WO2023286464A1 - 制御装置およびスイッチング装置 - Google Patents

制御装置およびスイッチング装置 Download PDF

Info

Publication number
WO2023286464A1
WO2023286464A1 PCT/JP2022/021431 JP2022021431W WO2023286464A1 WO 2023286464 A1 WO2023286464 A1 WO 2023286464A1 JP 2022021431 W JP2022021431 W JP 2022021431W WO 2023286464 A1 WO2023286464 A1 WO 2023286464A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
main switching
gate
protection operation
protection
Prior art date
Application number
PCT/JP2022/021431
Other languages
English (en)
French (fr)
Inventor
直樹 清水
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN202280008483.2A priority Critical patent/CN116711204A/zh
Priority to DE112022000234.4T priority patent/DE112022000234T5/de
Priority to JP2023535166A priority patent/JPWO2023286464A1/ja
Publication of WO2023286464A1 publication Critical patent/WO2023286464A1/ja
Priority to US18/337,065 priority patent/US20230336170A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Definitions

  • the present invention relates to control devices and switching devices.
  • Patent Document 1 JP-A-2011-259233
  • Patent Document 2 JP-A-11-4150
  • the first aspect of the present invention provides a control device.
  • the control device may include a protection unit that performs a protection operation to limit current flowing through the main switching element in response to a short circuit occurring in the main switching element.
  • the control device may include a protection operation control section that causes the protection section to continue the protection operation until power supply to the drive control section that drives and controls the main switching element according to the drive signal is stopped.
  • the protective operation control unit When a short circuit occurs, the protective operation control unit retains information indicating that the protective operation should be executed until a first canceling condition including that the short circuit is eliminated and that the power supply is stopped is satisfied. You may have the 1st holding
  • the protection operation control unit continues the protection operation until a first release condition is satisfied, including that the short circuit is eliminated and that a reference operation for restarting power supply is performed. It may have a first holding unit that holds information to the effect that it should be executed.
  • the protection operation control section may have a reset section that resets the first holding section in response to the satisfaction of the first release condition.
  • the first release condition may further include that a drive signal for turning on the main switching element is not supplied, and that a reference time or longer has elapsed since the start of the protection operation.
  • the protection unit detects that the temperature of the main switching element has risen above the reference temperature, that a current greater than the reference current has flowed through the main switching element, and that the supply voltage from the power supply has dropped below the reference voltage. Protective action may also be taken in response to the occurrence of at least one anomaly.
  • the protection operation control unit detects that the abnormality has been resolved, that the drive signal for turning on the main switching element is not supplied, and that the reference time has passed since the start of the protection operation.
  • a second holding unit that holds information indicating that the protection operation should be executed until a second release condition that includes that the above has passed and that does not include that the power supply is stopped is satisfied; You can
  • the protection operation control unit may receive power from a power source separate from the drive control unit.
  • the protective operation control unit may have a third holding unit that holds information as to whether or not to continue the protective operation in response to receiving power supply from a power source shared with the drive control unit.
  • the control device may include a measurement unit that measures a parameter according to the current flowing through the main switching element.
  • the control device may comprise a detector for detecting that a short circuit has occurred in the main switching element according to the measured parameter.
  • the control device may further include an output unit that outputs an alarm signal when the protection operation is performed.
  • the control device may further include a drive control section.
  • a switching device is also provided in a second aspect of the present invention.
  • the switching device may comprise the control device of the first aspect.
  • the switching device may comprise a main switching element.
  • 1 shows a switching device 1 according to a first embodiment
  • 1A shows a switching device 1A according to a second embodiment
  • 1B shows a switching device 1B according to a third embodiment
  • 1C shows a switching device 1C according to a fourth embodiment.
  • FIG. 1 shows a switching device 1 according to this embodiment.
  • the switching device 1 may be a device used for driving a motor or supplying power. It may be a power conversion device such as an inverter device that Also, the switching device 1 may be an IPM (intelligent power module) that automatically performs a protective operation in the event of an abnormality.
  • the switching device 1 may comprise positive and negative main switching elements 2,3 and positive and negative control devices 4,5. Note that the negative terminal 102 may be connected to the ground as an example.
  • the switching device 1 is provided with an input terminal 103 to which the drive signal Vin is input, an alarm terminal 104 for outputting the alarm signal ALM, and the like. good.
  • Main switching elements 2, 3 The main switching elements 2 and 3 are sequentially connected in series between a positive terminal 101 and a negative terminal 102 .
  • the main switching elements 2 and 3 each have a collector terminal connected to the positive terminal 101 side and an emitter terminal connected to the negative terminal 102 side.
  • the main switching elements 2 and 3 may constitute an upper arm and a lower arm in the switching device, and a power supply output terminal 105 may be connected to the middle point of the main switching elements 2 and 3 .
  • the main switching elements 2,3 may have sense emitter terminals that are connected to corresponding control devices 4,5.
  • Thermal diodes 20 for detecting overheating of the main switching elements 2 and 3 are provided in the vicinity of the main switching elements 2 and 3 (in the same chip as the main switching elements 2 and 3 as an example in this embodiment). 30 may be arranged, and the anode and cathode terminals of the thermal diodes 20, 30, respectively, may also be connected to the controllers 4, 5.
  • the main switching elements 2 and 3 are IGBTs, and may have a parasitic diode (not shown) whose cathode is on the positive terminal 101 side. Additionally or alternatively, a freewheeling diode (not shown) may be connected in anti-parallel to each of the main switching elements 2 and 3 so that the positive terminal 101 side serves as a cathode.
  • the main switching elements 2 and 3 may be semiconductor elements of other structures such as MOSFETs or bipolar transistors.
  • Controllers 4 and 5 control main switching elements 2 and 3 .
  • the control device 4 on the positive side may control the main switching element 2 and the control device 5 on the negative side may control the main switching element 3 . Since the controllers 4 and 5 have the same configuration, the controller 5 on the negative side will be described in this embodiment, and the description of the controller 4 on the positive side will be omitted.
  • the control device 5 controls the main switching element 3.
  • the control device 5 has a drive control section 50 , an abnormality detection section 6 , a protection operation control section 56 , an alarm output section 57 and a protection section 58 .
  • the drive control unit 50 and the protection operation control unit 56 may be supplied with power from separate power sources. may be powered by a power source.
  • the drive control unit 50 may be supplied with a voltage (also referred to as a control voltage) Vcc(1) from one power supply, and other components in the control device 5 may receive a voltage (control voltage) from another power supply. may be powered by Vcc(2) (also referred to as voltage).
  • Voltage Vcc(1) and voltage Vcc(2) may be the same voltage or different voltages.
  • the drive control unit 50 drives and controls the main switching element 3 according to the drive signal Vin input to the input terminal 103 .
  • the drive signal Vin may be input from the outside, and may include a signal to turn on the main switching element 3 and a signal to turn off the main switching element 3 .
  • the drive signal Vin may cause the main switching elements 2 and 3 to switch in a synchronous rectification manner. may be set to be in the connected state alternatively (alternately as an example).
  • the drive signal Vin instructs to turn on the main switching element 3 when it is at low level, and instructs to turn off the main switching element 3 when it is at high level.
  • the drive control unit 50 has a current source 500 , a Zener diode 501 , an inverting Schmitt trigger circuit 502 , a NOT gate 503 , a switching element 504 and a switching element 505 .
  • the current source 500 maintains the potential of the input terminal 103 at a high level when the drive signal Vin for turning on the main switching element 3 is not input to the input terminal 103 .
  • the Zener diode 501 is connected between the input terminal 103 and the ground with the cathode terminal directed toward the input terminal 103 to prevent overvoltage from being applied to the control device 5 from the input terminal 103 .
  • the inverting Schmitt trigger circuit 502 is connected to the input terminal 103 and inverts the high level/low level of the driving signal Vin with hysteresis.
  • the inverting Schmitt trigger circuit 502 may supply the inverted drive signal Vin to the NOT gate 503 and the switching element 505 via AND gates 581 and 582 in the protection section 58, which will be described later.
  • the NOT gate 503 is provided between the AND gate 581 of the protection section 58 and the switching element 504 .
  • NOT gate 503 may further invert the output signal from AND gate 581 and supply it to switching element 504 .
  • the switching element 504 is connected between the power supply of the control voltage Vcc(1) and the gate of the main switching element 3.
  • the switching element 504 is a switching element for turn-on, and turns on the main switching element 3 by conducting between the power source of the control voltage Vcc(1) and the gate of the main switching element 3 .
  • Switching element 504 may be turned on when the signal supplied from NOT gate 503 is at a low level.
  • the switching element 504 is a P-type MOSFET, but it may be a semiconductor element with another structure.
  • a switching element 505 is connected between the gate of the main switching element 3 and the negative terminal 102 .
  • the switching element 505 is a switching element for turning off, and turns off the main switching element 3 by establishing conduction between the gate of the main switching element 3 and the negative terminal 102 .
  • Switching element 505 may be turned on when the signal provided by AND gate 582 is at a high level.
  • the switching element 505 is an N-type MOSFET, but it may be a semiconductor element with another structure.
  • abnormality detection unit 6 detects an anomaly for which protective action should be taken.
  • abnormalities include short circuit of the main switching element 3, overheating of the main switching element 3, overcurrent of the main switching element 3, and control voltage drop. Overheating of the main switching element 3 may mean that the temperature of the main switching element 3 becomes higher than the reference temperature.
  • the overcurrent of the main switching element 3 may be a current larger than the reference current flowing through the main switching element 3 .
  • the control voltage drop may be a drop in the supply voltage Vcc(1) due to power supply to the drive control unit 50 below the reference voltage.
  • the abnormality detection unit 6 has an overheat detection unit 61 , a measurement unit 62 , an overcurrent detection unit 63 , a short circuit detection unit 64 and a control voltage drop detection unit 65 .
  • the overheat detector 61 detects overheating of the main switching element 3 .
  • the overheat detector 61 has a current source 610 , a comparator 611 , a low pass filter 612 and a hysteresis buffer 613 .
  • the current source 610 is connected between the anode terminal of the thermal diode 30 and the inverting input terminal of the comparator 611, and causes forward current to flow through the thermal diode 30.
  • the forward voltage of the thermal diode 30 may be lower when the temperature of the thermal diode 30 is higher than the reference temperature than when the thermal diode 30 is at the reference temperature.
  • a reference potential is connected to the non-inverting input terminal of the comparator 611 .
  • the reference potential of the comparator 611 may be equal to the potential of the inverting input terminal when the main switching element 3 is at the reference temperature.
  • the comparator 611 may supply an output signal to the protection operation control section 56 via the low pass filter 612 and the hysteresis buffer 613 .
  • the low-pass filter 612 may remove high frequency components contained in the output signal from the comparator 611 .
  • the hysteresis buffer 613 may buffer the output signal from the comparator 611 with hysteresis to prevent the output signal from fluttering.
  • the measurement unit 62 measures parameters according to the current flowing through the main switching element 3 .
  • the current flowing through the main switching element 3 may be the instantaneous value of the current flowing through the switching element 3 .
  • the measuring section 62 may have two resistors 620 and 621 connected in series between the sense emitter terminal of the main switching element 3 and the ground.
  • the measuring unit 62 supplies the overcurrent detecting unit 63 with a voltage detected according to the sense emitter current flowing through both the resistors 620 and 621, and according to the sense emitter current flowing through the resistor 621 on the ground side.
  • the detected voltage may be supplied to the short circuit detector 64 .
  • the overcurrent detector 63 detects overcurrent in the main switching element 3 .
  • the overcurrent detection section 63 may detect that an overcurrent has flowed through the main switching element 3 according to the parameters measured by the measurement section 62 .
  • the overcurrent may be a current larger than a reference current (for example, the rated current of the main switching element 3) or a current smaller than the current that flows when the main switching element 3 is short-circuited.
  • the overcurrent detector 63 has a comparator 630 and a low-pass filter 631 .
  • the non-inverting input terminal of the comparator 630 is connected to the connection point between the resistor 620 of the measuring section 62 and the sense emitter terminal of the main switching element 3, and the inverting input terminal of the comparator 630 is connected to the reference potential.
  • the reference potential of the comparator 630 may be equal to the potential of the non-inverting input terminal when the current flowing through the main switching element 3 is the reference current described above. As a result, the output signal of the comparator 630 becomes high level in response to the overcurrent state of the main switching element 3 .
  • the comparator 630 may supply the output signal to the protection operation control section 56 via the low pass filter 631 .
  • a low-pass filter 631 may remove high frequency components contained in the output signal from the comparator 630 .
  • a short-circuit detection unit 64 detects a short-circuit of the main switching element 3 .
  • the short circuit detection section 64 may detect that a short circuit has occurred in the main switching element 3 according to the parameters measured by the measurement section 62 .
  • the short-circuit detector 64 has a comparator 640 and a low-pass filter 641 .
  • the non-inverting input terminal of the comparator 640 is connected to the connection point between the resistors 620 and 621 of the measuring section 62, and the inverting input terminal of the comparator 640 is connected to the reference potential.
  • the reference potential of the comparator 640 may be higher than the potential of the non-inverting input terminal when the main switching element 3 is not short-circuited. It may be lower than the electric potential. As a result, the output signal of the comparator 640 becomes high level in response to the main switching element 3 being short-circuited.
