WO2023282239A1 - 分散安定剤及びビニル系重合体の製造方法 - Google Patents

分散安定剤及びビニル系重合体の製造方法 Download PDF

Info

Publication number
WO2023282239A1
WO2023282239A1 PCT/JP2022/026647 JP2022026647W WO2023282239A1 WO 2023282239 A1 WO2023282239 A1 WO 2023282239A1 JP 2022026647 W JP2022026647 W JP 2022026647W WO 2023282239 A1 WO2023282239 A1 WO 2023282239A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
skeleton
ionic
pva
mol
Prior art date
Application number
PCT/JP2022/026647
Other languages
English (en)
French (fr)
Inventor
健弘 大森
佳明 小塚
瞬 田中
Original Assignee
日本酢ビ・ポバール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酢ビ・ポバール株式会社 filed Critical 日本酢ビ・ポバール株式会社
Priority to CN202280047193.9A priority Critical patent/CN117597414A/zh
Priority to EP22837654.7A priority patent/EP4368644A1/en
Priority to JP2023533127A priority patent/JPWO2023282239A1/ja
Publication of WO2023282239A1 publication Critical patent/WO2023282239A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/52Natural or synthetic resins or their salts

Definitions

  • the present invention provides a polyvinyl alcohol polymer that can be suitably used as a dispersion stabilizer [e.g., a dispersion stabilizer for suspension polymerization of a vinyl monomer (especially vinyl chloride monomer)], and the polyvinyl alcohol polymer.
  • a dispersion stabilizer e.g., a dispersion stabilizer for suspension polymerization of a vinyl monomer (especially vinyl chloride monomer)
  • the present invention relates to a method for producing a vinyl-based polymer [especially a vinyl chloride-based polymer (resin)] using coalescence (or a dispersion stabilizer).
  • the industrial production method of vinyl chloride resin is to disperse a vinyl monomer (monomer) such as vinyl chloride in an aqueous medium in the presence of a dispersion stabilizer, and polymerize using an oil-soluble polymerization initiator.
  • a vinyl monomer such as vinyl chloride
  • a dispersion stabilizer e.g., a styrene resin
  • an oil-soluble polymerization initiator e.g., ethylene glycol dimethacrylate
  • batch-type suspension polymerization e.g., ethylene glycol dimethacrylate
  • Factors in the polymerization process that govern the quality of vinyl chloride resins include polymerization rate, ratio of aqueous medium and monomer, polymerization temperature, type and amount of polymerization initiator, type of polymerization tank, stirring speed, and dispersion stabilizer.
  • the type, amount, and the like can be mentioned, but among them, the influence of the dispersion stabilizer is very large.
  • the role of the dispersion stabilizer in suspension polymerization for obtaining vinyl chloride resin is to disperse the monomer in the aqueous medium, form stable droplets, and make the size of the droplets uniform by repeating dispersion and coalescence.
  • the objective is to control the cohesiveness of the polymerized particles while arranging them. Therefore, the performance required for such a dispersion stabilizer is as follows. ⁇ 1> Controlling the particle size of the vinyl chloride resin particles to be obtained within an appropriate range, ⁇ 2> To improve moldability by increasing plasticizer absorbability of the obtained vinyl chloride resin particles, ⁇ 3>
  • the porosity of the obtained vinyl chloride-based resin particles is set within a certain range to facilitate the removal of residual monomers.
  • the above-mentioned dispersion stabilizer is required, for example, to exhibit excellent dispersing power, to control the particle size, particle shape, etc. of the vinyl chloride resin to an appropriate state.
  • polyvinyl alcohol-based resins hereinafter sometimes abbreviated as PVA, etc.
  • cellulose derivatives etc. are generally used alone or in appropriate combination.
  • Non-Patent Document 1 as a dispersion stabilizer for vinyl chloride suspension polymerization, PVA, which is considered to have a high emulsifying power with a viscosity average polymerization degree of 2000 and a saponification degree of 88 mol% or 80 mol%, and a viscosity average A method using PVA with a polymerization degree of 600 to 700 and a saponification degree of around 70 mol % is described.
  • PVA is used as a dispersion stabilizer, but according to the studies of the present inventors, further improvement is required for PVA as well.
  • PVA with a relatively small degree of saponification (for example, around 70 mol%) is inferior in hydrophilicity to PVA with a higher degree of saponification, making it difficult to prepare an aqueous solution. It has a low clouding point (for example, around 30° C.), and PVA may precipitate (separate) if the aqueous solution is stored in a tank or the like at a temperature above the clouding point.
  • the polymerization temperature of the vinyl chloride monomer is generally 40 to 70°C, which is above the cloud point of PVA. It is necessary to prevent PVA from precipitating in the polymerizer.
  • PVA as a dispersion stabilizer (dispersion stabilizer for suspension polymerization) is easy to prepare an aqueous solution and stability of an aqueous solution (and dispersibility in hot water) in addition to its original performance as a dispersion stabilizer.
  • the lower the degree of saponification of PVA and the higher the degree of polymerization of PVA the more difficult it becomes to maintain these properties.
  • the present inventors have attempted to introduce itaconic acid-derived units into PVA in the hope of improving hydrophilicity, but it may be because the surface activity is reduced, and it may not be the original dispersion stabilizer. performance may deteriorate (for example, polymerization may become unstable, the particle size of the resulting vinyl chloride resin may increase, and the plasticizer absorbency may decrease), while ensuring the performance as a dispersion stabilizer.
  • performance may deteriorate (for example, polymerization may become unstable, the particle size of the resulting vinyl chloride resin may increase, and the plasticizer absorbency may decrease), while ensuring the performance as a dispersion stabilizer.
  • An object of the present invention is to provide a novel dispersion stabilizer and the like in view of the above points.
  • the inventors of the present invention have made intensive studies to solve the above problems, and found that a specific PVA-based polymer is useful as a dispersion stabilizer (for example, a dispersion stabilizer for suspension polymerization).
  • the present invention was completed through further research.
  • the present invention relates to the following inventions and the like.
  • [1] (a) an acetal skeleton having a polymerizable unsaturated bond (acetal group, acetal unit, non-ionic acetal skeleton) and (b) a polyvinyl alcohol polymer having an ionic skeleton (a skeleton having an ionic group, an ionic group) A dispersion stabilizer (or dispersant) containing coalescence (A).
  • A dispersion stabilizer (or dispersant) containing coalescence
  • R' represents a group having a polymerizable unsaturated bond.
  • R' represents a group having a polymerizable unsaturated bond.
  • [3] The agent according to [1] or [2], wherein the content (ratio, content ratio) of the acetal skeleton (a) in the polyvinyl alcohol polymer (A) is 0.05 to 5 mol% per monomer unit.
  • [4] The agent according to any one of [1] to [3], wherein the ionic skeleton (b) comprises a skeleton represented by the following formula (b1).
  • R represents a group having an ionic group.
  • the ionic skeleton (b) comprises at least one skeleton selected from a skeleton in which R is an ionic group in the formula (b1) and a skeleton represented by the following formula (b1-1) [1]
  • R 1 to R 5 represent a hydrogen atom or a substituent, provided that at least one of R 1 to R 5 is an ionic group.
  • the ionic skeleton (b) is at least one selected from monomers having an ionic group and chain transfer agents having an ionic group [e.g., alcohols, carbonyl compounds (aldehydes, etc.), thiols, etc.]
  • the ionic skeleton (b) comprises a skeleton corresponding to at least one monomer selected from a monomer having a carboxy group, a monomer having a sulfonic acid group, and salts thereof [1]
  • the ionic skeleton (b) comprises a skeleton corresponding to at least one thiol selected from a thiol having a carboxyl group, a thiol having a sulfonic acid group, and salts thereof.
  • the agent described in Crab. Any one of [1] to [10], wherein the content (ratio, content ratio) of the ionic skeleton (b) in the polyvinyl alcohol polymer (A) is 0.01 to 5 mol% per monomer unit the indicated agent.
  • [15] The agent according to any one of [1] to [14], wherein the polyvinyl alcohol polymer (A) has a degree of polymerization of 200 to 2000.
  • [18] The agent according to any one of [1] to [17], which is a dispersion stabilizer for suspension polymerization.
  • [19] The agent according to any one of [1] to [18], which is a dispersion stabilizer for suspension polymerization of a vinyl monomer containing vinyl chloride.
  • the polyvinyl alcohol polymer (A) according to any one of [1] to [19].
  • a method for producing a vinyl polymer comprising polymerizing a vinyl monomer in the presence of the polyvinyl alcohol polymer (A) or agent according to any one of [1] to [19].
  • the production method according to [22] wherein the polymerization is suspension polymerization.
  • the production method according to [22] or [23], wherein a vinyl monomer containing vinyl chloride is subjected to suspension polymerization.
  • a novel dispersion stabilizer and the like can be provided.
  • Such a dispersion stabilizer (specific PVA-based polymer) can realize easy aqueous solution (especially aqueous solution) preparation, as well as excellent aqueous solution storage stability and hot water dispersibility.
  • the dispersion stabilizer (specific PVA-based polymer) of the present invention also has performance as a dispersion stabilizer.
  • resins for example, vinyl polymers such as vinyl chloride resins
  • resins that can achieve excellent polymerization stability, etc., have an appropriate average particle size, and have sufficient plasticizer absorption are effective. can be obtained well.
  • the dispersion stabilizer (specific PVA-based polymer) of the present invention it is possible to easily prepare an aqueous solution, Excellent storage stability of aqueous solution and hot water dispersibility can be realized.
  • polyvinyl alcohol-based polymer that is, polyvinyl alcohol-based polymer (A) (hereinafter sometimes referred to as PVA-based polymer (A), etc.).
  • PVA-based polymer (A) is useful as a dispersion stabilizer (dispersant, particularly a dispersion stabilizer for suspension polymerization) and the like. Therefore, the present invention can also provide a dispersion stabilizer containing the PVA-based polymer (A).
  • a dispersion stabilizer may contain the PVA-based polymer (A) alone or in combination of two or more. The present invention will be described in detail below.
  • the PVA-based polymer (A) includes (a) an acetal skeleton (acetal group, acetal unit, non-ionic acetal skeleton) having a polymerizable unsaturated bond (radical polymerizable unsaturated bond, radical polymerizable group), and ( b) It is characterized by having an ionic skeleton (a skeleton having an ionic group, an ionic group).
  • the number of polymerizable unsaturated bonds in the acetal skeleton (a) is not particularly limited as long as it is 1 or more (eg, 1 to 5).
  • the acetal may be either a cyclic acetal or an acyclic (chain) acetal, preferably a cyclic acetal.
  • a typical acetal skeleton having a polymerizable unsaturated bond includes a skeleton (structural unit) represented by the following formula (a1). Therefore, the acetal skeleton (a) may contain a skeleton represented by the following formula (a1).
  • R' represents a group having a polymerizable unsaturated bond.
  • R' is a group having a polymerizable unsaturated bond.
  • R' may be a polymerizable unsaturated bond group itself or a group containing a polymerizable unsaturated bond (eg, a hydrocarbon group).
  • the group having a polymerizable unsaturated bond may have a substituent in addition to the polymerizable unsaturated bond.
  • the substituent can be appropriately selected according to the type of group having a polymerizable unsaturated bond, and is not particularly limited.
  • Examples include hydroxyl group, halogen atom, acyl group, ester group, alkoxy group, nitro group, substituted amino group, base A group different from the group (for example, an aromatic group such as an aryl group) and the like can be mentioned.
  • the substituents may be substituted singly or in combination of two or more.
  • the group having a polymerizable unsaturated bond includes, for example, a group having one polymerizable unsaturated bond ⁇ e.g., alkenyl group [e.g., vinyl group, allyl group , propenyl group (1-propenyl group, 2-propenyl group, etc.), butenyl group, pentenyl group, 6-methyl-5-hexenyl group, decenyl group, 2-(dimethylamino) vinyl group, cyclohexenyl group, 2 A hydrocarbon group having 2 or more carbon atoms (for example, 2 to 30, preferably 2 to 14, more preferably about 2 to 10 carbon atoms) such as a phenylethenyl group (hydrocarbon group optionally having a substituent ) etc.] etc. ⁇ , a group having two or more polymerizable unsaturated bonds ⁇ e.g., alkadienyl group [e.g., 1,
  • An acetal skeleton having a polymerizable unsaturated bond ⁇ e.g., a group represented by formula (a1) (or R'- ⁇ ) in formula (a1) ⁇ is a corresponding carbonyl compound (e.g., aldehyde, its acetal, ketone, etc. ), particularly aldehydes [eg, R′CHO (wherein R′ is a hydrocarbon group having a polymerizable unsaturated bond), etc.].
  • the carbonyl compound may have a substituent as described above.
  • Examples of such carbonyl compounds include alkenals [e.g., acrolein, crotonaldehyde, methacrolein, 3-butenal, 3-methyl-2-butenal, 2-methyl-2-butenal, 2-pentenal, 3-pentenal, 4-pentenal, 2-hexenal, 3-hexenal, 4-hexenal, 5-hexenal, 2-ethylcrotonaldehyde, 2-methyl-2-pentenal, 3-(dimethylamino)acrolein, 10-undecenal, myristolealdehyde, Alkenals with 3 to 15 carbon atoms, preferably alkenals with 3 to 10 carbon atoms, such as palmitolealdehyde, olein aldehyde, elaidin aldehyde, vaccenaldehyde, gadoleinaldehyde, erucaldehyde, nervonealdehyde, linoleal
  • acetal which is a condensate of aldehyde and alcohol
  • examples of acetals include, but are not particularly limited to, condensates with primary alcohols (eg, methanol, etc.).
  • These carbonyl compounds can be used alone or in combination of two or more.
  • the carbonyl compound is preferably composed of a monocarbonyl compound (monoaldehyde, etc.). It is often used at a level that can ensure water solubility, etc., such as by reducing the amount.
  • the acetal skeleton having a polymerizable unsaturated bond may be a skeleton that can be introduced via a hydroxy group. It may be an acetal skeleton derived from (introduced through) (for example, a hydroxy group of a vinyl alcohol unit).
  • a carbonyl compound having a polymerizable unsaturated bond aldehyde, ketone, etc.
  • two adjacent OH groups in the PVA-based polymer are acetalized with a carbonyl compound having a polymerizable unsaturated bond.
  • a PVA-based polymer (A) having an acetal skeleton (a) having a polymerizable unsaturated bond can be obtained.
  • An acetal skeleton having a polymerizable unsaturated bond (for example, the acetal skeleton represented by the formula (a1)) may or may not have an ionic group (ionic skeleton).
  • the PVA-based polymer (A) may have an acetal skeleton having a polymerizable unsaturated bond alone or in combination of two or more.
  • the content of the acetal skeleton (a) [or polymerizable unsaturated bond, such as the skeleton represented by formula (a1), etc.)] is 0.001 mol% or more per monomer unit. (for example, 0.005 mol% or more), for example, 0.01 mol% or more, preferably 0.05 mol% or more, more preferably 0.1 mol% or more, particularly 0 It may be 2 mol % or more, and 10 mol % or less [for example, 8 mol % or less (e.g., 5 mol % or less, 3 mol % or less), preferably 2 mol % or less, more preferably 1 mol % below).
  • the range may be selected by appropriately combining these ranges (upper limit and lower limit) (for example, 0.01 to 3 mol%, 0.05 to 5 mol%, etc., hereinafter, the same for the description of the range ).
  • the content of the acetal skeleton (a) (or polymerizable unsaturated bond) is 0.05 to 5 mol%, preferably 0.1 to 5 mol%, per monomer unit in the PVA polymer (A). It may be 3 mol %, more preferably about 0.2 to 2 mol %.
  • the content of 1 mol% means that the acetal skeleton (a) (for example, the skeleton represented by formula (a1)) per 100 monomer units (for example, the total number of monomer units such as vinyl alcohol units and vinyl ester units) ).
  • the performance as a dispersion stabilizer can be efficiently realized (for example, it has excellent polymerization stability, has an appropriate average particle size, or has excellent plasticizer absorption, etc.). Vinyl chloride resin can be obtained efficiently).
  • the method for measuring the content of the acetal skeleton (a) is not particularly limited, it can be measured using NMR, for example.
  • NMR NMR
  • the PVA-based polymer (A) is dissolved in a d6-DMSO solvent, this is measured by 1 H-NMR, and the polymerizable unsaturated bond (ethylene It may be measured by analyzing a signal derived from a double bond, etc.).
  • the ionic skeleton (b) has an ionic group.
  • ionic groups include anionic groups ⁇ e.g., acid groups [e.g., carboxyl groups, sulfonic acid groups ( -SO3H), phosphoric acid groups, etc.], etc. ⁇ , cationic groups [e.g., amino groups, ammonium (ammonium cation)], salts thereof (groups formed by these salts), and the like.
  • the salt depending on anionicity, cationicity, etc., for example, metal salts [e.g., alkali or alkaline earth metal (e.g., lithium salt, sodium salt, potassium salt, magnesium salt, calcium salt), etc.], halides ( Examples include chlorides, bromides, iodides, etc.).
  • the ionic group is a polybasic acid or the like, the salt may be a single (homologous) salt or a combination of two or more.
  • acid groups especially carboxyl groups, sulfonic acid groups
  • salts thereof ⁇ salts of acid groups such as carboxylates [e.g., -COOM (M is an alkali metal such as sodium (or cations))]
  • sulfonates eg —SO 3 M (M is an alkali metal such as sodium (or its cation))
  • carboxylates e.g., -COOM (M is an alkali metal such as sodium (or cations)
  • sulfonates eg —SO 3 M (M is an alkali metal such as sodium (or its cation)
  • the ionic skeleton (b) is not particularly limited as long as it has an ionic group.
  • an acetal skeleton having an ionic group acetal group, acetal unit
  • (3) compounds capable of introducing other ionic groups e.g., chain transfer agents having ionic groups [e.g., alcohols, carbonyl compounds (aldehydes, ketones, etc., especially aldehydes, etc.) , thiol, etc.] etc. ⁇ .
  • the ionic skeleton (b) (one ionic skeleton (b)) may have one or more ionic groups, and may have two or more.
  • the PVA-based polymer (A) may have these ionic skeletons (b) alone or in combination of two or more.
  • the content (ratio, content ratio) of the ionic skeleton (b) is 0 per monomer unit.
  • 0.001 mol % or more for example, 0.005 mol % or more
  • 0.01 mol % or more preferably 0.03 mol % or more, more preferably 0.05 mol % or more % or more
  • 10 mol% or less for example, 8 mol% or less (e.g., 5 mol% or less, 3 mol% or less), preferably 2 mol% or less, more preferably 1 mol% or less).
  • the content of the ionic skeleton (b) (for example, the skeleton (1), (2) and/or (3) above) is 0.01 to 5 mol%, preferably 0, per monomer unit. 0.03 to 2 mol %, more preferably about 0.05 to 1 mol %.
  • the content of 1 mol% means that the ionic skeleton (b) (for example, the above skeleton (1), ( 2) and/or (3)) is included.
  • the performance of the PVA-based polymer (A) as a dispersion stabilizer can be efficiently realized (for example, excellent polymerization stability and an appropriate average particle size). It is possible to efficiently obtain a vinyl chloride resin excellent in plasticizer absorption).
  • the method for measuring the content of the ionic group may be selected according to the type of skeleton having an ionic group, and is not particularly limited, but for example, NMR, titration, UV absorbance, etc. can be measured.
  • the content of the skeleton represented by formula (b1-1) described below is obtained by dissolving the PVA-based polymer (A) in a d6-DMSO solvent and measuring this by 1 H-NMR. , may be measured by analyzing a signal derived from a substituent (eg, hydrogen) on the benzene ring.
  • the PVA-based polymer (A) is completely saponified, the sample after Soxhlet extraction (for example, sodium acetate is removed) is dissolved in water, a small amount of sodium hydroxide (NaOH) is added, and the conductivity is measured with dilute hydrochloric acid. By titration, the amount of carboxyl groups can be determined from the amount of hydrochloric acid titrated.
  • the acetal skeleton having an ionic group has a structure having UV (ultraviolet) absorption
  • the content of the acetal skeleton having an ionic group is determined by measuring the UV absorbance of the aqueous solution containing the PVA-based polymer (A). Amount can be measured.
  • the content of the acetal skeleton (a) (content per monomer unit) is the same as the ionic skeleton (b) (for example, the skeletons (1), (2) and/or (3)) Per 1 mol, it may be 50 mol or less (e.g., 30 mol or less, 20 mol or less), preferably 15 mol or less, more preferably 10 mol or less, or 0.05 mol or more (e.g., , 0.1 mol or more, 0.5 mol or more), preferably 1 mol or more, more preferably 2 mol or more, particularly 3 mol or more.
  • a known method can be used as the method for introducing the ionic skeleton (b) depending on the mode.
