⁇ 1 and the value at the wavenumber of 180 cm ⁇ 1 in the Raman spectrum (straight line fg in FIG. 4). .
  • the slope of the baseline during the measurement of the Raman spectrum is corrected, and the integral area of the wave number 130 cm -1 to 180 cm -1 section (in FIG. 4, the straight line fg and , corresponding to the area of the hatched portion surrounded by the Raman spectrum from f to g), and this was taken as the integrated intensity of I 5 - .
  • the integrated intensity distribution in the thickness direction of the polarizing element 10t was obtained.
  • the integrated area is obtained for each of the three regions divided by dividing the polarizing element 10t into three equal parts in the thickness direction. It was taken as the staining intensity of the area.
  • the equilibrium moisture content of the polarizing element, the polarizing plate, and the polarizing plate on which the pressure-sensitive adhesive layer is formed is the equilibrium moisture content at a temperature of 20° C. and a relative humidity of 40%, which is the equilibrium moisture content in the storage environment for 72 hours. can be assumed to be the same.
  • the luminosity correction single transmittance of the polarizing plate, the luminosity correction degree of polarization, and the hue was calculated.
  • the change amount ⁇ Ty of the luminosity-corrected single transmittance and the change amount ⁇ Py of the luminosity-corrected polarization degree were calculated as values obtained by subtracting the measured values after the high-temperature durability test from the initial values. Further, the hue change amount ⁇ ab was obtained by the following formula.
  • ⁇ ab ⁇ (a 1 ⁇ a 2 ) 2 +(b 1 ⁇ b 2 ) 2 ⁇ 1/2
  • a 1 and b 1 are the initial values of the hue
  • a 2 and b 2 are the measured values of the hue after the high temperature durability test.
  • Polarizing layer 1, polarizing layer 2, and polarizing layer 1 are laminated in this order through the adhesive PVA solution obtained above, dried at a temperature of 23° C. and a relative humidity of 55%, and the polarizing layer 1/ A polarizing element A (thickness: 19.5 ⁇ m) having a layer structure of polarizing layer 2/polarizing layer 1 was produced.
  • the absorption axes of polarizing layer 1, polarizing layer 2, and polarizing layer 1 were parallel to each other.
  • the content of boron in the polarizing element A was 4.62% by mass.
  • a commercially available cellulose acylate film TJ40UL (manufactured by Fuji Film Co., Ltd., thickness: 40 ⁇ m) was immersed in a 1.5 mol/L NaOH aqueous solution (saponification solution) maintained at a temperature of 55° C. for 2 minutes, and washed with water. Thereafter, the film was immersed in a 0.05 mol/L sulfuric acid aqueous solution at 25° C. for 30 seconds, and then passed through a washing bath under running water for 30 seconds to neutralize the film. Draining with an air knife was repeated three times. After draining, the film was held in a drying zone at a temperature of 70° C. for 15 seconds and dried to obtain a saponified cellulose acylate film, which was used as a transparent protective film.
  • polarizing plate 1 (Preparation of polarizing plate 1) Using a roll laminator, transparent protective films were laminated on both sides of polarizing element A via the polarizing plate adhesive obtained above, and then dried at a temperature of 80° C. for 3 minutes to obtain polarizing plate 1. rice field.
  • the polarizing plate adhesive between the polarizing element A and the transparent protective film was prepared so that each adhesive layer had a thickness of 100 nm after drying.
  • the degree of dyeing of the polarizing element A was measured, and a high temperature durability test was performed. Table 1 shows the results. In the polarizing element A, the area with the lowest degree of staining was the area located in the center of the polarizing element A in the thickness direction.
  • a polarizing plate 2 was produced in the same manner as the polarizing plate 1 except that the polarizing element B was used instead of the polarizing element A. Using the polarizing plate 2, the degree of dyeing of the polarizing element B was measured, and a high temperature durability test was performed. Table 1 shows the results. In the polarizing element B, the area with the lowest degree of staining was the area located in the center of the polarizing element B in the thickness direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Organic Chemistry (AREA)

Abstract

本発明は、層間充填構成の画像表示装置を構成する部材として高温環境下に晒された場合であっても、視感度補正単体透過率の低下を良好に抑制することができる偏光素子、偏光板、及び画像表示装置を提供することを目的とする。偏光素子は、ポリビニルアルコール系樹脂層に二色性色素が吸着配向されている。偏光素子を厚み方向に三等分して区分される3領域のうちの、染色度が最も大きい領域の染色度をS1とし、染色度が最も小さい領域の染色度をS2とするとき、偏光素子は下記式(1)の関係を満たす。 0≦S2/S1≦0.95 (1)