  • the comparator 640 may supply the output signal to the protection operation control section 56 via the low-pass filter 641 .
  • a low-pass filter 641 may remove high frequency components contained in the output signal from the comparator 640 .
  • Control voltage drop detector 65 detects a control voltage drop. In this embodiment, as an example, the control voltage drop detector 65 may detect that the control voltage Vcc(1) has dropped.
  • the control voltage drop detector 65 has resistors 655 and 656 , a comparator 651 , a low pass filter 652 and a hysteresis buffer 653 .
  • the resistors 655, 656 are connected in series between the control voltage Vcc(1) and ground.
  • a connection point between the resistors 655 and 656 may be connected to an inverting input terminal of the comparator 651, and a non-inverting input terminal of the comparator 651 may be connected to a reference potential.
  • the reference potential of the comparator 651 may be equal to the potential of the inverting input terminal when the control voltage Vcc(1) is the reference voltage.
  • the reference voltage may be the minimum voltage of the control voltage Vcc(1) at which the drive control section 50 operates normally.
  • the output signal of the comparator 651 goes high in response to the control voltage Vcc(1) falling below the reference voltage.
  • the comparator 651 may supply an output signal to the protection operation control section 56 via the low pass filter 652 and the hysteresis buffer 653 .
  • the low-pass filter 652 and hysteresis buffer 653 may be similar to the low-pass filter 612 and hysteresis buffer 613 of the overheat detection section 61 .
  • the protection operation control unit 56 operates the protection unit in response to occurrence of any abnormality among short-circuiting of the main switching element 3, overheating of the main switching element 3, overcurrent of the main switching element 3, and drop in control voltage. 58 to perform a protection operation.
  • the protection operation control section 56 may cause the protection operation to be performed by setting the protection control signal SG supplied to the protection section 58 to a high level.
  • the protection operation control unit 56 includes an OR gate 560, an SR flip-flop 561, a delay circuit 562, an AND gate 563, an SR flip-flop 564, a delay circuit 565, an AND gate 566, and an OR gate 569.
  • OR gate 560 is connected to the output terminals of overheat detector 61 , overcurrent detector 63 and control voltage drop detector 65 .
  • OR gate 560 may take the logical sum of the output signals from overheat detector 61 , overcurrent detector 63 and control voltage drop detector 65 .
  • the OR gate 560 may supply the operation result to the SR type flip-flop 561 .
  • SR type flip-flop 561 is connected to the output terminal of OR gate 560 .
  • the SR type flip-flop 561 is an example of a second holding unit, and when at least one of the overheating of the main switching element 3, the overcurrent of the main switching element 3, and the drop in the control voltage occurs, The information indicating that the protective operation should be executed is retained until the second release condition is satisfied.
  • the SR-type flip-flop 561 may retain information indicating that the protection operation should be performed by being set, and may reset the information by being reset.
  • the output terminal of the OR gate 560 may be connected to the set terminal of the SR flip-flop 561, and the SR flip-flop 561 may be set in response to the signal from the OR gate 560 becoming high level.
  • the SR type flip-flop 561 is set when at least one of the overheating of the main switching element 3, the overcurrent of the main switching element 3, and the drop in the control voltage occurs.
  • the reset terminal of the SR flip-flop 561 may be connected to the output terminal of an AND gate 563, which will be described later, and the SR flip-flop 561 may be reset in response to the output signal from the AND gate 563 becoming high level. .
  • the SR type flip-flop 561 may output a high level signal in the set state and output a low level signal in the reset state. SR flip-flop 561 may provide an output signal to OR gate 569 and delay circuit 562 .
  • the delay circuit 562 is connected to the output terminal of the SR flip-flop 561 .
  • the delay circuit 562 may output a high-level signal when a reference time or longer has elapsed since the SR flip-flop 561 started outputting a high-level signal.
  • the delay circuit 562 may output a high level signal when the high level output signal from the SR flip-flop 561 continues for a reference time or longer. and a signal obtained by delaying the output signal of the SR type flip-flop 561 by the reference time.
  • Delay circuit 562 may provide an output signal to AND gate 563 .
  • the reference time may be a time arbitrarily set for the delay circuit 562 .
  • the reference time may be the minimum time during which the alarm output unit 57 should output the alarm signal ALM.
  • AND gate 563 is provided between OR gate 560 , delay circuit 562 , inverting Schmitt trigger circuit 502 and the reset terminal of SR flip-flop 561 . AND gate 563 resets SR type flip-flop 561 in response to satisfaction of the second release condition.
  • the second release condition is that any of the overheating of the main switching element 3, the overcurrent of the main switching element 3, and the drop in the control voltage has been resolved, and the driving signal Vin that turns on the main switching element 3 is It includes not being supplied, and the fact that more than the reference time has passed since the start of the protection operation.
  • the second release condition does not include the condition that the power supply to the drive control unit 50 is stopped.
  • the resolution of the abnormality may be a state in which the abnormality has not occurred.
  • the fact that the drive signal Vin that turns on the main switching element 3 is not supplied may mean that the supply of the drive signal Vin is stopped, or that the drive signal Vin that turns off the main switching element 3 is It may be supplied.
  • the AND gate 563 outputs the output signal from the OR gate 560 (in this embodiment, as an example, the logic of the output signals from the overheat detector 61, overcurrent detector 63, and control voltage drop detector 65). sum), the inverted signal of the output signal from the inverted Schmitt trigger circuit 502 (in this embodiment, the inverted drive signal Vin as an example), and the output signal from the delay circuit 562. , it may be detected whether or not the second release condition is satisfied.
  • the AND gate 563 may supply the operation result to the reset terminal of the SR flip-flop 561 .
  • the SR type flip-flop 564 is connected to the output terminal of the short circuit detection section 64 .
  • the SR-type flip-flop 564 is an example of a first holding unit, and holds information indicating that a protection operation should be performed until a first release condition, which will be described later, is satisfied when a short circuit occurs.
  • the SR-type flip-flop 564 may retain information indicating that the protection operation should be performed by being set, and reset the information by being reset.
  • the set terminal of the SR type flip-flop 564 may be connected to the output terminal of the short circuit detection section 64, and the SR type flip-flop 564 may be set in response to the signal from the short circuit detection section 64 becoming high level. As a result, the SR type flip-flop 564 is set by short-circuiting the main switching element 3 .
  • the reset terminal of the SR flip-flop 564 may be connected to the output terminal of an AND gate 566, which will be described later, and the SR flip-flop 564 is reset when the output signal from the AND gate 566 becomes high level. good.
  • the SR type flip-flop 564 may output a high level signal in the set state and output a low level signal in the reset state. SR flip-flop 564 may provide an output signal to OR gate 569 and delay circuit 565 .
  • Delay circuit 565 is connected to the output terminal of SR flip-flop 564 .
  • the delay circuit 565 may output a high-level signal when a reference time or longer has elapsed since the SR flip-flop 564 started outputting a high-level signal.
  • the delay circuit 565 may output a high level signal when the high level output signal from the SR flip-flop 564 continues for a reference time or longer. and a signal obtained by delaying the output signal of the SR type flip-flop 564 by the reference time.
  • Delay circuit 565 may provide an output signal to AND gate 566 .
  • the reference time may be a time arbitrarily set for the delay circuit 565 .
  • the reference time may be the minimum time during which the alarm output unit 57 should output the alarm signal ALM.
  • AND gate 566 is provided between short circuit detector 64 , control voltage drop detector 65 , delay circuit 565 , inverting Schmitt trigger circuit 502 and the reset terminal of SR flip-flop 564 .
  • the AND gate 566 is an example of a reset section, and resets the SR flip-flop 564 in response to the satisfaction of the first release condition.
  • the first release condition includes that the short circuit has been resolved and that the power supply to the drive control unit 50 has been stopped. As a result, when a short circuit occurs, the protection operation of the protection section 58 continues until the power supply to the drive control section 50 is stopped. Resolving the short circuit may mean that there is no short circuit. The fact that the power supply has been stopped may mean that the power supply is in a stopped state, or that the power supply has been temporarily stopped.
  • the first release condition may further include that the drive signal Vin that turns on the main switching element 3 is not supplied, and that a reference time or longer has elapsed since the start of the protection operation.
  • the AND gate 566 outputs an inverted signal of the output signal from the short circuit detection unit 64, an inverted signal of the voltage signal detected by the resistors 655 and 656 of the control voltage drop detection unit 65, and an inverted Schmidt
  • the AND of the inverted signal of the output signal from the trigger circuit 502 (in this embodiment, the inverted drive signal Vin as an example) and the output signal from the delay circuit 565 may be obtained.
  • the voltage signals detected by the resistors 655 and 656 of the control voltage drop detection unit 65 may be at high level unless the power supply to the drive control unit 50 is stopped. May be low level.
  • AND gate 566 may supply the operation result to the reset terminal of SR type flip-flop 564 .
  • OR gate 569 is connected to the output terminals of SR type flip-flops 561 and 564 . OR gate 569 may take the logical sum of the output signals of SR type flip-flops 561 and 564 . The OR gate 569 may supply the signal of the calculation result to the protection section 58 and the alarm output section 57 as the protection control signal SG.
  • the alarm output unit 57 is an example of an output unit, and outputs an alarm signal ALM from the alarm terminal 104 when the protection operation is executed.
  • the alarm signal ALM may be at high level when the protective operation is not being executed, and may be at low level when the protective operation is being executed to warn the operator.
  • a resistor 571 may be connected to the alarm terminal 104 .
  • the alarm output unit 57 has a current source 572 , a switching element 573 and an inverting Schmitt trigger circuit 574 .
  • the current source 572 is connected to the alarm terminal 104, and externally flows a current from the alarm terminal 104 via the resistor 571 to maintain the alarm signal ALM output from the alarm terminal 104 at a high level.
  • the switching element 573 is connected between the connection point between the current source 572 and the alarm terminal 104 and the ground.
  • the switching element 573 is normally off, and is turned on in response to the protection control signal SG from the protection operation control unit 56 becoming high level when executing the protection operation, and the current from the current source 572 is grounded. flush. As a result, the alarm signal ALM output from the alarm terminal 104 becomes low level.
  • the switching element 573 may be an N-type MOSFET as an example.
  • the inverting Schmitt trigger circuit 574 is connected to the alarm terminal 104 and inverts the high level/low level of the alarm signal ALM with hysteresis.
  • the first threshold when the alarm signal ALM switches from low level to high level may be higher than the second threshold when it switches from high level to low level.
  • the inverting Schmitt trigger circuit continues to operate until the alarm signal ALM exceeds the second threshold value and reliably becomes high level.
  • the output of 574 remains high.
  • Inverting Schmitt trigger circuit 574 may provide an inverted alarm signal ALM to protector 58 .
  • the protection unit 58 performs a protection operation to limit the current flowing through the main switching element 3 in response to detection of an abnormality such as overheating, overcurrent, short circuit, control voltage drop, or the like.
  • the protection unit 58 may perform a protection operation in response to detection of an abnormality by the overheat detection unit 61, the overcurrent detection unit 63, the short circuit detection unit 64, or the control voltage drop detection unit 65.
  • the protection unit 58 has an OR gate 580 , AND gates 581 and 582 , a NOT gate 583 and a switching element 584 .
  • the OR gate 580 is connected to output terminals of the protection operation control section 56 and the alarm output section 57 .
  • the OR gate 580 may take the logical sum of the protection control signal SG from the protection operation control section 56 and the inverted signal of the alarm signal ALM from the inverting Schmidt trigger circuit 574 of the alarm output section 57 .
  • OR gate 580 may provide the result of the operation to AND gate 582 and NOT gate 583 .
  • the AND gate 581 is connected to the output terminals of the inverting Schmidt trigger circuit 502 of the drive control section 50, the protection operation control section 56 and the alarm output section 57.
  • An AND gate 581 receives the drive signal Vin inverted by the inverting Schmitt trigger circuit 502 of the drive control unit 50 , the inverted signal of the protection control signal SG from the protection operation control unit 56 , and the inverted Schmidt trigger signal of the alarm output unit 57 .
  • a logical product of the inverted signal of the alarm signal ALM generated by the trigger circuit 574 and a further inverted signal may be obtained.
  • the output of the AND gate 581 is the inverting Schmitt trigger circuit 502. becomes low level regardless of the output signal of , and thus the drive signal Vin. Further, when execution of the protection operation is not instructed by the protection control signal SG and no warning is given by the alarm signal ALM, the output of the AND gate 581 is the same as the output of the inverting Schmitt trigger circuit 502. match.
  • AND gate 581 may provide an output signal to switching element 504 for turning on main switching element 3 via NOT gate 503 . Accordingly, when execution of the protection operation is instructed by the protection control signal SG and/or when an alarm is issued by the alarm signal ALM, the switching element 504 is turned off regardless of the drive signal Vin. maintained at Further, when execution of the protection operation is not instructed by the protection control signal SG and no warning is issued by the alarm signal ALM, the switching element 504 is controlled according to the drive signal Vin. AND gate 581 may also provide an output signal to AND gate 582 .
  • the AND gate 582 is connected to the output terminals of the AND gate 581 and the OR gate 580 .
  • AND gate 582 may AND the inverted signal of the output signal of AND gate 581 and the inverted signal of the output signal of OR gate 580 .
  • the output of the AND gate 582 becomes the output signal of the AND gate 581. , and eventually becomes low level regardless of the output signal of the inverting Schmitt trigger circuit 502 and the driving signal Vin.
  • the output of the AND gate 582 is the inverted signal of the output signal of the AND gate 581. , and eventually match the inverted signal of the output of the inverting Schmitt trigger circuit 502 and the drive signal Vin.
  • the AND gate 582 may supply an output signal to the switching element 505 for turning off the main switching element 3 . Accordingly, when execution of the protection operation is instructed by the protection control signal SG and/or when an alarm is given by the alarm signal ALM, the switching element 505 is turned off regardless of the drive signal Vin. maintained at Further, when execution of the protection operation is not instructed by the protection control signal SG and no warning is issued by the alarm signal ALM, the switching element 505 is controlled according to the drive signal Vin.
