WO2023284818A1 - 一种干法电池极片及电池 - Google Patents

一种干法电池极片及电池 Download PDF

Info

Publication number
WO2023284818A1
WO2023284818A1 PCT/CN2022/105666 CN2022105666W WO2023284818A1 WO 2023284818 A1 WO2023284818 A1 WO 2023284818A1 CN 2022105666 W CN2022105666 W CN 2022105666W WO 2023284818 A1 WO2023284818 A1 WO 2023284818A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode film
current collector
pole piece
metal
dry
Prior art date
Application number
PCT/CN2022/105666
Other languages
English (en)
French (fr)
Inventor
胡屹伟
郭姿珠
潘仪
张建昌
孙华军
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to JP2023574120A priority Critical patent/JP2024525291A/ja
Priority to CA3223286A priority patent/CA3223286A1/en
Priority to EP22841451.2A priority patent/EP4333097A1/en
Priority to KR1020237041457A priority patent/KR20240004824A/ko
Priority to BR112023026043A priority patent/BR112023026043A2/pt
Priority to AU2022309785A priority patent/AU2022309785A1/en
Publication of WO2023284818A1 publication Critical patent/WO2023284818A1/zh
Priority to US18/523,574 priority patent/US20240097142A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of batteries, in particular to a pole piece of a dry-process battery and a battery.
  • the electrode film is formed by mixing the electrode material with the conductive agent and other raw materials, and then by applying glue on the surface of the current collector, or sandwiching glue between the current collector and the electrode film, etc., so that The electrode film is bonded to the current collector to form an electrode sheet.
  • the existence of the colloidal layer will reduce the contact area between the current collector and the electrode film, and reduce the electrical conductivity of the battery pole piece. On the other hand, it will increase the proportion of inactive materials, reduce energy density, increase the process of battery pole pieces, and increase production costs.
  • An object of the embodiments of the present disclosure is to provide a new technical solution for a pole piece of a dry-process battery and a battery.
  • a dry battery pole piece comprising:
  • a metal current collector the metal current collector has pores
  • a self-supporting electrode film includes a first electrode film and a second electrode film, the first electrode film is arranged on one side of the metal current collector, and the second electrode film is arranged on the metal The current collector is away from the side of the first electrode film;
  • the first electrode film and the second electrode film are configured to be pressed and connected by external force
  • the first electrode film and the second electrode film are attached to the metal current collector, and the first electrode film and the second electrode film are connected to each other at positions corresponding to the pores.
  • a carbon layer is provided on the surface of the metal current collector.
  • a metal lithium layer is provided on the surface of the metal current collector.
  • the metal current collector includes a plurality of metal wires, the plurality of metal wires are arranged in an array, and the adjacent metal wires are arranged at intervals.
  • the metal wires are interlaced to form a network structure, gaps are formed between a plurality of the metal wires to form the pores, and the pores are polygonal.
  • the side length of the pores is 5 ⁇ m ⁇ 500 ⁇ m.
  • the metal wires are arranged in parallel, and the pores are formed between any two adjacent metal wires.
  • the distance between adjacent metal wires is 5 ⁇ m ⁇ 500 ⁇ m.
  • the diameter of the metal wire is 1 ⁇ m ⁇ 100 ⁇ m.
  • the metal current collector and the self-supporting electrode film are configured to be fixedly connected by heating and rolling.
  • a technical effect of the embodiments of the present disclosure is that the energy density of the battery and the electrical conductivity of the battery pole piece are improved without additional processing procedures for the battery pole piece.
  • a battery comprising the pole piece of a dry-process battery as described in the first aspect.
  • Fig. 1 is a specific structural schematic diagram of a kind of dry battery pole piece embodiment 1 provided by the embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of Embodiment 2 of a pole piece of a dry-process battery provided by an embodiment of the present disclosure.
  • 1-metal current collector 11-metal wire; 12-pore; 2-self-supporting electrode film.
  • a pole piece of a dry battery comprising: a metal current collector 1 and a self-supporting electrode film 2 .
  • the metal current collector 1 is made of metal materials, such as Cu, Al, Ni, Fe, etc.
  • the metal current collector 1 is provided with pores 12 , the pores 12 penetrate the metal current collector 1 , and the pores 12 allow solids, gases and liquids to pass through the metal current collector 1 .
  • the metal current collector 1 can be configured as a complete piece of metal material with pores 12 formed, or it can be configured as an array of metal materials, and closed pores 12 are formed between the metal materials.
  • the self-supporting electrode film 2 includes a first electrode film and a second electrode film, the first electrode film is disposed on one side of the metal current collector 1, the second electrode film is disposed on the side of the metal current collector 1 away from the first electrode film, and The sides of the first electrode film and the second electrode film close to the metal current collector 1 are bonded to the metal current collector 1 .
  • the first electrode film and the second electrode film are configured to be pressed and connected by external force. After the first electrode film and the second electrode film are pressed by force, the side where the two are bonded to the metal current collector 1 is in the corresponding hole 12. The locations are connected to each other.
  • the metal current collector 1 is located between the first electrode film and the second electrode film, so as to realize the connection between the first electrode film, the second electrode film and the metal current collector 1 .