Description

偏光素子、偏光板、及び画像表示装置
 本発明は、偏光素子、偏光素子を備えた偏光板、及び偏光板を備えた画像表示装置に関する。
 液晶表示装置(LCD)は、液晶テレビだけでなく、パソコン、携帯電話等のモバイル、及びカーナビ等の車載用途等に広く用いられている。通常、液晶表示装置は、液晶セルの両側に粘着剤を用いて偏光板を貼合した液晶パネル部材を有し、バックライト部材からの光を液晶パネル部材で制御することによって表示が行われている。近年、液晶表示装置と同様に有機エレクトロルミネッセンス(EL)表示装置も、テレビ、携帯電話等のモバイル、及びカーナビ等の車載用途に広く用いられている。有機EL表示装置では、外光が金属電極(陰極)で反射されることによって鏡面のように視認されることを抑制するために、画像表示パネルの視認側表面に円偏光板(偏光素子とλ/4板とを含む積層体)が配置される場合がある。
 上記のように、偏光板は、液晶表示装置や有機EL表示装置を構成する部材として車両に搭載される機会が増えている。車載用の画像表示装置に用いられる偏光板は、車載用途以外のテレビ及び携帯電話等のモバイル用途の偏光板に比較すると、高温環境下に曝されることが多く、より高温での特性変化が小さいこと(高温耐久性)が求められる。
 画像表示装置では、外表面からの衝撃による画像表示パネルの破損防止等を目的として、画像表示パネルが備える偏光板よりも視認側に、透明樹脂板又はガラス板等の前面透明板(「ウインドウ層」等と称されることもある。)を設けることがある。タッチパネルを備える画像表示装置では、画像表示パネルが備える偏光板よりも視認側にタッチパネルが設けられ、タッチパネルよりも視認側に前面透明板を備えることがある。
 画像表示装置において、画像表示パネルと前面透明板又はタッチパネル等の透明部材との間に空気層が存在すると、空気層との界面での光反射によって外光の映り込みが生じ、画面の視認性が低下する傾向がある。そのため、画像表示パネルの視認側表面を構成する偏光板と透明部材との間の空間を、空気層以外の層、通常は固体層(以下、「層間充填剤」ということがある。)によって充填する構成、好ましくは偏光板及び/又は透明部材と屈折率が近い材料を充填する構成を採用することがある。層間充填剤としては、空気層との界面での光反射による視認性の低下を抑制し、各部材間を接着固定するために、粘着剤又はUV硬化型接着剤が用いられる(例えば、特許文献1)。
 上記のような層間充填剤を充填した構成を有する画像表示装置を、屋外で使用されることが多い携帯電話等のモバイル用途に採用することが増えてきている。また、近年の視認性に対する要求の高まりから、カーナビゲーション装置等の車載用途においても、画像表示パネル表面に前面透明板を配置し、画像表示パネルと前面透明板との間を粘着剤層等で充填した構成を採用することが検討されている。
 特許文献2は、層間充填剤を充填した構成を有する画像表示装置を温度95℃の環境下に例えば200時間放置した場合、偏光板の面内中央部に透過率の著しい低下が見られるが、偏光板単体では、温度95℃の環境下に1000時間放置しても著しい透過率の低下は見られないことを開示している。これらの結果から、特許文献2では、温度95℃の環境下における偏光板の透過率の著しい低下は、偏光板の一方の面が画像表示セルと貼り合わせられ、他方の面がタッチパネルや前面透明板等の透明部材と貼り合わせられている構成を採用する画像表示装置が温度95℃の環境に暴露された場合に特有の問題であると考えられている。
 特許文献2は、偏光板の単位面積当たりの水分量を所定量以下とし、さらに偏光素子に隣接して貼り合わされた透明保護フィルムの飽和吸水量を所定量以下とすることにより、温度95℃の環境下での偏光板の透過率の低下を抑制できることを開示している。
特開平11-174417号公報 特開2014-102353号公報
 しかしながら、上記の構成の画像表示装置が温度115℃の高温環境下に晒されると、偏光板の視感度補正単体透過率の低下を十分に抑制できない場合があることが見出された。
 本発明は、偏光板の両面に固体層が接するように構成されている層間充填構成の画像表示装置を構成する部材として高温環境下に晒された場合であっても、視感度補正単体透過率の低下を良好に抑制することができる偏光素子、偏光素子を備えた偏光板、及び偏光板を備えた画像表示装置の提供を目的とする。
 本発明は、以下の偏光素子、偏光板、及び画像表示装置を提供する。
 〔1〕 ポリビニルアルコール系樹脂層に二色性色素が吸着配向されている偏光素子であって、
 前記偏光素子を厚み方向に三等分することにより区分される3領域のうちの、染色度が最も大きい領域の染色度をS1とし、染色度が最も小さい領域の染色度をS2とするとき、下記式(1)の関係を満たす、偏光素子。
  0≦S2/S1≦0.95  (1)
 〔2〕 前記3領域のうちの染色度が最も小さい領域は、前記厚み方向において中央に位置する領域である、〔1〕に記載の偏光素子。
 〔3〕 前記偏光素子は、ホウ素を含み、
 前記偏光素子におけるホウ素の含有量は、4.0質量%以上8.0質量%以下である、〔1〕又は〔2〕に記載の偏光素子。
 〔4〕 前記二色性色素は、ヨウ素である、〔1〕~〔3〕のいずれかに記載の偏光素子。
 〔5〕 〔1〕~〔4〕のいずれかに記載の偏光素子と透明保護フィルムとを有する、偏光板。
 〔6〕 さらに、前記偏光素子と前記透明保護フィルムとを貼合するための接着剤層を有し、
 前記接着剤層は、水系接着剤が硬化した層である、〔5〕に記載の偏光板。
 〔7〕 前記水系接着剤は、メタノールを含み、
 前記水系接着剤における前記メタノールの含有量は、10質量%以上70質量%以下である、〔6〕に記載の偏光板。
 〔8〕 前記水系接着剤は、さらにポリビニルアルコール系樹脂を含む、〔6〕又は〔7〕に記載の偏光板。
 〔9〕 前記接着剤層の厚みは、0.01μm以上7μm以下である、〔6〕~〔8〕のいずれかに記載の偏光板。
 〔10〕 前記偏光板は、画像表示装置に用いられ、
 前記画像表示装置において、前記偏光板の両面には固体層が接して設けられている、〔5〕~〔9〕のいずれかに記載の偏光板。
 〔11〕 画像表示セルと、前記画像表示セルの視認側表面に積層された第1粘着剤層と、前記第1粘着剤層の視認側表面に積層された〔5〕~〔10〕のいずれかに記載の偏光板と、を有する、画像表示装置。
 〔12〕 さらに、前記偏光板の視認側表面に積層された第2粘着剤層と、前記第2粘着剤層の視認側表面に積層された透明部材と、を有する、〔11〕に記載の画像表示装置。
 〔13〕 前記透明部材は、ガラス板又は透明樹脂板である、〔12〕に記載の画像表示装置。
 〔14〕 前記透明部材は、タッチパネルである、〔12〕に記載の画像表示装置。
 本発明によれば、層間充填構成の画像表示装置を構成する部材として高温環境下に晒された場合であっても、視感度補正単体透過率の低下を良好に抑制することができる偏光素子、偏光素子を備えた偏光板、及び偏光板を備えた画像表示装置を提供することができる。
本発明の一実施形態に係る偏光素子を模式的に示す概略断面図である。 本発明の一実施形態に係る偏光板を模式的に示す概略断面図である。 (a)及び(b)は、染色度を測定するための手順を説明するための説明図である。 ラマンスペクトルから積分強度分布を算出する方法を説明するための説明図である。
 以下、図面を参照して偏光素子、偏光板、及び画像表示装置の好ましい実施形態について説明する。
 (偏光素子)
 図1は、本実施形態に係る偏光素子を模式的に示す概略断面図である。偏光素子1は、その吸収軸に平行な振動面をもつ直線偏光を吸収し、吸収軸に直交する(透過軸と平行な)振動面をもつ直線偏光を透過する性質を有する吸収型の偏光フィルムである。
 偏光素子1は、ポリビニルアルコール系樹脂層(以下、「PVA系樹脂層」ということがある。)に二色性色素が吸着配向されているものである。偏光素子1は、PVA系樹脂層に二色性色素が吸着配向されている1層の偏光層であってもよく、当該偏光層が2又は3以上積層された多層構造を有していてもよい。偏光素子1が多層構造を有する場合、偏光素子1に含まれる2以上の偏光層は、貼合層を介して積層されていてもよい。
 偏光素子1は、図1に示すように、当該偏光素子1を厚み方向100に三等分することにより区分される3領域11~13のうちの、染色度が最も大きい領域の染色度をS1とし、染色度が最も小さい領域の染色度をS2とするとき、下記式(1)の関係を満たす。
  0≦S2/S1≦0.95  (1)
 偏光素子1の3領域11~13は、図1に示すように、偏光素子1の厚み方向100に沿って配置された領域である。3領域11~13のうちの領域11,13は、偏光素子1の厚み方向100の表面側に位置する領域であり、領域12は、偏光素子1の厚み方向100の中央に位置する領域である。
 式(1)におけるS2/S1は、好ましくは0.90以下であり、より好ましくは0.85以下であり、さらに好ましくは0.75以下であり、また、0.1以上であってもよく、0.3以上であってもよい。
 偏光素子1は、上記式(1)の関係を満たすことにより、高温環境下において視感度補正単体透過率Ty(以下、「透過率Ty」ということがある。)の低下を良好に抑制することができる。この理由は次のように考えられる。偏光素子1に含まれる二色性色素は、PVA系樹脂層を構成するポリビニルアルコール系樹脂(以下、「PVA系樹脂」ということがある。)が脱水によりポリエン化する反応を促進すると推測される。高温環境下ではPVA系樹脂が脱水しやすいため、PVA系樹脂のポリエン化が発生しやすく、偏光素子の透過率Tyが低下しやすい。偏光素子1における染色度が小さい領域は、その領域に存在する二色性色素の量が少ないことを示していると考えられる。そのため、偏光素子1が上記式(1)の関係を満たすように染色度の小さい領域を有することにより、高温環境下におけるPVA系樹脂のポリエン化を良好に抑制することができ、偏光素子1の透過率Tyの低下を抑制できると考えられる。
 PVA系樹脂のポリエン化とは、偏光素子1を構成するPVA系樹脂がポリエン構造(-C=C)n-を形成していることをいい、例えば偏光素子1のラマン分光測定により、1100cm-1付近(=C-C=結合に由来)及び1500cm-1付近(-C=C-結合に由来)のピークの存在によって確認することができる(特許文献2、段落[0012])。
 式(1)の関係を満たす偏光素子1は、高温環境下において、視感度補正偏光度Py(以下、「偏光度Py」ということがある。)の低下及び色相abの低下を抑制することもできる。
 染色度S1を有する領域(染色度が最も大きい領域)は、領域11~13のうちのいずれであってもよいが、偏光素子1の厚み方向100の表面に位置する領域11及び領域13のうちの少なくとも一方であることが好ましい。染色度S2を有する領域(染色度が最も小さい領域)は、領域11~13のうちのいずれであってもよいが、偏光素子1の厚み方向100において中央に位置する領域12であることが好ましい。PVA系樹脂のポリエン化は、偏光素子1の厚み方向100の中央部分から進行しやすいと考えられる。そのため、染色度S2を有する領域が厚み方向100の中央に位置する領域12であることにより、偏光素子1を構成するPVA系樹脂のポリエン化を効率的に抑制しやすいと推測される。
 染色度は、次の[i]~[iv]の手順で測定することができ、より詳細には、後述する実施例に記載の方法によって測定することができる。[i]偏光素子1の厚み方向100に1μmのピッチで設定した測定点のそれぞれにおいて得たラマンスペクトルを得る。[ii]得られたラマンスペクトルの波数80cm-1~180cm-1の区間の積分強度を算出する。[iii]算出した積分強度を偏光素子1の厚み方向100の位置に対してプロットした積分強度分布を得る。[iv]得られた積分強度分布において、偏光素子1の厚み方向100に三等分することにより区分される3領域の各々について求めた積分面積を求め、これらを各々の領域の染色度とする。
 式(1)の関係を満たす偏光素子1を得る方法としては、染色度の異なる2以上の偏光層を準備し、これらの偏光層を貼合層を介して積層する方法;PVA系樹脂の重合度や鹸化度が異なる2以上の層を有する多層構造のPVA系樹脂層を準備し、これを用いて偏光素子1を製造する方法;厚み方向100における染色度が異なる単層の偏光層を偏光素子1とする方法が挙げられる。厚み方向100における染色度が異なる単層の偏光層を製造する方法としては、後述する偏光層の製造方法において、PVA系樹脂層を二色性色素で染色する際の二色性色素の濃度、染色温度、及び染色時間のうちの少なくとも1つを調整する方法;後述する偏光層の製造方法において、二色性色素が吸着されたPVA系樹脂層を処理するホウ酸水溶液のホウ酸濃度、温度、及び処理時間のうちの少なくとも1つを調整する方法;PVA樹脂層の片面に基材フィルムが配置された積層フィルムを用いて偏光層を製造し、積層フィルムに対する処理条件(染色条件、ホウ酸水溶液による処理条件等)を調整する方法等が挙げられる。