  • the NOT gate 583 is connected to the output terminal of the OR gate 580 and inverts the output signal of the OR gate 580 .
  • NOT gate 583 may provide an output signal to switching element 584 .
  • the switching element 584 is connected in parallel with the switching element 505 between the gate of the main switching element 3 and the negative terminal 102 .
  • the switching element 584 is a switching element for softly shutting down the main switching element 3 , and turns off the main switching element 3 by establishing conduction between the gate of the main switching element 3 and the negative terminal 102 .
  • the switching speed of switching element 584 may be lower than the switching speed of switching element 505 .
  • Switching element 505 may be turned on when the signal supplied from NOT gate 583 is at a low level.
  • the switching element 505 is a P-type MOSFET, but it may be a semiconductor element with another structure.
  • the protection operation that is performed when a short circuit occurs continues until the power supply to the drive control unit 50 is stopped. Therefore, it is possible to prevent the protective operation from being canceled without removing the cause of the short circuit, and prevent secondary destruction of the element due to the cancellation of the protective operation.
  • the SR type flip-flop 564 stores information to the effect that the protection operation should be executed until the first release condition including that the short circuit is eliminated and that the power supply is stopped is satisfied. is held to Therefore, it is possible to reliably prevent the protective operation from being canceled without removing the cause of the short circuit.
  • the SR type flip-flop 564 is reset in response to the satisfaction of the first release condition, it is possible to release the protection operation and resume normal operation when the first release condition is met. can.
  • the protection operation is canceled while the main switching element 3 is turned off. You can resume driving.
  • the first release condition includes that the reference time or longer has elapsed since the start of the protection operation, it is possible to prevent short-circuits from continuously occurring within the reference time.
  • the protection operation is not canceled until at least the reference time elapses, the alarm signal ALM can be continuously output over the reference time.
  • the protection operation should be performed until the second release condition is satisfied.
  • the second release condition is that the abnormality has been resolved, that the drive signal Vin for turning on the main switching element 3 is not supplied, and that a reference time or longer has elapsed since the start of the protection operation. Not included on the condition that the power supply is stopped. Therefore, in the protective operation due to overheating or overcurrent of the main switching element 3 or a decrease in the control voltage Vcc(1), the protective operation is quickly released without the condition of stopping the power supply, and the operation is resumed in the normal state. can do.
  • the alarm signal ALM is output when the protection operation is executed, it is possible to notify the abnormality and prompt removal of the cause of the abnormality and stop of the power supply.
  • protection operation control unit 56 receives power supply from a power supply different from that of the drive control unit 50, control can be continued even when the power supply to the drive control unit 50 is stopped.
  • FIG. 2 shows a switching device 1A according to the second embodiment.
  • a control device 5A of the switching device 1A includes an abnormality detection section 6A and a protection operation control section 56A. Note that the main switching element 2 and its control device are not shown in FIG. 2 and FIGS. 3 and 4, which will be described later.
  • the same reference numerals are assigned to substantially the same components as those of the switching device 1 shown in FIG. 1, and the description thereof will be omitted.
  • the abnormality detection unit 6A has an OR gate 66A connected to the output terminals of the overcurrent detection unit 63 and the short circuit detection unit 64.
  • the OR gate 66A may take the logical sum of the output signals of the overcurrent detection section 63 and the short circuit detection section 64 and supply the operation result to the protection operation control section 56A.
  • the protection operation control section 56A may have an OR gate 560A, an SR flip-flop 564A, an AND gate 563A and an SR flip-flop 561A.
  • the OR gate 560A is connected to the output terminals of the overheat detection section 61, the OR gate 66A and the control voltage drop detection section 65.
  • OR gate 560A may take the logical sum of the output signals from overheat detector 61, OR gate 66A and control voltage drop detector 65.
  • FIG. The OR gate 560A may supply the operation result to the set terminal of the SR flip-flop 561A. As a result, the logical sum of the output signals from the overheat detection unit 61, the overcurrent detection unit 63, the short circuit detection unit 64, and the control voltage drop detection unit 65 is taken, and when any of the output signals becomes high level, SR type flip-flop 561A is set.
  • the SR type flip-flop 564A is connected to the output terminals of the short-circuit detector 64 and the AND gate 566.
  • the SR flip-flop 564A is set in response to the signal from the short-circuit detector 64 becoming high level, and the output signal from the AND gate 566 is set to It may be reset in response to going high.
  • the SR type flip-flop 564A may supply a high level signal in the set state and a low level signal in the reset state to the delay circuit 565 and the AND gate 563A.
  • the AND gate 563A is provided between the OR gate 560, the delay circuit 562, the inverting Schmitt trigger circuit 502, the SR flip-flop 564A, and the reset terminal of the SR flip-flop 561A.
  • AND gate 563A resets SR type flip-flop 561A in response to satisfaction of the third release condition.
  • the third release condition does not include that the power supply to the drive control unit 50 is stopped, and in addition to the above-described second release condition, the output of the SR flip-flop 564A is at low level. Including. As a result, the output signal of the SR type flip-flop 564A is at a low level when no short-circuit has occurred so far, so the AND gate 563A determines that the remaining condition of the third release condition, that is, the second release condition is SR type flip-flop 561A is reset accordingly. On the other hand, once a short circuit occurs, the output signal of SR flip-flop 564A is at a high level until the first release condition is satisfied. That is, the SR flip-flop 561A is not reset regardless of whether the second release condition is satisfied.
  • the output signal of the SR flip-flop 564A is at a low level, so the AND gate 563A will apply the remaining condition of the third release condition, i.e. the second release condition.
  • the SR type flip-flop 561A is reset according to the satisfaction of the condition.
  • the AND gate 563A includes an inverted signal of the output signal from the OR gate 560A, an inverted signal of the output signal from the inverted Schmitt trigger circuit 502, an output signal from the delay circuit 562, and an SR type Whether or not the third release condition is satisfied may be detected by taking the AND of the output signal of the flip-flop 564A and the inverted signal.
  • the AND gate 563A may supply the operation result to the reset terminal of the SR flip-flop 561A.
  • the SR type flip-flop 561A is connected to output terminals of the OR gate 560A and the AND gate 562A.
  • the SR type flip-flop 561A is set in response to the signal from the OR gate 560A going high, and the output signal from the AND gate 566A goes high, similar to the SR type flip-flop 561 in the first embodiment. It may be reset depending on the level.
  • the SR flip-flop 561A may supply the delay circuit 562 and the drive control section 50 with a high level signal in the set state and a low level signal in the reset state.
  • FIG. 3 shows a switching device 1B according to a third embodiment.
  • the switching device 1B includes an operation detection terminal 108 and a control device 5B.
  • the operation detection terminal 108 detects the input of the reference operation when the power supply is restarted.
  • the reference operation includes an operation instructing the start of power supply to the drive control unit 50 (for example, an operation on a power button), an operation instructing initialization to be executed after the switching device 1B and the control device 5B are activated, and the like. you can When the reference operation is performed, a high level signal may be supplied from the operation detection terminal 108 to the control device 5B.
  • the control device 5B has an SR type flip-flop 564B and an AND gate 566B.
  • the SR type flip-flop 564B is connected to the output terminal of the short-circuit detector 64.
  • FIG. The SR flip-flop 564B retains information indicating that the protection operation should be performed until the first release condition according to the present embodiment is satisfied.
  • the first cancellation condition in this embodiment includes that the short circuit is eliminated when the short circuit occurs, and that the reference operation is performed when the power supply is restarted. As a result, when a short circuit occurs, the protection operation of the protection unit 58 is continued until the reference operation for restarting the power supply is performed.
  • the first release condition may further include that the drive signal Vin that turns on the main switching element 3 is not supplied, and that a reference time or longer has elapsed since the start of the protection operation.
  • An AND gate 566B may be connected to the reset terminal of the SR flip-flop 564B, and the SR flip-flop 564B may be reset in response to the output signal from the AND gate 566B becoming high level.
  • SR flip-flop 564 B may provide an output signal to delay circuit 565 and OR gate 569 .
  • the AND gate 566B is provided between the short-circuit detection section 64, the operation detection terminal 108, the delay circuit 565, the inverted Schmitt trigger circuit 502, and the reset terminal of the SR flip-flop 564B.
  • AND gate 566B resets SR type flip-flop 564B in response to satisfaction of the first release condition.
  • the AND gate 566B outputs an inverted signal of the output signal from the short-circuit detection unit 64, a signal from the operation detection terminal 108, and an output signal from the inverted Schmitt trigger circuit 502 (an example in this embodiment).
  • the AND of the inverted signal of the inverted drive signal Vin) and the output signal from the delay circuit 565 may be obtained.
  • the AND gate 566 may supply the operation result to the reset terminal of the SR flip-flop 564B.
  • the switching device 1B described above when a short circuit occurs, until the first release condition is satisfied, including that the short circuit is eliminated and that the reference operation for restarting the power supply is performed. Information to the effect that the protection operation should be executed is held in the SR type flip-flop 564B. Therefore, it is possible to reliably prevent the protective operation from being canceled without removing the cause of the short circuit.
  • the SR type flip-flop 564B is reset according to the satisfaction of the first release condition, it is possible to release the protection operation and restart the operation in the normal state when the first release condition is met. can.
  • the SR flip-flop 564B is described as supplying an output signal to the OR gate 569, but the output signal is supplied to the AND gate 563 in the same manner as the SR flip-flop 564A in the second embodiment. You may
  • FIG. 4 shows a switching device 1C according to a fourth embodiment.
  • a protective operation control section 56C of the control device 5C in the switching device 1C receives power supply from the power source common to the drive control section 50.
  • each component in control device 5C may receive power supply of voltage Vcc from a common power supply.
  • the protection operation control unit 56C has an OR gate 568C, an SR flip-flop 561C, and an AND gate 563C.
  • the OR gate 568C is provided between the short circuit detection section 64 and the AND gate 563C, and latches a high level output signal when the short circuit detection section 64 detects a short circuit.
  • the OR gate 568C may take the logical sum of the output signal of the short circuit detector 64 and the output signal of the OR gate 568C itself. As a result, once the output signal from the short circuit detector 64 becomes high level, the output signal of the OR gate 568C is maintained at high level. OR gate 568C may provide an output signal to AND gate 563C.
  • the SR type flip-flop 561C is connected to the output terminals of the OR gate 560 and the AND gate 563C.
  • the SR-type flip-flop 561C is an example of a third holding unit, and information as to whether or not to continue the protection operation in response to power supply to the protection operation control unit 56C from a power supply shared with the drive control unit 50. hold.
  • the SR-type flip-flop 561C may retain information indicating that the protection operation should be performed by being set, and reset the information by being reset.
  • the SR type flip-flop 561C is set in response to the signal from the OR gate 560 going high, and the output signal from the AND gate 563C goes high, similar to the SR type flip-flop 561 in the first embodiment. It may be reset depending on the level. SR type flip-flop 561C may provide an output signal to OR gate 569 and delay circuit 562 .
  • the AND gate 563C is provided between the OR gate 560, the delay circuit 562, the inverting Schmitt trigger circuit 502, the OR gate 568C, and the reset terminal of the SR flip-flop 561C.
  • AND gate 563C resets SR type flip-flop 561C in response to satisfaction of the fourth release condition.
  • the fourth release condition includes, in addition to the second release condition described above, that the output of the OR gate 568C is at low level. As a result, when no short-circuit has occurred so far, the output signal of the OR gate 568C is at the low level, so the AND gate 563C satisfies the remaining condition of the fourth release condition, that is, the second release condition. SR type flip-flop 561C is reset accordingly. On the other hand, once a short circuit has occurred, the output signal of OR gate 568C is maintained at a high level, so AND gate 563C determines whether the remaining condition of the fourth release condition, that is, the second release condition is met. Regardless, the SR type flip-flop 561C is not reset. Therefore, once a short circuit occurs, the SR flip-flop 561C remains set as long as the power supply is maintained, and is reset when the power supply is stopped.
  • the AND gate 563C outputs the inverted signal of the output signal from the OR gate 560, the inverted signal of the output signal from the inverted Schmitt trigger circuit 502, the output signal from the delay circuit 562, and the OR gate 563C. Whether or not the fourth release condition is satisfied may be detected by taking the AND of the output signal from the 568C and the inverted signal.
  • the AND gate 563C may supply the operation result to the reset terminal of the SR flip-flop 561C.
  • the SR type flip-flop 561C receives information as to whether or not to continue the protection operation. retained. Therefore, the protective operation can be reliably continued by the protective unit 58 until the power supply to the drive control unit 50 is stopped. Moreover, since the information is reset when the power supply is stopped, the protection operation can be canceled and the operation can be resumed in a normal state.
  • control device 5 has the drive control section 50 and the alarm output section 57, but at least one of them may not be provided. Further, although the abnormality detection unit 6 has been described as having the overheat detection unit 61, the overcurrent detection unit 63, and the control voltage drop detection unit 65, at least one of these may be omitted.
  • the voltage detected according to the sense emitter current of the main switching element 3 flowing through the resistors 620 and 621 is used as a parameter corresponding to the current flowing through the main switching element 3.
  • Other parameters may be used, such as the voltage sensed as a function of emitter current flowing through a resistor.
  • the protection unit 58 has been described as softly shutting down the main switching element 3 when an abnormality such as a short circuit or overcurrent occurs. may also be lowered to a lower reference voltage and maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)