  • Examples of such an introduction method include (1) a PVA-based polymer (sometimes referred to as a PVA-based polymer (C)) with a carbonyl compound having an ionic group (aldehyde, its acetal, ketone, etc., especially aldehyde); and (2) copolymerizing a monomer having an ionic group and a vinyl ester to form an ionic group.
  • a chain transfer agent (alcohol , aldehyde, thiol, etc.) by saponifying a polyvinyl ester polymer (having an ionic group) obtained by polymerizing a vinyl ester in the presence of a PVA polymer having an ionic group (B-3 ) and the like.
  • the acetal may be either a cyclic acetal or an acyclic (chain) acetal, preferably a cyclic acetal.
  • a typical acetal skeleton having an ionic group includes a skeleton (structural unit) represented by the following formula (b1). Therefore, the acetal skeleton having an ionic group may contain a skeleton represented by the following formula (b1).
  • R represents a group having an ionic group.
  • R is a group having an ionic group.
  • R may be an ionic group itself, or a linking group having an ionic group (a group composed of an ionic group and a linking group substituted with this ionic group).
  • linking group examples include a hydrocarbon group.
  • hydrocarbon groups include aliphatic hydrocarbon groups [e.g., alkyl groups [e.g., chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, C 1-30 alkyl groups such as nonyl group, decyl group and undecyl group), saturated aliphatic hydrocarbon groups such as cycloalkyl groups (e.g.
  • C 3-10 cycloalkyl groups such as cyclopentyl group and cyclohexyl group
  • aromatic group hydrocarbon group e.g., aryl group (e.g., C 6-20 aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group), aralkyl group (e.g., C 6-20 aryl group such as benzyl group, phenethyl group, etc.) —C 1-4 alkyl group), etc.] and the like.
  • the linking group may have a substituent (substituent that is not an ionic group) in addition to the ionic group.
  • the substituent is not particularly limited, and examples thereof include a hydroxyl group, a halogen atom, an acyl group, an ester group, an alkoxy group, a nitro group, a group different from the base group (e.g., an aromatic group such as an aryl group), and the like. mentioned.
  • the substituents may be substituted on the linking group (hydrocarbon group) singly or in combination of two or more.
  • the number of ionic groups may be 1 or more, and the linking group may be substituted with 2 or more ionic groups.
  • acetal skeleton having an ionic group examples include, for example, a skeleton in which R is an ionic group (e.g., a carboxyl group and a salt thereof) in the formula (b1), Skeletons represented by the following formula (b1-1) can be mentioned.
  • R 1 to R 5 represent a hydrogen atom or a substituent, provided that at least one of R 1 to R 5 is an ionic group.
  • examples of the ionic group and substituent include those exemplified above.
  • At least one of R 1 to R 5 is an ionic group, but preferably any one may be an ionic group.
  • one of R 1 to R 5 may be an ionic group (eg, carboxyl group, sulfonic acid group, or salt thereof) and four may be hydrogen atoms.
  • An acetal skeleton having an ionic group ⁇ e.g., a group represented by formula (b1) (or R- ⁇ ) in formula (b1) ⁇ is a corresponding carbonyl compound (e.g., aldehyde, its acetal, ketone, etc.) , in particular from aldehydes (eg RCHO).
  • the carbonyl compound may have a substituent.
  • Examples of such carbonyl compounds include alkanals having an ionic group (e.g., alkanals having an acid group or salts thereof such as glyoxylic acid, formylacetic acid, formylpropionic acid, salts thereof), and ionic groups.
  • alkanals having an ionic group e.g., alkanals having an acid group or salts thereof such as glyoxylic acid, formylacetic acid, formylpropionic acid, salts thereof
  • arenecarbaldehyde e.g. formylbenzoic acid (e.g. 4-formylbenzoic acid), formylbenzenesulfonic acid (e.g.
  • the ionic group in the carbonyl compound may be derivatized (esterified, anhydrided, etc.) as long as the ionic group can be formed.
  • the ionic group can be formed even if it is an ester (e.g., alkyl ester) or an acid anhydride, these form a corresponding acid group (carboxy group, sulfonic acid group) or a salt thereof in the PVA-based polymer (A) (e.g., hydrolysis can be used if possible (hereinafter, the same applies to ionic groups).
  • These carbonyl compounds can be used alone or in combination of two or more.
  • the carbonyl compound is preferably composed of a monocarbonyl compound (monoaldehyde, etc.). It is often used at a level that can ensure water solubility, etc., such as by reducing the amount.
  • the acetal skeleton having an ionic group may be a skeleton that can be introduced via a hydroxy group.
  • the hydroxy group of the vinyl alcohol unit may be an acetal skeleton derived from (introduced through).
  • a carbonyl compound having an ionic group aldehyde, ketone, etc.
  • a PVA-based polymer (A) having an acetal skeleton having a functional group can be obtained.
  • An acetal skeleton having an ionic group (for example, the acetal skeleton represented by the formula (b1)) may or may not have a polymerizable unsaturated bond.
  • the PVA-based polymer (A) may or may not have an acetal skeleton having an ionic group.
  • the PVA-based polymer (A) may have an acetal skeleton having an ionic group alone or in combination of two or more.
  • the method of including (introducing) an acetal skeleton having an ionic group (e.g., an acetal skeleton having a carboxyl group, a sulfonic acid group, or a salt thereof) in the PVA-based polymer (A) is not particularly limited, and a conventional method is used. method can be used.
  • the PVA-based polymer (C) may be acetalized with a carbonyl compound (aldehyde, its acetal, ketone, etc.) having an ionic group, as described later.
  • a carbonyl compound having an ionic group By acetalizing the PVA-based polymer (C) with a carbonyl compound having an ionic group in this way, the PVA-based polymer (B-1) having an ionic group can be obtained.
  • the PVA-based polymer (A) having an acetal skeleton (a) and an ionic group can be obtained at once, which is preferable.
  • Aldehydes having an ionic group include, for example, glyoxylic acid, 2-formylbenzoic acid, 4-formylbenzoic acid, sodium 2-formylbenzenesulfonate, sodium 4-formylbenzenesulfonate, 4-formylbenzene-1, Disodium 3-disulfonate and the like can be mentioned, but 4-formylbenzoic acid or sodium 2-formylbenzenesulfonate and the like are preferable.
  • acetal which is a condensate of aldehyde and alcohol
  • examples of acetals include, but are not particularly limited to, condensates with primary alcohols (eg, methanol, etc.).
  • the carbonyl compound can be used alone or in combination of two or more.
  • the monomer having an ionic group (monomer) is not particularly limited and can be appropriately selected according to the type of ionic group.
  • monomers having an acid group include, for example, monomers having an acid group [e.g., monomers having a carboxy group [e.g., monocarboxylic acids (e.g., aliphatic unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, ), polycarboxylic acids (e.g., itaconic acid, maleic acid, aliphatic unsaturated dicarboxylic acids such as fumaric acid), etc.], monomers having a sulfonic acid group [e.g., alkenylsulfonic acids (e.g., vinylsulfonic acid, allyl sulfonic acid), alkenyl arenesulfonic acid (e.g., styrenesulfonic acid), amide-based monomers having a sulfonic acid group (e.g., 2-acrylamido-2-methylpropanesulfonic acid), etc.], monomers having other ionic groups [ Examples
  • an ionic group can be introduced into the PVA-based polymer (A) (for example, if an ionic group is finally formed in the PVA-based polymer (A) by hydrolysis or the like, ), which may be derivatives [eg, acid anhydrides (eg, maleic anhydride, etc.), esters (eg, alkyl esters)].
  • a derivative can also be said to be a derivative capable of forming an ionic group.
  • acrylic acid ester even if an acrylic acid ester is used, acrylic acid or a salt thereof may be introduced into the final PVA-based polymer (A). Therefore, the acrylic acid ester introduces a skeleton corresponding to acrylic acid or a salt thereof into the PVA-based polymer (A).
  • These monomers may be used alone or in combination of two or more.
  • an ionic A group-containing PVA-based polymer (B-2) can be obtained.
  • the compound capable of introducing ionicity includes, as described above, for example, an alcohol having an ionic group, a carbonyl compound having an ionic group (aldehyde, ketone, etc., especially aldehyde, etc.). , a thiol having an ionic group, and the like. These may generally function as chain transfer agents.
  • thiol is preferable from the viewpoint of high chain transferability (therefore, it is easy to introduce an ionic group).
  • the thiol having an ionic group includes, for example, a thiol having an acid group ⁇ e.g., a thiol having a carboxyl group [e.g., a mercapto saturated fatty acid (e.g., 3-mercaptopropionic acid, mercaptoalkanoic acid such as mercaptosuccinic acid), etc.] , a thiol having a sulfonic acid group [e.g., mercaptoalkanesulfonic acid (e.g., 3-mercapto-1-propanesulfonic acid)], etc. ⁇ , salts thereof (e.g., sodium 3-mercapto-1-propanesulfonate), etc. mentioned.
  • a thiol having an acid group e.g., a thiol having a carboxyl group [e.g., a mercapto saturated fatty acid (e.g., 3-mercaptopropionic acid, mer
  • the terminal of the vinyl ester polymer is derived from the chain transfer agent.
  • a chain transfer agent alcohol, aldehyde, thiol, etc.
  • ionic groups can be introduced.
  • saponifying the vinyl ester polymer a PVA polymer (B-3) containing an ionic group at the terminal can be obtained.
  • the PVA-based polymer (A) may have an acetal skeleton (a) or other acetal skeletons (acetal groups, acetal units) that do not belong to the category of acetal skeletons having ionic groups.
  • acetal skeleton examples include a skeleton in which R' is a group (e.g., an aliphatic group, an aromatic group, etc.) that does not have an ionic group and a polymerizable unsaturated bond in the above formula (a1). is mentioned.
  • Such groups include, for example, aliphatic groups [e.g., alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, C 1-30 alkyl group such as undecyl group), cycloalkyl group (e.g., C 3-20 cycloalkyl group such as cyclopentyl group, cyclohexyl group, etc.), etc.], aromatic group [e.g., aryl group (e.g., phenyl group , a C 6-20 aryl group such as a naphthyl group), etc.] and the like.
  • alkyl groups e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl
  • a method for introducing such another acetal skeleton is not particularly limited, and a conventional method can be used.
  • a method of acetalizing the PVA-based polymer (C) with an aldehyde corresponding to another acetal skeleton can be mentioned. be done.
  • another acetal skeleton is usually formed from two adjacent vinyl alcohol units.
  • aldehyde examples include alkanal [e.g., acetaldehyde, propionaldehyde, butanal, pentanal, hexanal, heptanal, octanal, nonanal, decanal, undecanal, dodecanal, 2-methylbutanal, 2-ethylbutanal, 2-methylpentanal, 2-ethylhexanal], cycloalkanecarbaldehyde [e.g., cyclopentanecarboxaldehyde (cyclopentanecarbaldehyde), cyclohexanecarboxaldehyde (cyclohexanecarbaldehyde), etc.], and arenecarbaldehyde (e.g., benzaldehyde, naphthaldehyde, etc.) and other aromatic aldehydes.
  • alkanal e.g., acetaldehyde, propionaldehyde,
  • the PVA-based polymer (A) has at least vinyl alcohol units, but the vinyl alcohol units and non-hydrolyzed (saponified) units [for example, vinyl ester units (or vinyl ester-based monomer-derived units, such as vinyl acetate units)].
  • the PVA-based polymer (A) may optionally include other units (vinyl alcohol units, non-hydrolyzed units, acetal skeleton (a), ionic skeleton (b), etc. other than those exemplified above). unit). Examples of such units include units derived from other monomers exemplified in the section of the PVA-based polymer (C) described later.
  • the degree of saponification of the PVA-based polymer (A) is, for example, 20 mol% or more (e.g., 25 mol% or more), preferably 30 mol% or more (e.g., 35 mol% or more), more preferably 40 mol% or more. (eg, 45 mol % or more), particularly 50 mol % or more (eg, 55 mol % or more, 60 mol % or more).
  • the upper limit of the saponification degree of the PVA-based polymer (A) is, for example, 95 mol% or less (e.g., 93 mol% or less), preferably 90 mol% or less (e.g., 88 mol% or less), more preferably 85 It may be mol % or less (for example, 80 mol % or less).
  • the saponification degree of the PVA-based polymer (A) is, for example, 20 to 90 mol% (eg, 50 to 90 mol%), preferably 55 to 85 mol%, more preferably 60 to 80 mol%. % may be sufficient.
  • the degree of saponification is not too low, it is preferable because the preparation of an aqueous solution, storage stability, and hot water dispersibility are excellent. If the degree of saponification is not too high, excellent performance as a dispersant is likely to be exhibited and easy to obtain).
  • the degree of saponification (further degree of polymerization) can be obtained, for example, by the method for measuring the degree of saponification (further polymerization) of PVA specified in JIS K 6726.
  • the proportion of the ionic skeleton (b) (percentage in monomer unit units) is 10 moles or less, preferably 5 moles per 100 moles of vinyl ester units.
  • mol or less, more preferably 3 mol or less may be 0.01 mol or more (for example, 0.05 mol or more, 0.1 mol or more), preferably 0.2 mol or more, more preferably 0.3 mol or more It may be mol or more.
  • the (average) polymerization degree of the PVA-based polymer (A) is not particularly limited, but is, for example, 100 or more (e.g., 120 or more), preferably 150 or more (e.g., 160 or more), more preferably 180 or more (e.g., 200 or more, 220 or more, 250 or more, 280 or more, 300 or more).
  • the upper limit of the (average) polymerization degree of the PVA-based polymer (A) is not particularly limited, but may be selected from a range of about 10000 or less (e.g., 8000 or less, 5000 or less), or 3000 or less (e.g., , 2500 or less), preferably 2000 or less (eg, 1500 or less), more preferably 1000 or less (eg, 800 or less).
  • the (average) degree of polymerization of the PVA-based polymer (A) is, for example, 120 to 3000 (eg, 200 to 2000), preferably 250 to 1500, and more preferably about 300 to 1000. good.
  • the degree of polymerization of the PVA-based polymer (A) is not too small, it is advantageous in terms of polymerization stability, suppression of scale adhesion, suppression of coarsening of the resulting vinyl-based resin, and the like. In addition, if the degree of polymerization is not too large, it is advantageous in terms of the ease of preparing an aqueous solution, the storage stability, and the dispersibility in hot water.
  • the cloud point of a 4% by mass aqueous solution of the PVA-based polymer (A) is, for example, preferably 20°C or higher (e.g., higher than 20°C, 22°C or higher, 23°C or higher, 24°C or higher, 25°C or higher). , more preferably 27° C. or higher, and may be 30° C. or higher.
  • the upper limit of the cloud point of the 4% by mass aqueous solution of the PVA-based polymer (A) is not particularly limited, but may be, for example, 75°C, 70°C, 65°C, 60°C, 55°C, 50°C, etc. .
  • the cloud point of a 4% by mass aqueous solution of the PVA-based polymer (A) may be, for example, 30 to 50°C.
  • the cloud point of the 4% by mass aqueous solution can be adjusted by adjusting the degree of saponification, the degree of polymerization, the content of the ionic skeleton (ionic group), etc. of the PVA-based polymer (A).
  • the PVA-based polymer (A) may be used as it is as a dispersion stabilizer (dispersant) or the like, or may be used as an aqueous liquid dissolved in water.
  • the aqueous liquid of the present invention may contain the PVA-based polymer (A) and water.
  • the aqueous liquid is obtained by, for example, dispersing or dissolving the PVA-based polymer (A) as a dispersoid in water.
  • the content of the PVA-based polymer (A) in the aqueous liquid is not particularly limited, but may be, for example, about 1% by mass or more (e.g., 2% by mass or more, 3% by mass or more), or 80% by mass. or less (for example, 70% by mass or less, 60% by mass or less, 50% by mass or less, 40% by mass or less, 30% by mass or less).
  • the aqueous liquid of the present invention has good stability.
  • the aqueous liquid may contain a water-soluble organic solvent or the like from the viewpoint of improving storage stability.
  • Water-soluble organic solvents include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and isobutanol; esters such as methyl acetate and ethyl acetate; ethylene glycol, ethylene glycol monomethyl ether and ethylene glycol monoethyl. glycol derivatives such as ether; Two or more of these organic solvents may be mixed and used.
  • the ratio of the water-soluble organic solvent to the total solvent is, for example, 70% by mass or less (e.g., 60% by mass or less), preferably 50% by mass or less, and more preferably 30% by mass or less.
  • the content of the organic solvent is 5% by mass or less with respect to the entire solvent or the aqueous liquid.
  • the method for producing the PVA-based polymer (A) is not particularly limited. A polymer (A) can be obtained.
  • a PVA-based polymer (B-2 or B-3) having an ionic group is acetalized with a carbonyl compound having a polymerizable unsaturated bond (e.g., monoaldehyde) to obtain a PVA-based polymer.
  • (A) can be obtained.
  • the PVA-based polymer (C) is simultaneously acetalized using a carbonyl compound having a polymerizable unsaturated bond (e.g., monoaldehyde) and a carbonyl compound having an ionic group (e.g., aldehyde).
  • a PVA-based polymer (A) can be obtained.
  • the step of producing the PVA-based polymer (A) includes the step of producing the PVA-based polymer (C) or the PVA-based polymer (B-2 or B-3) having an ionic group; It is divided into a step of acetalizing any one of the system polymers (acetalization step).
  • the method for producing the PVA-based polymer (C) or the PVA-based polymer (B-2 or B-3) containing an ionic group is not particularly limited, and conventionally known methods can be used.
  • the PVA-based polymer (B-2 or B-3) having an ionic group, the PVA-based polymer (C), and the acetalization step are described in detail below.
  • PVA-based polymer (B-2), (B-3) and (C) The PVA-based polymer (C) is not particularly limited, but for example, a PVA-based polymer [vinyl ester-based polymer (vinyl ester-based monomer can be used.
  • the PVA-based polymers (B-2) and (B-3) each contain a monomer having an ionic group in the production of the PVA-based polymer (C), for example, as described later.
  • a monomer of for example, as described later.
  • a chain transfer agent containing a chain transfer agent having an ionic group or the like.
  • the vinyl ester polymer can be obtained by polymerizing at least a vinyl ester monomer (polymerizing as a polymerization component).
  • the polymerization method is not particularly limited, but may be according to a conventionally known method. Then, solution polymerization using methanol as a solvent or suspension polymerization using water or water/methanol as a dispersion medium is preferable, but not limited to these.
  • the vinyl ester-based monomer that can be used in the polymerization is not particularly limited, but examples include fatty acid vinyl esters such as vinyl acetate, vinyl formate, vinyl propionate, vinyl caprylate, and vinyl versatate. One or two or more of these vinyl ester monomers can be used. Among these, vinyl acetate is preferable from an industrial point of view.
  • the vinyl ester monomer When polymerizing the vinyl ester monomer, the vinyl ester monomer may be copolymerized with other monomers as long as the effect of the present invention is exhibited.
  • the polymerization component of the vinyl ester polymer may contain the vinyl ester monomer and other monomers.
  • Other monomers that can be used include, but are not limited to, ⁇ -olefins (eg, ethylene, propylene, n-butene, isobutylene, etc.), (meth)acrylic acid and its salts, (meth)acrylic acid.
  • esters e.g., (meth) acrylic acid alkyl esters (e.g., methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, (meth) n-Butyl acrylate, i-butyl (meth)acrylate, t-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, octadecyl (meth)acrylate, etc.
  • acrylic acid alkyl esters e.g., methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, (meth) n-Butyl acrylate, i-butyl (meth)acrylate
  • vinyl halides e.g. vinyl chloride, vinyl fluoride etc.
  • vinylidene halides e.g. chloride vinylidene, vinylidene fluoride, etc.
  • allyl compounds e.g, allyl acetate, allyl chloride, etc.
  • vinylsilyl compounds eg, vinyltrimethoxysilane, etc.
  • fatty acid alkenyl esters eg, isopropenyl acetate, etc.
  • a PVA-based polymer (B-2) can be obtained by using another monomer containing a monomer having an ionic group as the other monomer.
  • ionic monomer examples include those exemplified above, such as monomers having an acid group [e.g., monomers having a carboxy group [e.g., monocarboxylic acids (e.g., fatty acids such as acrylic acid, methacrylic acid, crotonic unsaturated monocarboxylic acids), polycarboxylic acids (e.g., itaconic acid, maleic acid, aliphatic unsaturated dicarboxylic acids such as fumaric acid), etc.], monomers having a sulfonic acid group [e.g., alkenylsulfonic acid (e.g.
  • vinylsulfonic acid e.g., allylsulfonic acid
  • alkenyl arenesulfonic acid e.g., styrenesulfonic acid
  • amide-based monomers having a sulfonic acid group e.g., 2-acrylamido-2-methylpropanesulfonic acid
  • other ions monomers having a functional group eg, monomers having an amino group (eg, (meth)acrylamidopropyldimethylamine, etc.)], salts thereof, and the like.