 偏光素子1はホウ素を含むことが好ましい。偏光素子1におけるホウ素の含有量は、好ましくは4.0質量%以上であり、より好ましくは4.2質量%以上であり、さらに好ましくは4.4質量%以上であり、また、好ましくは8.0質量%以下であり、より好ましくは7.0質量%以下であり、さらに好ましくは6.0質量%以下である。偏光素子1におけるホウ素の含有量は、偏光素子1を100質量%としたときのホウ素の含有割合であり、後述する実施例に記載の方法によって測定することができる。ホウ素は、偏光素子1中に、ホウ酸として、又は、ホウ酸がPVA系樹脂の構成要素と架橋構造を形成した状態で存在すると考えられるが、ここでいうホウ素の含有量は、ホウ素原子(B)としての量である。偏光素子1におけるホウ素の含有量は、後述する偏光層に含まれるホウ素の含有量を調整する方法によって調整することができる。
 偏光素子1におけるホウ素の含有量が上記の範囲であることにより、高温環境下においてPVA系樹脂のポリエン化が生じにくくなると推測される。そのため、後述する層間充填構成の画像表示装置を構成する部材として高温環境下に晒された場合であっても、偏光素子1の透過率Tyの低下をより一層良好に抑制することができると考えられる。
 一方、偏光素子1におけるホウ素の含有量が上記範囲よりも大きくなると、偏光素子1の収縮力が大きくなり、画像表示装置に組み込んだ際に貼り合わされる透明部材等の他の部材との間で剥離が生じる等の不具合が生じやすくなる。偏光素子1におけるホウ素の含有量が上記範囲よりも小さくなると、所望する光学特性を有する偏光素子が得られにくくなる。
 偏光素子1はカリウムを含むことが好ましい。偏光素子1におけるカリウムの含有量は、高温環境下における偏光素子1の光学特性の低下を抑制する観点から、好ましくは0.28質量%以上であり、より好ましくは0.32質量%以上であり、さらに好ましくは0.34質量%以上である。偏光素子1におけるカリウムの含有量は、高温環境下における偏光素子1の色相変化を抑制する観点から、好ましくは0.60質量%以下であり、より好ましくは0.55質量%以下であり、さらに好ましくは0.50質量%以下である。偏光素子1におけるカリウムの含有量は、偏光素子1を100質量%としたときのカリウムの含有割合であり、例えば高周波誘導結合プラズマ(Inductively Coupled Plasma:ICP)発光分光分析法により、偏光素子の質量に対するカリウムの質量分率(質量%)として算出することができる。偏光素子1におけるカリウムの含有量は、後述する偏光層に含まれるカリウムの含有量を調整する方法によって調整することができる。
 偏光素子1におけるホウ素の含有量及びカリウムの含有量が上記の範囲である場合、従来の偏光素子よりも、ホウ素の含有量が多く、カリウムの含有量が少ない傾向にある。そのため、ホウ酸架橋により偏光素子1中のポリビニルアルコールの水酸基が保護(安定化)することができると推測される。また、特に偏光素子1に含まれる二色性色素が後述するヨウ素である場合、偏光素子1がカリウムを適量含有することによって、偏光素子1中で対イオンとなるヨウ素イオンを安定化することができると推測される。したがって、ホウ素の含有量及びカリウムの含有量が上記の範囲である場合、偏光素子1を構成するPVA系樹脂のポリエン化がより一層良好に抑制されやすいと考えられる。
 偏光素子1の透過率Tyは、好ましくは38.8%以上であり、より好ましくは40.4%以上であり、さらに好ましくは40.7%以上であり、また、好ましくは44.8%以下であり、より好ましくは43.2%以下であり、さらに好ましくは43.0%以下である。透過率Tyが44.8%を超えると、高温環境下で偏光素子が赤く変色する(この現象を赤変ということがある。)等、偏光素子1の光学特性の劣化が大きくなる場合がある。透過率Tyが38.8%未満になると、高温環境下でPVA系樹脂のポリエン化が進行しやすく、偏光素子1の光学特性の劣化が大きくなる場合がある。
 偏光素子1の透過率Tyは、JIS Z8701-1982に規定されている2度視野(C光源)により、視感度補正を行ったY値を測定することによって求めることができる。透過率Tyは、後述する実施例に記載のように、例えば日本分光株式会社製の分光光度計(型番:V7100)等により簡便に測定することができる。
 偏光素子1の厚みは、好ましくは3μm以上であり、より好ましくは4μm以上であり、さらに好ましくは5μm以上であり、また、好ましくは35μm以下であり、より好ましくは30μm以下であり、さらに好ましくは25μm以下である。偏光素子1の厚みが35μm以下であることにより、高温環境下におけるPVA系樹脂のポリエン化によって偏光素子1の光学特性が低下することを抑制しやすくなる。偏光素子1の厚みが3μm以上であることにより、所望の光学特性を有する偏光素子1を得やすくなる。
 PVA系樹脂層は、ポリ酢酸ビニル系樹脂を鹸化して得られるPVA系樹脂を用いて形成することができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体が挙げられる。共重合可能な他の単量体としては、例えば不飽和カルボン酸類、エチレン等のオレフィン類、ビニルエーテル類、不飽和スルホン酸類等が挙げられる。
 PVA系樹脂の鹸化度は、好ましくは85モル%以上であり、より好ましくは90モル%以上であり、さらに好ましくは99モル%以上100モル%以下である。PVA系樹脂の重合度としては、例えば1000以上10000以下であり、好ましくは1500以上5000以下である。PVA系樹脂は変性されていてもよく、例えばアルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール等であってもよい。
 PVA系樹脂層に吸着配向している二色性色素としては、ヨウ素又は二色性染料が挙げられる。二色性色素はヨウ素であることが好ましい。
 偏光素子1を構成する偏光層は、例えば、PVA系樹脂層となるポリビニルアルコール系樹脂フィルム(以下、「PVA系樹脂フィルム」ということがある。)を用い、このPVA系樹脂フィルムを二色性色素で染色し、一軸延伸することによって形成したもの;基材フィルム上にPVA系樹脂を含む塗布液を塗布することにより、基材フィルム上にPVA系樹脂層となる塗布層を形成した積層フィルムを得、塗布層を二色性色素で染色し、積層フィルムを一軸延伸することによって形成したもの等であってもよい。
 偏光層をそのまま用いて偏光素子1としてもよく、2以上の偏光層を貼合層を用いて貼合して偏光素子1としてもよい。2以上の偏光層を積層する場合、偏光層の吸収軸が互いに平行になるように積層することが好ましい。
 (偏光層の製造方法)
 偏光素子1を構成する偏光層の製造方法は特に限定されない。偏光層の製造方法としては、予めロール状に巻かれたPVA系樹脂フィルムを送り出して延伸、染色、架橋等を行って作製する方法(以下、「製造方法1」とする。);PVA系樹脂を含む塗布液を基材フィルム上に塗布して塗布層を形成した積層フィルムを延伸する工程を含む方法(以下、「製造方法2」とする。)が典型的である。
 製造方法1は、PVA系樹脂フィルムを一軸延伸する工程、PVA系樹脂フィルムをヨウ素等の二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたPVA系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を含むことができる。
 偏光層に含まれるホウ素の含有量及びカリウムの含有量は、膨潤工程、染色工程、架橋工程、延伸工程、及び水洗工程における各処理浴のいずれかに含まれるホウ酸、ホウ酸塩、及びホウ砂等のホウ素化合物等のホウ素成分供与物質の濃度、及び、ヨウ化カリウム等のハロゲン化カリウム等のカリウム成分供与物質の濃度、上記の各処理浴による処理温度及び処理時間によって制御できる。特に、架橋工程及び延伸工程は、ホウ素成分供与物質の濃度等の処理条件により、ホウ素の含有率を所望の範囲に調整しやすい。また、水洗工程は、染色工程、架橋工程、又は延伸工程等で使用したホウ素成分供与物質やカリウム成分供与物質の使用量等の処理条件を考慮した上で、ホウ素、カリウム等の成分をPVA系樹脂フィルムから溶出、あるいはPVA系樹脂フィルムに吸着させることができる観点から、ホウ素の含有量及びカリウムの含有量を所望の範囲に調整しやすい。
 膨潤工程は、PVA系樹脂フィルムを、膨潤浴中に浸漬する処理工程であり、PVA系樹脂フィルムの表面の汚れやブロッキング剤等を除去でき、また、PVA系樹脂フィルムを膨潤させることで染色ムラを抑制できる。膨潤浴には通常、水、蒸留水、純水等の水を主成分とする媒体が用いられる。膨潤浴には、常法にしたがって、界面活性剤、アルコール等が適宜に添加されていてもよい。また、偏光層におけるカリウムの含有量を制御する観点から、膨潤浴にヨウ化カリウムを使用してもよく、この場合、膨潤浴におけるヨウ化カリウムの含有量は、1.5重量%以下であることが好ましく、1.0重量%以下であることがより好ましく、0.5重量%以下であることがさらに好ましい。
 膨潤浴の温度は、10~60℃であることが好ましく、15~45℃であることがより好ましく、18~30℃であることがさらに好ましい。膨潤浴への浸漬時間は、PVA系樹脂フィルムの膨潤の程度が膨潤浴の温度の影響を受けるため一概に決定できないが、5~300秒間であることが好ましく、10~200秒間であることがより好ましく、20~100秒間であることがさらに好ましい。膨潤工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。
 染色工程は、PVA系樹脂フィルムを、染色浴に浸漬する処理工程であり、PVA系樹脂フィルムに二色性色素を吸着・配向させることができる。二色性色素がヨウ素である場合、染色浴はヨウ素溶液であることが好ましい。ヨウ素溶液は、通常、ヨウ素水溶液であることが好ましく、ヨウ素及び溶解助剤としてヨウ化物を含有する。ヨウ化物としては、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、及びヨウ化チタン等が挙げられる。これらの中でも、偏光層におけるカリウムの含有量を制御する観点から、ヨウ化カリウムが好適である。
 染色浴中、二色性色素の濃度は、0.01~1重量%であることが好ましく、0.02~0.5重量%であることがより好ましい。染色浴中、ヨウ化物の濃度は、0.01~10重量%であることが好ましく、0.05~5重量%であることがより好ましく、0.1~3重量%であることがさらに好ましい。
 染色浴の温度は、10~50℃であることが好ましく、15~45℃であることがより好ましく、18~30℃であることがさらに好ましい。染色浴への浸漬時間は、PVA系樹脂フィルムの染色の程度が染色浴の温度の影響を受けるため一概に決定できないが、10~300秒間であることが好ましく、20~240秒間であることがより好ましい。染色工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。
 架橋工程は、染色工程にて染色されたPVA系樹脂フィルムを、ホウ素化合物を含む処理浴(架橋浴)中に浸漬する処理工程であり、ホウ素化合物によりPVA系樹脂フィルム中のPVA系樹脂が架橋して、二色性色素が当該架橋構造に吸着する。ホウ素化合物としては、例えば、ホウ酸、ホウ酸塩、及びホウ砂等が挙げられる。架橋浴は、水溶液が一般的であるが、例えば、水との混和性のある有機溶媒及び水の混合溶液であってもよい。架橋浴は、偏光層におけるカリウムの含有量を制御する観点から、ヨウ化カリウムを含むことが好ましい。
 架橋浴中、ホウ素化合物の濃度は、1~15重量%であることが好ましく、1.5~10重量%であることがより好ましく、2~5重量%であることがより好ましい。また、架橋浴にヨウ化カリウムが含まれる場合、架橋浴中、ヨウ化カリウムの濃度は、1~15重量%であることが好ましく、1.5~10重量%であることがより好ましく、2~5重量%であることがより好ましい。
 架橋浴の温度は、20~70℃であることが好ましく、30~60℃であることがより好ましい。架橋浴への浸漬時間は、PVA系樹脂フィルム中のPVA系樹脂の架橋の程度が架橋浴の温度の影響を受けるため一概に決定できないが、5~300秒間であることが好ましく、10~200秒間であることがより好ましい。架橋工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。
 延伸工程は、PVA系樹脂フィルムを、少なくとも一方向に所定の倍率に延伸する処理工程である。一般には、PVA系樹脂フィルムを、搬送方向(長手方向)に1軸延伸する。延伸の方法は特に制限されず、湿潤延伸法及び乾式延伸法のうちのいずれも採用できる。延伸工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。延伸工程は、偏光層の製造工程のいずれの段階で行われてもよい。
 湿潤延伸法における処理浴(延伸浴)は、通常、水、又は水との混和性のある有機溶媒及び水の混合溶液等の溶媒を用いることができる。延伸浴は、偏光層におけるカリウムの含有量を制御する観点から、ヨウ化カリウムを含むことが好ましい。延伸浴にヨウ化カリウムを使用する場合、当該延伸浴中、ヨウ化カリウムの濃度は、1~15重量%であることが好ましく、2~10重量%であることがより好ましく、3~6重量%であることがより好ましい。また、処理浴(延伸浴)は、延伸中のフィルム破断を抑制する観点から、ホウ素化合物を含むことができ、この場合、当該延伸浴中、ホウ素化合物の濃度は、1~15重量%であることが好ましく、1.5~10重量%であることがより好ましく、2~5重量%であることがより好ましい。