Abstract

【課題】短絡の解消に応じて単純に保護動作を解除すると、改めて短絡が生じて素子破壊を引き起こす虞がある。 【解決手段】 主スイッチング素子に短絡が生じたことに応じて、当該主スイッチング素子に流れる電流を制限する保護動作を行う保護部と、駆動信号に応じて主スイッチング素子を駆動制御する駆動制御部への電源供給が停止されるまで保護部に保護動作を継続させる保護動作制御部と、を備え、保護動作制御部は、短絡が生じた場合に、短絡が解消したこと、および、電源供給が停止されたことを含む第1解除条件が満たされるまで、保護動作を実行すべき旨の情報を保持する第1保持部を有する制御装置が提供される。

Description

制御装置およびスイッチング装置
 本発明は、制御装置およびスイッチング装置に関する。
 従来、主スイッチング素子に短絡が生じた場合には、主スイッチング素子のゲート電圧を制限するなどの保護動作が行われており、短絡の解消に応じて保護動作を解除している(例えば、特許文献1,2参照)。
 特許文献1 特開2011-259233号公報
 特許文献2 特開平11-4150号公報
解決しようとする課題
 しかしながら、短絡の解消に応じて単純に保護動作を解除すると、改めて短絡が生じて素子破壊を引き起こす虞がある。
一般的開示
 上記課題を解決するために、本発明の第1の態様においては、制御装置が提供される。制御装置は、主スイッチング素子に短絡が生じたことに応じて、当該主スイッチング素子に流れる電流を制限する保護動作を行う保護部を備えてよい。制御装置は、駆動信号に応じて主スイッチング素子を駆動制御する駆動制御部への電源供給が停止されるまで保護部に保護動作を継続させる保護動作制御部を備えてよい。
 保護動作制御部は、短絡が生じた場合に、短絡が解消したこと、および、電源供給が停止されたことを含む第1解除条件が満たされるまで、保護動作を実行すべき旨の情報を保持する第1保持部を有してよい。
 保護動作制御部は、短絡が生じた場合に、短絡が解消したこと、および、電源供給が再開される場合の基準操作が行われたことを含む第1解除条件が満たされるまで、保護動作を実行すべき旨の情報を保持する第1保持部を有してよい。
 保護動作制御部は、第1解除条件が満たされることに応じて第1保持部をリセットするリセット部を有してよい。
 第1解除条件は、主スイッチング素子をオン状態とする駆動信号が供給されていないこと、および、保護動作の開始から基準時間以上が経過していることをさらに含んでよい。
 保護部は、主スイッチング素子が基準温度よりも高温になったこと、主スイッチング素子に基準電流よりも大きい電流が流れたこと、および、電源供給による供給電圧が基準電圧よりも低下したこと、の少なくとも1つの異常が生じたことに応じても保護動作を行ってよい。保護動作制御部は、少なくとも1つの異常が生じた場合に、生じた異常が解消したこと、主スイッチング素子をオン状態とする駆動信号が供給されていないこと、および、保護動作の開始から基準時間以上が経過していることを含み、電源供給が停止されていることを条件に含まない第2解除条件が満たされるまで、保護動作を実行すべき旨の情報を保持する第2保持部を有してよい。
 保護動作制御部は、駆動制御部とは別の電源から電源供給を受けてよい。
 保護動作制御部は、駆動制御部と共通の電源から電源供給を受けることに応じて、保護動作を継続させるか否かの情報を保持する第3保持部を有してよい。
 制御装置は、主スイッチング素子に流れる電流に応じたパラメータを測定する測定部を備えてよい。制御装置は、測定されたパラメータに応じて主スイッチング素子に短絡が生じたことを検知する検知部を備えてよい。
 制御装置は、保護動作が実行される場合にアラーム信号を出力する出力部をさらに備えてよい。
 制御装置は、駆動制御部をさらに備えてよい。
 また、本発明の第2の態様においては、スイッチング装置が提供される。スイッチング装置は、第1の態様の制御装置を備えてよい。スイッチング装置は、主スイッチング素子とを備えてよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
第1実施形態に係るスイッチング装置1を示す。 第2実施形態に係るスイッチング装置1Aを示す。 第3実施形態に係るスイッチング装置1Bを示す。 第4実施形態に係るスイッチング装置1Cを示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 [1.第1実施形態]
 [1.1.スイッチング装置]
 図1は、本実施形態に係るスイッチング装置1を示す。スイッチング装置1は、モータ駆動用または電力供給用に用いられる装置であってよく、例えば正側端子101および負側端子102から供給される直流電力を交流電力に変換して電源出力端子105から出力するインバータ装置などの電力変換装置であってよい。また、スイッチング装置1は、異常時に自動で保護動作を行うIPM(インテリジェントパワーモジュール)であってよい。スイッチング装置1は、正側および負側の主スイッチング素子2,3と、正側および負側の制御装置4,5とを備えてよい。なお、負側端子102は一例としてグランドに接続されてよい。スイッチング装置1には、正側端子101や負側端子102、電源出力端子105に加えて、駆動信号Vinが入力される入力端子103や、アラーム信号ALMを出力するアラーム端子104などが設けられてよい。
 [1.1.1.主スイッチング素子2,3]
 主スイッチング素子2,3は、正側端子101および負側端子102の間に直列に順次接続されている。例えば、主スイッチング素子2,3は、それぞれ正側端子101の側にコレクタ端子が接続され、負側端子102の側にエミッタ端子が接続される。主スイッチング素子2,3は、スイッチング装置における上アームおよび下アームを構成してよく、主スイッチング素子2および主スイッチング素子3の中点には電源出力端子105が接続されてよい。
 主スイッチング素子2,3は、対応する制御装置4,5に接続されるセンスエミッタ端子を有してよい。また、主スイッチング素子2,3の近傍(本実施形態では一例として、主スイッチング素子2,3と同一のチップ内)には、主スイッチング素子2,3の過熱を検知するためのサーマルダイオード20,30が配置されてよく、サーマルダイオード20,30それぞれのアノード端子およびカソード端子とも制御装置4,5に接続されてよい。
 なお、本実施形態では一例として、主スイッチング素子2,3はIGBTであり、正側端子101の側がカソードである寄生ダイオード(図示せず)を有してよい。これに加えて、または、これに代えて、主スイッチング素子2,3のそれぞれには、正側端子101の側がカソードとなるよう還流ダイオード(図示せず)が逆並列に接続されてよい。主スイッチング素子2,3はMOSFETまたはバイポーラトランジスタなど、他構造の半導体素子でもよい。
 [1.1.2.制御装置4,5]
 制御装置4,5は、主スイッチング素子2,3を制御する。正側の制御装置4は主スイッチング素子2を制御対象とし、負側の制御装置5は主スイッチング素子3を制御対象としてよい。なお、制御装置4,5は同様の構成であるため、本実施形態では負側の制御装置5について説明を行い、正側の制御装置4については説明を省略する。
 制御装置5は、主スイッチング素子3を制御する。制御装置5は、駆動制御部50と、異常検知部6と、保護動作制御部56と、アラーム出力部57と、保護部58とを有する。なお、駆動制御部50と、保護動作制御部56とは、別々の電源から電源供給を受けてよく、例えば制御装置5における各構成のうち、駆動制御部50と、他の構成とは、別々の電源から電源供給を受けてよい。本実施形態では一例として、駆動制御部50は一の電源から電圧(制御電圧とも称する)Vcc(1)の電源供給を受けてよく、制御装置5における他の構成は他の電源から電圧(制御電圧とも称する)Vcc(2)の電源供給を受けてよい。なお、電圧Vcc(1)と電圧Vcc(2)は、同じ電圧であってもよいし、異なる電圧であってもよい。
 [1.1.2(1).駆動制御部50]
 駆動制御部50は、入力端子103に入力される駆動信号Vinに応じて主スイッチング素子3を駆動制御する。駆動信号Vinは外部から入力されてよく、主スイッチング素子3をオン状態とする信号、および、オフ状態とする信号を含んでよい。例えば、駆動信号Vinは、主スイッチング素子2,3に同期整流方式でスイッチングを行わせてよく、一例として主スイッチング素子2,3の両方がオフとなるデッドタイムを挟んで主スイッチング素子2,3を択一的に(一例として交互に)接続状態とするよう設定されてよい。なお、本実施形態では一例として、駆動信号Vinはローレベルの場合に主スイッチング素子3をオンにすることを指示し、ハイレベルの場合に主スイッチング素子3をオフにすることを指示する。
 駆動制御部50は、電流源500と、ツェナーダイオード501と、反転型シュミットトリガ回路502と、NOTゲート503と、スイッチング素子504と、スイッチング素子505とを有する。
 電流源500は、主スイッチング素子3をオン状態とする駆動信号Vinが入力端子103に入力されていない場合に入力端子103の電位をハイレベルに維持する。ツェナーダイオード501は、入力端子103の側にカソード端子を向けて、入力端子103とグランドとの間に接続され、入力端子103から制御装置5に対して過電圧が加わるのを防止する。反転型シュミットトリガ回路502は、入力端子103に接続されており、ヒステリシスをもって駆動信号Vinのハイレベル/ローレベルを反転させる。反転型シュミットトリガ回路502は、反転した駆動信号Vinを、後述の保護部58におけるANDゲート581,582などを介してNOTゲート503、スイッチング素子505に供給してよい。
 NOTゲート503は、保護部58のANDゲート581と、スイッチング素子504との間に設けられる。NOTゲート503は、ANDゲート581からの出力信号をさらに反転してスイッチング素子504に供給してよい。
 スイッチング素子504は制御電圧Vcc(1)の電源と主スイッチング素子3のゲートとの間に接続されている。スイッチング素子504は、ターンオン用のスイッチング素子であり、制御電圧Vcc(1)の電源と主スイッチング素子3のゲートとの間を導通させることで主スイッチング素子3をターンオンする。スイッチング素子504は、NOTゲート503から供給される信号がローレベルの場合にターンオンされてよい。なお、本実施形態では一例として、スイッチング素子504は、P型のMOSFETであるが、他構造の半導体素子でもよい。
 スイッチング素子505は主スイッチング素子3のゲートと負側端子102との間に接続されている。スイッチング素子505は、ターンオフ用のスイッチング素子であり、主スイッチング素子3のゲートと負側端子102との間を導通させることで主スイッチング素子3をターンオフする。スイッチング素子505は、ANDゲート582から供給される信号がハイレベルの場合にターンオンされてよい。なお、本実施形態では一例として、スイッチング素子505は、N型のMOSFETであるが、他構造の半導体素子でもよい。
 [1.1.2(2).異常検知部6]
 異常検知部6は、保護動作を行うべき異常を検知する。本実施形態では一例として、異常には、主スイッチング素子3の短絡、主スイッチング素子3の過熱、主スイッチング素子3の過電流、および、制御電圧低下が含まれる。主スイッチング素子3の過熱とは、主スイッチング素子3が基準温度よりも高温になることであってよい。主スイッチング素子3の過電流とは、主スイッチング素子3に基準電流よりも大きい電流が流れることであってよい。制御電圧低下とは、駆動制御部50への電源供給による供給電圧Vcc(1)が基準電圧よりも低下することであってよい。異常検知部6は、過熱検知部61と、測定部62と、過電流検知部63と、短絡検知部64と、制御電圧低下検知部65とを有する。
 [1.1.2(2-1).過熱検知部61]
 過熱検知部61は、主スイッチング素子3の過熱を検知する。過熱検知部61は、電流源610と、コンパレータ611と、ローパスフィルタ612と、ヒステリシスバッファ613とを有する。
 電流源610は、サーマルダイオード30のアノード端子と、コンパレータ611の反転入力端子との間に接続されており、サーマルダイオード30に順方向の電流を流す。サーマルダイオード30の順方向電圧は、サーマルダイオード30が基準温度よりも高温の場合には、サーマルダイオード30が基準温度の場合よりも低くてよい。これにより、主スイッチング素子3が過熱状態である場合には、非過熱状態である場合よりも低い電圧がコンパレータ611の反転入力端子に印加される。コンパレータ611の非反転入力端子には、基準電位が接続される。コンパレータ611の基準電位は、主スイッチング素子3が基準温度の場合の反転入力端子の電位と等しくてよい。これにより、主スイッチング素子3が過熱状態となることに応じてコンパレータ611の出力信号がハイレベルとなる。コンパレータ611は、ローパスフィルタ612およびヒステリシスバッファ613を介して出力信号を保護動作制御部56に供給してよい。