  • the content of the other monomers may be appropriately selected according to the monomers used. It may be up to 20% by mass or the like.
  • chain transfer agent when the vinyl ester monomer is polymerized, a chain transfer agent may coexist for the purpose of adjusting the degree of polymerization of the resulting vinyl ester polymer.
  • chain transfer agents include, but are not limited to, aldehydes such as acetaldehyde, propionaldehyde, butyraldehyde, and benzaldehyde; ketones such as acetone, methyl ethyl ketone, hexanone, and cyclohexanone; mercaptans such as mercaptopropionic acid, mercaptosuccinic acid, sodium 3-mercapto-1-propanesulfonate; and organic halogens such as carbon tetrachloride, trichlorethylene, and perchlorethylene, among which aldehydes and ketones are preferred. Used.
  • a PVA-based polymer (B-3) can be obtained by using a chain transfer agent containing a chain transfer agent having an ionic group as the chain transfer agent.
  • chain transfer agents having an ionic group examples include those exemplified above, such as alcohols having an ionic group, carbonyl compounds having an ionic group, thiols having an ionic group ⁇ e.g., thiols having an acid group [e.g.
  • Thiols having a carboxyl group e.g., mercapto saturated fatty acids (e.g., mercaptoalkanoic acids such as 3-mercaptopropionic acid and mercaptosuccinic acid), etc.] thiols having a sulfonic acid group [e.g., mercaptoalkanesulfonic acids (e.g., 3- mercapto-1-propanesulfonic acid)], salts thereof (eg, sodium 3-mercapto-1-propanesulfonate), etc.).
  • carboxyl group e.g., mercapto saturated fatty acids (e.g., mercaptoalkanoic acids such as 3-mercaptopropionic acid and mercaptosuccinic acid), etc.]
  • thiols having a sulfonic acid group e.g., mercaptoalkanesulfonic acids (e.g., 3- mercapto-1-propanes
  • the amount of chain transfer agent to be added is determined according to the chain transfer constant of the chain transfer agent to be added and the degree of polymerization of the desired vinyl ester polymer. % by weight is preferred.
  • the PVA-based polymer (C) (furthermore, (B-2) and (B-3)) can be produced by saponifying the vinyl ester-based polymer obtained as described above. .
  • the method for the saponification reaction of the vinyl ester polymer is not particularly limited, but conventionally known methods may be followed.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid
  • organic acids such as formic acid, acetic acid, oxalic acid and p-toluenesulfonic acid
  • a catalyzed alcoholysis or hydrolysis reaction can be applied.
  • Solvents used in the saponification reaction include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; and aromatic hydrocarbons such as benzene and toluene. These can be used alone or in combination of two or more.
  • the PVA-based polymer [(C), (B-2), (B-3)] is acetalized with a carbonyl compound having a polymerizable unsaturated bond (such as an aldehyde) or a carbonyl compound having an ionic group.
  • a method for acetalization is not particularly limited, and a known acetalization method can be used.
  • a PVA-based polymer (A-1) can be obtained by acetalizing the PVA-based polymer (C) with a carbonyl compound having a polymerizable unsaturated bond and a carbonyl compound having an ionic group. Further, by acetalizing the PVA polymer (B-2, B-3) having an ionic group with a carbonyl compound having a polymerizable unsaturated bond, the PVA polymer (A-2, A-3 ) can be obtained.
  • the amount of the carbonyl compound used is not particularly limited. It may be about 0.2 to 10 parts by mass.
  • the acetalization reaction is preferably carried out in the presence of an acidic catalyst.
  • acidic catalysts include, but are not limited to, inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; and organic acids such as formic acid, acetic acid, oxalic acid and p-toluenesulfonic acid.
  • the amount of the acidic catalyst used is not particularly limited, but is, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the PVA-based polymer.
  • a vinyl ester polymer is subjected to a saponification reaction in a solvent such as methanol with a basic catalyst such as sodium hydroxide to obtain a solution of a PVA polymer, Then, an aldehyde or the like and an acidic catalyst are added to acetalize the polymer, followed by neutralization with a basic substance to obtain a solution of the PVA-based polymer (A); After saponification reaction in the presence of an acidic catalyst as a saponification catalyst to form a PVA-based polymer, aldehyde or the like is added, and the acidic catalyst used in the saponification reaction is used as it is to cause an acetalization reaction, and then with a basic substance.
  • the PVA-based polymer (A) can be obtained as an aqueous liquid, so that it can be used as it is for the suspension polymerization of vinyl chloride.
  • the method (v) of reacting in a slurry state is easy to handle because the PVA-based polymer (A) can be obtained as a solid.
  • the method of making the PVA-based polymer an aqueous liquid, and the methods of saponification, neutralization, dissolution, dispersion and drying are not particularly limited, and conventional methods can be used. can.
  • the basic substance used for neutralization is not particularly limited, but examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
  • the pH of the reaction solution during the acetalization reaction is preferably 3.0 or less, and more preferably 1.0 or less.
  • the pH of the reaction solution after neutralization is preferably 4.7 to 9.0, more preferably 7.0 to 8.5.
  • the PVA-based polymer (A) can be used in various applications (e.g., dispersant, film application, etc.), but as described above, it is particularly useful as a dispersion stabilizer [or dispersant, e.g., polymerization (e.g., suspension polymerization). ) as a dispersion stabilizer (dispersant)]. Therefore, hereinafter, the use of the dispersion stabilizer (or PVA polymer (A), the same shall apply hereinafter) of the present invention or the polymerization of vinyl monomers using the dispersion stabilizer (especially suspension polymerization) will be described. A method for producing a polymer will be described.
  • Suspension polymerization in the present invention involves adding an insoluble vinyl-based monomer and an oil-soluble polymerization initiator to an aqueous medium and stirring to form fine droplets containing the vinyl-based monomer. It is the mode of polymerization that forms and polymerizes in this droplet.
  • the aqueous medium that can be used here is not particularly limited, but examples thereof include water, an aqueous solution containing various additive components, and a mixed solvent of an organic solvent compatible with water and water.
  • the above PVA-based polymer (A) in the present invention can be used as a dispersion stabilizer when carrying out suspension polymerization of vinyl-based monomers.
  • the vinyl-based monomer is not particularly limited, but examples thereof include vinyl-based monomers to which suspension polymerization is generally applied, such as vinyl chloride, vinylidene chloride, styrene, acrylic acid ester, methacrylic acid ester, vinyl acetate, and acrylonitrile. Monomers are preferred, and vinyl chloride monomers are particularly preferred.
  • Vinyl chloride monomers include, for example, vinyl chloride monomers (vinyl chloride), and mixtures of vinyl chloride monomers with other monomers copolymerizable therewith.
  • vinylidene chloride vinyl acetate, ethylene, propylene, acrylic acid, acrylic acid esters, methacrylic acid, methacrylic acid esters, styrene, vinylalkoxysilanes, Monomers such as maleic acid, hydroxyalkyl acrylate, allylsulfonic acid and vinylsulfonic acid can be mentioned.
  • the dispersion stabilizer of the present invention is suitable for suspension polymerization of vinyl-based monomers containing vinyl chloride-based monomers (especially vinyl chloride), and particularly suitable for homopolymerization of vinyl chloride by suspension polymerization. It can also be used for binary or more multiple copolymerization of vinyl chloride with one or more selected from known monomers copolymerizable with vinyl chloride by suspension polymerization. Among others, it can be particularly preferably used as a dispersion stabilizer in the copolymerization of vinyl chloride and vinyl acetate by suspension polymerization.
  • a vinyl chloride resin can be obtained by suspension polymerization of a vinyl monomer containing vinyl chloride. In the production of vinyl chloride resin, it is preferable that vinyl chloride accounts for 50 to 100 mol % (or 50 to 100% by mass) of the total amount of vinyl monomers used.
  • Polymerization initiators for suspension polymerization of vinyl monomers may also be known ones, for example, peroxydicarbonates such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate and diethoxyethyl peroxydicarbonate.
  • peroxydicarbonates such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate and diethoxyethyl peroxydicarbonate.
  • perester compounds such as benzoyl peroxide, t-butyl peroxyneodecanoate, ⁇ -cumyl peroxyneodecanoate, and t-butyl peroxydecanoate, acetylcyclohexylsulfonyl peroxide, 2,4, Peroxides such as 4-trimethylpentyl-2-peroxyphenoxyacetate, 2,2′-azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobis(4-methoxy-2,4-dimethyl azo compounds such as valeronitrile), benzoyl peroxide, lauroyl peroxide, and the like, and these can also be used in combination with potassium persulfate, ammonium persulfate, hydrogen peroxide, and the like.
  • the main role of the dispersion stabilizer in the suspension polymerization of vinyl-based monomers is to stabilize droplets composed of vinyl-based monomers and their polymers, and to allow the polymer particles generated in the droplets to separate between the droplets. Since the dispersion stabilizer of the present invention has excellent dispersing performance, it is possible to form stable droplets with a small amount of use, It is possible to prevent the formation of lumps due to the fusion. In addition, the stable droplets means that fine droplets having a substantially uniform size are stably dispersed in the dispersion medium of the suspension polymerization.
  • the amount of the dispersion stabilizer (or PVA-based polymer (A)) used in the present invention is not particularly limited. On the other hand, it is 5 parts by mass or less, preferably 0.005 to 1 part by mass, more preferably 0.01 to 0.2 parts by mass.
  • the dispersion stabilizer of the present invention is generally dissolved in a dispersion medium for suspension polymerization by a conventional method before charging the vinyl monomer. .
  • the dispersion stabilizer in the suspension polymerization of vinyl monomers may be used alone, or may be used in combination with other dispersion stabilizers.
  • known dispersion stabilizers used in suspension polymerization of vinyl monomers such as vinyl chloride in an aqueous medium, for example, an average degree of polymerization of 100 to 4500 and a degree of saponification of 30 to 100 mol.
  • % PVA and modified PVA-based polymers other than the present invention water-soluble cellulose ethers such as methyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose, water-soluble polymers such as gelatin, sorbitan monolaurate, sorbitan trioleate, glycerin tristearate, Examples include oil-soluble emulsions such as ethylene oxide propylene oxide block polymers, and water-soluble emulsifiers such as polyoxyethylene glycerin oleate and sodium laurate. These other dispersants may be used alone or in combination of two or more.
  • the dispersion stabilizer it is preferable to use a combination of two or more PVA-based polymers having different degrees of polymerization and saponification as the dispersion stabilizer, and one or more of them is the dispersion stabilizer of the present invention.
  • a certain PVA-based polymer (A) is preferred. More preferably, a PVA-based polymer having a polymerization degree of 1700 or more and having high dispersion stability and a PVA-based polymer having a polymerization degree of 1000 or less are used in combination. Let it be united (A).
  • dispersing aids In the suspension polymerization using the dispersion stabilizer of the present invention, it is possible to use various known dispersing aids in combination.
  • Low saponification degree PVA having a degree of saponification of preferably 30 to 60 mol %, more preferably 35 to 55 mol % is used as such a dispersing aid.
  • various known additives for suspension polymerization of vinyl compounds such as chain transfer agents, polymerization inhibitors, pH adjusters, scale inhibitors, and cross-linking agents, may be used in combination.
  • the polymerization temperature in the suspension polymerization is not limited, and can be arbitrarily selected according to the type of vinyl monomer used, the degree of polymerization of the target polymer, the polymerization yield, etc., but is usually from 40 to 70° C. is preferred.
  • the polymerization time is also not particularly limited, and may be appropriately set according to the target polymerization yield and the like.
  • the vinyl polymer obtained by the production method of the present invention described above can be processed into various molded articles.
  • vinyl chloride resins for example, have an average particle size within an appropriate range, can be efficiently obtained with excellent plasticizer absorption, and often have good processability into various molded products. .
  • a 4% PVA aqueous solution at a temperature of 20 ° C. is put in a quartz cell with an optical path length of 1 mm, and the transmittance of 430 mm is continuously measured at a temperature rising rate of 2 ° C./min from the temperature of 20 ° C.
  • the transmittance is blank (pure water).
  • the cloud point was defined as the temperature at which 50% of the
  • the vinyl chloride polymer was evaluated for average particle size, plasticizer absorbency, and scale adhesion amount as follows.
  • ⁇ Average particle size> The particle size distribution was measured with a low-tap vibrating sieve (using a JIS sieve) to determine the average particle size.
  • ⁇ Plasticizer absorption> The obtained resin was placed in a cylindrical container filled with glass fiber at the bottom, excess dioctyl phthalate (hereinafter abbreviated as DOP) was added, and the resin was left to stand for 30 minutes to allow the DOP to permeate the resin. After removing excess DOP by centrifugation, the weight of the resin was measured to calculate the amount of DOP absorbed per 100 parts of polymer. The larger the DOP absorption, the better the plasticizer absorption and the better the moldability.
  • DOP dioctyl phthalate
  • Example 1 Synthesis of PVA-based polymer (C)
  • 5 parts of a 1% methanol solution of 2,2'-azobis(2,4-dimethylvaleronitrile) (ADVN) was added as an agent to initiate polymerization.
  • the system was maintained at 60° C., and 90 parts of the vinyl acetate monomer was continuously added over 4 hours from immediately after the initiation of the polymerization while flowing nitrogen gas into the system. 1 part of a 1% methanol solution of ADVN was added at 1 hour and 2 hours after the initiation of polymerization.
  • the reaction yield of vinyl acetate reached 85%
  • the system was cooled to complete the polymerization. The remaining vinyl acetate monomer was distilled off while methanol vapor was added to the resulting polymer to obtain a 50% methanol solution of polyvinyl acetate.
  • this PVA-based polymer (A-1) was a degree of saponification of 72 mol %, a degree of polymerization of 600, and a 4% aqueous solution had a cloud point of 35°C.
  • the degree of saponification and the degree of polymerization were measured according to the method specified in JIS K 6726.
  • the inside of the polymerization vessel was evacuated to 50 mmHg by a vacuum pump, degassed, charged with 100 parts of vinyl chloride monomer, and further 0.06 part of t-butyl peroxyneodecanoate as a polymerization initiator. was charged, the mixture was stirred, and the temperature was started to rise. Suspension polymerization was carried out while maintaining the internal temperature of the polymerizer at 57° C., and the polymerization reaction was stopped when the conversion rate of vinyl chloride reached 88%. After recovering unreacted monomers with a vacuum trap, the polymer slurry was extracted from the polymerizer, dehydrated and dried to obtain a vinyl chloride polymer (vinyl chloride resin).
  • Example 1 A PVA-based polymer (A-1) shown in Table 1 was synthesized in the same manner as in Example 1, except that the polymerization conditions, saponification conditions, the type and amount of aldehyde used in the acetalization reaction were changed as appropriate. Suspension polymerization of vinyl chloride was carried out in the same manner as in Example 1 using the obtained PVA-based polymer (A-1) to obtain a vinyl chloride polymer. In Reference Example 1, since no acetalization reaction was performed, the PVA-based polymer (C) was used as the PVA-based polymer (A-1) (that is, the PVA-based polymer (C) and the PVA-based polymer Union (A-1) is the same).
  • Table 1 summarizes the evaluation results of the PVA-based polymer (A-1) and the obtained vinyl chloride polymer.
  • the PVA-based polymer (A-1) obtained in Examples 1 to 18 had good aqueous solution preparability, storage stability, and dispersibility in hot water. Further, when used for suspension polymerization of vinyl chloride, a vinyl chloride resin having excellent polymerization stability, an appropriate average particle size, and a large plasticizer absorption amount could be obtained.
  • the system was kept at 60° C., and 90 parts of the vinyl acetate monomer and 2 parts of a 20% itaconic acid methanol solution were continuously added over 4 hours from immediately after the initiation of the polymerization while flowing nitrogen gas into the system. 1.2 parts of a 1% methanol solution of ADVN was added at 1 hour and 2 hours after the initiation of polymerization.
  • the reaction yield of vinyl acetate reached 85%
  • the system was cooled to complete the polymerization. The remaining vinyl acetate monomer was distilled off while methanol vapor was added to the resulting polymer to obtain a 50% methanol solution of polyvinyl acetate.
  • Examples 20-24, Reference Examples 4-5 A PVA-based polymer (A-2) shown in Table 2 was synthesized in the same manner as in Example 19, except that various conditions were appropriately changed. Suspension polymerization of vinyl chloride was carried out in the same manner as in Example 1 using the obtained PVA-based polymer (A-2) to obtain a vinyl chloride polymer. In Reference Examples 4 and 5, since no acetalization reaction was performed, the PVA-based polymer (B-2) was used as the PVA-based polymer (A-2) (that is, the PVA-based polymer (B- 2) and the PVA-based polymer (A-2) are the same).
  • Table 2 summarizes the evaluation results of the PVA-based polymer (A-2) and the obtained vinyl chloride polymer.
  • AMPS is sodium 2-acrylamido-2-methylpropanesulfonate.
  • the PVA-based polymer (A-2) obtained in Examples 19 to 24 had good aqueous solution preparability, storage stability, and dispersibility in hot water. Further, when used for suspension polymerization of vinyl chloride, a vinyl chloride resin having excellent polymerization stability, an appropriate average particle size, and a large plasticizer absorption amount could be obtained.
  • Example 25 Synthesis of PVA-based polymer (B-3) 20 parts of methanol, 80 parts of vinyl acetate monomer, and 0.02 parts of 3-mercaptopropionic acid were charged in advance into a reactor equipped with a stirrer, condenser, nitrogen gas inlet and initiator inlet, and nitrogen gas was passed through the system. The temperature was raised to 60° C. while heating, and 1.5 parts of a 1% methanol solution of 2,2′-azobis(2,4-dimethylvaleronitrile) (ADVN) was added as an initiator to initiate polymerization.
  • ADVN 2,2′-azobis(2,4-dimethylvaleronitrile
  • the system was kept at 60° C., and 2 parts of a 10% methanol solution of 3-mercaptopropionic acid was continuously added over 4 hours immediately after the initiation of polymerization while flowing nitrogen gas into the system. Further, 0.5 part of a 1% methanol solution of ADVN was added at 1 hour and 2 hours after the initiation of polymerization.
  • the reaction yield of vinyl acetate reached 80%
  • the system was cooled to complete the polymerization. The remaining vinyl acetate monomer was distilled off while methanol vapor was added to the resulting polymer to obtain a 50% methanol solution of polyvinyl acetate.
  • Example 26 to 28, Reference Example 6 A PVA-based polymer (A-3) shown in Table 3 was synthesized in the same manner as in Example 25, except that various conditions were appropriately changed. Suspension polymerization of vinyl chloride was carried out in the same manner as in Example 1 using the obtained PVA-based polymer (A-3) to obtain a vinyl chloride polymer. In Reference Example 6, since no acetalization reaction was performed, the PVA-based polymer (B-3) was used as the PVA-based polymer (A-3) (that is, the PVA-based polymer (B-3) and the PVA-based polymer (A-3) are the same).
  • Table 2 summarizes the evaluation results of the PVA-based polymer (A-3) and the obtained vinyl chloride polymer.
  • MPS is sodium 3-mercapto-1-propanesulfonate.
  • the PVA-based polymer (A-3) obtained in Examples 25 to 28 had good aqueous solution preparability, storage stability, and dispersibility in hot water. Further, when used for suspension polymerization of vinyl chloride, a vinyl chloride resin having excellent polymerization stability, an appropriate average particle size, and a large plasticizer absorption amount could be obtained.
  • the present invention can provide a specific polyvinyl alcohol polymer.
  • a polymer can be suitably used as a dispersion stabilizer (dispersant) or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