 延伸浴の温度は、25~80℃であることが好ましく、40~75℃であることがより好ましく、50~70℃であることがさらに好ましい。延伸浴への浸漬時間は、PVA系樹脂フィルムの延伸の程度が延伸浴の温度の影響を受けるため一概に決定できないが、10~800秒間であることが好ましく、30~500秒間であることがより好ましい。なお、湿潤延伸法における延伸処理は、膨潤工程、染色工程、架橋工程、及び洗浄工程のいずれか1つ以上の処理工程とともに施してもよい。
 乾式延伸法としては、例えば、ロール間延伸方法、加熱ロール延伸方法、圧縮延伸方法等が挙げられる。なお、乾式延伸法の場合、延伸工程は、乾燥工程で行ってもよい。
 PVA系樹脂フィルムに施される総延伸倍率(累積の延伸倍率)は、目的に応じ適宜設定できるが、2~7倍であることが好ましく、3~6.8倍であることがより好ましく、3.5~6.5倍であることがさらに好ましい。
 洗浄工程は、PVA系樹脂フィルムを、洗浄浴中に浸漬する処理工程であり、PVA系樹脂フィルムの表面等に残存する異物を除去できる。洗浄浴には、通常、水、蒸留水、純水等の水を主成分とする媒体が用いられる。また、偏光層におけるカリウムの含有量を制御する観点から、洗浄浴はヨウ化カリウムを含むことが好ましく、この場合、洗浄浴中、ヨウ化カリウムの濃度は、1~10重量%であることが好ましく、1.5~4重量%であることがより好ましく、1.8~3.8重量%であることがさらに好ましい。
 洗浄浴の温度は、5~50℃であることが好ましく、10~40℃であることがより好ましく、15~30℃であることがさらに好ましい。洗浄浴への浸漬時間は、PVA系樹脂フィルムの洗浄の程度が洗浄浴の温度の影響を受けるため一概に決定できないが、1~100秒間であることが好ましく、2~50秒間であることがより好ましく、3~20秒間であることがさらに好ましい。洗浄工程は1回だけ実施されてもよく、必要に応じて複数回実施されてもよい。
 乾燥工程は、洗浄工程にて洗浄されたPVA系樹脂フィルムを、乾燥して偏光層を得る工程である。乾燥は、任意の適切な方法で行われ、例えば、自然乾燥、送風乾燥、加熱乾燥が挙げられる。
 製造方法2は、上記PVA系樹脂を含む塗布液を基材フィルム上に塗布する工程、得られた積層フィルムを一軸延伸する工程、一軸延伸された積層フィルムの塗布層を二色性色素で染色することにより、二色性色素を吸着させる工程、二色性色素が吸着された積層フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を含むことができる。偏光層を形成するために用いる基材フィルムは、偏光板の透明保護フィルムとして用いてもよい。必要に応じて、基材フィルムを偏光層から剥離除去してもよい。
 (偏光板)
 図2は、本実施形態に係る偏光板を模式的に示す概略断面図である。偏光板2は、偏光素子1と透明保護フィルム21とを有する。透明保護フィルム21は、偏光素子1の片面又は両面に設けられるが、図2に示すように両面に設けられることが好ましい。偏光板2は、偏光素子1と透明保護フィルム21とを貼合するための接着剤層(図示せず)を有していてもよい。接着剤層は通常、偏光素子1と透明保護フィルム21とに直接接している。
 (透明保護フィルム)
 透明保護フィルム21は、単層構造であってもよく、多層構造であってもよい。透明保護フィルムは、それ自体が光学的機能を有する単層構造であってもよく、少なくとも1層の光学的機能を有する層を有する多層構造であってもよい。透明保護フィルム21の厚みは光学特性の観点から薄いものが好ましいが、薄すぎると強度が低下し加工性に劣るものとなる。透明保護フィルム21の厚みは、例えば5μm以上であり、好ましくは10μm以上であり、より好ましくは15μm以上であり、また、例えば100μm以下であり、好ましくは80μm以下であり、より好ましくは70μm以下である。
 透明保護フィルム21は、セルロースアシレート系フィルム、ポリカーボネート系樹脂フィルム、ノルボルネン等のシクロオレフィン系樹脂からなるフィルム、(メタ)アクリル系重合体フィルム、ポリエチレンテレフタレート等のポリエステル樹脂からなるフィルム等を用いることができる。偏光素子1の両面に透明保護フィルム21を有し、PVA系樹脂を含む接着剤等の水系接着剤を用いて偏光素子1と透明保護フィルム21とを貼合する場合、透湿度の観点から、偏光板2に含まれる少なくとも1つの透明保護フィルム21は、セルロースアシレート系フィルム又は(メタ)アクリル系重合体フィルムであることが好ましく、中でもセルロースアシレートフィルムが好ましい。
 偏光板2に含まれる少なくとも1つの透明保護フィルム21は、視野角補償等の目的で位相差機能を備えていてもよく、その場合、透明保護フィルム21を構成するフィルム自体が位相差機能を有していてもよく、透明保護フィルム21が位相差機能を有していない層と位相差層(位相差機能を有する層)とを有していてもよい。透明保護フィルム21が位相差層を有する場合、位相差機能を有していない層と位相差層との積層体とすることができ、これらは、貼合層を用いて貼合されていてもよい。
 (接着剤層)
 偏光素子1と透明保護フィルム21とを貼合するための接着剤層を形成するために用いる接着剤は、任意の適切な接着剤を用いることができる。接着剤は、水系接着剤、溶剤系接着剤、活性エネルギー線硬化型接着剤等を用いることができるが、水系接着剤であることが好ましい。接着剤層は、耐熱性向上の観点から、尿素、尿素誘導体、チオ尿素、及びチオ尿素誘導体から選ばれる少なくとも一種の尿素系化合物を含有させることが好ましい。
 接着剤の塗布時の厚みは、任意の適切な値に設定され得る。例えば、硬化後又は加熱(乾燥)後に、所望の厚みを有する接着剤層が得られるように設定する。接着剤層の厚みは、好ましくは0.01μm以上であり、また、好ましくは7μm以下であり、より好ましくは5μm以下であり、さらに好ましくは2μm以下であり、最も好ましくは1μm以下である。
 (水系接着剤)
 水系接着剤としては、任意の適切な水系接着剤が採用され得る。中でも、PVA系樹脂を含む水系接着剤(PVA系接着剤)が好ましく用いられる。水系接着剤に含まれるPVA系樹脂の平均重合度は、接着性の点から、好ましくは100以上5500以下であり、さらに好ましくは1000以上4500以下である。平均鹸化度は、接着性の点から、好ましくは85モル%以上100モル%以下であり、さらに好ましくは90モル%以上100モル%以下である。
 水系接着剤に含まれるPVA系樹脂としては、アセトアセチル基を含有するものが好ましい。PVA系樹脂層と透明保護フィルムとの密着性に優れ、耐久性に優れているからである。アセトアセチル基を含有するPVA系樹脂は、例えば、PVA系樹脂とジケテンとを任意の方法で反応させることにより得られる。アセトアセチル基を含有するPVA系樹脂のアセトアセチル基変性度は、代表的には0.1モル%以上であり、好ましくは0.1モル%以上20モル%以下である。水系接着剤におけるPVA系樹脂の含有量は、好ましくは0.1質量%以上であり、より好ましくは0.5質量%以上であり、また、好ましくは15質量%以下であり、より好ましくは10質量%以下である。
 水系接着剤は架橋剤を含有していてもよい。架橋剤としては公知の架橋剤を用いることができる。例えば、水溶性エポキシ化合物、ジアルデヒド、イソシアネート等が挙げられる。
 PVA系樹脂がアセトアセチル基を含有するPVA系樹脂である場合、架橋剤は、好ましくはグリオキサール、グリオキシル酸塩、及びメチロールメラミンのうちのいずれかであり、より好ましくはグリオキサール及びグリオキシル酸塩のうちのいずれかであり、さらに好ましくはグリオキサールである。
 水系接着剤は有機溶剤を含有していてもよい。有機溶剤は、水と混和性を有する点でアルコール類が好ましく、アルコール類の中でもメタノール及びエタノールのうちの少なくとも一方であることがより好ましく、メタノールであることがさらに好ましい。接着剤層が含んでいてもよい尿素系化合物の中には、水に対する溶解度が低い反面、アルコール類に対する溶解度は十分なものがある。その場合は、尿素系化合物をアルコール類に溶解させて、尿素系化合物のアルコール溶液を調製した後、尿素系化合物のアルコール溶液を、PVA系樹脂の水溶液に添加し、水系接着剤を調製することも好ましい態様の一つである。
 水系接着剤がメタノールを含有する場合、水系接着剤におけるメタノールの含有量は、好ましくは10質量%以上であり、より好ましくは15質量%以上であり、さらに好ましくは20質量%以上であり、また、好ましくは70質量%以下であり、より好ましくは60質量%以下である。メタノールの含有量が10質量%以上であることにより、高温環境下での偏光素子を構成するPVA系樹脂のポリエン化をより抑制しやすくなる。メタノールの含有量が70質量%以下であることにより、偏光素子の色相の悪化を抑制することができる。水系接着剤におけるメタノールの含有量は、水系接着剤を100質量%としたときのメタノールの含有割合である。
 (活性エネルギー線硬化型接着剤)
 活性エネルギー線硬化型接着剤は、紫外線等の活性エネルギー線を照射することによって硬化する接着剤であり、例えば重合性化合物及び光重合性開始剤を含む接着剤、光反応性樹脂を含む接着剤、バインダー樹脂及び光反応性架橋剤を含む接着剤等を挙げることができる。重合性化合物としては、光硬化性エポキシ系モノマー、光硬化性アクリル系モノマー、光硬化性ウレタン系モノマー等の光重合性モノマー、及びこれらモノマーに由来するオリゴマー等を挙げることができる。光重合開始剤としては、紫外線等の活性エネルギー線を照射して中性ラジカル、アニオンラジカル、カチオンラジカルといった活性種を発生する化合物を挙げることができる。
 (尿素系化合物)
 接着剤層が尿素系化合物を含む場合、尿素、尿素誘導体、チオ尿素、及びチオ尿素誘導体から選ばれる少なくとも1種を含む。接着剤層に尿素系化合物を含有させる方法としては、上記の接着剤に尿素系化合物を含有させる方法が挙げられる。偏光素子1と透明保護フィルム21とを貼合するために用いる接着剤が尿素系化合物を含む場合、接着剤を塗布して乾燥する等によって接着剤層を形成する過程で、尿素系化合物の一部が接着剤から偏光素子1等に移動してもよい。すなわち、偏光素子1は、尿素系化合物を含んでいてもよい。尿素系化合物には水溶性のものと難水溶性のものがあるが、どちらの尿素系化合物も使用することができる。難水溶性の尿素系化合物を水系接着剤に用いる場合は、接着剤層を形成したときにヘイズの上昇等が起きないように、尿素系化合物の分散方法を工夫することが好ましい。
 接着剤がPVA系樹脂及び尿素系化合物を含有する水系接着剤の場合、PVA系樹脂100質量%に対する尿素系化合物の含有量は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上であり、さらに好ましくは3質量%以上であり、また、好ましくは400質量%以下であり、より好ましくは200質量%以下であり、さらに好ましくは100質量%以下である。
 (尿素誘導体)
 尿素誘導体は、尿素分子の4つの水素原子の少なくとも1つが、置換基に置換された化合物である。この場合、置換基に特に制限はないが、炭素原子と、水素原子及び酸素原子のうちの少なくとも一方とを含む置換基であることが好ましい。
 尿素誘導体の具体例として、1置換尿素として、メチル尿素、エチル尿素、プロピル尿素、ブチル尿素、イソブチル尿素、N-オクタデシル尿素、2-ヒドロキシエチル尿素、ヒドロキシ尿素、アセチル尿素、アリル尿素、2-プロピニル尿素、シクロヘキシル尿素、フェニル尿素、3-ヒドロキシフェニル尿素、(4-メトキシフェニル)尿素、ベンジル尿素、ベンゾイル尿素、o-トリル尿素、p-トリル尿素が挙げられる。
 2置換尿素として、1,1-ジメチル尿素、1,3-ジメチル尿素、1,1-ジエチル尿素、1,3-ジエチル尿素、1,3-ビス(ヒドロキシメチル)尿素、1,3-tert-ブチル尿素、1,3-ジシクロヘキシル尿素、1,3-ジフェニル尿素、1,3-ビス(4-メトキシフェニル)尿素、1-アセチル-3-メチル尿素が挙げられる。
 4置換尿素として、テトラメチル尿素、1,1,3,3-テトラエチル尿素、1,1,3,3-テトラブチル尿素、1,3-ジメトキシ-1,3-ジメチル尿素が挙げられる。
 (チオ尿素誘導体)
 チオ尿素誘導体は、チオ尿素分子の4つの水素原子の少なくとも1つが、置換基に置換された化合物である。この場合、置換基に特に制限はないが、炭素原子と、水素原子及び酸素原子のうちの少なくとも一方とを含む置換基であることが好ましい。
 チオ尿素誘導体の具体例として、1置換チオ尿素として、N-メチルチオ尿素、エチルチオ尿素、プロピルチオ尿素、イソプロピルチオ尿素、1-ブチルチオ尿素、シクロヘキシルチオ尿素、N-アセチルチオ尿素、N-アリルチオ尿素、(2-メトキシエチル)チオ尿素、N-フェニルチオ尿素、(4-メトキシフェニル)チオ尿素、N-(2-メトキシフェニル)チオ尿素、N-(1-ナフチル)チオ尿素、(2-ピリジル)チオ尿素、o-トリルチオ尿素、p-トリルチオ尿素が挙げられる。
 2置換チオ尿素として、1,1-ジメチルチオ尿素、1,3-ジメチルチオ尿素、1,1-ジエチルチオ尿素、1,3-ジエチルチオ尿素、1,3-ジブチルチオ尿素、1,3-ジイソプロピルチオ尿素、1,3-ジシクロヘキシルチオ尿素、N,N-ジフェニルチオ尿素、N,N’-ジフェニルチオ尿素、1,3-ジ(o-トリル)チオ尿素、1,3-ジ(p-トリル)チオ尿素、1-ベンジル-3-フェニルチオ尿素、1-メチル-3-フェニルチオ尿素、N-アリル-N’-(2-ヒドロキシエチル)チオ尿素が挙げられる。