  • the pores 12 provided on the metal current collector 1 are conducive to the deformation of the first electrode film and the second electrode film and the connection through the pores 12 when the self-supporting electrode film 2 is pressed together by force, and there is no need to consider the first electrode film. Whether the thickness of the film and the second electrode film are the same, the first electrode film and the second electrode film will be uniformly dispersed through the pores 12 during the pressing process.
  • a dry process is used when the self-supporting electrode film 2 is processed. Firstly, raw materials such as electrode materials, conductive agents, and binders are mixed, mixed and dispersed to form a dough-like composite slurry, and then the composite slurry is extruded and rolled to form a continuous self-supporting electrode film 2 .
  • Electrode materials are divided into positive electrode materials and negative electrode materials.
  • V 2 S 3 , FeS, FeS 2 , LiMS x (M is at least one transition metal element such as Ti, Fe, Ni, Cu, Mo, etc., 1 ⁇ x ⁇ 2.5)) and oxides (such as TiO 2 , at least one of Cr 3 O 8 , V 2 O 5 , MnO 2 ) and the like.
  • the negative electrode material is selected from carbon materials, Si, SiO x (0.1 ⁇ x ⁇ 1.5), Si-C, SiO x -C (0.1 ⁇ x ⁇ 1.5), Li 4 Ti 5 O 12 , tin alloy, silicon alloy, silicon, One or more of tin, germanium and indium.
  • the above materials are negative electrode active materials that can intercalate and extract lithium in the field.
  • the conductive agent is at least one selected from carbon black, conductive graphite, carbon nanotubes, carbon fibers, and graphene.
  • the binder is selected from at least one of the following materials:
  • Fluoropolymers PTFE
  • polyolefins copolymers of polyethylene (PE), polypropylene (PP), polyvinylidene fluoride (PVDF) and/or mixtures thereof);
  • Composite binders including PTFE and polyolefin, polyether, polyether precursor, polysiloxane, polysiloxane and their copolymers, PTFE and branched polyether, polyvinyl ether and their Copolymers, PTFE with poly(ethylene oxide) (PEO), polyphenylene oxide (PPO), polyethylene block poly(ethylene glycol), polydimethylsiloxane (PDMS), polydimethylsiloxane Oxane-co-alkylmethylsiloxanes and combinations thereof;
  • Thermoplastic materials including polymeric copolymers, olefin oxides, rubber, butadiene rubber, nitrile rubber, polyisobutylene, polyvinyl ester, polyvinyl acetate, polyacrylate, fluorocarbon polymers, etc.
  • the self-supporting electrode film 2 is prepared by setting pores 12 on the metal current collector 1 and adopting a dry process. After stacking the first electrode film, the metal current collector 1 and the second electrode mold, the three are combined by external force Pressing, the first electrode film and the second electrode film are connected to each other through the pores 12 on the metal current collector 1 to obtain a battery pole piece.
  • the metal current collector 1 since the metal current collector 1 has pores 12, the proportion of the metal current collector 1 in the entire battery pole piece is smaller, and the proportion of the self-supporting electrode film 2 made of electrode materials is even higher. High, the energy density of the entire battery pole piece increases.
  • the solvent and the binder form a binder layer, and the entire particle of the conductive agent is surrounded by the binder layer, which hinders the contact between the conductive agent particles and the contact between the conductive agent and the electrode material particles.
  • the conductivity of the battery pole piece is poor.
  • the residual solvent in the battery pole piece will have a side reaction with the electrolyte, resulting in a decrease in battery performance, such as capacity reduction, gas generation, and life decay.
  • the binder exists in a fiber state, the contact between the conductive agent particles and between the electrode material and the conductive agent particles is closer, and the energy density of the battery pole piece is high and the conductivity is high. Good, high capacity.
  • the cohesion and adhesion performance of the battery pole piece produced by the dry process is better in the presence of high-temperature electrolyte.
  • the wet processing of battery pole pieces includes five steps: slurry preparation, slurry coating, pole piece rolling, pole piece cutting, and pole piece drying.
  • Electrode sheet rolling is used to compact the electrode material coated on the surface of the battery current collector.
  • the extension of the slurry layer generates stress, which leads to the extension of the current collector after rolling, making the pole piece easy to roll.
  • the dry-process battery pole piece provided by the present disclosure can achieve a higher compaction density because the self-supporting electrode film 2 bears more pressure when the high-strength external force is pressed, and there is no need to consider the problems of foil extension and wrinkling. Further, the structural stability of the battery pole piece is improved.
  • first electrode film and the second electrode film are connected through external force pressing without colloid bonding, which saves processing steps and improves processing efficiency.
  • a carbon layer is provided on the surface of the metal current collector 1 .
  • the carbon layer adopts one or more of non-graphitized carbon, graphite, or carbon obtained by high-temperature oxidation of polyacetylenic polymer materials, or pyrolytic carbon, coke, organic polymer sinter, and activated carbon.
  • a carbon layer is coated on the surface of the metal current collector 1, and the carbon layer covers the entire surface of the metal current collector 1, which is conducive to the electrical contact between the metal current collector 1 and the self-supporting electrode film 2, thereby improving the flow capacity of the battery pole piece .
  • a metal lithium layer is provided on the surface of the metal current collector 1 .
  • the battery pole piece is used as the negative electrode, a layer of metal lithium is plated on the surface of the metal current collector 1, and the metal lithium covers the entire surface of the metal current collector 1. After liquid injection, lithium metal is inserted into the negative electrode to realize the pre-treatment of the battery pole piece. lithiation.