新規な懸濁重合用分散剤等を提供する。 懸濁重合用分散安定剤を、(a)重合性不飽和結合を有するアセタール骨格及び(b)イオン性骨格を有するポリビニルアルコール系重合体(A)を含有するものとする。

Description

分散安定剤及びビニル系重合体の製造方法
 本発明は、分散安定剤[例えば、ビニル系単量体(特に塩化ビニル単量体)の懸濁重合用分散安定剤]等として好適に使用しうるポリビニルアルコール系重合体、このポリビニルアルコール系重合体(又は分散安定剤)を用いてビニル系重合体[特に塩化ビニル系重合体(樹脂)]を製造する方法等に関するものである。
 塩化ビニル系樹脂の工業的な製造方法は、水性媒体中において分散安定剤の存在下で、塩化ビニル等のビニル系単量体(モノマー)を分散させ、油溶性重合開始剤を用いて重合を行うバッチ式懸濁重合により行われているのが一般的である。塩化ビニル系樹脂の品質を支配する重合プロセスでの因子としては、重合率、水性媒体とモノマーの比、重合温度、重合開始剤の種類及び量、重合槽の形式、攪拌速度ならびに分散安定剤の種類及び量等が挙げられるが、中でも分散安定剤の影響が非常に大きい。
 塩化ビニル系樹脂を得るための懸濁重合における分散安定剤の役割は、水性媒体中でモノマーを分散させ、安定な液滴を形成し、分散と合一を繰り返す液滴の大きさを均一に整えるとともに、重合した粒子の凝集性をコントロールすることにある。このため、かかる分散安定剤に求められる性能としては、
<1>得られる塩化ビニル系樹脂粒子の粒度を適切な範囲に制御すること、
<2>得られる塩化ビニル系樹脂粒子の可塑剤吸収性を大きくして成形加工性を良くすること、
<3>得られる塩化ビニル系樹脂粒子の空隙率を一定の範囲にし、残存モノマーの除去を容易にすること等が挙げられる。
 すなわち、上記の分散安定剤には、例えば、優れた分散力を発揮すること、塩化ビニル系樹脂の粒子径、粒子形状等を適正な状態に制御すること等が求められる。
 上記の分散安定剤としては、一般的に、ポリビニルアルコール系樹脂(以下、PVA等と略記することがある)、セルロース誘導体等が単独で又は適宜組み合わされて使用されている。
 例えば、非特許文献1には、塩化ビニルの懸濁重合用分散安定剤として、粘度平均重合度2000、ケン化度88モル%又は80モル%の乳化力の高いとされるPVAや、粘度平均重合度600~700、ケン化度70モル%前後のPVAを使用する方法が記載されている。
「ポバール」、高分子刊行会、1981年発行
 前記のように、分散安定剤としてPVAが使用されているが、本発明者らの検討によれば、PVAにおいてもさらなる改善が求められる。
 例えば、ケン化度が比較的小さい(例えば、70モル%前後の)PVAは、それよりケン化度が高いPVAと比べると親水性に劣るため、水溶液の調製が難しく、また、4%水溶液の曇点が低く(例えば、30℃前後であり)、曇点以上の温度で水溶液をタンク等で保管するとPVAが析出(分離)する恐れがあった。
 更に、塩化ビニルモノマーの重合温度は一般的に40~70℃であり、PVAの曇点以上の温度であることから、PVA水溶液を重合機(40~70℃の温水)への添加する際にPVAが重合機内で析出しないようにする必要がある。
 このように分散安定剤(懸濁重合用分散安定剤としてのPVAは、本来の分散安定剤としての性能以外に水溶液の調製の容易さや水溶液の安定性(さらには、温水への分散性)等が求められるが、これらの特性は、PVAのケン化度が低くなるほど、PVAの重合度が高くなるほど維持するのが困難となる。
 このような中、本発明者らは、親水性の向上を期待して、PVAにイタコン酸由来の単位を導入する等を試みたが、界面活性が低下するためか、本来の分散安定剤としての性能が低下する(例えば、重合の不安定化、得られる塩化ビニル樹脂の粒子径が大きくなり、可塑剤吸収性が低下しやすくなる)場合があり、分散安定剤としての性能を担保しつつ、水溶液の調製の容易さや水溶液の安定性、温水への分散性等を実現することには困難を極めた。
 本発明の目的は、上記点等に鑑み、新規な分散安定剤等を提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定のPVA系重合体が分散安定剤(例えば、懸濁重合用の分散安定剤)等として有用であること、等を見出し、さらに研究を重ねて本発明を完成した。
 すなわち、本発明は、以下の発明等に関する。
[1]
 (a)重合性不飽和結合を有するアセタール骨格(アセタール基、アセタール単位、イオン性でないアセタール骨格)及び(b)イオン性骨格(イオン性基を有する骨格、イオン性基)を有するポリビニルアルコール系重合体(A)を含有する分散安定剤(又は分散剤)。
[2]
 アセタール骨格(a)が、下記式(a1)で示される骨格(構造単位、構成単位)を含む、[1]記載の剤。
Figure JPOXMLDOC01-appb-C000004
(式中、R’は重合性不飽和結合を有する基を示す。)
[3]
 ポリビニルアルコール系重合体(A)において、アセタール骨格(a)の含有量(割合、含有割合)が、モノマーユニットあたり0.05~5モル%である[1]又は[2]記載の剤。
[4]
 イオン性骨格(b)が、下記式(b1)で示される骨格を含む[1]~[3]のいずれかに記載の剤。
Figure JPOXMLDOC01-appb-C000005
(式中、Rはイオン性基を有する基を示す。)
[5]
 イオン性骨格(b)が、式(b1)において、Rがイオン性基を有する炭化水素基である骨格を含む、[4]記載の剤。
[6]
 イオン性骨格(b)が、前記式(b1)においてRがイオン性基である骨格、及び下記式(b1-1)で示される骨格から選択された少なくとも1種の骨格を含む、[1]~[5]のいずれかに記載の剤。
Figure JPOXMLDOC01-appb-C000006
(式中、R~Rは、水素原子又は置換基を示す。ただし、R~Rの少なくとも1つは、イオン性基である。)
[7]
 イオン性基が、酸基(例えば、カルボキシ基、スルホン酸基)及びその塩から選択された少なくとも1種を有する、[4]~[6]のいずれかに記載の剤。
[8]
 イオン性骨格(b)が、イオン性基を有する単量体(モノマー)及びイオン性基を有する連鎖移動剤[例えば、アルコール、カルボニル化合物(アルデヒド等)、チオール等]から選択された少なくとも1種に対応する骨格を含む、[1]~[7]のいずれかに記載の剤。
[9]
 イオン性骨格(b)が、カルボキシ基を有する単量体、スルホン酸基を有する単量体、及びこれらの塩から選択された少なくとも1種の単量体に対応する骨格を含む、[1]~[8]のいずれかに記載の剤。
[10]
 イオン性骨格(b)が、カルボキシ基を有するチオール、スルホン酸基を有するチオール、及びこれらの塩から選択された少なくとも1種のチオールに対応する骨格を含む、[1]~[9]のいずれかに記載の剤。
[11]
 ポリビニルアルコール系重合体(A)において、イオン性骨格(b)の含有量(割合、含有割合)が、モノマーユニットあたり0.01~5モル%である[1]~[10]のいずれかに記載の剤。
[12]
 ポリビニルアルコール系重合体(A)において、アセタール骨格(a)の割合が、イオン性骨格(b)1モルに対して、2~15モルである[1]~[11]のいずれかに記載の剤。
[13]
 ポリビニルアルコール系重合体(A)において、イオン性骨格(b)の割合が、ビニルエステル単位100モルに対して、0.2~5モルである、[1]~[12]のいずれかに記載の剤。
[14]
 ポリビニルアルコール系重合体(A)のケン化度が50~90モル%である[1]~[13]のいずれかに記載の剤。
[15]
 ポリビニルアルコール系重合体(A)の重合度が200~2000である[1]~[14]のいずれかに記載の剤。
[16]
 ポリビニルアルコール系重合体(A)の4質量%水溶液の曇点が25℃以上である、[1]~[15]のいずれかに記載の剤。
[17]
 重合用分散安定剤である、[1]~[16]のいずれかに記載の剤。
[18]
 懸濁重合用分散安定剤である、[1]~[17]のいずれかに記載の剤。
[19]
 塩化ビニルを含むビニル系単量体の懸濁重合用分散安定剤である、[1]~[18]のいずれかに記載の剤。
[20]
 [1]~[19]のいずれかに記載のポリビニルアルコール系重合体(A)。
[21]
 [1]~[19]のいずれかに記載のポリビニルアルコール系重合体(A)又は剤を含有する水性液。
[22]
 [1]~[19]のいずれかに記載のポリビニルアルコール系重合体(A)又は剤の存在下で、ビニル系単量体を重合する、ビニル系重合体の製造方法。
[23]
 重合が懸濁重合である、[22]記載の製造方法。
[24]
 塩化ビニルを含むビニル系単量体を懸濁重合する、[22]又は[23]記載の製造方法。
 本発明によれば、新規な分散安定剤等を提供できる。
 このような分散安定剤(特定のPVA系重合体)は、容易な水性溶液(特に水溶液)調製の他、優れた水性溶液の保管安定性や温水分散性等を実現しうる。
 また、本発明の分散安定剤(特定のPVA系重合体)は、分散安定剤としての性能も備えている。例えば、優れた重合安定性等を実現でき、平均粒子径が適切な範囲であったり、十分な可塑剤吸収性を有するといった、樹脂(例えば、塩化ビニル系樹脂等のビニル系重合体)が効率よく得られうる。
 特に、本発明の分散安定剤(特定のPVA系重合体)によれば、このような分散安定剤としての性能を損なうことなく(担保しつつ)、前記のような、容易な水性溶液調製、優れた水性溶液の保管安定性や温水分散性を実現しうる。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
 本発明では、特定のポリビニルアルコール系重合体、すなわち、ポリビニルアルコール系重合体(A)(以下、PVA系重合体(A)等ということがある)を提供できる。
 このようなPVA系重合体(A)は、分散安定剤(分散剤、特に懸濁重合用の分散安定剤)等として有用である。
 そのため、本発明では、PVA系重合体(A)を含有する分散安定剤も提供できる。
このような分散安定剤は、PVA系重合体(A)を単独で又は2種以上組み合わせて含んでいてもよい。
 以下、本発明を詳述する。
[ポリビニルアルコール系重合体(A)]
 PVA系重合体(A)は、(a)重合性不飽和結合(ラジカル重合性不飽和結合、ラジカル重合性基)を有するアセタール骨格(アセタール基、アセタール単位、イオン性でないアセタール骨格)、及び(b)イオン性骨格(イオン性基を有する骨格、イオン性基)を有することを特徴とする。
[アセタール骨格(a)]
 アセタール骨格(a)において、重合性不飽和結合の数は、特に限定されず、1以上(例えば、1~5個等)であればよい。
 アセタール骨格(a)において、アセタールは、環状アセタール、非環状(鎖状)アセタールのいずれであってもよく、好ましくは環状アセタールであってもよい。
 代表的な重合性不飽和結合を有するアセタール骨格には、下記式(a1)で示される骨格(構造単位)が含まれる。そのため、アセタール骨格(a)は、下記式(a1)で示される骨格を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000007
(式中、R’は重合性不飽和結合を有する基を示す。)
 上記式(a1)において、R’は重合性不飽和結合を有する基である。R’は、重合性不飽和結合基そのものであってもよく、重合性不飽和結合を含む基(例えば、炭化水素基)であってもよい。
 なお、重合性不飽和結合を有する基は、重合性不飽和結合に加え、置換基を有していてもよい。置換基としては、重合性不飽和結合有する基の種類に応じて適宜選択でき、特に限定されず、例えば、水酸基、ハロゲン原子、アシル基、エステル基、アルコキシ基、ニトロ基、置換アミノ基、ベースとなる基とは異なる基(例えば、アリール基等の芳香族基)等が挙げられる。
 置換基は、単独で又は2種以上組み合わせて置換されていてもよい。
 重合性不飽和結合[特に、二重結合(エチレン性二重結合)]を有する基としては、例えば、1つの重合性不飽和結合を有する基{例えば、アルケニル基[例えば、ビニル基、アリル基、プロペニル基(1-プロぺニル基、2-プロペニル基等)、ブテニル基、ペンテニル基、6-メチル-5-ヘキセニル基、デセニル基、2-(ジメチルアミノ)ビニル基、シクロヘキセニル基、2-フェニルエテニル基等の炭素数2以上(例えば、2~30好ましくは2~14、さらに好ましくは炭素数2~10程度)の炭化水素基(置換基を有していてもよい炭化水素基)等]等}、2以上の重合性不飽和結合を有する基{例えば、例えば、アルカジエニル基[例えば、1,3-ペンタジエニル基、2,6-ジメチル-1,5-ヘキサジエニル基、シクロヘキサジエニル基、プロペニルシクロヘキセニル基等の炭素数4以上(例えば、4~30、好ましくは4~14、さらに好ましくは4~10程度)のアルカジエニル基]、アルカトリエニル基[例えば、炭素数6以上(例えば、6~30、好ましくは6~24程度)のアルカトリエニル基]、アルカテトラエニル基[例えば、炭素数8以上(例えば、8~30、好ましくは8~24程度)のアルカテトラエニル基]、アルカペンタエニル基[例えば、炭素数10以上(例えば、10~30、好ましくは10~24程度)のアルカペンタエニル基]等の炭化水素基(置換基を有していてもよい炭化水素基、例えば、アルカポリエニル基)}等が挙げられる。
 重合性不飽和結合を有するアセタール骨格{例えば、式(a1)で示される基(又は式(a1)における、R’-<)}は、対応するカルボニル化合物(例えば、アルデヒド、そのアセタール、ケトン等)、特に、アルデヒド[例えば、R’CHO(R’が重合性不飽和結合を有する炭化水素基であるアルデヒド)等]に由来してもよい。なお、カルボニル化合物は、前記のように、置換基を有していてもよい。
 このようなカルボニル化合物としては、例えば、アルケナール[例えば、アクロレイン、クロトンアルデヒド、メタクロレイン、3-ブテナール、3-メチル-2-ブテナール、2-メチル-2-ブテナール、2-ペンテナール、3-ペンテナール、4-ペンテナール、2-ヘキセナール、3-ヘキセナール、4-ヘキセナール、5-ヘキセナール、2-エチルクロトンアルデヒド、2-メチル-2-ペンテナール、3-(ジメチルアミノ)アクロレイン、10-ウンデセナール、ミリストレインアルデヒド、パルミトレインアルデヒド、オレインアルデヒド、エライジンアルデヒド、バクセンアルデヒド、ガドレインアルデヒド、エルカアルデヒド、ネルボンアルデヒド、リノールアルデヒド、シトロネラール、シンナムアルデヒド等の炭素数3~15のアルケナール、好ましくは炭素数3~10のアルケナール]、アルカジエナール[例えば、2,4-ペンタジエナール、2,4-ヘキサジエナール、2,6-ノナジエナール、シトラール、ペリルアルデヒド等の炭素数5~15のアルカジエナール、好ましくは炭素数5~10のアルカジエナール]、アルカトリエナール[例えば、リノレンアルデヒド、エレオステアリンアルデヒド等の炭素数7~30のアルカトリエナール、好ましくは炭素数7~25のアルカトリエナール]、アルカテトラエナール[例えば、ステアリドンアルデヒド、アラキドンアルデヒド等の炭素数9~30のアルカテトラエナール、好ましくは炭素数9~25のアルカテトラエナール]、アルカペンタエナール[例えば、エイコサペンタエンアルデヒド等の炭素数11~30のアルカペンタエナール、好ましくは炭素数11~25のアルカペンタエナール]等の不飽和アルデヒド(特に、モノアルデヒド)、これらに対応するケトン、アセタール等が挙げられる。
 なお、カルボニル化合物に、異性体(例えば、シス-トランス異性体等)が存在する場合、いずれの異性体(例えば、シス体及びトランス体の両方等)も含む。
 前記のように、カルボニル化合物として、アルデヒドとアルコールとの縮合物であるアセタールも使用することができる。アセタールとしては、特に限定されないが、例えば、第1級アルコール(例えば、メタノールなど)との縮合物などが挙げられる。
 これらのカルボニル化合物は、単独で又は二種以上を併用して用いることができる。
 なお、カルボニル化合物は、水溶性等の観点から、モノカルボニル化合物(モノアルデヒド等)で構成するのが好ましく、多価カルボニル化合物(例えば、ジアルデヒド等の多価アルデヒド)を使用する場合でも、その量を少なくする等、水溶性等を担保できるレベルで使用する場合が多い。
 なお、重合性不飽和結合を有するアセタール骨格(例えば、前記式(a1)で示されるアセタール骨格)は、ヒドロキシ基を介して導入可能な骨格であってもよく、例えば、隣接する2つのヒドロキシ基(例えば、ビニルアルコール単位のヒドロキシ基)に由来する(を介して導入された)アセタール骨格であってもよい。
 例えば、重合性不飽和結合を有するカルボニル化合物(アルデヒド、ケトン等)を使用する場合、例えば、PVA系重合体における隣接した2つのOH基を、重合性不飽和結合を有するカルボニル化合物によってアセタール化することにより、重合性不飽和結合を有するアセタール骨格(a)を有するPVA系重合体(A)を得ることができる。
 重合性不飽和結合を有するアセタール骨格(例えば、前記式(a1)で示されるアセタール骨格)は、イオン性基(イオン性骨格)を有していてもよく、有していなくてもよい。
 PVA系重合体(A)は、重合性不飽和結合を有するアセタール骨格を単独で又は2種以上組み合わせて有していてもよい。
 PVA系重合体(A)において、アセタール骨格(a)[又は重合性不飽和結合、例えば、式(a1)で示される骨格等)]の含有量は、モノマーユニットあたり、0.001モル%以上(例えば、0.005モル%以上)程度の範囲から選択してもよく、例えば、0.01モル%以上、好ましくは0.05モル%以上、さらに好ましくは0.1モル%以上、特に0.2モル%以上等であってもよく、10モル%以下[例えば、8モル%以下(例えば、5モル%以下、3モル%以下)、好ましくは2モル%以下、さらに好ましくは1モル%以下)であってもよい。
 なお、これらの範囲(上限値と下限値)を適宜組み合わせて範囲を選択してもよい(例えば、0.01~3モル%、0.05~5モル%等、以下、範囲の記載について同じ)。
 具体的には、アセタール骨格(a)(又は重合性不飽和結合)の含有量は、PVA系重合体(A)において、モノマーユニットあたり、0.05~5モル%、好ましくは0.1~3モル%、さらに好ましくは0.2~2モル%程度であってもよい。
 なお、1モル%の含有量とは、モノマーユニット(例えば、ビニルアルコール単位、ビニルエステル単位等のモノマー単位の合計)100個あたり、アセタール骨格(a)(例えば、式(a1)で示される骨格)を1個有する場合をいう。
 上記のような含有量であれば、分散安定剤としての性能を効率よく実現しうる(例えば、重合安定性に優れ、適切な平均粒子径を有していたり、可塑剤吸収性等に優れた塩化ビニル系樹脂が効率よく得られうる)。
 また、上限値を高すぎないものとすることで、水溶液の調製性や保管安定性、温水への分散性を良好なものとしやすい。
 なお、アセタール骨格(a)の含有量を測定する方法は、特に限定されないが、例えば、NMRを利用して測定することができる。