 3置換尿素として、トリメチルチオ尿素が挙げられ、4置換尿素として、テトラメチルチオ尿素、1,1,3,3-テトラエチルチオ尿素が挙げられる。
 後述する層間充填構成の画像表示装置に偏光板2を適用した際に、高温環境下での透過率Tyの低下を良好に抑制する観点から、尿素系化合物は、尿素誘導体又はチオ尿素誘導体が好ましく、尿素誘導体がより好ましい。尿素誘導体の中でも、1置換尿素又は2置換尿素であることが好ましく、1置換尿素であることがより好ましい。2置換尿素は、1,1-置換尿素及び1,3-置換尿素のいずれであってもよいが、1,3-置換尿素がより好ましい。
 (尿素系化合物含有層)
 偏光素子1と透明保護フィルム21とを貼合するための接着剤層は、上記したように、尿素系化合物を含有する尿素系化合物含有層であってもよい。偏光板2では、偏光板2の耐熱性向上の観点から、上記接着剤層以外の他の層が尿素系化合物含有層を構成していてもよい。
 近年、偏光板の薄型化の要請に応えるために、偏光素子1の片面にのみ透明保護フィルム21を有する偏光板が開発されている。このような偏光板では、物理強度を向上することを目的として、偏光素子1の透明保護フィルム21を有さない面に硬化層を積層することができる。この硬化層は、尿素系化合物含有層であってもよい。硬化層は、有機溶剤を含む硬化性組成物から形成してもよく、活性エネルギー線硬化性高分子組成物の水性溶液から形成してもよい(特開2017-075986号公報、段落[0020]~[0042])。硬化層が尿素系化合物含有層である場合、上記水性溶液に水溶性の尿素系化合物を含有させた混合液を用いて硬化層を形成してもよい。
 (偏光板の製造方法)
 偏光板2の製造方法は、偏光素子1と透明保護フィルム21とを積層する積層工程を有し、さらに含水率調整工程を有していてもよい。積層工程は、偏光素子1と透明保護フィルム21を接着剤を用いて積層する工程であってもよい。
 含水率調整工程は、偏光素子1の含水率を調整する工程であり、例えば、偏光素子1の含水率が温度20℃相対湿度30%の平衡含水率以上、かつ温度20℃相対湿度80%の平衡含水率以下となるように調整する工程であってもよい。偏光素子1の含水率は、温度20℃相対湿度50%の平衡含水率以下であってもよく、温度20℃相対湿度45%の平衡含水率以下であってもよい。
 偏光素子1の含水率が、温度20℃相対湿度30%の平衡含水率以上であり、かつ温度20℃相対湿度80%の平衡含水率以下であることを確認する方法として、上記温度及び上記相対湿度の範囲に調整された環境で偏光素子を一定時間保管し、質量の変化がないことを確認する方法、又は、上記温度及び上記相対湿度の範囲に調整された環境の偏光素子の平衡含水率を予め計算し、偏光素子の含水率と予め計算した平衡含水率とを対比する方法等が挙げられる。一定時間偏光素子を保管し、その質量に変化がない場合は、保管環境において含水率が平衡に達したとみなすことができる。
 偏光素子1の含水率を、温度20℃相対湿度30%の平衡含水率以上、かつ温度20℃相対湿度80%の平衡含水率以下に調整する方法としては、特に限定されないが、例えば上記温度及び上記相対湿度の範囲に調整された環境に偏光素子を、10分以上3時間以下保管する方法、又は、30℃以上90℃以下で加熱処理する方法が挙げられる。
 含水率調整工程では、偏光板2の含水率が、温度20℃相対湿度30%の平衡含水率以上、かつ温度20℃相対湿度80%の平衡含水率以下となるように調整してもよい。偏光板2の含水率は、温度20℃相対湿度50%の平衡含水率以下であってもよく、温度20℃相対湿度45%の平衡含水率以下であってもよい。偏光板2の含水率の調整方法としては、上記した偏光素子1の含水率の調整方法と同様の方法が挙げられる。
 含水率調整工程及び積層工程を行う順番は限定されることはなく、含水率調整工程と積層工程とを並行して行ってもよい。
 (画像表示装置)
 偏光板2は、液晶表示装置や有機EL表示装置等の各種画像表示装置に用いられる。画像表示装置が、偏光板の両面が空気層以外の層、具体的には粘着剤層等の固体層が接する構成(以下、「層間充填構成」ということがある。)である場合には、高温環境下において偏光素子の透過率Tyが低下しやすい。本実施形態の偏光板2を用いた画像表示装置では、層間充填構成であっても、高温環境下での偏光素子1の透過率Tyの低下を抑制することができる。偏光板2を用いた画像表示装置は、高温環境下において、偏光素子1の偏光度Pyの低下及び色相abの低下を抑制することもできる。
 固体層としては粘着剤層又は接着剤層等が挙げられる。固体層が接着剤層である場合、UV硬化型接着剤によって形成された接着剤層であることが好ましい。
 画像表示装置は、画像表示セルと、画像表示セルの視認側表面に積層された第1粘着剤層と、第1粘着剤層の視認側表面に積層された偏光板とを有する構成が例示される。かかる画像表示装置は、偏光板の視認側表面に積層された第2粘着剤層と、第2粘着剤層の表面に積層された透明部材とをさらに有していてもよい。画像表示装置は、偏光板と画像表示セルとが第1粘着剤層により貼り合わされ、偏光板と透明部材とが第2粘着剤層により貼り合わせられた層間充填構成を有することが好ましい。
 偏光板と画像表示セルとは、第1粘着剤層に限らず接着剤層によって貼り合わせられてもよい。偏光板と透明部材とは、第2粘着剤層に限らず接着剤層によって貼り合わせられてもよい。接着剤層としては、上記で説明した接着剤層が挙げられる。
 (画像表示セル)
 画像表示セルとしては、液晶セルや有機ELセルが挙げられる。液晶セルは、外光を利用する反射型液晶セル、バックライト等の光源からの光を利用する透過型液晶セル、外部からの光及び光源からの光の両方を利用する半透過半反射型液晶セルのいずれであってもよい。液晶セルが光源からの光を利用するものである場合、画像表示装置(液晶表示装置)は、画像表示セル(液晶セル)の視認側と反対側にも偏光板が配置され、さらに光源が配置される。光源側の偏光板と液晶セルとは、適宜の貼合層を介して貼り合わせられていることが好ましい。液晶セルの駆動方式としては、例えばVAモード、IPSモード、TNモード、STNモード、ベンド配向(π型)等の任意のタイプのものが用いられる。
 有機ELセルとしては、透明基板上に透明電極と有機発光層と金属電極とを順に積層して発光体(有機エレクトロルミネセンス発光体)を形成したもの等が好適に用いられる。有機発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、これらの発光層とペリレン誘導体等からなる電子注入層との積層体、あるいは正孔注入層、発光層及び電子注入層の積層体等、種々の層構成が採用され得る。
 (画像表示セルと偏光板の貼り合わせ)
 画像表示セルと偏光板との貼り合わせには、第1粘着剤層(粘着シート)が好適に用いられる。中でも、偏光板の一方の面に第1粘着剤層が付設された粘着剤層付き偏光板を画像表示セルと貼り合わせる方法が、作業性等の観点から好ましい。偏光板への第1粘着剤層の付設は、適宜の方式で行い得る。その例としては、トルエンや酢酸エチル等の適宜の溶剤の単独物又は混合物からなる溶剤に、ベースポリマー又はその組成物を10質量%以上40質量%以下溶解あるいは分散させた粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜の展開方式で偏光板上に直接付設する方式、セパレータ上に第1粘着剤層を形成してそれを偏光板に移着(転写)する方式等が挙げられる。
 (第1粘着剤層、第2粘着剤層)
 第1粘着剤層及び第2粘着剤層(以下、両者をまとめて「粘着剤層」ということがある。)は、それぞれ独立して、1層又は2層以上からなってもよいが、好ましくは1層からなる。粘着剤層は、(メタ)アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、エステル系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂を主成分とする粘着剤組成物から構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型又は熱硬化型であってもよい。
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーは、極性モノマーを共重合した共重合体であることが好ましい。極性モノマーとしては、(メタ)アクリル酸化合物、(メタ)アクリル酸2-ヒドロキシプロピル化合物、(メタ)アクリル酸ヒドロキシエチル化合物、(メタ)アクリルアミド化合物、N,N-ジメチルアミノエチル(メタ)アクリレート化合物、グリシジル(メタ)アクリレート化合物等の、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成する金属イオン、カルボキシル基との間でアミド結合を形成するポリアミン化合物、カルボキシル基との間でエステル結合を形成するポリエポキシ化合物又はポリオール、カルボキシル基との間でアミド結合を形成するポリイソシアネート化合物が例示される。中でも、ポリイソシアネート化合物が好ましい。
 活性エネルギー線硬化型粘着剤組成物は、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘着性を有してフィルム等の被着体に密着させることができ、活性エネルギー線の照射によって硬化して密着力の調整ができる性質を有する。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、ベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物をさらに含有する。必要に応じて、光重合開始剤、光増感剤等を含有させてもよい。
 粘着剤組成物は、光散乱性を付与するための微粒子、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等の添加剤を含むことができる。
 粘着剤層は、上記粘着剤組成物の有機溶剤希釈液を基材フィルム、画像表示セル又は偏光板の表面上に塗布し、乾燥させることにより形成することができる。基材フィルムは、熱可塑性樹脂フィルムであることが一般的であり、その典型的な例として、離型処理が施されたセパレータを挙げることができる。セパレータは、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリアレート等の樹脂からなるフィルムの粘着剤層が形成される面に、シリコーン処理等の離型処理が施されたものであることができる。
 セパレータの離型処理面に粘着剤組成物を直接塗布して粘着剤層を形成し、このセパレータ付粘着剤層を偏光板の表面に積層してもよい。偏光板の表面に粘着剤組成物を直接塗布して粘着剤層を形成し、粘着剤層の外面にセパレータを積層してもよい。
 粘着剤層を偏光板の表面に設ける際には、偏光板の貼合面及び/又は粘着剤層の貼合面に、プラズマ処理、コロナ処理等の表面活性化処理を施すことが好ましく、コロナ処理を施すことがより好ましい。
 また、第2セパレータ上に粘着剤組成物を塗布して粘着剤層を形成し、形成された粘着剤層上にセパレータを積層した粘着剤シートを準備し、この粘着剤シートからセパレータを剥離した後のセパレータ付粘着剤層を偏光板に積層してもよい。第2セパレータは、セパレータよりも粘着剤層との密着力が弱く、剥離しやすいものが用いられる。
 粘着剤層の厚みは、特に限定されないが、例えば、好ましくは1μm以上であり、より好ましくは3μm以上であり、20μm以上であってもよく、また、好ましくは100μm以下であり、より好ましくは50μm以下である。
 (透明部材)
 画像表示装置の視認側に配置される透明部材としては、前面板(ウインドウ層)やタッチパネル等が挙げられる。前面板としては、適宜の機械強度及び厚みを有する透明板が用いられる。このような透明板としては、例えばポリイミド系樹脂、アクリル系樹脂やポリカーボネート系樹脂のような透明樹脂板、あるいはガラス板等が挙げられる。透明板の視認側には反射防止層等の機能層が積層されていてもよい。また、透明板が透明樹脂板の場合は、物理強度を上げるためにハードコート層や、透湿度を下げるために低透湿層が積層されていてもよい。タッチパネルとしては、抵抗膜方式、静電容量方式、光学方式、超音波方式等の各種タッチパネルや、タッチセンサー機能を備えるガラス板や透明樹脂板等が挙げられる。透明部材として静電容量方式のタッチパネルが用いられる場合、タッチパネルよりもさらに視認側に、ガラス又は透明樹脂板からなる透明板が設けられることが好ましい。
 (偏光板と透明部材との貼り合わせ)
 偏光板と透明部材との貼り合わせには、第2粘着剤層、又は、活性エネルギー線硬化型接着剤が好適に用いられる。第2粘着剤層が用いられる場合、第2粘着剤層の付設は適宜の方式で行い得る。具体的な付設方法としては、例えば、上記した画像表示セルと偏光板の貼り合わせで用いた第1粘着剤層の付設方法が挙げられる。
 活性エネルギー線硬化型接着剤を用いる場合、硬化前の接着剤溶液の広がりを防止する目的で、画像表示パネル上の周縁部を囲むようにダム材を設け、ダム材上に透明部材を載置して、接着剤溶液を注入する方法が好適に用いられる。接着剤溶液の注入後は、必要に応じて位置合わせ及び脱泡を行った後、活性エネルギー線を照射して、接着剤溶液を硬化させる。