  • the metal current collector 1 includes a plurality of metal wires 11 arranged in an array, and adjacent metal wires 11 are arranged at intervals.
  • the metal current collector 1 is formed by arranging a plurality of metal wires 11 in an array, adjacent metal wires 11 are arranged at intervals, and gaps are formed between adjacent metal wires 11 , The space formed constitutes the pores 12 .
  • Metal wires 11 are arranged in an array to form the metal current collector 1. Compared with the method of opening pores 12 on the metal current collector 1, the volume occupied by the metal wires 11 is smaller, and the formed metal current collector 1 occupies the entire battery pole piece.
  • the volume of the self-supporting electrode film 2 is smaller, and the proportion of the volume occupied by the self-supporting electrode film 2 is larger, and the battery pole piece achieves a higher energy density.
  • the metal wires 11 are interlaced to form a mesh structure, and the metal wires 11 are divided into two types: horizontal and vertical for interweaving, wherein the horizontal and vertical metal wires 11 can be arranged to form a mesh structure by weaving. , it can also be set to form a network structure interlaced by stacking method.
  • closed pores 12 are formed between a plurality of metal wires 11 , and the pores 12 are polygonal.
  • the metal current collector 1 adopts a plurality of horizontal metal wires 11 and vertical metal wires 11 to interweave to form a mesh, and a gap is formed between two horizontal metal wires 11 and two vertical metal wires 11, and the gap forms a pore 12 , the pores 12 are quadrilateral.
  • the included angle between two metal wires 11 in different directions is 10°-90°.
  • the pores 12 have a parallelogram structure.
  • the side length of the pores 12 is 5 ⁇ m ⁇ 500 ⁇ m, that is, the lengths of the transverse metal wires 11 and the vertical metal wires 11 constituting the pores 12 range from 5 ⁇ m ⁇ 500 ⁇ m.
  • the side length of the pores 12 is 5 ⁇ m ⁇ 200 ⁇ m.
  • the area of the pores 12 is related to the connection area between the first electrode film and the second electrode film.
  • the side length of the pores 12 is in the range of 5 ⁇ m to 200 ⁇ m, the gap between the first electrode film and the second electrode film can be made There is an effective connection area between them, thereby ensuring the connection stability between the first electrode film and the second electrode film.
  • the side length of the pores 12 is in the range of 5 ⁇ m to 200 ⁇ m, the distance between the plurality of metal wires 11 forming the pores 12 is small, that is, the plurality of metal wires 11 forming the pores 12 can maintain a dense arrangement structure , the number of metal wires 11 connected to the self-supporting electrode film per unit area can ensure the structural stability of the metal current collector 1 .
  • the metal wires 11 are arranged in parallel, and pores 12 are formed between any two adjacent metal wires 11 .
  • the metal current collector 1 is composed of a plurality of parallel metal wires 11. At this time, the gaps between adjacent metal wires 11 are pores 12, and the plurality of metal wires 11 are placed side by side between the first electrode film and the second electrode film. , form the battery pole piece after being pressed by external force.
  • the distance between adjacent metal wires 11 is 5 ⁇ m ⁇ 500 ⁇ m.
  • the distance between adjacent metal wires 11 is 5 ⁇ m ⁇ 200 ⁇ m.
  • the distance between adjacent and parallel metal wires 11 is within this range, it can not only ensure the strength of the metal current collector 1, but also reduce the volume ratio of the metal current collector 1 relative to the battery pole piece, and improve the self-supporting electrode.
  • the volume ratio of the film 2 increases the energy density of the battery pole piece.
  • the diameter of the metal wire 11 is 1 ⁇ m ⁇ 100 ⁇ m.
  • the diameter of the metal wire 11 is 5 ⁇ m ⁇ 50 ⁇ m.
  • the diameter of the metal wire 11 is within this range, on the one hand, it can have good mechanical properties; on the other hand, it can reduce the volume ratio of the metal current collector 1 composed of the metal wire 11 relative to the battery pole piece, and improve the self-supporting electrode film. 2 volume ratio, thereby increasing the energy density of the battery pole piece.
  • the metal current collector 1 and the self-supporting electrode film 2 are configured to be fixedly connected by heating and rolling. After the first electrode film, the metal current collector 1 and the second electrode film are sequentially laminated, hot rolling is carried out by a roller press, and after cooling, a dry battery pole piece is obtained.
  • the dry-process battery pole piece is obtained by hot rolling method, which has the following advantages:
  • the moisture in the self-supporting electrode film 2 decreases, thereby reducing the rebound of the battery pole piece material after the self-supporting electrode film 2 and the metal current collector 1 are pressed and connected, which affects the performance of the battery pole piece.
  • the surface of the self-supporting electrode film 2 strengthens the vibration of the binder molecules, the distance between the molecules becomes smaller, the bonding force is enhanced, and the self-supporting electrode film 2 is more closely connected with the metal current collector 1, so the The hot rolling method can increase the adhesion between the self-supporting electrode film 2 and the metal current collector 1 .
  • a battery comprising the dry battery pole piece as described above.
  • the dry-process battery pole pieces in the battery provided by the present disclosure can be pressed together by high-strength external force, since the self-supporting electrode film 2 bears more pressure, there is no need to consider the problems of foil extension and wrinkling, and can Realize higher compaction density, improve the structural stability of the battery pole piece, and then ensure the capacity and stability of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