 具体的な例を挙げると、例えば、PVA系重合体(A)をd6-DMSO溶媒に溶解させ、これをH-NMRにより測定し、アセタール骨格(a)が有する重合性不飽和結合(エチレン性二重結合等)に由来するシグナルを解析することで測定してもよい。
[イオン性骨格(b)]
 イオン性骨格(b)は、イオン性基を有している。
 イオン性基としては、アニオン性基{例えば、酸基[例えば、カルボキシル基、スルホン酸基(-SOH)、リン酸基等]等}、カチオン性基[例えば、アミノ基、アンモニウム(アンモニウムカチオン)]、これらの塩(これらが塩を形成した基)等が挙げられる。
 塩としては、アニオン性、カチオン性等によるが、例えば、金属塩[例えば、アルカリ又はアルカリ土類金属(例えば、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩)等]、ハロゲン化物(例えば、塩化物、臭化物、ヨウ化物等)等が挙げられる。
 イオン性基が、多塩基酸等であるとき、塩は単独(同種)の塩又は2種以上組み合わせた塩であってもよい。
 これらのイオン性基の中でも、酸基(特に、カルボキシル基、スルホン酸基)及びその塩{酸基の塩、例えば、カルボン酸塩[例えば、-COOM(Mはナトリウム等のアルカリ金属(又はその陽イオン))]、スルホン酸塩[例えば、-SOM(Mはナトリウム等のアルカリ金属(又はその陽イオン))]等}が好ましい。
 イオン性骨格(b)は、イオン性基を有する限り、その態様は特に限定されず、例えば(1)イオン性基を有するアセタール骨格(アセタール基、アセタール単位)、(2)イオン性基を有するモノマーに対応(又は由来)する骨格、(3)その他イオン性基を導入可能な化合物{例えば、イオン性基を有する連鎖移動剤[例えば、アルコール、カルボニル化合物(アルデヒド、ケトン等、特にアルデヒド等)、チオール等]等}に対応(又は由来)する骨格等が挙げられる。
 なお、イオン性骨格(b)(1つのイオン性骨格(b))は、イオン性基を1以上有していればよく、2以上有していてもよい。
 PVA系重合体(A)は、これらのイオン性骨格(b)を単独で又は2種以上組み合わせて有していてもよい。
 PVA系重合体(A)において、イオン性骨格(b)(例えば、上記骨格(1)、(2)及び/又は(3))の含有量(割合、含有割合)は、モノマーユニットあたり、0.001モル%以上(例えば、0.005モル%以上)程度の範囲から選択してもよく、例えば、0.01モル%以上、好ましくは0.03モル%以上、さらに好ましくは0.05モル%以上等であってもよく、10モル%以下[例えば、8モル%以下(例えば、5モル%以下、3モル%以下)、好ましくは2モル%以下、さらに好ましくは1モル%以下)であってもよい。
 具体的には、イオン性骨格(b)(例えば、上記骨格(1)、(2)及び/又は(3))の含有量が、モノマーユニットあたり、0.01~5モル%、好ましくは0.03~2モル%、さらに好ましくは0.05~1モル%程度であってもよい。
 なお、1モル%の含有量とは、モノマーユニット(例えば、ビニルアルコール単位、ビニルエステル単位等のモノマー単位の合計)100個あたり、イオン性骨格(b)(例えば、上記骨格(1)、(2)及び/又は(3))を1個有する場合をいう。
 上記のような含有量であれば、PVA系重合体(A)の水溶液の調製性や保管安定性、温水への分散性を向上させやすい。
 また、上限値を高すぎないものとすることで、PVA系重合体(A)の分散安定剤としての性能を効率よく実現しうる(例えば、重合安定性に優れ、適切な平均粒子径を有していたり、可塑剤吸収性等に優れた塩化ビニル系樹脂が効率よく得られうる)。
 なお、イオン性基の含有量を測定する方法は、イオン性基を有する骨格の種類等に応じて選択してもよく、特に限定されないが、例えば、NMR、滴定、UV吸光度等を利用して測定することができる。
 具体的な例を挙げると、後述の式(b1-1)で示される骨格の含有量は、PVA系重合体(A)をd6-DMSO溶媒に溶解させ、これをH-NMRにより測定し、ベンゼン環の置換基(例えば、水素)に由来するシグナルを解析することで測定してもよい。
 その他、PVA系重合体(A)を完全ケン化し、ソクスレー抽出後の(例えば、酢酸ナトリウムを取り除いた)サンプルを水に溶解し、水酸化ナトリウム(NaOH)を少量加えたあと、希塩酸で伝導度滴定することで、カルボキシル基の量を塩酸の滴定量から求めることができる。
 また、イオン性基を有するアセタール骨格がUV(紫外線)吸収を有する構造の場合、PVA系重合体(A)を含有する水溶液のUV吸光度を測定することにより、イオン性基を有するアセタール骨格の含有量を測定することができる。
 また、PVA系重合体(A)において、アセタール骨格(a)の含有量(モノマーユニットあたりの含有量)は、イオン性骨格(b)(例えば、上記骨格(1)、(2)及び/又は(3))1モルに対して、50モル以下(例えば、30モル以下、20モル以下)、好ましくは15モル以下、さらに好ましくは10モル以下であってもよく、0.05モル以上(例えば、0.1モル以上、0.5モル以上)、好ましくは1モル以上、さらに好ましくは2モル以上、特に3モル以上であってもよい。
 このような割合であると、優れた水溶液の調製性や保管安定性等と、分散安定剤としての優れた性能とを両立させやすい。
 なお、イオン性骨格(b)の導入方法は、その態様に応じて、公知の方法を利用することができる。このような導入方法としては、例えば、(1)PVA系重合体(PVA系重合体(C)ということがある)をイオン性基を有するカルボニル化合物(アルデヒド、そのアセタール、ケトン等、特にアルデヒド)でアセタール化することにより、イオン性基を有するPVA系重合体(B-1)を得る方法、(2)イオン性基を有する単量体とビニルエステルを共重合することにより、イオン性基を有するポリビニルエステル系重合体を得た後、それをケン化することにより、イオン性基を有するPVA系重合体(B-2)を得る方法、(3)イオン性基を有する連鎖移動剤(アルコール、アルデヒド、チオール等)の存在下でビニルエステルを重合して得られる(イオン性基を有する)ポリビニルエステル系重合体をケン化することにより、イオン性基を有するPVA系重合体(B-3)を得る方法等が挙げられる。
 以下、イオン性骨格(b)の態様ごとに詳述する。
 ((1)イオン性基を有するアセタール骨格)
 イオン性基は、前記のように、アセタール骨格(アセタール基、アセタール単位)が有している(アセタール骨格に置換している)。
 アセタールは、環状アセタール、非環状(鎖状)アセタールのいずれであってもよく、好ましくは環状アセタールであってもよい。
 代表的なイオン性基を有するアセタール骨格には、下記式(b1)で示される骨格(構造単位)が含まれる。そのため、イオン性基を有するアセタール骨格は、下記式(b1)で示される骨格を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000008
(式中、Rはイオン性基を有する基を示す。)
 上記式(b1)において、Rはイオン性基を有する基である。Rは、イオン性基そのものであってもよく、イオン性基を有する連結基(イオン性基と、このイオン性が置換した連結基とで構成された基)であってもよい。
 連結基(ベースとなる基)としては、例えば、炭化水素基が挙げられる。炭化水素基としては、脂肪族炭化水素基[例えば、アルキル基[例えば、鎖状アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基等のC1-30アルキル基)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等のC3-10シクロアルキル基)等の飽和脂肪族炭化水素基]、芳香族炭化水素基[例えば、アリール基(例えば、フェニル基、トリル基、キシリル基、ナフチル基等のC6-20アリール基)、アラルキル基(例えば、ベンジル基、フェネチル基等のC6-20アリール-C1-4アルキル基)等]等が挙げられる。
 連結基(炭化水素基)は、イオン性基以外に、置換基(イオン性基でない置換基)を有していてもよい。置換基としては、特に限定されず、例えば、水酸基、ハロゲン原子、アシル基、エステル基、アルコキシ基、ニトロ基、ベースとなる基とは異なる基(例えば、アリール基等の芳香族基)等が挙げられる。
 置換基は、単独で又は2種以上組み合わせて連結基(炭化水素基)に置換されていてもよい。
 イオン性基を有する連結基(炭化水素基等)において、イオン性基の数は1以上であればよく、2以上のイオン性基が連結基に置換していてもよい。
 具体的なイオン性基を有するアセタール骨格(式(b1)で示される骨格)としては、例えば、前記式(b1)においてRがイオン性基(例えば、カルボキシル基及びその塩等)である骨格、下記式(b1-1)で示される骨格が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式中、R~Rは、水素原子又は置換基を示す。ただし、R~Rの少なくとも1つは、イオン性基である。)
 上記式(b1-1)において、イオン性基及び置換基としては、前記例示のものが挙げられる。R~Rの少なくとも1つは、イオン性基であるが、好ましくはいずれか1つがイオン性基であってもよい。代表的には、R~Rの1つがイオン性基(例えば、カルボキシル基、スルホン酸基、又はこれらの塩)、4つが水素原子であってもよい。
 なお、イオン性基を有するアセタール骨格{例えば、式(b1)で示される基(又は式(b1)における、R-<)}は、対応するカルボニル化合物(例えば、アルデヒド、そのアセタール、ケトン等)、特に、アルデヒド(例えば、RCHO)に由来してもよい。なお、カルボニル化合物は、置換基を有していてもよい。
 このようなカルボニル化合物としては、例えば、イオン性基を有するアルカナール(例えば、グリオキシル酸、ホルミル酢酸、ホルミルプロピオン酸、これらの塩等の酸基又はその塩を有するアルカナール)、イオン性基を有するアレーンカルボアルデヒド[例えば、ホルミル安息香酸(例えば、4-ホルミル安息香酸)、ホルミルベンゼンスルホン酸(例えば、2-ホルミルベンゼンスルホン酸、4-ホルミルベンゼン-1,3-ジスルホン酸)、これらの塩等の酸基又はその塩を有するアレーンカルボアルデヒド]等のアルデヒド(特に、モノアルデヒド)、これらに対応するケトン、アセタール等が挙げられる。
 なお、カルボニル化合物に、異性体(例えば、シス-トランス異性体等)が存在する場合、いずれの異性体(例えば、シス体及びトランス体の両方等)も含む。
 また、PVA系重合体(A)において、イオン性基を形成可能であれば、カルボニル化合物におけるイオン性基は誘導体化(エステル化、無水物化等)されていてもよい。
 例えば、エステル(例えば、アルキルエステル)や酸無水物であっても、これらがPVA系重合体(A)において対応する酸基(カルボキシ基、スルホン酸基)又はその塩を形成(例えば、加水分解により形成)できれば使用可能である(以下、イオン性基について同様である)。
 これらのカルボニル化合物は、単独で又は2種以上を併用して用いることができる。
 なお、カルボニル化合物は、水溶性等の観点から、モノカルボニル化合物(モノアルデヒド等)で構成するのが好ましく、多価カルボニル化合物(例えば、ジアルデヒド等の多価アルデヒド)を使用する場合でも、その量を少なくする等、水溶性等を担保できるレベルで使用する場合が多い。
 なお、イオン性基を有するアセタール骨格(例えば、前記式(b1)で示されるアセタール骨格)は、ヒドロキシ基を介して導入可能な骨格であってもよく、例えば、隣接する2つのヒドロキシ基(例えば、ビニルアルコール単位のヒドロキシ基)に由来する(を介して導入された)アセタール骨格であってもよい。
 例えば、イオン性基を有するカルボニル化合物(アルデヒド、ケトン等)を使用する場合、例えば、PVA系重合体における隣接した2つのOH基を、イオン性基を有するカルボニル化合物によってアセタール化することにより、イオン性基を有するアセタール骨格を有するPVA系重合体(A)を得ることができる。
 イオン性基を有するアセタール骨格(例えば、前記式(b1)で示されるアセタール骨格)は、重合性不飽和結合を有していてもよく、有していなくてもよい。
 PVA系重合体(A)は、イオン性基を有するアセタール骨格を有していてもよく、有していなくてもよい。
 PVA系重合体(A)は、イオン性基を有するアセタール骨格を単独で又は2種以上組み合わせて有していてもよい。
 PVA系重合体(A)中にイオン性基を有するアセタール骨格(例えば、カルボキシル基、スルホン酸基又はこれらの塩を有するアセタール骨格)を含有させる(導入する)方法は、特に限定されず、慣用の手法を利用できる。
 代表的な方法では、後述のように、PVA系重合体(C)を、イオン性基を有するカルボニル化合物(アルデヒド、そのアセタール、ケトン等)によりアセタール化してもよい。
 なお、このようにPVA系重合体(C)をイオン性基を有するカルボニル化合物によりアセタール化することにより、イオン性基を有するPVA系重合体(B-1)を得ることができるが、アセタール化の際に重合性不飽和結合を有するカルボニル化合物を共存させることにより、一度にアセタール骨格(a)及びイオン性基を有するPVA系重合体(A)を得ることができるため好適である。
 イオン性基を有するアルデヒドとしては、例えば、グリオキシル酸、2-ホルミル安息香酸、4-ホルミル安息香酸、2-ホルミルベンゼンスルホン酸ナトリウム、4-ホルミルべンゼンスルホン酸ナトリウム、4-ホルミルベンゼン-1,3-ジスルホン酸二ナトリウム等が挙げられるが、4-ホルミル安息香酸又は2-ホルミルベンゼンスルホン酸ナトリウム等が好ましい。
 前記のように、カルボニル化合物として、アルデヒドとアルコールとの縮合物であるアセタールも使用することができる。アセタールとしては、特に限定されないが、例えば、第1級アルコール(例えば、メタノールなど)との縮合物などが挙げられる。
 カルボニル化合物は、単独で又は2種以上組み合わせて使用することができる。
((2)イオン性基を有するモノマーに対応する骨格)
 イオン性基を有するモノマー(単量体)としては、特に限定されず、イオン性基の種類に応じて適宜選択できる。
 具体的なモノマーとしては、例えば、酸基を有するモノマー[例えば、カルボキシ基を有する単量体[例えば、モノカルボン酸(例えば、アクリル酸、メタクリル酸、クロトン酸等の脂肪族不飽和モノカルボン酸)、ポリカルボン酸(例えば、イタコン酸、マレイン酸、フマル酸等の脂肪族不飽和ジカルボン酸)等]、スルホン酸基を有する単量体[例えば、アルケニルスルホン酸(例えば、ビニルスルホン酸、アリルスルホン酸)、アルケニルアレーンスルホン酸(例えば、スチレンスルホン酸)、スルホン酸基を有するアミド系モノマー(例えば、2-アクリルアミド-2-メチルプロパンスルホン酸)等]、その他のイオン性基を有するモノマー[例えば、アミノ基を有する単量体(例えば、(メタ)アクリルアミドプロピルジメチルアミン等)等]、これらの塩等が挙げられる。
 なお、前記のように、PVA系重合体(A)に、イオン性基を導入できれば(例えば、加水分解等により、最終的にPVA系重合体(A)においてイオン性基を形成していれば)、これらは誘導体[例えば、酸無水物(例えば、無水マレイン酸等)、エステル(例えば、アルキルエステル)]であってもよい。
 換言すれば、このような誘導体は、イオン性基を形成可能な誘導体ということもできる。具体的な例を挙げると、アクリル酸エステルを使用しても、最終的なPVA系重合体(A)においては、アクリル酸又はその塩が導入されていればよい。そのため、アクリル酸エステルは、アクリル酸又はその塩に対応する骨格をPVA系重合体(A)を導入することとなる。
 これらのモノマーは、単独で又は2種以上組み合わせて使用してもよい。
 前記のように、例えば、このようなイオン性基を有する単量体とビニルエステルを共重合することにより得られる、イオン性基を含有するポリビニルエステル系重合体をケン化することにより、イオン性基を含有するPVA系重合体(B-2)を得ることができる。
 ((3)その他のイオン性基を導入可能な化合物に対応する骨格)
 このような骨格(3)において、イオン性を導入可能な化合物としては、前記のように、例えば、イオン性基を有するアルコール、イオン性基を有するカルボニル化合物(アルデヒド、ケトン等、特にアルデヒド等)、イオン性基を有するチオール等が挙げられる。これらは、通常、連鎖移動剤として機能してもよい。
 これらの中でも、連鎖移動性が高い(そのためイオン基を導入しやすい)等の観点で、チオールが好ましい。
 イオン性基を有するチオールとしては、例えば、酸基を有するチオール{例えば、カルボキシ基を有するチオール[例えば、メルカプト飽和脂肪酸(例えば、3-メルカプトプロピオン酸、メルカプトコハク酸等のメルカプトアルカン酸)等]、スルホン酸基を有するチオール[例えば、メルカプトアルカンスルホン酸(例えば、3-メルカプト-1-プロパンスルホン酸)]等}、これらの塩(例えば、3-メルカプト-1-プロパンスルホン酸ナトリウム)等が挙げられる。
 前記のように、例えば、このようなイオン性基を有する連鎖移動剤(アルコール、アルデヒド、チオール等)の存在下でビニルエステルを重合することにより、ビニルエステル系重合体の末端に連鎖移動剤由来のイオン性基を導入することができる。続いて、ビニルエステル系重合体をケン化することにより、末端にイオン性基を含有するPVA系重合体(B-3)を得ることができる。
 なお、PVA系重合体(A)は、アセタール骨格(a)やイオン性基を有するアセタール骨格の範疇に属さない他のアセタール骨格(アセタール基、アセタール単位)を有してもよい。
 このような他のアセタール骨格としては、前記式(a1)において、R’が、イオン性基及び重合性不飽和結合を有しない基(例えば、脂肪族基、芳香族基等)である骨格等が挙げられる。このような基としては、例えば、脂肪族基[例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基等のC1-30アルキル基)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等のC3-20シクロアルキル基等)等]、芳香族基[例えば、アリール基(例えば、フェニル基、ナフチル基等のC6-20アリール基)等]等が挙げられる。
 このような他のアセタール骨格の導入方法は、特に限定されず、慣用の方法を利用できるが、例えば、PVA系重合体(C)を他のアセタール骨格に対応するアルデヒドによりアセタール化する方法が挙げられる。なお、このような方法では、通常、隣接する2つのビニルアルコール単位に由来して他のアセタール骨格が形成される。
 このようなアルデヒドとしては、例えば、アルカナール[例えば、アセトアルデヒド、プロピオンアルデヒド、ブタナール、ペンタナール、ヘキサナール、ヘプタナール、オクタナール、ノナナール、デカナール、ウンデカナール、ドデカナール、2-メチルブタナール、2-エチルブタナール、2-メチルペンタナール、2-エチルヘキサナール]、シクロアルカンカルボアルデヒド[例えば、シクロペンタンカルボキシアルデヒド(シクロペンタンカルボアルデヒド)、シクロヘキサンカルボキシアルデヒド(シクロヘキサンカルボアルデヒド)等]等の脂肪族アルデヒドや、アレーンカルボアルデヒド(例えば、ベンズアルデヒド、ナフトアルデヒド等)等の芳香族アルデヒド等が挙げられる。