 ローパスフィルタ612はコンパレータ611からの出力信号に含まれる高周波成分を除去してよい。ヒステリシスバッファ613は、ヒステリシスをもってコンパレータ611からの出力信号をバッファリングし、出力信号のばたつきを防止してよい。
 [1.1.2(2-2).測定部62]
 測定部62は、主スイッチング素子3に流れる電流に応じたパラメータを測定する。主スイッチング素子3に流れる電流は、スイッチング素子3に流れる電流の瞬時値であってよい。本実施形態においては一例として、測定部62は、主スイッチング素子3のセンスエミッタ端子とグランドとの間に直列に接続された2つの抵抗620,621を有してよい。測定部62は、センスエミッタ電流が抵抗620,621の両方を流れることに応じて検出される電圧を過電流検知部63に供給し、センスエミッタ電流がグランド側の抵抗621を流れることに応じて検出される電圧を短絡検知部64に供給してよい。
 [1.1.2(2-3).過電流検知部63]
 過電流検知部63は、主スイッチング素子3の過電流を検知する。過電流検知部63は、測定部62により測定されたパラメータに応じて主スイッチング素子3に過電流が流れたことを検知してよい。過電流とは、基準電流(一例として主スイッチング素子3の定格電流)より大きい電流であってよく、主スイッチング素子3が短絡した場合に流れる電流よりも小さい電流であってよい。過電流検知部63は、コンパレータ630と、ローパスフィルタ631とを有する。
 コンパレータ630の非反転入力端子には測定部62の抵抗620と、主スイッチング素子3のセンスエミッタ端子との間の接続点が接続され、コンパレータ630の反転入力端子には基準電位が接続される。コンパレータ630の基準電位は、主スイッチング素子3に流れる電流が上述の基準電流である場合の非反転入力端子の電位と等しくてよい。これにより、主スイッチング素子3が過電流状態となることに応じてコンパレータ630の出力信号がハイレベルとなる。コンパレータ630は、ローパスフィルタ631を介して出力信号を保護動作制御部56に供給してよい。ローパスフィルタ631はコンパレータ630からの出力信号に含まれる高周波成分を除去してよい。
 [1.1.2(2-4).短絡検知部64]
 短絡検知部64は、主スイッチング素子3の短絡を検知する。短絡検知部64は、測定部62により測定されたパラメータに応じて主スイッチング素子3に短絡が生じたことを検知してよい。短絡検知部64は、コンパレータ640と、ローパスフィルタ641とを有する。
 コンパレータ640の非反転入力端子には測定部62の抵抗620,621の間の接続点が接続され、コンパレータ640の反転入力端子には基準電位が接続される。コンパレータ640の基準電位は、主スイッチング素子3が短絡状態となっていない場合での非反転入力端子の電位より高くてよく、主スイッチング素子3が短絡状態となった場合での非反転入力端子の電位よりも低くてよい。これにより、主スイッチング素子3が短絡状態となることに応じてコンパレータ640の出力信号がハイレベルとなる。コンパレータ640は、ローパスフィルタ641を介して出力信号を保護動作制御部56に供給してよい。ローパスフィルタ641はコンパレータ640からの出力信号に含まれる高周波成分を除去してよい。
 [1.1.2(2-5).制御電圧低下検知部65]
 制御電圧低下検知部65は、制御電圧低下を検知する。本実施形態では一例として、制御電圧低下検知部65は、制御電圧Vcc(1)が低下したこと検知してよい。制御電圧低下検知部65は、抵抗655,656と、コンパレータ651と、ローパスフィルタ652と、ヒステリシスバッファ653とを有する。
 抵抗655,656は、制御電圧Vcc(1)とグランドとの間に直列に接続される。抵抗655,656の間の接続点はコンパレータ651の反転入力端子に接続されてよく、コンパレータ651の非反転入力端子には基準電位が接続されてよい。コンパレータ651の基準電位は、制御電圧Vcc(1)が基準電圧である場合の反転入力端子の電位と等しくてよい。基準電圧は一例として、駆動制御部50が正常に動作する制御電圧Vcc(1)の最小電圧であってよい。これにより、制御電圧Vcc(1)が基準電圧よりも低下することに応じてコンパレータ651の出力信号がハイレベルとなる。コンパレータ651は、ローパスフィルタ652およびヒステリシスバッファ653を介して出力信号を保護動作制御部56に供給してよい。
 ローパスフィルタ652およびヒステリシスバッファ653は、過熱検知部61のローパスフィルタ612およびヒステリシスバッファ613と同様のものであってよい。
 [1.1.2(3).保護動作制御部56]
 保護動作制御部56は、主スイッチング素子3の短絡、主スイッチング素子3の過熱、主スイッチング素子3の過電流、および、制御電圧低下のうちの何れかの異常が生じたことに応じて保護部58に保護動作を行わせる。保護動作制御部56は、保護部58に供給する保護制御信号SGをハイレベルにすることで保護動作を行わせて良い。保護動作制御部56は、ORゲート560と、SR型フリップフロップ561と、遅延回路562と、ANDゲート563と、SR型フリップフロップ564と、遅延回路565と、ANDゲート566と、ORゲート569とを有する。
 [1.1.2(3-1).ORゲート560]
 ORゲート560は、過熱検知部61、過電流検知部63および制御電圧低下検知部65の出力端子に接続される。ORゲート560は、過熱検知部61、過電流検知部63および制御電圧低下検知部65からの出力信号の論理和をとってよい。ORゲート560は、演算結果をSR型フリップフロップ561に供給してよい。
 [1.1.2(3-2).SR型フリップフロップ561]
 SR型フリップフロップ561は、ORゲート560の出力端子に接続される。SR型フリップフロップ561は、第2保持部の一例であり、主スイッチング素子3の過熱、主スイッチング素子3の過電流、および、制御電圧低下のうち少なくとも1つの異常が生じた場合に、後述の第2解除条件が満たされるまで、保護動作を実行すべき旨の情報を保持する。SR型フリップフロップ561は、セット状態となることによって、保護動作を実行すべき旨の情報の保持を行い、リセットされることで、当該情報をリセットしてよい。
 SR型フリップフロップ561のセット端子にはORゲート560の出力端子が接続されてよく、SR型フリップフロップ561はORゲート560からの信号がハイレベルとなることに応じてセットされてよい。これにより、主スイッチング素子3の過熱、主スイッチング素子3の過電流、および、制御電圧低下のうち少なくとも1つの異常が生じることによりSR型フリップフロップ561がセットされる。
 SR型フリップフロップ561のリセット端子には後述のANDゲート563の出力端子が接続されてよく、SR型フリップフロップ561はANDゲート563からの出力信号がハイレベルとなることに応じてリセットされてよい。
 SR型フリップフロップ561は、セット状態でハイレベルの信号を出力し、リセット状態でローレベルの信号を出力してよい。SR型フリップフロップ561は、ORゲート569および遅延回路562に出力信号を供給してよい。
 [1.1.2(3-3).遅延回路562]
 遅延回路562は、SR型フリップフロップ561の出力端子に接続される。遅延回路562は、SR型フリップフロップ561によるハイレベルの信号出力の開始から基準時間以上が経過している場合にハイレベルとなる信号を出力してよい。本実施形態では一例として遅延回路562は、SR型フリップフロップ561によるハイレベルの出力信号が基準時間以上に継続する場合にハイレベルとなる信号を出力してよく、SR型フリップフロップ561の出力信号と、SR型フリップフロップ561の出力信号を基準時間だけ遅延させた信号との論理積をとる。遅延回路562は、出力信号をANDゲート563に供給してよい。基準時間は、遅延回路562に対して任意に設定される時間であってよい。一例として、基準時間は、アラーム出力部57がアラーム信号ALMを出力するべき最小の時間であってよい。
 [1.1.2(3-4).ANDゲート563]
 ANDゲート563は、ORゲート560、遅延回路562および反転型シュミットトリガ回路502と、SR型フリップフロップ561のリセット端子との間に設けられる。ANDゲート563は、第2解除条件が満たされることに応じてSR型フリップフロップ561をリセットする。
 第2解除条件は、主スイッチング素子3の過熱、主スイッチング素子3の過電流、および、制御電圧低下のうち、生じた異常が解消したこと、主スイッチング素子3をオン状態とする駆動信号Vinが供給されていないこと、および、保護動作の開始から基準時間以上が経過していることを含む。ここで、第2解除条件では、後述の第1解除条件と異なり、駆動制御部50への電源供給が停止されていることが条件に含まれない。異常が解消したことは、異常が生じていない状態にあることであってよい。主スイッチング素子3をオン状態とする駆動信号Vinが供給されていないとは、駆動信号Vinの供給が停止されることであってもよいし、主スイッチング素子3をオフ状態とする駆動信号Vinが供給されていることであってもよい。
 本実施形態では一例として、ANDゲート563は、ORゲート560からの出力信号(本実施形態では一例として、過熱検知部61、過電流検知部63および制御電圧低下検知部65からの出力信号の論理和)の反転信号と、反転型シュミットトリガ回路502からの出力信号(本実施形態では一例として、反転した駆動信号Vin)の反転信号と、遅延回路562からの出力信号との論理積をとることで、第2解除条件が満たされるか否かを検知してよい。ANDゲート563は、演算結果をSR型フリップフロップ561のリセット端子に供給してよい。
 [1.1.2(3-5).SR型フリップフロップ564]
 SR型フリップフロップ564は、短絡検知部64の出力端子に接続される。SR型フリップフロップ564は、第1保持部の一例であり、短絡が生じた場合に、後述の第1解除条件が満たされるまで、保護動作を実行すべき旨の情報を保持する。SR型フリップフロップ564は、セット状態となることによって、保護動作を実行すべき旨の情報の保持を行い、リセットされることで、当該情報をリセットしてよい。
 SR型フリップフロップ564のセット端子には短絡検知部64の出力端子が接続されてよく、SR型フリップフロップ564は短絡検知部64からの信号がハイレベルとなることに応じてセットされてよい。これにより、主スイッチング素子3の短絡が生じることによりSR型フリップフロップ564がセットされる。
 SR型フリップフロップ564のリセット端子には後述のANDゲート566の出力端子が接続されてよく、SR型フリップフロップ564は、ANDゲート566からの出力信号がハイレベルとなることに応じてリセットされてよい。
 SR型フリップフロップ564は、セット状態でハイレベルの信号を出力し、リセット状態でローレベルの信号を出力してよい。SR型フリップフロップ564は、ORゲート569および遅延回路565に出力信号を供給してよい。
 [1.1.2(3-6).遅延回路565]
 遅延回路565は、SR型フリップフロップ564の出力端子に接続される。遅延回路565は、SR型フリップフロップ564によるハイレベルの信号出力の開始から基準時間以上が経過している場合にハイレベルとなる信号を出力してよい。本実施形態では一例として遅延回路565は、SR型フリップフロップ564によるハイレベルの出力信号が基準時間以上に継続する場合にハイレベルとなる信号を出力してよく、SR型フリップフロップ564の出力信号と、SR型フリップフロップ564の出力信号を基準時間だけ遅延させた信号との論理積をとる。遅延回路565は、出力信号をANDゲート566に供給してよい。基準時間は、遅延回路565に対して任意に設定される時間であってよい。一例として、基準時間は、アラーム出力部57がアラーム信号ALMを出力するべき最小の時間であってよい。
 [1.1.2(3-7).ANDゲート566]
 ANDゲート566は、短絡検知部64、制御電圧低下検知部65、遅延回路565および反転型シュミットトリガ回路502と、SR型フリップフロップ564のリセット端子との間に設けられる。ANDゲート566は、リセット部の一例であり、第1解除条件が満たされることに応じてSR型フリップフロップ564をリセットする。