一种干法电池极片及电池,干法电池极片包括:金属集流体,金属集流体上开设有孔隙;自支撑电极膜,自支撑电极膜包括第一电极膜与第二电极膜,第一电极膜设置于金属集流体的一侧,第二电极膜设置于金属集流体背离第一电极膜的一侧;第一电极膜与第二电极膜被配置为经过外力压合连接;第一电极膜、第二电极膜与金属集流体贴合,且第一电极膜与第二电极膜在对应孔隙的位置处相互连接。

Description

一种干法电池极片及电池
本公开要求于2021年07月15日提交中国专利局,申请号为202121615791.0,申请名称为“一种干法电池极片”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池领域,具体涉及一种干法电池极片及电池。
背景技术
现有的电池极片的制造工艺,通过将电极材料与导电剂等原料混合后成型得到电极膜,再通过在集流体表面涂胶,或者在集流体与电极膜之间夹胶等方式,使电极膜与集流体粘结,形成电极极片。
胶体层的存在,一方面会减小集流体与电极膜之间的接触面积,降低电池极片的导电能力。另一方面会增加非活性物质占比,降低能量密度,同时增加电池极片的工序,增加生产成本。
但是,如果不采用胶体粘接,电极膜与集流体之间的连接不紧密,电极膜容易与集流体分离,从而影响电池极片的结构稳定性。
所以,有必要对电池极片的结构进行改进。
发明内容
本公开实施例的一个目的是提供一种干法电池极片及电池的新技术方案。
根据本公开的第一方面,提供了一种干法电池极片,包括:
金属集流体,所述金属集流体上开设有孔隙;
自支撑电极膜,所述自支撑电极膜包括第一电极膜与第二电极膜,所述第一电极膜设置于所述金属集流体的一侧,所述第二电极膜设置于所述 金属集流体背离所述第一电极膜的一侧;
所述第一电极膜与所述第二电极膜被配置为经过外力压合连接;
所述第一电极膜、所述第二电极膜与所述金属集流体贴合,所述第一电极膜与所述第二电极膜在对应所述孔隙的位置处相互连接。
可选的,所述金属集流体表面设置有炭层。
可选的,所述金属集流体表面设置有金属锂层。
可选的,所述金属集流体包括多个金属丝,多个所述金属丝阵列排布,相邻的所述金属丝之间间隔设置。
可选的,所述金属丝交错设置成网状结构,多个所述金属丝之间形成间隙,以构成所述孔隙,所述孔隙呈多边形。
可选的,所述孔隙的边长为5μm~500μm。
可选的,所述金属丝平行设置,任意相邻的两个所述金属丝之间形成所述孔隙。
可选的,相邻所述金属丝间距为5μm~500μm。
可选的,所述金属丝直径为1μm~100μm。
可选的,所述金属集流体与所述自支撑电极膜被配置为通过加热辊压实现固定连接。
本公开实施例的一个技术效果在于:在不需额外增加电池极片的加工工序的条件下,提高了电池的能量密度和电池极片导电能力。
根据本公开的第二方面,提供了一种电池,所述电池包括如第一方面所述的干法电池极片。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且连同其说明一起用于解释本公开的原理。
图1为本公开实施例提供的一种干法电池极片实施例1的具体结构示 意图;
图2为本公开实施例提供的一种干法电池极片实施例2的具体结构示意图。
其中:1-金属集流体;11-金属丝;12-孔隙;2-自支撑电极膜。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
一种干法电池极片,包括:金属集流体1以及自支撑电极膜2。
金属集流体1采用金属材料,如Cu、Al、Ni、Fe等。金属集流体1上开设有孔隙12,该孔隙12贯穿金属集流体1,孔隙12可供固体、气体及液体穿过该金属集流体1。
金属集流体1可以设置为完整的一片金属材料上开设孔隙12,也可以设置为金属材料阵列排布而成,金属材料之间形成封闭的孔隙12。
金属集流体1的两侧均设置有自支撑电极膜2。自支撑电极膜2包括第一电极膜与第二电极膜,第一电极膜设置于金属集流体1的一侧,第二电极膜设置于金属集流体1背离第一电极膜的一侧,且第一电极膜以及第二电极膜靠近金属集流体1的一侧均与金属集流体1贴合。
第一电极膜与第二电极膜被配置为经过外力压合连接,第一电极膜及第二电极膜受力挤压后,二者与金属集流体1贴合的一侧在对应孔隙12的位置处相互连接。金属集流体1位于第一电极膜与第二电极膜之间,从而实现第一电极膜、第二电极膜以及金属集流体1的连接。