 (貼合層)
 貼合層は、接着剤層又は粘着剤層である。接着剤層及び粘着剤層としては、上記で説明した接着剤層及び粘着剤層(第1粘着剤層、第2粘着剤層)のほか、公知の接着剤を用いて形成した接着剤層、及び、公知の粘着剤を用いて形成した粘着剤層が挙げられる。
 以下、実施例に基づいて本発明を具体的に説明する。以下に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明は以下の実施例に限定され制限されるものではない。
 [測定方法及び評価方法]
 (1)偏光素子の厚みの測定
 偏光素子の厚みは、株式会社ニコン製のデジタルマイクロメーター「MH-15M」を用いて測定した。
 (2)偏光板の視感度補正単体透過率、視感度補正偏光度、色相の測定
 偏光板の視感度補正単体透過率、視感度補正偏光度、及び色相の測定は、積分球付き分光光度計〔日本分光株式会社製の「V7100」、2度視野;C光源〕を用いて測定した。後述する偏光板を作製するために用いた透明保護フィルム及び偏光板用接着剤を用いて形成された接着剤層は、いずれも無色透明であるため、偏光板について測定した視感度補正単体透過率、視感度補正偏光度、及び色相は、偏光素子の視感度補正単体透過率、視感度補正偏光度、及び色相とみなすことができる。
 (3)ホウ素の含有量の測定
 偏光素子におけるホウ素の含有量の測定は、次の手順で行った。まず、偏光素子0.2gを1.9質量%のマンニトール水溶液200gに溶解させた。次いで、得られた水溶液を1モル/Lの水酸化ナトリウム水溶液で滴定し、中和に要した水酸化ナトリウム水溶液の量と検量線との比較により、偏光素子におけるホウ素の含有量を算出した。
 (4)染色度の測定
 図3(a)及び(b)は、染色度を測定するための手順を説明するための説明図である。図3(a)は、後述する手順で作製した偏光板20から測定用サンプル20tの切り出し方を説明する図であり、図3(b)は、測定用サンプル20tのラマン分光測定を説明する図であり、偏光素子10tの切断面部分を拡大して示している。図4は、ラマンスペクトルから積分強度分布を算出する方法を説明するための説明図である。
 (測定用サンプルの作製)
 ウルトラミクロトーム(LEICA社製商品名「LEICA RM2255」)を用いて、図3(a)に示すように、偏光素子10の吸収軸方向(延伸方向)101と偏光素子10の厚み方向100とが形成する平面で偏光板20を切断し、当該平面に直交する方向の長さd(切断片の厚み)が約100nmの測定用サンプル20tを作製した(図3(a))。
 (ラマン分光測定)
 ラマン分光測定に用いた装置及び測定条件は以下のとおりである。
・装置:レーザーラマン分光光度計(NRS―5100、日本分光株式会社製)
・励起波長:532.23nm
・Grating:1800 l/mm
・対物レンズ:可視100倍
・測定ピッチ:1μm
 測定サンプル20tの切断面(ウルトラミクロトームによる切断によって形成された面)の偏光素子10t部分において、偏光素子10の厚み方向(切断面の面方向)100に1μm間隔の測定点pを設定し、ラマンスペクトルの測定を行った。レーザ光Lは、その偏光面が偏光素子10tの吸収軸方向(延伸方向)101に対して平行になり、かつ測定サンプル20tの切断面に対して垂直になるように、入射させた。測定サンプル20tのレーザ光Lの入射面側とは反対側の面側(測定サンプル20tの後ろ側)に検光子を設置した。検光子の偏光面は、レーザ光Lの偏光面に対して平行とした。
 後述する偏光板から作製した測定サンプルの偏光素子について測定したいずれのラマンスペクトルにおいても、108cm-1付近にI に対応するピークが観測され、また、158cm-1付近にI に対応するピークが観測された。
 (I 及びI 積分強度分布の算出)
 可視光領域(380nm~780nm)に主な吸収を示すのは、ポリヨウ素(I 、I )とポリビニルアルコールとによって形成される錯体(ポリヨウ素-PVA錯体)であるため、I 及びI のラマン強度を測定することにより、視認に影響する有効なヨウ素量を比較した。具体的な算出手順は以下のとおりである。
 図4に示すように、ラマンスペクトルにおける波数80cm-1での値と波数130cm-1での値とを結ぶ直線によって、ラマンスペクトルのベースラインを直線近似した(図4中の直線ef)。近似した直線efからの距離(強度)をラマン強度として、ラマンスペクトルの測定時のベースラインの傾きを補正し、波数80cm-1~130cm-1の区間の積分面積(図4中、直線efと、eからfまでのラマンスペクトルとで囲まれた斜線部分の面積に相当)を求め、これをI の積分強度とした。
 また、図4に示すように、ラマンスペクトルにおける波数130cm-1での値と波数180cm-1での値とを結ぶ直線によって、ラマンスペクトルのベースラインを直線近似した(図4中の直線fg)。近似した直線fgからの距離(強度)をラマン強度として、ラマンスペクトルの測定時のベースラインの傾きを補正し、波数130cm-1~180cm-1の区間の積分面積(図4中、直線fgと、fからgまでのラマンスペクトルとで囲まれた斜線部分の面積に相当)を求め、これをI の積分強度とした。
 各測定点pにおけるI の積分強度とI の積分強度との和の値を、各測定点pに対してプロットすることにより、偏光素子10tの厚み方向の積分強度分布を得た。この積分強度分布において、偏光素子10tを厚み方向に三等分することにより区分される3領域の各々について積分面積を求め、これらを、測定サンプル10tを切り出した偏光板に含まれる偏光素子の3領域の染色度とした。
 (5)高温耐久試験
 (評価用サンプルの作製)
 特開2018-025765号公報の実施例を参考にして、後述する手順で作製した偏光板の両面に、アクリル系粘着剤(リンテック株式会社製)を塗布することによって厚み25μmの粘着剤層を形成した。両面に粘着剤層を形成した偏光板を、50mm×100mmの大きさに裁断して、各粘着剤層の表面に、無アルカリガラス(商品名「EAGLE XG」、コーニング社製)を貼合して、評価用サンプルを作製した。評価用サンプルの作製にあたり、無アルカリガラスを貼合する前に、偏光素子の含水率を調整するために、温度20℃相対湿度40%の環境下で、上記の両面に粘着剤層を形成した偏光板を72時間保管した。後述する手順で作製した偏光板の両面に粘着剤層を形成したものはいずれも、保管時間が66時間、69時間、及び72時間経過した時の各々について測定した質量に変化が見られなかったことから、偏光素子、偏光板、及び上記の粘着剤層を形成した偏光板の平衡含水率はいずれも、72時間保管環境の平衡含水率である温度20℃相対湿度40%の平衡含水率と同じになっているとみなすことができる。
 (高温耐久試験)
 上記で得た評価用サンプルに、温度50℃、圧力5kgf/cm(490.3kPa)で1時間オートクレーブ処理を施した。続いて、評価用サンプルを、温度23℃相対湿度55%の環境下で24時間放置した後、偏光板の視感度補正単体透過率、視感度補正偏光度、及び色相を測定し、これを初期値とした。次いで、評価用サンプルを温度115℃の高温環境下に144時間保管する高温耐久試験を行い、高温耐久試験後の偏光板の視感度補正単体透過率、視感度補正偏光度、及び色相を測定した。
 偏光板の視感度補正単体透過率、視感度補正偏光度、及び色相の初期値及び高温耐久試験後の測定値から、偏光板の視感度補正単体透過率、視感度補正偏光度、及び色相の変化量を算出した。視感度補正単体透過率の変化量ΔTy及び視感度補正偏光度の変化量ΔPyは、初期値から、高温耐久試験後の測定値を差し引いた値として算出した。また、色相の変化量Δabは、下記式で求めた。
 Δab={(a-a+(b-b1/2
 ここで、a、bは、色相の初期値であり、a、bは、高温耐久試験後の色相の測定値である。
 〔偏光素子Aの作製〕
 (接着剤用PVA溶液の調製)
 アセトアセチル基を含有する変性PVA系樹脂(三菱ケミカル株式会社製:ゴーセネックスZ-410)50gを950gの純水に溶解し、90℃で2時間加熱後常温に冷却し、接着剤用PVA溶液を得た。
 (偏光層1の作製)
 厚み20μmのPVA系樹脂フィルムを、温度21.5℃の純水に79秒間浸漬した後、ヨウ化カリウム/ホウ酸/水の重量比が2/2/100であり、二色性色素であるヨウ素を1.0mM含む、温度23℃の水溶液に160秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が2.5/4/100である、温度60.8℃の水溶液に76秒間浸漬した。引き続き、ヨウ化カリウム/ホウ酸/水の重量比が3/5.5/100である、温度45℃の水溶液に11秒間浸漬した。その後、温度38℃で乾燥して、PVA系樹脂フィルム(PVA系樹脂層)にヨウ素が吸着配向した厚み6.5μmの偏光層1を得た。延伸は、主に、ヨウ素染色及びホウ酸処理の工程で行い、トータル延伸倍率は5.85倍であった。
 (偏光層2の作製)
 厚み20μmのPVA系樹脂フィルムを、温度21.5℃の純水に79秒間浸漬した後、ヨウ化カリウム/ホウ酸/水の重量比が2/2/100であり、二色性色素であるヨウ素を1.0mM含む、温度23℃の水溶液に142秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が2.5/4/100である、温度60.8℃の水溶液に76秒間浸漬した。引き続き、ヨウ化カリウム/ホウ酸/水の重量比が3/5.5/100である、温度45℃の水溶液に11秒間浸漬した。その後、温度38℃で乾燥して、PVA系樹脂フィルム(PVA系樹脂層)にヨウ素が吸着配向した厚み6.5μmの偏光層2を得た。延伸は、主に、ヨウ素染色及びホウ酸処理の工程で行い、トータル延伸倍率は5.85倍であった。
 (偏光素子Aの作製)
 上記で得た接着剤用PVA溶液を介して、偏光層1、偏光層2、及び偏光層1をこの順に積層し、温度23℃相対湿度55%の環境下で乾燥させて、偏光層1/偏光層2/偏光層1の層構造を有する偏光素子A(厚み:19.5μm)を作製した。偏光素子Aにおいて、偏光層1、偏光層2、及び偏光層1は、それぞれの吸収軸が平行であった。偏光素子Aにおけるホウ素の含有量は4.62質量%であった。
 〔偏光素子Bの作製〕
 厚み45μmのPVA系樹脂フィルムを、温度21.5℃の純水に79秒間浸漬した後、ヨウ化カリウム/ホウ酸/水の重量比が2/2/100であり、二色性色素であるヨウ素を1.0mM含む、温度23℃の水溶液に151秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が2.5/4/100である、温度60.8℃の水溶液に76秒間浸漬した。引き続き、ヨウ化カリウム/ホウ酸/水の重量比が3/5.5/100である、温度45℃の水溶液に11秒間浸漬した。その後、温度38℃で乾燥して、PVA系樹脂フィルム(PVA系樹脂層)にヨウ素が吸着配向した厚み18μmの偏光素子Bを得た。延伸は、主に、ヨウ素染色及びホウ酸処理の工程で行い、トータル延伸倍率は5.85倍であった。
偏光素子Bにおけるホウ素の含有量は4.62質量%であった。
 〔偏光板1の作製〕
 (偏光板用接着剤の調製)
 アセトアセチル基を含有する変性PVA系樹脂の含有量が3.0質量%、メタノールの含有量が35質量%、尿素の含有量が0.5質量%になるように、上記偏光素子Aの作製の項で説明した手順で調整した接着剤用PVA溶液、純水、メタノール、及び尿素を配合して、偏光板用接着剤を得た。
 (透明保護フィルムの作製)
 市販のセルロースアシレートフィルムTJ40UL(富士フイルム株式会社製、厚み:40μm)を、温度55℃に保った1.5mol/LのNaOH水溶液(鹸化液)に2分間浸漬し、フィルムを水洗した。その後、フィルムを温度25℃の0.05mol/Lの硫酸水溶液に30秒間浸漬し、さらに水洗浴を30秒間流水下に通して、フィルムを中性の状態にした。そして、エアナイフによる水切りを3回繰り返した。水切り後、フィルムを温度70℃の乾燥ゾーンに15秒間滞留させて乾燥し、鹸化処理したセルロースアシレートフィルムを得、これを透明保護フィルムとした。
 (偏光板1の作製)
 ロール貼合機を用いて、偏光素子Aの両面に、上記で得た偏光板用接着剤を介して透明保護フィルムを貼り合わせた後、温度80℃で3分間乾燥し、偏光板1を得た。偏光素子Aと透明保護フィルムとの間の偏光板用接着剤は、乾燥後の各接着剤層の厚みが100nmになるように調製した。偏光板1を用いて偏光素子Aの染色度を測定し、高温耐久試験を行った。結果を表1に示す。偏光素子Aにおいて、染色度が最も小さい領域は、偏光素子Aの厚み方向の中央に位置する領域であった。
 〔偏光板2の作製〕
 偏光素子Aに代えて偏光素子Bを用いたこと以外は、偏光板1の作製と同じ手順で偏光板2を作製した。偏光板2を用いて偏光素子Bの染色度を測定し、高温耐久試験を行った。結果を表1に示す。偏光素子Bにおいて、染色度が最も小さい領域は、偏光素子Bの厚み方向の中央に位置する領域であった。
Figure JPOXMLDOC01-appb-T000001
 1 偏光素子、2 偏光板、10,10t 偏光素子、11~13 領域、20,20t 偏光板、21 透明保護フィルム、210,210t 透明保護フィルム、L レーザ光、P 測定点、100 厚み方向、101吸収軸方向(延伸方向)。