 第1解除条件は、短絡が解消したこと、および、駆動制御部50への電源供給が停止されたことを含む。これにより、短絡が生じた場合には、駆動制御部50への電源供給が停止されるまで保護部58の保護動作が継続される。短絡が解消したとは、短絡が生じていない状態にあることであってよい。電源供給が停止されたことは、電源供給が停止された状態にあることであってもよいし、電源供給が一旦停止されたことであってもよい。第1解除条件は、主スイッチング素子3をオン状態とする駆動信号Vinが供給されていないこと、および、保護動作の開始から基準時間以上が経過していることをさらに含んでよい。
 本実施形態では一例として、ANDゲート566は、短絡検知部64からの出力信号の反転信号と、制御電圧低下検知部65の抵抗655,656によって検出される電圧信号の反転信号と、反転型シュミットトリガ回路502からの出力信号(本実施形態では一例として、反転した駆動信号Vin)の反転信号と、遅延回路565からの出力信号との論理積をとってよい。ここで、制御電圧低下検知部65の抵抗655,656によって検出される電圧信号は、駆動制御部50への電源供給が停止されない限りハイレベルであってよく、電源供給が停止される場合にはローレベルであってよい。ANDゲート566は、演算結果をSR型フリップフロップ564のリセット端子に供給してよい。
 [1.1.2(3-8).ORゲート569]
 ORゲート569は、SR型フリップフロップ561,564の出力端子に接続される。ORゲート569は、SR型フリップフロップ561,564の出力信号の論理和をとってよい。ORゲート569は、演算結果の信号を保護制御信号SGとして保護部58と、アラーム出力部57とに供給してよい。
 [1.1.2(4).アラーム出力部57]
 アラーム出力部57は、出力部の一例であり、保護動作が実行される場合にアラーム端子104からアラーム信号ALMを出力する。アラーム信号ALMは、保護動作が実行されていない場合にはハイレベルであってよく、保護動作が実行されている場合にローレベルとなることでオペレータに警報を行ってよい。アラーム端子104には抵抗571が接続されてよい。アラーム出力部57は、電流源572と、スイッチング素子573と、反転型シュミットトリガ回路574とを有する。
 電流源572は、アラーム端子104と接続されており、抵抗571を介してアラーム端子104から外部に電流を流すことで、アラーム端子104から出力されるアラーム信号ALMをハイレベルに維持する。スイッチング素子573は、電流源572およびアラーム端子104の間の接続点と、グランドとの間に接続されている。スイッチング素子573は、ノーマリーオフであり、保護動作を実行させる場合に保護動作制御部56からの保護制御信号SGがハイレベルとなることに応じてターンオンされ、電流源572からの電流をグランドに流す。これにより、アラーム端子104から出力されるアラーム信号ALMがローレベルになる。スイッチング素子573は、一例としてN型のMOSFETであってよい。反転型シュミットトリガ回路574は、アラーム端子104に接続されており、ヒステリシスをもってアラーム信号ALMのハイレベル/ローレベルを反転させる。アラーム信号ALMがローレベルからハイレベルに切り替わる場合の第1の閾値は、ハイレベルからローレベルに切り替わる場合の第2の閾値よりも高くてよい。これにより、保護動作制御部56からの保護制御信号SGがハイレベルからローレベルに切り替わった場合でも、アラーム信号ALMが第2の閾値を超えて確実にハイレベルとなるまでは反転型シュミットトリガ回路574の出力はハイレベルに維持される。反転型シュミットトリガ回路574は、反転したアラーム信号ALMを保護部58に供給してよい。
 [1.1.2(5).保護部58]
 保護部58は、過熱や過電流、短絡、制御電圧低下などの異常が検知されたことに応じて、主スイッチング素子3に流れる電流を制限する保護動作を行う。保護部58は、過熱検知部61や過電流検知部63、短絡検知部64、制御電圧低下検知部65により異常が検知されたことに応じて保護動作を行ってよい。保護部58は、ORゲート580と、ANDゲート581,582と、NOTゲート583と、スイッチング素子584とを有する。
 ORゲート580は、保護動作制御部56およびアラーム出力部57の出力端子に接続される。ORゲート580は、保護動作制御部56からの保護制御信号SGと、アラーム出力部57の反転型シュミットトリガ回路574によるアラーム信号ALMの反転信号との論理和をとってよい。ORゲート580は、演算結果をANDゲート582およびNOTゲート583に供給してよい。
 ANDゲート581は、駆動制御部50の反転型シュミットトリガ回路502、保護動作制御部56およびアラーム出力部57の出力端子に接続される。ANDゲート581は、駆動制御部50の反転型シュミットトリガ回路502により反転された駆動信号Vinと、保護動作制御部56からの保護制御信号SGを反転した信号と、アラーム出力部57の反転型シュミットトリガ回路574によるアラーム信号ALMの反転信号をさらに反転した信号との論理積をとってよい。
 これにより、保護制御信号SGにより保護動作の実行が指示されている場合、および/または、アラーム信号ALMにより警報が行われている場合には、ANDゲート581の出力は、反転型シュミットトリガ回路502の出力信号、ひいては駆動信号Vinに関わらずローレベルとなる。また、保護制御信号SGにより保護動作の実行が指示されておらず、かつ、アラーム信号ALMにより警報が行われていない場合には、ANDゲート581の出力は、反転型シュミットトリガ回路502の出力と一致する。
 ANDゲート581は、NOTゲート503を介して、主スイッチング素子3のターンオン用のスイッチング素子504に出力信号を供給してよい。これにより、保護制御信号SGにより保護動作の実行が指示されている場合、および/または、アラーム信号ALMにより警報が行われている場合には、駆動信号Vinに関わらず、スイッチング素子504がオフ状態に維持される。また、保護制御信号SGにより保護動作の実行が指示されておらず、かつ、アラーム信号ALMにより警報が行われていない場合には、駆動信号Vinに応じてスイッチング素子504が制御される。
 ANDゲート581は、出力信号をANDゲート582にも供給してよい。
 ANDゲート582は、ANDゲート581およびORゲート580の出力端子に接続される。ANDゲート582は、ANDゲート581の出力信号の反転信号と、ORゲート580の出力信号の反転信号との論理積をとってよい。
 これにより、保護制御信号SGにより保護動作の実行が指示されている場合、および/または、アラーム信号ALMにより警報が行われている場合には、ANDゲート582の出力は、ANDゲート581の出力信号、ひいては反転型シュミットトリガ回路502の出力信号や駆動信号Vinに関わらずローレベルとなる。また、保護制御信号SGにより保護動作の実行が指示されておらず、かつ、アラーム信号ALMにより警報が行われていない場合には、ANDゲート582の出力は、ANDゲート581の出力信号の反転信号、ひいては反転型シュミットトリガ回路502の出力の反転信号や駆動信号Vinと一致する。
 ANDゲート582は、主スイッチング素子3のターンオフ用のスイッチング素子505に出力信号を供給してよい。これにより、保護制御信号SGにより保護動作の実行が指示されている場合、および/または、アラーム信号ALMにより警報が行われている場合には、駆動信号Vinに関わらず、スイッチング素子505がオフ状態に維持される。また、保護制御信号SGにより保護動作の実行が指示されておらず、かつ、アラーム信号ALMにより警報が行われていない場合には、駆動信号Vinに応じてスイッチング素子505が制御される。
 NOTゲート583は、ORゲート580の出力端子に接続されており、ORゲート580の出力信号を反転する。NOTゲート583は、スイッチング素子584に出力信号を供給してよい。
 スイッチング素子584は、主スイッチング素子3のゲートと負側端子102との間に、スイッチング素子505と並列に接続されている。スイッチング素子584は、主スイッチング素子3をソフトシャットダウンするためのスイッチング素子であり、主スイッチング素子3のゲートと負側端子102との間を導通させることで主スイッチング素子3をターンオフする。スイッチング素子584のスイッチング速度は、スイッチング素子505のスイッチング速度よりも低くてよい。スイッチング素子505は、NOTゲート583から供給される信号がローレベルの場合にターンオンされてよい。なお、本実施形態では一例として、スイッチング素子505は、P型のMOSFETであるが、他構造の半導体素子でもよい。
 以上のスイッチング装置1によれば、短絡が生じたことより行われる保護動作は、駆動制御部50への電源供給が停止されるまで継続される。従って、短絡の原因が除去されずに保護動作が解除されてしまうのを防止し、保護動作の解除による素子の二次的な破壊を防止することができる。
 また、短絡が生じた場合に、短絡が解消したこと、および、電源供給が停止されたことを含む第1解除条件が満たされるまで、保護動作を実行すべき旨の情報がSR型フリップフロップ564に保持される。従って、短絡の原因が除去されずに保護動作が解除されてしまうのを確実に防止することができる。
 また、第1解除条件が満たされることに応じてSR型フリップフロップ564がリセットされるので、第1解除条件が満たされた場合に保護動作を解除して正常状態での運転を再開することができる。
 また、第1解除条件には、主スイッチング素子3をオン状態とする駆動信号Vinが供給されていないことがさらに含まれるので、主スイッチング素子3がオフである状態で保護動作を解除して、運転を再開することができる。また、第1解除条件には、保護動作の開始から基準時間以上が経過していることが含まれるので、基準時間内で連続して短絡が生じてしまうのを防止することができる。また、少なくとも基準時間が経過するまでは保護動作が解除されないため、アラーム信号ALMを基準時間に亘って継続して出力させることができる。
 また、主スイッチング素子3の過熱、主スイッチング素子3の過電流、および、制御電圧低下の少なくとも1つの異常が生じた場合には、第2解除条件が満たされるまで、保護動作を実行すべき旨の情報がSR型フリップフロップ561に保持される。そして、第2解除条件は、異常が解消したこと、主スイッチング素子3をオン状態とする駆動信号Vinが供給されていないこと、および、保護動作の開始から基準時間以上が経過していることを含み、電源供給が停止されていることを条件に含まない。従って、主スイッチング素子3の過熱や過電流、制御電圧Vcc(1)の低下による保護動作では、電源供給の停止を条件とせずに速やかに保護動作を解除して、正常状態での運転を再開することができる。
 また、保護動作が実行される場合にアラーム信号ALMが出力されるので、異常を報知して異常要因の除去や電源供給の停止を促すことができる。
 また、保護動作制御部56は駆動制御部50とは別の電源から電源供給を受けるので、駆動制御部50への電源供給が停止した場合にも制御を継続することができる。
 [2.第2実施形態]
 図2は、第2実施形態に係るスイッチング装置1Aを示す。スイッチング装置1Aの制御装置5Aは、異常検知部6Aと、保護動作制御部56Aとを備える。なお、図2や、後述の図3,図4では、主スイッチング素子2や、その制御装置の図示を省略している。また、本実施形態や、後述の他の実施形態において、図1に示されたスイッチング装置1と略同一のものには同一の符号を付け、説明を省略する。
 異常検知部6Aは、過電流検知部63および短絡検知部64の出力端子に接続されたORゲート66Aを有する。ORゲート66Aは、過電流検知部63および短絡検知部64の出力信号の論理和をとって、演算結果を保護動作制御部56Aに供給してよい。
 保護動作制御部56Aは、ORゲート560A、SR型フリップフロップ564A、ANDゲート563AおよびSR型フリップフロップ561Aを有してよい。
 ORゲート560Aは、過熱検知部61、ORゲート66Aおよび制御電圧低下検知部65の出力端子に接続される。ORゲート560Aは、過熱検知部61、ORゲート66Aおよび制御電圧低下検知部65からの出力信号の論理和をとってよい。ORゲート560Aは、演算結果をSR型フリップフロップ561Aのセット端子に供給してよい。これにより、過熱検知部61、過電流検知部63、短絡検知部64および制御電圧低下検知部65からの出力信号の論理和がとられ、何れかの出力信号がハイレベルとなることに応じてSR型フリップフロップ561Aがセットされる。
 SR型フリップフロップ564Aは、短絡検知部64およびANDゲート566の出力端子に接続される。SR型フリップフロップ564Aは、上述の第1実施形態におけるSR型フリップフロップ564と同様に、短絡検知部64からの信号がハイレベルとなることに応じてセットされ、ANDゲート566からの出力信号がハイレベルとなることに応じてリセットされてよい。SR型フリップフロップ564Aは、セット状態でハイレベルの信号を、リセット状態でローレベルの信号を、遅延回路565およびANDゲート563Aに供給してよい。