金属集流体1上设置的孔隙12,有利于在自支撑电极膜2受力压合时,第一电极膜与第二电极膜发生形变并穿过孔隙12进行连接,同时不需考虑第一电极膜与第二电极膜的厚度是否相同,在压合过程中第一电极膜与第二电极膜会通过孔隙12实现均匀分散。
自支撑电极膜2进行加工时采用干法工艺。首先混合电极材料、导电剂、粘结剂等原料,混合分散后形成面团状复合浆料,之后将该复合浆料挤出压延,形成的连续的自支撑电极膜2。
电极材料分为正极材料与负极材料。正极材料选自LiCoO 2、LiNiO 2、LiCo xNi 1-xO 2(0≤x≤1)、LiCo xNi 1-x-yAl yO 2(0≤x≤1,0≤y≤1)、LiMn 2O 4、LiFe xMn yM zO 4(M为Al、Mg、Ga、Cr、Co、Ni、Cu、Zn或Mo的至少一种,0≤x≤1,0≤y≤1,0≤z≤1,x+y+z=1)、Li 1+xL 1-y-zM yN zO 2(L、M、N各自独立为Li、Co、Mn、Ni、Fe、Al、Mg、Ga、Ti、Cr、Cu、Zn、Mo、F、I、S、B中的至少一种,-0.1≤x≤0.2,0≤y≤1,0≤z≤1,0≤y+z≤1)、LiFePO 4、Li 3V 2(PO 4) 3、Li 3V 3(PO 4) 3、LiVPO 4F、Li 2CuO 2、Li 5FeO 4、金属硫化物(如TiS 2、V 2S 3、FeS、FeS 2、LiMS x(M为Ti、Fe、Ni、Cu、Mo等过渡金属元素的至少一种,1≤x≤2.5))和氧化物(如TiO 2、Cr 3O 8、V 2O 5、MnO 2)等中的至少一种。
负极材料选自碳材料、Si、SiO x(0.1≤x≤1.5)、Si-C、SiO x-C(0.1≤x≤1.5)、Li 4Ti 5O 12、锡合金、硅合金、硅、锡、锗、铟中的一种或多种。以上材料为本领域可嵌脱锂的负极活性物质。
导电剂选自炭黑、导电石墨、碳纳米管、碳纤维、石墨烯中的至少一种。
粘结剂选自以下材料中的至少一种:
1、氟聚合物(PTFE)、聚烯烃(聚乙烯(PE)、聚丙烯(PP)、聚偏二氟乙烯(PVDF)的共聚物和/或其混合物);
2、复合粘结剂,包括PTFE与聚烯烃、聚醚、聚醚前体、聚硅氧烷、聚硅氧烷以及它们的共聚物,PTFE与支化聚醚、聚乙烯基醚以及它们的共聚物,PTFE与聚(环氧乙烷)(PEO)、聚苯醚(PPO)、聚乙烯嵌段聚(乙二醇)、聚二甲基硅氧烷(PDMS)、聚二甲基硅氧烷-共烷基甲基硅氧烷以及他们的组合;
3、热塑性材料,包括聚合共聚物、烯烃氧化物、橡胶、丁二烯橡胶、丁腈橡胶、聚异丁烯、聚乙烯酯、聚乙酸乙烯酯、聚丙烯酸酯、氟碳聚合物等。
本公开通过在金属集流体1上设置孔隙12,同时采用干法工艺制备得到自支撑电极膜2,将第一电极膜、金属集流体1、第二电极模层叠堆积后,通过外力将三者压合,第一电极膜以及第二电极膜穿过金属集流体1上的孔隙12相互连接,得到电池极片。
本公开中的电池极片,由于金属集流体1上开设有孔隙12,金属集流体1在整个电池极片中占比更小,由电极材料制备而成的自支撑电极膜2的占比更高,整个电池极片的能量密度提高。
由于湿法成型工艺中使用了溶剂,溶剂与粘结剂形成粘结剂层,导电剂整个颗粒被粘结剂层包围,阻碍了导电剂颗粒之间以及导电剂与电极材料颗粒间的接触,电池极片的导电性差。此外电池极片中残留的溶剂会与电解液发生副反应,导致电池性能下降,如容量降低、产生气体、寿命衰减等。
而干法成型工艺过程中不使用溶剂,粘结剂是以纤维状态存在,导电剂颗粒之间以及电极材料与导电剂颗粒之间的接触更为紧密,电池极片的能量密度大、导电性好、容量高。另外,干法工艺生产的电池极片在高温电解液存在下的粘聚力和附着力性能更好。
湿法加工电池极片时,包括浆料制备、浆料涂覆、极片辊压、极片分切、极片干燥五个步骤。极片辊压用于将涂覆在电池集流体表面的电极材料压实。在极片辊压过程中,浆料层延展产生应力,导致辊压后集流体延展,使得极片容易打卷。
本公开提供的干法电池极片,在高强度外力进行压合时,由于自支撑 电极膜2承受更多的压力,无需考虑箔材延伸和打皱问题,可以实现更高的压实密度,进而提高电池极片的结构稳定性。
进一步的,第一电极膜与第二电极膜之间经过外力压合连接,不需经过胶体粘接,节省了加工步骤,提高了加工效率。
可选的,金属集流体1表面设置有炭层。炭层采用非石墨化炭、石墨或由多炔类高分子材料通过高温氧化得到的炭或热解炭、焦炭、有机高分子烧结物、活性炭中的一种或多种。