Claims (14)

  1.  ポリビニルアルコール系樹脂層に二色性色素が吸着配向されている偏光素子であって、 前記偏光素子を厚み方向に三等分することにより区分される3領域のうちの、染色度が最も大きい領域の染色度をS1とし、染色度が最も小さい領域の染色度をS2とするとき、下記式(1)の関係を満たす、偏光素子。
      0≦S2/S1≦0.95  (1)
  2.  前記3領域のうちの染色度が最も小さい領域は、前記厚み方向において中央に位置する領域である、請求項1に記載の偏光素子。
  3.  前記偏光素子は、ホウ素を含み、
     前記偏光素子におけるホウ素の含有量は、4.0質量%以上8.0質量%以下である、請求項1又は2に記載の偏光素子。
  4.  前記二色性色素は、ヨウ素である、請求項1~3のいずれか1項に記載の偏光素子。
  5.  請求項1~4のいずれか1項に記載の偏光素子と透明保護フィルムとを有する、偏光板。
  6.  さらに、前記偏光素子と前記透明保護フィルムとを貼合するための接着剤層を有し、
     前記接着剤層は、水系接着剤が硬化した層である、請求項5に記載の偏光板。
  7.  前記水系接着剤は、メタノールを含み、
     前記水系接着剤における前記メタノールの含有量は、10質量%以上70質量%以下である、請求項6に記載の偏光板。
  8.  前記水系接着剤は、さらにポリビニルアルコール系樹脂を含む、請求項6又は7に記載の偏光板。
  9.  前記接着剤層の厚みは、0.01μm以上7μm以下である、請求項6~8のいずれか1項に記載の偏光板。
  10.  前記偏光板は、画像表示装置に用いられ、
     前記画像表示装置において、前記偏光板の両面には固体層が接して設けられている、請求項5~9のいずれか1項に記載の偏光板。
  11.  画像表示セルと、前記画像表示セルの視認側表面に積層された第1粘着剤層と、前記第1粘着剤層の視認側表面に積層された請求項5~10のいずれか1項に記載の偏光板と、を有する、画像表示装置。
  12.  さらに、前記偏光板の視認側表面に積層された第2粘着剤層と、前記第2粘着剤層の視認側表面に積層された透明部材と、を有する、請求項11に記載の画像表示装置。
  13.  前記透明部材は、ガラス板又は透明樹脂板である、請求項12に記載の画像表示装置。
  14.  前記透明部材は、タッチパネルである、請求項12に記載の画像表示装置。
PCT/JP2022/027067 2021-07-15 2022-07-08 偏光素子、偏光板、及び画像表示装置 WO2023286702A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280048989.6A CN117677873A (zh) 2021-07-15 2022-07-08 偏振元件、偏振板以及图像显示装置
KR1020247004225A KR20240035512A (ko) 2021-07-15 2022-07-08 편광 소자, 편광판, 및 화상 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-117233 2021-07-15
JP2021117233A JP2023013221A (ja) 2021-07-15 2021-07-15 偏光素子、偏光板、及び画像表示装置