 PVA系重合体(A)は、少なくともビニルアルコール単位を有しているが、ビニルアルコール単位と加水分解(ケン化)されていない単位[例えば、ビニルエステル単位(又はビニルエステル系単量体由来の単位、例えば、酢酸ビニル単位等)]とを有していてもよい。
 その他、PVA系重合体(A)は、必要に応じて、他の単位(ビニルアルコール単位、加水分解されていない単位、アセタール骨格(a)、イオン性骨格(b)等の上記例示のもの以外の単位)を有していてもよい。このような単位としては、後述のPVA系重合体(C)の項で例示の他の単量体由来の単位等が挙げられる。
 PVA系重合体(A)のケン化度は、例えば、20モル%以上(例えば、25モル%以上)、好ましくは30モル%以上(例えば、35モル%以上)、さらに好ましくは40モル%以上(例えば、45モル%以上)、特に50モル%以上(例えば、55モル%以上、60モル%以上)であってもよい。
 PVA系重合体(A)のケン化度の上限値は、例えば、95モル%以下(例えば、93モル%以下)、好ましくは90モル%以下(例えば、88モル%以下)、さらに好ましくは85モル%以下(例えば、80モル%以下)であってもよい。
 具体的には、PVA系重合体(A)のケン化度は、例えば、20~90モル%(例えば、50~90モル%)、好ましくは55~85モル%、さらに好ましくは60~80モル%程度であってもよい。
 ケン化度が低すぎないと、水溶液の調製性や保管安定性、温水分散性が優れるため好ましい。ケン化度が高すぎないと、分散剤としての優れた性能を発揮しやすい(例えば、重安定性に優れ、平均粒子径が適切であったり、可塑剤吸収性が高い塩化ビニル系樹脂を効率よく得やすい)等の点で好ましい。
 なお、ケン化度(さらには重合度)は、例えば、JIS K 6726で規定されているPVAのケン化度(さらには重合度)測定方法により求められる。
 PVA系重合体(A)が、ビニルエステル単位を有する場合、イオン性骨格(b)の割合(モノマーユニット単位での割合)は、ビニルエステル単位100モルに対して、10モル以下、好ましくは5モル以下、さらに好ましくは3モル以下であってもよく、0.01モル以上(例えば、0.05モル以上、0.1モル以上)、好ましくは0.2モル以上、さらに好ましくは0.3モル以上であってもよい。
 このような割合であると、優れた水溶液の調製性や保管安定性等と、分散安定剤としての優れた性能とを両立させやすい。
 PVA系重合体(A)の(平均)重合度は、特に限定されないが、例えば、100以上(例えば、120以上)、好ましくは150以上(例えば、160以上)、さらに好ましくは180以上(例えば、200以上、220以上、250以上、280以上、300以上)等であってもよい。
 PVA系重合体(A)の(平均)重合度の上限値は、特に限定されないが、例えば、10000以下(例えば、8000以下、5000以下)程度の範囲から選択してもよく、3000以下(例えば、2500以下)、好ましくは2000以下(例えば、1500以下)、さらに好ましくは1000以下(例えば、800以下)であってもよい。
 具体的には、PVA系重合体(A)の(平均)重合度は、例えば、120~3000(例えば、200~2000)、好ましくは250~1500、さらに好ましくは300~1000程度であってもよい。
 PVA系重合体(A)の重合度が小さすぎなければ、重合安定性、スケール付着の抑制、得られるビニル系樹脂の粗大化抑制等の点で有利である。また、重合度が大きすぎなければ、水溶液の調製性や保管安定性、温水分散性に優れる等の点で有利である。
 PVA系重合体(A)の4質量%水溶液の曇点は、例えば、20℃以上(例えば、20℃超、22℃以上、23℃以上、24℃以上、25℃以上)であることが好ましく、27℃以上がより好ましく、30℃以上等であってもよい。
 PVA系重合体(A)の4質量%水溶液の曇点の上限値は、特に限定されないが、例えば、75℃、70℃、65℃、60℃、55℃、50℃等であってもよい。
 代表的には、PVA系重合体(A)の4質量%水溶液の曇点は、例えば、30~50℃等であってもよい。
 このような曇点であれば、水溶液の調製性や保管安定性に優れる。
 なお、4質量%水溶液の曇点は、PVA系重合体(A)のケン化度、重合度、イオン性骨格(イオン性基)の含有量等により調整することができる。
[水性液]
 PVA系重合体(A)は、そのまま分散安定剤(分散剤)等として使用してもよいし、水に溶解させた水性液として使用してもよい。
 本発明の水性液は、PVA系重合体(A)及び水を含んでいればよい。水性液は、例えば、PVA系重合体(A)を分散質として、水中に分散又は溶解させたものである。
 水性液において、PVA系重合体(A)の含有量は、特に限定されないが、例えば、1質量%以上(例えば、2質量%以上、3質量%以上)程度であってもよく、80質量%以下(例えば、70質量%以下、60質量%以下、50質量%以下、40質量%以下、30質量%以下)程度であってもよい。
 本発明の水性液は、良好な安定性を有する。
 水性液には、放置安定性向上の観点から水溶性の有機溶媒などが含まれていてもよい。水溶性有機溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノールなどのアルコール類;酢酸メチル、酢酸エチルなどのエステル類;エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのグリコール誘導体;などが挙げられる。なお、これら有機溶媒は2種以上を混合して使用してもよい。
 水溶性有機溶媒を含む場合、溶媒全体に対する水溶性有機溶媒の割合は、例えば、70質量%以下(例えば、60質量%以下)、好ましくは50質量%以下、さらに好ましくは30質量%以下であってもよく、特に、環境に対する配慮や作業性の向上の観点から、有機溶媒の含有量は、溶媒全体又は水性液に対して5質量%以下であることが好ましい。
[製造方法]
 本発明において、PVA系重合体(A)を製造する方法は特に限定されないが、例えば、PVA系重合体(B)を、重合性不飽和結合を有するアルデヒド等によりアセタール化することにより、PVA系重合体(A)を得ることができる。
 例えば、イオン性基を有するPVA系重合体(B-2またはB-3)を、重合性不飽和結合を有するカルボニル化合物(例えば、モノアルデヒド)でアセタール化反応を行うことにより、PVA系重合体(A)を得ることができる。
 また、PVA系重合体(C)を、重合性不飽和結合を有するカルボニル化合物(例えば、モノアルデヒド)と、イオン性基を有するカルボニル化合物(例えば、アルデヒド)を用いて、同時にアセタール化反応を行うことにより、PVA系重合体(A)を得ることができる。
 従って、PVA系重合体(A)を製造する工程は、PVA系重合体(C)あるいはイオン性基を有するPVA系重合体(B-2またはB-3)を製造する工程と、これらのPVA系重合体のうちいずれかをアセタール化する工程(アセタール化工程)に分けられる。
 PVA系重合体(C)やイオン性基を含有するPVA系重合体(B-2またはB-3)を製造する方法は、特に限定されず、従来公知の方法を用いることが出来る。
 以下、イオン性基を有するPVA系重合体(B-2またはB-3)及びPVA系重合体(C)、アセタール化工程について詳述する。
[PVA系重合体(B-2)、(B-3)及び(C)]
 PVA系重合体(C)としては、特に限定されないが、例えば、ビニルエステル系重合体をケン化(反応)することにより得られるPVA系重合体[ビニルエステル系重合体(ビニルエステル系単量体を重合成分とする重合体)のケン化物)]を使用することができる。
 なお、PVA系重合体(B-2)及び(B-3)は、例えば、後述のように、PVA系重合体(C)の製造において、それぞれ、イオン性基を有する単量体を含む他の単量体の使用、イオン性基を有する連鎖移動剤を含む連鎖移動剤の使用等により、得ることができる。
 該ビニルエステル系重合体は、少なくともビニルエステル系単量体を重合する(重合成分として重合する)ことにより得ることができる。重合方法としては、特に限定されないが、従来公知の方法に従って良いが、例えば、塊状重合、溶液重合、懸濁重合、乳化重合等が挙げられ、重合度の制御や重合後に行うケン化反応を考慮すると、メタノールを溶媒とした溶液重合、あるいは、水又は水/メタノールを分散媒とする懸濁重合が好ましいが、これらに限定されるものではない。
 前記重合に用いることができるビニルエステル系単量体としては、特に限定されないが、例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、カプリル酸ビニル、バーサチック酸ビニル等の脂肪酸ビニルエステル等を挙げることができ、これらのビニルエステル系単量体は1種又は2種以上使用することができる。これらの中でも酢酸ビニルが工業的観点から好ましい。
 ビニルエステル系単量体の重合に際して、本発明の効果を奏する限り、ビニルエステル系単量体を他の単量体と共重合させても差し支えない。換言すれば、ビニルエステル系重合体の重合成分は、ビニルエステル系単量体及び他の単量体を含んでいてもよい。
 使用しうる他の単量体としては、特に限定されないが、例えば、α-オレフィン(例えば、エチレン、プロピレン、n-ブテン、イソブチレン等)、(メタ)アクリル酸及びその塩、(メタ)アクリル酸エステル類[例えば、(メタ)アクリル酸アルキルエステル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸C1-20アルキル等)]、(メタ)アクリルアミド、(メタ)アクリルアミド誘導体(例えば、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等)、ビニルエーテル類(例えば、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のC1-20アルキルビニルエーテル等)、ニトリル類(例えば、アクリロニトリル、メタクリロニトリル等)、ハロゲン化ビニル類(例えば、塩化ビニル、フッ化ビニル等)、ハロゲン化ビニリデン類(例えば、塩化ビニリデン、フッ化ビニリデン等)、アリル化合物(例えば、酢酸アリル、塩化アリル等)、ビニルシリル化合物(例えば、ビニルトリメトキシシラン等)、脂肪酸アルケニルエステル(例えば、酢酸イソプロペニル等)等が挙げられる。これらの他の単量体は1種又は2種以上使用することができる。
 ここで、他の単量体として、イオン性基を有するモノマーを含む他の単量体を使用することで、PVA系重合体(B-2)を得ることができる。
 イオン性を有するモノマーとしては、前記例示のもの、例えば、酸基を有するモノマー[例えば、カルボキシ基を有する単量体[例えば、モノカルボン酸(例えば、アクリル酸、メタクリル酸、クロトン酸等の脂肪族不飽和モノカルボン酸)、ポリカルボン酸(例えば、イタコン酸、マレイン酸、フマル酸等の脂肪族不飽和ジカルボン酸)等]、スルホン酸基を有する単量体[例えば、アルケニルスルホン酸(例えば、ビニルスルホン酸、アリルスルホン酸)、アルケニルアレーンスルホン酸(例えば、スチレンスルホン酸)、スルホン酸基を有するアミド系モノマー(例えば、2-アクリルアミド-2-メチルプロパンスルホン酸)等]、その他のイオン性基を有するモノマー[例えば、アミノ基を有する単量体(例えば、(メタ)アクリルアミドプロピルジメチルアミン等)等]、これらの塩等が挙げられる。
 他の単量体を使用する場合、他の単量体の含有量は、使用する単量体等に応じて適宜選択すればよく、例えば、重合成分の総量に対して、例えば、0.1~20質量%等であってもよい。
 また、ビニルエステル系単量体の重合に際して、得られるビニルエステル系重合体の重合度を調節すること等を目的として、連鎖移動剤を共存させても差し支えない。
 連鎖移動剤としては、特に限定されないが、例えば、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ベンズアルデヒド等のアルデヒド類;アセトン、メチルエチルケトン、ヘキサノン、シクロヘキサノン等のケトン類;2-ヒドロキシエタンチオール、ドデシルメルカプタン、3-メルカプトプロピオン酸、メルカプトコハク酸、3-メルカプト-1-プロパンスルホン酸ナトリウム等のメルカプタン類;四塩化炭素、トリクロロエチレン、パークロロエチレン等の有機ハロゲン類が挙げられ、中でもアルデヒド類及びケトン類が好適に用いられる。
 ここで、連鎖移動剤として、イオン性基を有する連鎖移動剤を含む連鎖移動剤を使用することで、PVA系重合体(B-3)を得ることができる。
 イオン性基を有する連鎖移動剤としては、前記例示のもの、例えば、イオン性基を有するアルコール、イオン性基を有するカルボニル化合物、イオン性基を有するチオール{例えば、酸基を有するチオール[例えば、カルボキシ基を有するチオール[例えば、メルカプト飽和脂肪酸(例えば、3-メルカプトプロピオン酸、メルカプトコハク酸等のメルカプトアルカン酸)等]、スルホン酸基を有するチオール[例えば、メルカプトアルカンスルホン酸(例えば、3-メルカプト-1-プロパンスルホン酸)]、これらの塩(例えば、3-メルカプト-1-プロパンスルホン酸ナトリウム)等}等が挙げられる。
 連鎖移動剤の添加量は、添加する連鎖移動剤の連鎖移動定数及び目的とするビニルエステル系重合体の重合度に応じて決定されるが、一般に重合成分の総量に対して0.1~10質量%が望ましい。
 上述のようにして得られたビニルエステル系重合体をケン化反応することにより、PVA系重合体(C)(さらには、(B-2)、(B-3))を製造することができる。
 ビニルエステル系重合体のケン化反応の方法は、特に限定されないが、従来公知の方法に従ってよい。例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、塩酸、硫酸、硝酸、リン酸等の無機酸、ギ酸、酢酸、シュウ酸、p-トルエンスルホン酸等の有機酸等の酸性触媒を用いた、加アルコール分解ないし加水分解反応が適用できる。
 ケン化反応に用いられる溶媒としては、メタノール、エタノール等のアルコール類;酢酸メチル、酢酸エチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ベンゼン、トルエン等の芳香族炭化水素等が挙げられ、これらは単独で又は2種以上を組合せて用いることができる。
[アセタール化]
 本発明において、PVA系重合体[(C)、(B-2)、(B-3)]を、重合性不飽和結合を有するカルボニル化合物(アルデヒド等)やイオン性基を有するカルボニル化合物でアセタール化する方法は特に限定されず、公知のアセタール化方法を用いることができる。
 PVA系重合体(C)を重合性不飽和結合を有するカルボニル化合物及びイオン性基を有するカルボニル化合物でアセタール化することにより、PVA系重合体(A-1)を得ることができる。
 また、イオン性基を有するPVA系重合体(B-2、B-3)を、重合性不飽和結合を有するカルボニル化合物でアセタール化することにより、PVA系重合体(A-2、A-3)を得ることができる。
 アセタール化において、カルボニル化合物の使用量は、特に限定されないが、PVA系重合体100質量部に対して、例えば、0.05~50質量部、好ましくは0.1~20質量部、より好ましくは0.2~10質量部程度であってもよい。
 また、アセタール化反応は、酸性触媒の存在下で行うことが好ましい。酸性触媒としては、特に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の無機酸;ギ酸、酢酸、シュウ酸、p-トルエンスルホン酸等の有機酸等が挙げられる。
 酸性触媒の使用量は、特に限定されないが、PVA系重合体100質量部に対して、例えば0.1~10質量部である。
 具体的なアセタール化方法としては、例えば、(i)ビニルエステル系重合体をメタノールなどの溶媒中にて水酸化ナトリウムなどの塩基性触媒でケン化反応させ、PVA系重合体の溶液を得、その後アルデヒド等と酸性触媒を添加しアセタール化させ、その後塩基性物質で中和しPVA系重合体(A)の溶液を得る方法;(ii)ビニルエステル系重合体をメタノールなどの溶媒中でケン化触媒として酸性触媒の存在下でケン化反応させPVA系重合体とした後、アルデヒド等を添加し、ケン化反応で用いた酸性触媒をそのまま利用し、アセタール化反応させ、その後塩基性物質で中和し、PVA系重合体(A)の溶液を得る方法;(iii)ビニルエステル系重合体を溶媒中で酸性触媒とアルデヒド等の存在下でケン化反応と同時にアセタール化反応を行い、その後塩基性物質で中和しPVA系重合体(A)の溶液を得る方法;(iv)PVA系重合体の水性液にアルデヒド等を添加し酸性触媒の存在下で反応させ、その後塩基性物質で中和しPVA系重合体(A)の水性液を得る方法;(v)スラリー状又は粉末状のPVA系重合体に、アルデヒド等を直接添加又は有機溶剤若しくは水に溶解若しくは分散させた液体を添加し、酸性触媒の存在下で反応させ、その後塩基性物質で中和し、さらに余分な溶媒を除去してPVA系重合体(A)を得る方法;等が挙げられる。
 (i)~(iii)の方法では、その後溶媒を乾燥させ固体として得ることができるし、溶媒を水に置換して水性液にすることができる。
 (iv)の方法では、PVA系重合体(A)を水性液として得ることができるので、そのまま塩化ビニルの懸濁重合等に用いることができる。
 (v)のスラリー状態で反応させる方法は、PVA系重合体(A)を固体として得ることができるため取り扱いやすい。
 尚、(i)~(v)の方法において、PVA系重合体を水性液とする方法、ケン化、中和、溶解、分散及び乾燥の方法は、特に限定されず、常法を用いることができる。
 また、中和に用いる塩基性物質としては、特に制限されないが、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物等を挙げることができる。
 アセタール化反応の際の反応液のpHは、3.0以下が反応速度の観点から好ましく、1.0以下が更に好ましい。また、中和後の反応液のpHは、4.7~9.0が好ましく、7.0~8.5が更に好ましい。
[用途、ビニル系重合体の製造方法等]
 PVA系重合体(A)は、種々の用途(例えば、分散剤、フィルム用途等)に使用できるが、前記のように、特に分散安定剤[又は分散剤、例えば、重合(例えば、懸濁重合)用の分散安定剤(分散剤)]として好適に使用できる。
 そのため、以下では、本発明の分散安定剤(又はPVA系重合体(A)、以下同様)の使用ないし該分散安定剤を使用したビニル系単量体の重合(特に懸濁重合)によるビニル系重合体の製造方法について説明する。