在金属集流体1的表面涂覆炭层,炭层覆盖金属集流体1的整个表面,有利于金属集流体1与自支撑电极膜2之间的电接触,进而提高电池极片的过流能力。
可选的,金属集流体1表面设置有金属锂层。
通常电池极片做负极时,在金属集流体1的表面镀上一层金属锂,金属锂覆盖金属集流体1的整个表面,在经过注液后,锂金属嵌入负极,实现电池极片的预锂化。
可选的,金属集流体1包括多个金属丝11,多个金属丝11阵列排布,相邻的金属丝11之间间隔设置。
本公开提供的一种干法电池极片中,金属集流体1采用多个金属丝11阵列排布而成,相邻的金属丝11之间间隔设置,相邻的金属丝11之间形成间隙,形成的间隔构成孔隙12。采用金属丝11阵列排布组成金属集流体1,相比在金属集流体1上开设孔隙12的方式,金属丝11所占的体积更小,形成的金属集流体1在整个电池极片里占的体积更小,自支撑电极膜2所占体积占比更大,电池极片实现更高的能量密度。
可选的,参照图2,金属丝11交错设置成网状结构,金属丝11分为横向与纵向两种进行交织,其中横向与纵向的金属丝11可以设置为采用编织方法交错形成网状结构,也可以设置为采用层叠堆积方法交错形成网状结构。
参照图2,多个金属丝11之间形成闭合的孔隙12,孔隙12呈多边形。本实施例中,金属集流体1采用多个横向金属丝11与纵向金属丝11交织形成网状,两根横向的金属丝11与两根纵向金属丝11之间形成间隙,该 间隙构成孔隙12,孔隙12呈四边形。两个不同方向的金属丝11之间的夹角为10°~90°。金属丝11夹角在10°~90°之间时,孔隙12呈平行四边形结构。
可选的,孔隙12的边长为5μm~500μm,也即组成孔隙12的横向金属丝11与纵向金属丝11的长度范围为5μm~500μm。
可选的,孔隙12的边长为5μm~200μm。
孔隙12的面积大小之间关系到第一电极膜与第二电极膜之间的连接面积,当孔隙12的边长处于5μm~200μm的范围时,可以使得第一电极膜与第二电极膜之间具有有效的连接面积,进而可以保证第一电极膜与第二电极膜之间的连接稳定性。
而且当孔隙12的边长处于5μm~200μm的范围时,围成孔隙12的多个金属丝11之间的距离较小,也就是围成孔隙12的多个金属丝11可以保持密集的设置结构,单位面积上与自支撑电极膜连接的金属丝11数量可以保证金属集流体1的结构稳定性。
可选的,参照图1,金属丝11平行设置,任意相邻的两个金属丝11之间形成孔隙12。金属集流体1由多个相互平行的金属丝11组成,此时相邻的金属丝11之间的间隙为孔隙12,多个金属丝11并排放置于第一电极膜与第二电极膜之间,经外力压合后形成电池极片。
可选的,相邻金属丝11间距为5μm~500μm。
可选的,相邻金属丝11间距为5μm~200μm。
相邻且平行的金属丝11之间的间距在该范围内时,既能保证金属集流体1的强度,又能降低金属集流体1的相对于电池极片的体积占比,提高自支撑电极膜2的体积占比,从而提高电池极片的能量密度。
可选的,金属丝11直径为1μm~100μm。
可选的,金属丝11直径为5μm~50μm。
金属丝11的直径在该范围内,一方面可以具有良好的力学性能;另一方面可以减小由金属丝11组成的金属集流体1相对于电池极片的体积占比,提高自支撑电极膜2的体积占比,从而提高电池极片的能量密度。
可选的,金属集流体1与自支撑电极膜2被配置为通过加热辊压实现 固定连接。第一电极膜、金属集流体1、第二电极膜依次按顺序层叠后,通过辊压机进行热辊压,冷却后得到干法电池极片。
通过采用热辊压方式得到干法电池极片,具有以下优点:
1、加热过程中自支撑电极膜2中的水分减少,从而减少自支撑电极膜2与金属集流体1在压合连接后,电池极片材料反弹,影响电池极片的性能。
2、自支撑电极膜2的表面在加热过程中粘结剂分子振动加强,分子之间间距变得更小,粘结力增强,自支撑电极膜2与金属集流体1连接更加紧密,因此采用热辊压方式可以增加自支撑电极膜2与金属集流体1之间的粘合力。
一种电池,所述电池包括如所述的干法电池极片。
具体地,本公开提供的所述电池中的干法电池极片可以在高强度外力进行压合时,由于自支撑电极膜2承受更多的压力,无需考虑箔材延伸和打皱问题,可以实现更高的压实密度,提高电池极片的结构稳定性,进而保证了所述电池的容量和稳定性。
虽然已经通过例子对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。