Publications (1)

Publication Number Publication Date
WO2023286702A1 true WO2023286702A1 (ja) 2023-01-19

Family

ID=84919392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027067 WO2023286702A1 (ja) 2021-07-15 2022-07-08 偏光素子、偏光板、及び画像表示装置

Country Status (5)

Country Link
JP (1) JP2023013221A (ja)
KR (1) KR20240035512A (ja)
CN (1) CN117677873A (ja)
TW (1) TW202331310A (ja)
WO (1) WO2023286702A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134808A (en) * 1979-04-06 1980-10-21 Citizen Watch Co Ltd Composite dyeing type polarizer
JP2010026498A (ja) * 2008-06-17 2010-02-04 Nitto Denko Corp 偏光板及びその製造方法
WO2013051723A1 (ja) * 2011-10-03 2013-04-11 三菱瓦斯化学株式会社 芳香族ポリカーボネート製偏光レンズ
JP2014102497A (ja) * 2012-10-22 2014-06-05 Nitto Denko Corp 偏光膜および偏光膜の製造方法
JP2015180921A (ja) * 2014-03-05 2015-10-15 富士フイルム株式会社 偏光板、および、これを含む液晶表示装置
WO2016056600A1 (ja) * 2014-10-08 2016-04-14 株式会社クラレ 偏光フィルム
JP2020126226A (ja) * 2019-02-04 2020-08-20 住友化学株式会社 偏光板および表示装置
JP2020190723A (ja) * 2019-05-15 2020-11-26 住友化学株式会社 偏光板及び偏光板の製造方法並びにその偏光板を用いた画像表示装置
JP2020204641A (ja) * 2019-06-14 2020-12-24 住友化学株式会社 偏光板及び偏光板の製造方法並びにその偏光板を用いた画像表示装置
JP2021081716A (ja) * 2019-11-15 2021-05-27 住友化学株式会社 偏光板並びにその偏光板を用いた画像表示装置
JP2022081107A (ja) * 2020-11-19 2022-05-31 日東電工株式会社 偏光膜および偏光膜の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539170B2 (ja) 1997-12-15 2004-07-07 セイコーエプソン株式会社 液晶パネル、電子機器、及び、電子機器の製造方法
JP6071459B2 (ja) 2012-11-19 2017-02-01 日東電工株式会社 偏光板および画像表示装置、ならびにそれらの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134808A (en) * 1979-04-06 1980-10-21 Citizen Watch Co Ltd Composite dyeing type polarizer
JP2010026498A (ja) * 2008-06-17 2010-02-04 Nitto Denko Corp 偏光板及びその製造方法
WO2013051723A1 (ja) * 2011-10-03 2013-04-11 三菱瓦斯化学株式会社 芳香族ポリカーボネート製偏光レンズ
JP2014102497A (ja) * 2012-10-22 2014-06-05 Nitto Denko Corp 偏光膜および偏光膜の製造方法
JP2015180921A (ja) * 2014-03-05 2015-10-15 富士フイルム株式会社 偏光板、および、これを含む液晶表示装置
WO2016056600A1 (ja) * 2014-10-08 2016-04-14 株式会社クラレ 偏光フィルム
JP2020126226A (ja) * 2019-02-04 2020-08-20 住友化学株式会社 偏光板および表示装置
JP2020190723A (ja) * 2019-05-15 2020-11-26 住友化学株式会社 偏光板及び偏光板の製造方法並びにその偏光板を用いた画像表示装置
JP2020204641A (ja) * 2019-06-14 2020-12-24 住友化学株式会社 偏光板及び偏光板の製造方法並びにその偏光板を用いた画像表示装置
JP2021081716A (ja) * 2019-11-15 2021-05-27 住友化学株式会社 偏光板並びにその偏光板を用いた画像表示装置
JP2022081107A (ja) * 2020-11-19 2022-05-31 日東電工株式会社 偏光膜および偏光膜の製造方法

Also Published As

Publication number Publication date
TW202331310A (zh) 2023-08-01
CN117677873A (zh) 2024-03-08
KR20240035512A (ko) 2024-03-15
JP2023013221A (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2022075148A1 (ja) 偏光板及び画像表示装置
WO2023286702A1 (ja) 偏光素子、偏光板、及び画像表示装置
JP7499673B2 (ja) 偏光板及び画像表示装置
JP7526631B2 (ja) 偏光板及び画像表示装置
JP7558764B2 (ja) 偏光板及び画像表示装置
JP7521999B2 (ja) 偏光板及び画像表示装置
JP7382450B2 (ja) 偏光板及び画像表示装置
JP7521994B2 (ja) 偏光板及び画像表示装置
JP7570957B2 (ja) 偏光板および画像表示装置
WO2022202371A1 (ja) 偏光板および画像表示装置
WO2023022020A1 (ja) 偏光板
WO2023286576A1 (ja) 偏光板並びにその偏光板を用いた画像表示装置
KR20240057345A (ko) 편광판
JP2022135259A (ja) 偏光板及び画像表示装置
WO2022102363A1 (ja) 偏光板及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280048989.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247004225

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004225

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22842046

Country of ref document: EP

Kind code of ref document: A1