 本発明における懸濁重合とは、水性媒体中にそれに不溶なビニル系単量体と油溶性の重合開始剤を添加し、攪拌することによって、ビニル系単量体を含有する微小な液滴を形成せしめ、この液滴中で重合を行う重合様式である。ここで使用できる水性媒体としては、特に限定されないが、例えば、水、各種の添加成分を含有する水溶液、水と相溶性を有する有機溶剤と水との混合溶媒等が挙げられる。
 本発明における上記のPVA系重合体(A)は、ビニル系単量体の懸濁重合を行う際に分散安定剤として使用することができる。該ビニル系単量体としては、特に限定されないが、例えば、塩化ビニル、塩化ビニリデン、スチレン、アクリル酸エステル、メタクリル酸エステル、酢酸ビニル、アクリロニトリル等の一般的に懸濁重合が適用されるビニル系単量体が好ましく、中でも、塩化ビニル系単量体が特に好ましい。
 塩化ビニル系単量体としては、例えば、塩化ビニル単量体(塩化ビニル)が挙げられ、また、塩化ビニル単量体とこれに共重合し得る他の単量体との混合物が挙げられる。塩化ビニル単量体に共重合し得る他の単量体としては、例えば、塩化ビニリデン、酢酸ビニル、エチレン、プロピレン、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、スチレン、ビニルアルコキシシラン、マレイン酸、ヒドロキシアルキルアクリレート、アリルスルホン酸、ビニルスルホン酸等の単量体が挙げられる。
 したがって、本発明の分散安定剤は、塩化ビニル系単量体(特に塩化ビニル)を含むビニル系単量体の懸濁重合に好適であり、特に、懸濁重合による塩化ビニルの単独重合に好適に用いることができ、また、懸濁重合による塩化ビニルと共重合可能な公知の単量体から選ばれる1種以上と塩化ビニルとの二元ないしそれ以上の多元共重合にも使用することができ、中でも懸濁重合による塩化ビニルと酢酸ビニルとの共重合における分散安定剤として、特に好適に使用することができる。
 塩化ビニルを含むビニル系単量体を懸濁重合させることにより、塩化ビニル系樹脂を得ることができる。塩化ビニル系樹脂の製造においては、使用するビニル系単量体総量に対して、50~100モル%(又は50~100質量%)が塩化ビニルであることが好ましい。
 ビニル系単量体の懸濁重合における重合開始剤も、公知のものでよく、例えば、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物、ベンゾイルパーオキサイド、t-ブチルパーオキシネオデカノエート、α-クミルパーオキシネオデカノエート、t-ブチルパーオキシデカノエート等のパーエステル化合物、アセチルシクロヘキシルスルホニルパーオキシド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等の過酸化物、2,2’-アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルパーオキシド、ラウロイルパーオキサイド等が挙げられ、さらには、これらに過硫酸カリウム、過硫酸アンモニウム、過酸化水素等を組み合わせて使用することもできる。
 ビニル系単量体の懸濁重合における分散安定剤の主な役割としては、ビニル系単量体及びその重合体からなる液滴を安定させ、液滴で生成した重合体粒子同士が液滴間で融着して大きな塊が生成するのを防止することであるが、本発明の分散安定剤は、分散性能に優れているため、少ない使用量で安定した液滴を形成することができ、上記の融着による塊の生成を防止することができる。
 なお、液滴が安定するとは、細かくかつほぼ均一なサイズの液滴が懸濁重合の分散媒体中に安定して分散することを意味する。
 ビニル系単量体の懸濁重合において、本発明の分散安定剤(又はPVA系重合体(A))の使用量は、特に制限はないが、通常は、ビニル系単量体100質量部に対して5質量部以下であり、0.005~1質量部が好ましく、0.01~0.2質量部がさらに好ましい。本発明の分散安定剤も通常の分散安定剤と同様に、ビニル系単量体を仕込む前に、懸濁重合の分散媒体にあらかじめ常法を用いて溶解させて使用することが一般的である。
 ビニル系単量体の懸濁重合における分散安定剤としては、本発明の分散安定剤を単独で使用してもよいが、他の分散安定剤を併用してもよく、そのような他の分散安定剤としては、塩化ビニル等のビニル系単量体を水性媒体中で懸濁重合する際に使用される公知の分散安定剤、例えば、平均重合度100~4500、ケン化度30~100モル%のPVAや本発明以外の変性PVA系重合体、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の水溶性セルロースエーテル、ゼラチン等の水溶性ポリマー、ソルビタンモノラウレート、ソルビタントリオレート、グリセリントリステアレート、エチレンオキシドプロピレンオキシドブロックポリマー等の油溶性乳化物、ポリオキシエチレングリセリンオレート、ラウリン酸ナトリウム等の水溶性乳化剤等が挙げられる。これらの他の分散剤は、それらのうちの1種類を用いてもよく、2種類以上を同時に用いてもよい。
 本発明においては、分散安定剤として、重合度、ケン化度が異なる2種類もしくはそれ以上のPVA系重合体を組み合わせて使用することが好ましく、そのうちの1種類以上を本発明の分散安定剤であるPVA系重合体(A)とするのが好ましい。より好ましくは、重合度が1700以上の分散安定性の高いPVA系重合体と重合度が1000以下のPVA系重合体とを組み合わせて使用し、そのうちの1種以上を、本発明のPVA系重合体(A)とする。
 本発明の分散安定剤を用いる懸濁重合においては、公知である種々の分散助剤を併用することも可能である。かかる分散助剤としては、ケン化度が、好ましくは30~60モル%、より好ましくは35~55モル%の低ケン化度PVA等が用いられる。また、該分散助剤は、平均重合度が、好ましくは160~900、より好ましくは200~500のPVA等が用いられる。
 分散助剤以外にも、連鎖移動剤、重合禁止剤、pH調整剤、スケール防止剤、架橋剤等のビニル系化合物の懸濁重合において公知の各種添加剤を併用しても差し支えない。
 懸濁重合における重合温度に制限はなく、使用するビニル系単量体の種類、目標とする重合体の重合度、重合収率等に応じて任意に選択可能であるが、通常は、40~70℃であることが好ましい。重合時間も特に制限はなく、目標とする重合収率等に応じて適宜設定すればよい。
 上述した本発明の製造方法で得られるビニル系重合体は、各種成形品等に加工可能である。特に、塩化ビニル系樹脂は、例えば、平均粒子径が適切な範囲にあり、また可塑剤吸収性に優れるものを効率よく得ることができ、各種成形品への加工性が良好である場合が多い。
 以下に実施例を挙げて、本発明をさらに詳しく具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
 なお、以下の実施例及び比較例において「%」及び「部」は、特に断りのない限り、「質量%」及び「質量部」を意味する。
 はじめに、本実施例におけるPVA水溶液の曇点の測定方法及び保管安定性の評価方法並びに塩化ビニル重合体(塩化ビニル樹脂)の評価方法を以下に示す。
(PVA水溶液の曇点の測定方法)
 温度20℃の4%PVA水溶液を光路長1mmの石英セルに入れ、温度20℃から2℃/分の昇温速度で430mmの透過率を連続的に測定し、透過率がブランク(純水)に対して50%となる温度を曇点とした。
(PVA水溶液の保管安定性の評価方法)
 4%PVA水溶液を入れたビーカーを30℃の恒温水槽に入れ、24時間経過後の水溶液の状態を目視で確認し、以下の基準で評価した。
〇:水溶液は均一の状態を維持した。
×:水溶液は二層に分離した。
(塩化ビニル重合体の評価)
 塩化ビニル重合体について、平均粒子径、可塑剤吸収性、スケール付着量を次のようにして評価した。
<平均粒子径>
 ロータップ式振動篩(JIS篩を使用)により粒度分布を測定し、平均粒子径を求めた。
<可塑剤吸収性>
 底にグラスファイバーを詰めた円筒状容器に得られた樹脂を入れ、過剰のジオクチルフタレート(以下、DOPと略記する)を加え、30分放置することによって樹脂にDOPを浸透させた後、3000rpmで遠心分離することによって余分なDOPを除去した後、樹脂の重量を測定して、重合体100部あたりのDOP吸収量を算出した。DOP吸収量が大きいほど、可塑剤吸収性がよく、成形加工性に優れることを示す。
<スケール付着量>
 重合体スラリーを重合機から取り出した後の重合機の内壁におけるスケールの付着状態を目視観察し、以下の基準で評価した。
◎:スケールの付着がないか又はほとんどない
〇:スケールの付着が少ない
×:白色のスケール付着が著しい
[実施例1]
(PVA系重合体(C)の合成)
 攪拌機、コンデンサー、窒素ガス導入口及び開始剤投入口を備えた反応機に、予めメタノール55部及び酢酸ビニルモノマー45部を仕込み、系内に窒素ガスを流通させながら60℃に昇温し、開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)の1%メタノール溶液を5部添加し、重合を開始した。
 重合中は系を60℃に保持し、系内に窒素ガスを流しつつ、酢酸ビニルモノマー90部を重合開始直後から4時間にわたって連続的に加えた。重合開始から1時間の時点と2時間の時点で、ADVNの1%メタノール溶液をそれぞれ1部ずつ加えた。酢酸ビニルの反応収率が85%になった時点で系を冷却し、重合を終了した。得られた重合物にメタノール蒸気を加えながら、残存する酢酸ビニルモノマーを留出し、ポリ酢酸ビニルの50%メタノール溶液を得た。
 次に、上記で得られたポリ酢酸ビニルの50%メタノール溶液100部に、酢酸メチル14部、水酸化ナトリウムの3%メタノール溶液5部を加えてよく混合し、40℃でケン化反応を行った。得られたゲル状物を粉砕し、酢酸で中和後、乾燥した。分析の結果、ケン化度71モル%、平均重合度600のPVA系重合体(C)の粉末を得た。
(PVA系重合体(A-1)の合成)
 上記で得られたPVA系重合体(C)の粉末100部をメタノール150部と酢酸メチル300部の混合溶媒に浸漬し、4-ホルミル安息香酸の10%メタノール溶液10部及びアクロレイン0.8部を加え、そのまま50℃で1時間保持した後、p-トルエンスルホン酸の50%メタノール溶液5部を添加し、50℃で1時間反応を行った。
 次いで、水酸化ナトリウムの5%メタノール溶液10部で中和した。中和後のpHは、7.5であった。
 続いて、遠心分離により溶媒を除去した後、窒素雰囲気下にて80℃で5時間乾燥しPVA系重合体(A-1)を得た。このPVA系重合体(A-1)の分析値は、ケン化度72モル%、重合度600、4%水溶液の曇点は、35℃であった。なお、ケン化度及び重合度は、JIS K 6726に規定されている方法に従って測定した。
 また、d6-DMSO溶媒に溶解させてH-NMR測定を行ったところ、5.8、5.4、5.2ppmにアクロレインに由来する二重結合プロトン、7.8、7.5ppmに4-ホルミル安息香酸に由来する芳香族プロトンのシグナルが観測された。このシグナル強度から求めたアクロレインの含有量は0.5モル%、4-ホルミル安息香酸の含有量は0.1モル%であった。なお、4%PVA水溶液を30℃で24時間保持しても、水溶液は均一の状態を保った。
(塩化ビニルの懸濁重合)
 上記で得られたPVA系重合体(A-1)を、分散安定剤として用いて、以下に示す条件にて塩化ビニルの懸濁重合を行った。
 耐圧のステンレス製重合機に、脱イオン水120部及び上記で得られたPVA系重合体(A-1)の4%水溶液を1.5部(塩化ビニル単量体100部に対して、PVA系重合体(A-1)0.06部)仕込んだ。次に、真空ポンプで重合器内を50mmHgとなるまで減圧し、脱気した後、塩化ビニル単量体100部を仕込み、さらに重合開始剤としてt-ブチルパーオキシネオデカノエート0.06部を仕込んだ後、攪拌を行い、昇温を開始した。重合機の内温を57℃に維持しながら懸濁重合を行い、塩化ビニルの転化率が88%に達した時点で重合反応を停止した。そして、未反応単量体を減圧トラップにより回収した後、重合体スラリーを重合機から抜き出し、脱水、乾燥して塩化ビニル重合体(塩化ビニル樹脂)を得た。
[実施例2~18、参考例1~3]
 重合条件、ケン化条件、アセタール化反応に用いるアルデヒドの種類、使用量等を適宜変えた以外は、実施例1と同様にして表1に示すPVA系重合体(A-1)を合成した。
 得られたPVA系重合体(A-1)を用いて、実施例1と同様にして塩化ビニルの懸濁重合を行い、塩化ビニル重合体を得た。
 なお、参考例1では、アセタール化反応を行っていないため、PVA系重合体(C)をPVA系重合体(A-1)として用いた(すなわち、PVA系重合体(C)とPVA系重合体(A-1)は同じである)。
 PVA系重合体(A-1)、得られた塩化ビニル重合体の評価結果をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000010
 上記表に示されるように、実施例1~18で得られたPVA系重合体(A-1)は、水溶液の調製性や保管安定性、温水への分散性が良好であった。また、塩化ビニルの懸濁重合に用いた際、重合安定性に優れ、平均粒子径が適切な範囲で、可塑剤吸収量が大きい塩化ビニル樹脂を得ることが出来た。
[実施例19]
(PVA系重合体(B-2)の合成)
 攪拌機、コンデンサー、窒素ガス導入口及び開始剤投入口を備えた反応機に、予めメタノール55部及び酢酸ビニルモノマー45部を仕込み、系内に窒素ガスを流通させながら60℃に昇温し、開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)の1%メタノール溶液を6部添加し、重合を開始した。
 重合中は系を60℃に保持し、系内に窒素ガスを流しつつ、酢酸ビニルモノマー90部及び20%イタコン酸のメタノール溶液2部を重合開始直後から4時間にわたって連続的に加えた。重合開始から1時間の時点と2時間の時点で、ADVNの1%メタノール溶液をそれぞれ1.2部ずつ加えた。酢酸ビニルの反応収率が85%になった時点で系を冷却し、重合を終了した。得られた重合物にメタノール蒸気を加えながら、残存する酢酸ビニルモノマーを留出し、ポリ酢酸ビニルの50%メタノール溶液を得た。
 次に、上記で得られたポリ酢酸ビニルの50%メタノール溶液100部に、酢酸メチル14部、水酸化ナトリウムの3%メタノール溶液6部を加えてよく混合し、40℃でケン化反応を行った。得られたゲル状物を粉砕し、酢酸で中和後、乾燥した。分析の結果、ケン化度71モル%、平均重合度600、イタコン酸含有量0.2モル%のPVA系重合体(B-2)の粉末を得た。
(PVA系重合体(A-2)の合成)
 アセタール化反応に用いるアルデヒドをアクロレインのみに変更した以外は実施例1と同様にして表2に示すPVA系重合体(A-2)を合成した。
(塩化ビニルの懸濁重合)
 得られたPVA系重合体(A-2)を用いて、実施例1と同様にして塩化ビニルの懸濁重合を行い、塩化ビニル重合体を得た。
[実施例20~24、参考例4~5]
 各種条件を適宜変えた以外は、実施例19と同様にして表2に示すPVA系重合体(A-2)を合成した。
 得られたPVA系重合体(A-2)を用いて、実施例1と同様にして塩化ビニルの懸濁重合を行い、塩化ビニル重合体を得た。
 なお、参考例4~5では、アセタール化反応を行っていないため、PVA系重合体(B-2)をPVA系重合体(A-2)として用いた(すなわち、PVA系重合体(B-2)とPVA系重合体(A-2)は同じである)。
 PVA系重合体(A-2)、得られた塩化ビニル重合体の評価結果をまとめて表2に示す。なお、表中、「AMPS」は、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウムである。
Figure JPOXMLDOC01-appb-T000011
 上記表に示されるように、実施例19~24で得られたPVA系重合体(A-2)は、水溶液の調製性や保管安定性、温水への分散性が良好であった。また、塩化ビニルの懸濁重合に用いた際、重合安定性に優れ、平均粒子径が適切な範囲で、可塑剤吸収量が大きい塩化ビニル樹脂を得ることが出来た。
[実施例25]
(PVA系重合体(B-3)の合成)
 攪拌機、コンデンサー、窒素ガス導入口及び開始剤投入口を備えた反応機に、予めメタノール20部及び酢酸ビニルモノマー80部、3-メルカプトプロピオン酸0.02部を仕込み、系内に窒素ガスを流通させながら60℃に昇温し、開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)の1%メタノール溶液を1.5部添加し、重合を開始した。
 重合中は系を60℃に保持し、系内に窒素ガスを流しつつ、3-メルカプトプロピオン酸の10%メタノール溶液2部を重合開始直後から4時間にわたって連続的に加えた。更に重合開始から1時間の時点と2時間の時点で、ADVNの1%メタノール溶液をそれぞれ0.5部ずつ加えた。酢酸ビニルの反応収率が80%になった時点で系を冷却し、重合を終了した。得られた重合物にメタノール蒸気を加えながら、残存する酢酸ビニルモノマーを留出し、ポリ酢酸ビニルの50%メタノール溶液を得た。
 次に、上記で得られたポリ酢酸ビニルの50%メタノール溶液100部に、酢酸メチル14部、水酸化ナトリウムの3%メタノール溶液6部を加えてよく混合し、40℃でケン化反応を行った。得られたゲル状物を粉砕し、酢酸で中和後、乾燥した。分析の結果、ケン化度71モル%、平均重合度600、3-メルカプトプロピオン酸含有量0.2モル%のPVA系重合体(B-3)の粉末を得た。
(PVA系重合体(A-3)の合成)
 アセタール化反応に用いるアルデヒドをアクロレインのみに変更した以外は実施例1と同様にして表3に示すPVA系重合体(A-3)を合成した。
(塩化ビニルの懸濁重合)
 得られたPVA系重合体(A-3)を用いて、実施例1と同様にして塩化ビニルの懸濁重合を行い、塩化ビニル重合体を得た。
[実施例26~28、参考例6]
 各種条件を適宜変えた以外は、実施例25と同様にして表3に示すPVA系重合体(A-3)を合成した。
 得られたPVA系重合体(A-3)を用いて、実施例1と同様にして塩化ビニルの懸濁重合を行い、塩化ビニル重合体を得た。
 なお、参考例6では、アセタール化反応を行っていないため、PVA系重合体(B-3)をPVA系重合体(A-3)として用いた(すなわち、PVA系重合体(B-3)とPVA系重合体(A-3)は同じである)。
 PVA系重合体(A-3)、得られた塩化ビニル重合体の評価結果をまとめて表2に示す。なお、表中、「MPS」は3-メルカプト-1-プロパンスルホン酸ナトリウムである。
Figure JPOXMLDOC01-appb-T000012
 上記表に示されるように、実施例25~28で得られたPVA系重合体(A-3)は、水溶液の調製性や保管安定性、温水への分散性が良好であった。また、塩化ビニルの懸濁重合に用いた際、重合安定性に優れ、平均粒子径が適切な範囲で、可塑剤吸収量が大きい塩化ビニル樹脂を得ることが出来た。
 本発明では特定のポリビニルアルコール系重合体を提供できる。このような重合体は、分散安定剤(分散剤)等として好適に使用できる。