Claims (11)

  1. 一种干法电池极片,包括:
    金属集流体(1),所述金属集流体(1)上开设有孔隙(12);
    自支撑电极膜(2),所述自支撑电极膜(2)包括第一电极膜与第二电极膜,所述第一电极膜设置于所述金属集流体(1)的一侧,所述第二电极膜设置于所述金属集流体(1)背离所述第一电极膜的一侧;
    所述第一电极膜与所述第二电极膜被配置为经过外力压合连接;
    所述第一电极膜、所述第二电极膜与所述金属集流体(1)贴合,所述第一电极膜与所述第二电极膜在对应所述孔隙(12)的位置处相互连接。
  2. 根据权利要求1所述的一种干法电池极片,其中,所述金属集流体(1)表面设置有炭层。
  3. 根据权利要求1或2所述的一种干法电池极片,其中,所述金属集流体(1)表面设置有金属锂层。
  4. 根据权利要求1-3任一项所述的一种干法电池极片,其中,所述金属集流体(1)包括多个金属丝(11),多个所述金属丝(11)阵列排布,相邻的所述金属丝(11)之间间隔设置。
  5. 根据权利要求1-4任一项所述的一种干法电池极片,其中,所述金属丝(11)交错设置成网状结构,多个所述金属丝(11)之间形成间隙,以构成所述孔隙(12),所述孔隙(12)呈多边形。
  6. 根据权利要求1-5任一项所述的一种干法电池极片,其中,所述孔隙(12)的边长为5μm~500μm。
  7. 根据权利要求1-6任一项所述的一种干法电池极片,其中,多个所述金属丝(11)平行设置,任意相邻的两个所述金属丝(11)之间形成所述孔隙(12)。
  8. 根据权利要求1-7任一项所述的一种干法电池极片,其中,相邻所述金属丝(11)间距为5μm~500μm。
  9. 根据权利要求1-8任一项所述的一种干法电池极片,其中,所述金属丝(11)直径为1μm~100μm。
  10. 根据权利要求1-9任一项所述的一种干法电池极片,其中,所述金属集流体(1)与所述自支撑电极膜(2)被配置为通过加热辊压实现固定连接。
  11. 一种电池,其特征在于,包括如权利要求1-10任一项所述的干法电池极片。
PCT/CN2022/105666 2021-07-15 2022-07-14 一种干法电池极片及电池 WO2023284818A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2023574120A JP2024525291A (ja) 2021-07-15 2022-07-14 乾式電池極板及び電池
CA3223286A CA3223286A1 (en) 2021-07-15 2022-07-14 Dry battery electrode plate and battery
EP22841451.2A EP4333097A1 (en) 2021-07-15 2022-07-14 Dry process-based battery pole piece and battery
KR1020237041457A KR20240004824A (ko) 2021-07-15 2022-07-14 건식 프로세스 기반 배터리 폴 피스 및 배터리
BR112023026043A BR112023026043A2 (pt) 2021-07-15 2022-07-14 Placa de eletrodo de bateria seca, e, bateria
AU2022309785A AU2022309785A1 (en) 2021-07-15 2022-07-14 Dry process-based battery pole piece and battery
US18/523,574 US20240097142A1 (en) 2021-07-15 2023-11-29 Dry battery electrode plate and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121615791.0 2021-07-15
CN202121615791.0U CN215451469U (zh) 2021-07-15 2021-07-15 一种干法电池极片

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/523,574 Continuation US20240097142A1 (en) 2021-07-15 2023-11-29 Dry battery electrode plate and battery

Publications (1)

Publication Number Publication Date
WO2023284818A1 true WO2023284818A1 (zh) 2023-01-19

Family

ID=79682805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105666 WO2023284818A1 (zh) 2021-07-15 2022-07-14 一种干法电池极片及电池

Country Status (9)