 ANDゲート563Aは、ORゲート560、遅延回路562、反転型シュミットトリガ回路502およびSR型フリップフロップ564Aと、SR型フリップフロップ561Aのリセット端子との間に設けられる。ANDゲート563Aは、第3解除条件が満たされることに応じてSR型フリップフロップ561Aをリセットする。
 第3解除条件は、駆動制御部50への電源供給が停止されていることを条件に含まず、上述の第2解除条件に加えて、SR型フリップフロップ564Aの出力がローレベルになっていることを含む。これにより、これまでに短絡が生じていない場合には、SR型フリップフロップ564Aの出力信号がローレベルであるため、ANDゲート563Aは、第3解除条件の残りの条件、つまり第2解除条件が満たされることに応じてSR型フリップフロップ561Aをリセットする。一方、短絡がいったん生じた場合には、第1解除条件が満たされるまでは、SR型フリップフロップ564Aの出力信号がハイレベルであるため、ANDゲート563Aは、第3解除条件の残りの条件、つまり第2解除条件が満たされるか否かに関わらず、SR型フリップフロップ561Aのリセットを行わない。短絡がいったん生じ、第1解除条件が満たされた場合には、SR型フリップフロップ564Aの出力信号がローレベルであるため、ANDゲート563Aは、第3解除条件の残りの条件、つまり第2解除条件が満たされることに応じてSR型フリップフロップ561Aをリセットする。
 本実施形態では一例として、ANDゲート563Aは、ORゲート560Aからの出力信号の反転信号と、反転型シュミットトリガ回路502からの出力信号の反転信号と、遅延回路562からの出力信号と、SR型フリップフロップ564Aの出力信号の反転信号との論理積をとることで、第3解除条件が満たされるか否かを検知してよい。ANDゲート563Aは、演算結果をSR型フリップフロップ561Aのリセット端子に供給してよい。
 SR型フリップフロップ561Aは、ORゲート560AおよびANDゲート562Aの出力端子に接続される。SR型フリップフロップ561Aは、上述の第1実施形態におけるSR型フリップフロップ561と同様に、ORゲート560Aからの信号がハイレベルとなることに応じてセットされ、ANDゲート566Aからの出力信号がハイレベルとなることに応じてリセットされてよい。SR型フリップフロップ561Aは、セット状態でハイレベルの信号を、リセット状態でローレベルの信号を、遅延回路562および駆動制御部50に供給してよい。
 以上のスイッチング装置1Aによっても、上記第1実施形態におけるスイッチング装置1と同様の効果を得ることができる。
 [3.第3実施形態]
 図3は、第3実施形態に係るスイッチング装置1Bを示す。スイッチング装置1Bは、操作検出端子108と、制御装置5Bとを備える。
 操作検出端子108は、電源供給が再開される場合の基準操作の入力を検出する。基準操作は、駆動制御部50に対する電源供給の開始を指示する操作(一例として電源ボタンに対する操作)や、スイッチング装置1Bや制御装置5Bの起動後に実行されるべき初期化を指示する操作などであってよい。基準操作が行われた場合には、ハイレベルの信号が操作検出端子108から制御装置5Bに供給されてよい。
 制御装置5Bは、SR型フリップフロップ564Bと、ANDゲート566Bとを有する。
 SR型フリップフロップ564Bは、短絡検知部64の出力端子に接続される。SR型フリップフロップ564Bは、本実施形態に係る第1解除条件が満たされるまで、保護動作を実行すべき旨の情報を保持する。
 ここで、本実施形態における第1解除条件は、短絡が生じた場合に、短絡が解消したこと、および、電源供給が再開される場合の基準操作が行われたことを含む。これにより、短絡が生じた場合には、電源供給が再開される場合の基準操作が行われるまで保護部58の保護動作が継続される。第1解除条件は、主スイッチング素子3をオン状態とする駆動信号Vinが供給されていないこと、および、保護動作の開始から基準時間以上が経過していることをさらに含んでよい。
 SR型フリップフロップ564Bのリセット端子にはANDゲート566Bが接続されてよく、SR型フリップフロップ564Bは、ANDゲート566Bからの出力信号がハイレベルとなることに応じてリセットされてよい。SR型フリップフロップ564Bは、出力信号を遅延回路565およびORゲート569に供給してよい。
 ANDゲート566Bは、短絡検知部64、操作検出端子108、遅延回路565および反転型シュミットトリガ回路502と、SR型フリップフロップ564Bのリセット端子との間に設けられる。ANDゲート566Bは、第1解除条件が満たされることに応じてSR型フリップフロップ564Bをリセットする。本実施形態では一例として、ANDゲート566Bは、短絡検知部64からの出力信号の反転信号と、操作検出端子108からの信号と、反転型シュミットトリガ回路502からの出力信号(本実施形態では一例として、反転した駆動信号Vin)の反転信号と、遅延回路565からの出力信号との論理積をとってよい。ANDゲート566は、演算結果をSR型フリップフロップ564Bのリセット端子に供給してよい。
 以上のスイッチング装置1Bによれば、短絡が生じた場合に、短絡が解消したこと、および、電源供給が再開される場合の基準操作が行われたことを含む第1解除条件が満たされるまで、保護動作を実行すべき旨の情報がSR型フリップフロップ564Bに保持される。従って、短絡の原因が除去されずに保護動作が解除されてしまうのを確実に防止することができる。
 また、第1解除条件が満たされることに応じてSR型フリップフロップ564Bがリセットされるので、第1解除条件が満たされた場合に保護動作を解除して正常状態での運転を再開することができる。
 なお、本実施形態においてSR型フリップフロップ564Bは出力信号をORゲート569に供給することとして説明したが、第2実施形態におけるSR型フリップフロップ564Aと同様にして、出力信号をANDゲート563に供給してもよい。
 [4.第4実施形態]
 図4は、第4実施形態に係るスイッチング装置1Cを示す。
 スイッチング装置1Cにおける制御装置5Cの保護動作制御部56Cは、駆動制御部50と共通の電源から電源供給を受ける。例えば制御装置5Cにおける各構成は、共通の電源から電圧Vccの電源供給を受けてよい。保護動作制御部56Cは、ORゲート568Cと、SR型フリップフロップ561Cと、ANDゲート563Cとを有する。
 ORゲート568Cは、短絡検知部64とANDゲート563Cとの間に設けられ、短絡検知部64により短絡が検知される場合のハイレベルの出力信号をラッチする。ORゲート568Cは、短絡検知部64の出力信号と、ORゲート568C自身の出力信号との論理和をとってよい。これにより、短絡検知部64からの出力信号が一旦ハイレベルになると、ORゲート568Cの出力信号はハイレベルに維持される。ORゲート568Cは、出力信号をANDゲート563Cに供給してよい。
 SR型フリップフロップ561Cは、ORゲート560およびANDゲート563Cの出力端子に接続される。SR型フリップフロップ561Cは、第3保持部の一例であり、保護動作制御部56Cが駆動制御部50と共通の電源から電源供給を受けることに応じて、保護動作を継続させるか否かの情報を保持する。SR型フリップフロップ561Cは、セット状態となることによって、保護動作を実行すべき旨の情報の保持を行い、リセットされることで、当該情報をリセットしてよい。
 SR型フリップフロップ561Cは、上述の第1実施形態におけるSR型フリップフロップ561と同様に、ORゲート560からの信号がハイレベルとなることに応じてセットされ、ANDゲート563Cからの出力信号がハイレベルとなることに応じてリセットされてよい。SR型フリップフロップ561Cは、ORゲート569および遅延回路562に出力信号を供給してよい。
 ANDゲート563Cは、ORゲート560、遅延回路562、反転型シュミットトリガ回路502およびORゲート568Cと、SR型フリップフロップ561Cのリセット端子との間に設けられる。ANDゲート563Cは、第4解除条件が満たされることに応じてSR型フリップフロップ561Cをリセットする。
 第4解除条件は、上述の第2解除条件に加えて、ORゲート568Cの出力がローレベルになっていることを含む。これにより、これまでに短絡が生じていない場合には、ORゲート568Cの出力信号がローレベルであるため、ANDゲート563Cは、第4解除条件の残りの条件、つまり第2解除条件が満たされることに応じてSR型フリップフロップ561Cをリセットする。一方、短絡がいったん生じた場合には、ORゲート568Cの出力信号がハイレベルに維持されるため、ANDゲート563Cは、第4解除条件の残りの条件、つまり第2解除条件が満たされるか否かに関わらず、SR型フリップフロップ561Cのリセットを行わない。従って、短絡がいったん生じた場合には、SR型フリップフロップ561Cは、電源供給が維持される限りセット状態に維持され、電源供給が停止されることに応じてリセットされる。
 本実施形態では一例として、ANDゲート563Cは、ORゲート560からの出力信号の反転信号と、反転型シュミットトリガ回路502からの出力信号の反転信号と、遅延回路562からの出力信号と、ORゲート568Cからの出力信号の反転信号との論理積をとることで、第4解除条件が満たされるか否かを検知してよい。ANDゲート563Cは、演算結果をSR型フリップフロップ561Cのリセット端子に供給してよい。
 以上のスイッチング装置1Cによれば、保護動作制御部56Cが駆動制御部50と共通の電源から電源供給を受けることに応じて、保護動作を継続させるか否かの情報がSR型フリップフロップ561Cに保持される。従って、駆動制御部50への電源供給が停止されるまで確実に保護部58に保護動作を継続させることができる。また、電源供給が停止された場合に情報がリセットされるため、保護動作を解除し、正常状態での運転を再開することができる。
 [5.変形例]
 なお、上記の実施形態においては、制御装置5は駆動制御部50およびアラーム出力部57を有することとして説明したが、これらの少なくとも1つを有しなくてもよい。また、異常検知部6は過熱検知部61と、過電流検知部63と、制御電圧低下検知部65とを有することとして説明したが、これらの少なくとも1つを有しなくてもよい。
 また、主スイッチング素子3に流れる電流に応じたパラメータとして、主スイッチング素子3のセンスエミッタ電流が抵抗620,621に流れることに応じて検出される電圧を用いることとして説明したが、主スイッチング素子3のエミッタ電流が抵抗に流れることに応じて検出される電圧など、他のパラメータを用いてもよい。
 また、保護部58は、短絡や過電流などの異常が生じた場合に主スイッチング素子3をソフトシャットダウンすることとして説明したが、主スイッチング素子3のゲート電圧を、定常オン状態でのゲート電圧よりも低い基準電圧に低下させて維持してもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 1 スイッチング装置
 2 主スイッチング素子
 3 主スイッチング素子
 4 制御装置
 5 制御装置
 6 異常検知部
 20 サーマルダイオード
 30 サーマルダイオード
 50 駆動制御部
 56 保護動作制御部
 57 アラーム出力部
 58 保護部
 61 過熱検知部
 62 測定部
 63 過電流検知部
 64 短絡検知部
 65 制御電圧低下検知部
 66 ORゲート
 101 正側端子
 102 負側端子
 103 入力端子
 104 アラーム端子
 105 電源出力端子
 108 操作検出端子
 500 電流源
 501 ツェナーダイオード
 502 反転型シュミットトリガ回路
 503 NOTゲート
 504 スイッチング素子
 505 スイッチング素子
 560 ORゲート
 561 SR型フリップフロップ
 562 遅延回路
 563 ANDゲート
 564 SR型フリップフロップ
 565 遅延回路
 566 ANDゲート
 568 ORゲート
 569 ORゲート
 571 抵抗
 572 電流源
 573 スイッチング素子
 574 反転型シュミットトリガ回路
 580 ORゲート
 581 ANDゲート
 582 ANDゲート
 583 NOTゲート
 584 スイッチング素子
 610 電流源
 611 コンパレータ
 612 ローパスフィルタ
 613 ヒステリシスバッファ
 620 抵抗
 621 抵抗
 630 コンパレータ
 631 ローパスフィルタ
 640 コンパレータ
 641 ローパスフィルタ
 651 コンパレータ
 652 ローパスフィルタ
 653 ヒステリシスバッファ
 655 抵抗