Country Link
US (1) US20240097142A1 (zh)
EP (1) EP4333097A1 (zh)
JP (1) JP2024525291A (zh)
KR (1) KR20240004824A (zh)
CN (1) CN215451469U (zh)
AU (1) AU2022309785A1 (zh)
BR (1) BR112023026043A2 (zh)
CA (1) CA3223286A1 (zh)
WO (1) WO2023284818A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215451469U (zh) * 2021-07-15 2022-01-07 比亚迪股份有限公司 一种干法电池极片
DE102022105852A1 (de) * 2022-03-14 2023-09-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen einer Elektrode für eine elektrochemische Zelle, Kompositelektrode und elektrochemische Zelle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254432A (ja) * 1994-01-25 1995-10-03 Toray Ind Inc ナトリウム−硫黄電池用陽極集電体およびその製造方法
JPH11144738A (ja) * 1997-11-12 1999-05-28 Toshiba Battery Co Ltd ポリマー電解質二次電池
CN108461756A (zh) * 2017-12-28 2018-08-28 广州倬粤动力新能源有限公司 水平电池金属材料网
CN111342053A (zh) * 2020-03-02 2020-06-26 太仓中科赛诺新能源科技有限公司 一种柔性一体化电极片及其制备方法与应用
CN111952679A (zh) * 2020-08-06 2020-11-17 郜明文 一种基于干法成膜的电芯制备工艺
CN112466681A (zh) * 2020-11-20 2021-03-09 东莞东阳光科研发有限公司 一种电极及其制备方法
CN215451469U (zh) * 2021-07-15 2022-01-07 比亚迪股份有限公司 一种干法电池极片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254432A (ja) * 1994-01-25 1995-10-03 Toray Ind Inc ナトリウム−硫黄電池用陽極集電体およびその製造方法
JPH11144738A (ja) * 1997-11-12 1999-05-28 Toshiba Battery Co Ltd ポリマー電解質二次電池
CN108461756A (zh) * 2017-12-28 2018-08-28 广州倬粤动力新能源有限公司 水平电池金属材料网
CN111342053A (zh) * 2020-03-02 2020-06-26 太仓中科赛诺新能源科技有限公司 一种柔性一体化电极片及其制备方法与应用
CN111952679A (zh) * 2020-08-06 2020-11-17 郜明文 一种基于干法成膜的电芯制备工艺
CN112466681A (zh) * 2020-11-20 2021-03-09 东莞东阳光科研发有限公司 一种电极及其制备方法
CN215451469U (zh) * 2021-07-15 2022-01-07 比亚迪股份有限公司 一种干法电池极片

Also Published As

Publication number Publication date
AU2022309785A1 (en) 2024-01-18
BR112023026043A2 (pt) 2024-03-05
CA3223286A1 (en) 2023-01-19
JP2024525291A (ja) 2024-07-12
CN215451469U (zh) 2022-01-07
KR20240004824A (ko) 2024-01-11
US20240097142A1 (en) 2024-03-21
EP4333097A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
KR200493331Y1 (ko) 계면 구조를 가지는 전극
WO2023284818A1 (zh) 一种干法电池极片及电池
JP6346290B2 (ja) 積層型電池およびその製造方法
CN107431185B (zh) 锂离子电池用电极、锂离子电池以及锂离子电池用电极的制造方法
US8821593B2 (en) Method for manufacturing electrode for electrochemical element
KR101618218B1 (ko) 셀룰로오스 나노섬유 분리막을 포함하는 전기화학소자 및 이의 제조방법
JP5163439B2 (ja) 繊維含有高分子膜及びその製造方法、並びに、電気化学デバイス及びその製造方法
JP2013543231A (ja) 金属長纎維を含む電極構造を有する電池及びその製造方法
CN110140239A (zh) 制造锂二次电池用负极的方法
JP2013008481A (ja) 耐熱絶縁層付セパレータ
CN107644977B (zh) 锂离子电池电极的制备方法
CN115548467A (zh) 一种电极组件、电极组件的制备方法及电池
KR102264546B1 (ko) 이차전지용 전극조립체
JP2013191388A (ja) 積層構造電池
US20230369655A1 (en) Electrode Assembly and Battery Cell Including the Same
WO2019198453A1 (ja) 電池の製造方法
CN111937209B (zh) 电池的制造方法
CN111937210B (zh) 电池的制造方法
KR102056455B1 (ko) 음극 및 이를 포함하는 이차 전지
JP6664477B2 (ja) 電極組立体及びその製造方法
CN114982006B (zh) 锂二次电池用电极的制备方法
JP2011258435A (ja) 電池用電極、双極型電池用電極及び双極型電池
JP2010251018A (ja) 電池用電極の製造方法および製造装置
CN115513602B (zh) 一种含界面管理层结构电极的动力电池制造工艺
JP2012104274A (ja) 電極、電池および電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022841451

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023574120

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20237041457

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022841451

Country of ref document: EP

Effective date: 20231128

WWE Wipo information: entry into national phase

Ref document number: 3223286

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023026043

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022309785

Country of ref document: AU

Ref document number: AU2022309785

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2301008527

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2022309785

Country of ref document: AU

Date of ref document: 20220714

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023026043

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231211