Claims (12)

  1.  主スイッチング素子に短絡が生じたことに応じて、当該主スイッチング素子に流れる電流を制限する保護動作を行う保護部と、
     駆動信号に応じて前記主スイッチング素子を駆動制御する駆動制御部への電源供給が停止されるまで前記保護部に保護動作を継続させる保護動作制御部と、
     を備える制御装置。
  2.  前記保護動作制御部は、
     前記短絡が生じた場合に、前記短絡が解消したこと、および、前記電源供給が停止されたことを含む第1解除条件が満たされるまで、前記保護動作を実行すべき旨の情報を保持する第1保持部を有する、請求項1に記載の制御装置。
  3.  前記保護動作制御部は、
     前記短絡が生じた場合に、前記短絡が解消したこと、および、前記電源供給が再開される場合の基準操作が行われたことを含む第1解除条件が満たされるまで、前記保護動作を実行すべき旨の情報を保持する第1保持部を有する、請求項1に記載の制御装置。
  4.  前記保護動作制御部は、前記第1解除条件が満たされることに応じて前記第1保持部をリセットするリセット部を有する、請求項2または3に記載の制御装置。
  5.  前記第1解除条件は、前記主スイッチング素子をオン状態とする前記駆動信号が供給されていないこと、および、前記保護動作の開始から基準時間以上が経過していることをさらに含む、請求項2~4の何れか一項に記載の制御装置。
  6.  前記保護部は、前記主スイッチング素子が基準温度よりも高温になったこと、前記主スイッチング素子に基準電流よりも大きい電流が流れたこと、および、前記電源供給による供給電圧が基準電圧よりも低下したこと、の少なくとも1つの異常が生じたことに応じても前記保護動作を行い、
     前記保護動作制御部は、前記少なくとも1つの異常が生じた場合に、生じた異常が解消したこと、前記主スイッチング素子をオン状態とする前記駆動信号が供給されていないこと、および、前記保護動作の開始から基準時間以上が経過していることを含み、前記電源供給が停止されていることを条件に含まない第2解除条件が満たされるまで、前記保護動作を実行すべき旨の情報を保持する第2保持部を有する、請求項2~5の何れか一項に記載の制御装置。
  7.  前記保護動作制御部は、前記駆動制御部とは別の電源から電源供給を受ける、請求項2~6の何れか一項に記載の制御装置。
  8.  前記保護動作制御部は、前記駆動制御部と共通の電源から電源供給を受けることに応じて、前記保護動作を継続させるか否かの情報を保持する第3保持部を有する、請求項1に記載の制御装置。
  9.  前記主スイッチング素子に流れる電流に応じたパラメータを測定する測定部と、
     測定されたパラメータに応じて前記主スイッチング素子に短絡が生じたことを検知する検知部と、
     をさらに備える、請求項1から8の何れか一項に記載の制御装置。
  10.  前記保護動作が実行される場合にアラーム信号を出力する出力部をさらに備える、請求項1~9の何れか一項に記載の制御装置。
  11.  前記駆動制御部をさらに備える、請求項1から10の何れか一項に記載の制御装置。
  12.  請求項11に記載の制御装置と、前記主スイッチング素子とを備えるスイッチング装置。
PCT/JP2022/021431 2021-07-12 2022-05-25 制御装置およびスイッチング装置 WO2023286464A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280008483.2A CN116711204A (zh) 2021-07-12 2022-05-25 控制装置以及开关装置
DE112022000234.4T DE112022000234T5 (de) 2021-07-12 2022-05-25 Steuervorrichtung und schaltvorrichtung
JP2023535166A JPWO2023286464A1 (ja) 2021-07-12 2022-05-25
US18/337,065 US20230336170A1 (en) 2021-07-12 2023-06-19 Control device, and switching device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-115321 2021-07-12
JP2021115321 2021-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/337,065 Continuation US20230336170A1 (en) 2021-07-12 2023-06-19 Control device, and switching device

Publications (1)

Publication Number Publication Date
WO2023286464A1 true WO2023286464A1 (ja) 2023-01-19

Family

ID=84919939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021431 WO2023286464A1 (ja) 2021-07-12 2022-05-25 制御装置およびスイッチング装置

Country Status (5)

Country Link
US (1) US20230336170A1 (ja)
JP (1) JPWO2023286464A1 (ja)
CN (1) CN116711204A (ja)
DE (1) DE112022000234T5 (ja)
WO (1) WO2023286464A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114150A (ja) * 1997-06-11 1999-01-06 Toshiba Corp 半導体装置とこの半導体装置を用いた電力変換装置
JP2003088093A (ja) * 2001-09-11 2003-03-20 Toshiba Corp インテリジェントパワーモジュール、およびその制御回路
JP2012143125A (ja) * 2010-12-14 2012-07-26 Fuji Electric Co Ltd 半導体素子の駆動装置
JP2013258858A (ja) * 2012-06-13 2013-12-26 Fuji Electric Co Ltd 半導体素子の駆動装置
JP2014103820A (ja) * 2012-11-22 2014-06-05 Fuji Electric Co Ltd 半導体素子の駆動装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259233A (ja) 2010-06-09 2011-12-22 Asahi Kasei Electronics Co Ltd ソースフォロワ回路、ソースフォロワ型フィルタ回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH114150A (ja) * 1997-06-11 1999-01-06 Toshiba Corp 半導体装置とこの半導体装置を用いた電力変換装置
JP2003088093A (ja) * 2001-09-11 2003-03-20 Toshiba Corp インテリジェントパワーモジュール、およびその制御回路
JP2012143125A (ja) * 2010-12-14 2012-07-26 Fuji Electric Co Ltd 半導体素子の駆動装置
JP2013258858A (ja) * 2012-06-13 2013-12-26 Fuji Electric Co Ltd 半導体素子の駆動装置
JP2014103820A (ja) * 2012-11-22 2014-06-05 Fuji Electric Co Ltd 半導体素子の駆動装置

Also Published As

Publication number Publication date
DE112022000234T5 (de) 2023-09-14
US20230336170A1 (en) 2023-10-19
CN116711204A (zh) 2023-09-05
JPWO2023286464A1 (ja) 2023-01-19

Similar Documents

Publication Publication Date Title
EP2651023B1 (en) Power converter
US8605471B2 (en) Power conversion device
JP5115829B2 (ja) スイッチング装置
WO2017047221A1 (ja) 電源装置及びそのスイッチ制御方法
JP5752234B2 (ja) 電力変換装置
US11063422B2 (en) Power semiconductor module and power converter
JP6748935B2 (ja) 電流センス付き半導体スイッチの保護回路
JP2019165347A (ja) 駆動装置及びパワーモジュール
EP3958466A1 (en) Triggering circuit and electronic fuse device incorporating the same
US20160181789A1 (en) Protection circuit for an inverter as well as inverter system
WO2016021329A1 (ja) 電力変換装置
JP6394036B2 (ja) 電力用半導体素子の駆動装置
JP2004129378A (ja) 電力用半導体素子のゲート駆動回路
KR100689328B1 (ko) 인버터 보호 장치
JP2007336665A (ja) ゲート駆動装置およびそれを備えた電力変換装置
WO2023286464A1 (ja) 制御装置およびスイッチング装置
EP3627686B1 (en) Motor drive device
KR101626762B1 (ko) 모터 드라이버
US10291159B2 (en) Control system, controller, and control method for wound induction machine
KR100807547B1 (ko) 인버터용 반도체 스위치의 구동회로
CN107276035B (zh) 用于旋转电机的控制装置
WO2022158052A1 (ja) ゲート駆動回路および電力変換装置
JP2012217087A (ja) 負荷駆動装置
JP6455719B2 (ja) 無停電電源システム
JP6815137B2 (ja) 半導体駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280008483.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023535166

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112022000234

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22841811

Country of ref document: EP

Kind code of ref document: A1