Claims (24)

  1.  (a)重合性不飽和結合を有するアセタール骨格及び(b)イオン性骨格を有するポリビニルアルコール系重合体(A)を含有する分散安定剤。
  2.  アセタール骨格(a)が、下記式(a1)で示される骨格を含む、請求項1記載の剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R’は重合性不飽和結合を有する基を示す。)
  3.  ポリビニルアルコール系重合体(A)において、アセタール骨格(a)の含有量が、モノマーユニットあたり0.05~5モル%である請求項1又は2記載の剤。
  4.  イオン性骨格(b)が、下記式(b1)で示される骨格を含む請求項1~3のいずれかに記載の剤。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rはイオン性基を有する基を示す。)
  5.  イオン性骨格(b)が、式(b1)において、Rがイオン性基を有する炭化水素基である骨格を含む、請求項4記載の剤。
  6.  イオン性骨格(b)が、前記式(b1)においてRがイオン性基である骨格、及び下記式(b1-1)で示される骨格から選択された少なくとも1種の骨格を含む、請求項1~5のいずれかに記載の剤。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R~Rは、水素原子又は置換基を示す。ただし、R~Rの少なくとも1つは、イオン性基である。)
  7.  イオン性基が、酸基及びその塩から選択された少なくとも1種を有する、請求項4~6のいずれかに記載の剤。
  8.  イオン性骨格(b)が、イオン性基を有する単量体及びイオン性基を有する連鎖移動剤から選択された少なくとも1種に対応する骨格を含む、請求項1~7のいずれかに記載の剤。
  9.  イオン性骨格(b)が、カルボキシ基を有する単量体、スルホン酸基を有する単量体、及びこれらの塩から選択された少なくとも1種の単量体に対応する骨格を含む、請求項1~8のいずれかに記載の剤。
  10.  イオン性骨格(b)が、カルボキシ基を有するチオール、スルホン酸基を有するチオール、及びこれらの塩から選択された少なくとも1種のチオールに対応する骨格を含む、請求項1~9のいずれかに記載の剤。
  11.  ポリビニルアルコール系重合体(A)において、イオン性骨格(b)の含有量が、モノマーユニットあたり0.01~5モル%である請求項1~10のいずれかに記載の剤。
  12.  ポリビニルアルコール系重合体(A)において、アセタール骨格(a)の割合が、イオン性骨格(b)1モルに対して、2~15モルである請求項1~11のいずれかに記載の剤。
  13.  ポリビニルアルコール系重合体(A)において、イオン性骨格(b)の割合が、ビニルエステル単位100モルに対して、0.2~5モルである、請求項1~12のいずれかに記載の剤。
  14.  ポリビニルアルコール系重合体(A)のケン化度が50~90モル%である請求項1~13のいずれかに記載の剤。
  15.  ポリビニルアルコール系重合体(A)の重合度が200~2000である請求項1~14のいずれかに記載の剤。
  16.  ポリビニルアルコール系重合体(A)の4質量%水溶液の曇点が25℃以上である、請求項1~15のいずれかに記載の剤。
  17.  重合用分散安定剤である、請求項1~16のいずれかに記載の剤。
  18.  懸濁重合用分散安定剤である、請求項1~17のいずれかに記載の剤。
  19.  塩化ビニルを含むビニル系単量体の懸濁重合用分散安定剤である、請求項1~18のいずれかに記載の剤。
  20.  請求項1~19のいずれかに記載のポリビニルアルコール系重合体(A)。
  21.  請求項1~19のいずれかに記載のポリビニルアルコール系重合体(A)又は剤を含有する水性液。
  22.  請求項1~19のいずれかに記載のポリビニルアルコール系重合体(A)又は剤の存在下で、ビニル系単量体を重合する、ビニル系重合体の製造方法。
  23.  重合が懸濁重合である、請求項22記載の製造方法。
  24.  塩化ビニルを含むビニル系単量体を懸濁重合する、請求項22又は23記載の製造方法。
PCT/JP2022/026647 2021-07-07 2022-07-04 分散安定剤及びビニル系重合体の製造方法 WO2023282239A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280047193.9A CN117597414A (zh) 2021-07-07 2022-07-04 分散稳定剂及乙烯基聚合物的制备方法
EP22837654.7A EP4368644A1 (en) 2021-07-07 2022-07-04 Dispersion stabilizer and method for producing vinyl polymer
JP2023533127A JPWO2023282239A1 (ja) 2021-07-07 2022-07-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021113195 2021-07-07
JP2021-113195 2021-07-07

Publications (1)

Publication Number Publication Date
WO2023282239A1 true WO2023282239A1 (ja) 2023-01-12

Family

ID=84800727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026647 WO2023282239A1 (ja) 2021-07-07 2022-07-04 分散安定剤及びビニル系重合体の製造方法

Country Status (5)

Country Link
EP (1) EP4368644A1 (ja)
JP (1) JPWO2023282239A1 (ja)
CN (1) CN117597414A (ja)
TW (1) TWI828202B (ja)
WO (1) WO2023282239A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655403A (en) * 1979-10-13 1981-05-16 Denki Kagaku Kogyo Kk Suspension stabilizer for vinyl compound
JPS58191702A (ja) * 1982-05-01 1983-11-09 Dai Ichi Kogyo Seiyaku Co Ltd 変性ポリビニルアセタ−ルの製造法
JPH08120008A (ja) * 1994-10-19 1996-05-14 Tokuyama Sekisui Ind Corp 塩素化塩化ビニル系樹脂の製造方法
WO2012114441A1 (ja) * 2011-02-21 2012-08-30 電気化学工業株式会社 懸濁重合用分散剤、塩化ビニル系樹脂及びその製造方法
WO2015182567A1 (ja) * 2014-05-28 2015-12-03 日本酢ビ・ポバール株式会社 懸濁重合用分散安定剤、ビニル系重合体の製造方法及び塩化ビニル樹脂
WO2017094698A1 (ja) * 2015-12-04 2017-06-08 日本酢ビ・ポバール株式会社 懸濁重合用分散助剤およびそれを用いるビニル系重合体の製造方法、並びに塩化ビニル樹脂
WO2018124241A1 (ja) * 2016-12-28 2018-07-05 株式会社クラレ ポリビニルアルコール組成物及びその用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7140964B2 (ja) * 2017-06-05 2022-09-22 セントラル硝子株式会社 含フッ素単量体、含フッ素重合体およびそれを用いたパターン形成用組成物、並びにそのパターン形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655403A (en) * 1979-10-13 1981-05-16 Denki Kagaku Kogyo Kk Suspension stabilizer for vinyl compound
JPS58191702A (ja) * 1982-05-01 1983-11-09 Dai Ichi Kogyo Seiyaku Co Ltd 変性ポリビニルアセタ−ルの製造法
JPH08120008A (ja) * 1994-10-19 1996-05-14 Tokuyama Sekisui Ind Corp 塩素化塩化ビニル系樹脂の製造方法
WO2012114441A1 (ja) * 2011-02-21 2012-08-30 電気化学工業株式会社 懸濁重合用分散剤、塩化ビニル系樹脂及びその製造方法
WO2015182567A1 (ja) * 2014-05-28 2015-12-03 日本酢ビ・ポバール株式会社 懸濁重合用分散安定剤、ビニル系重合体の製造方法及び塩化ビニル樹脂
WO2017094698A1 (ja) * 2015-12-04 2017-06-08 日本酢ビ・ポバール株式会社 懸濁重合用分散助剤およびそれを用いるビニル系重合体の製造方法、並びに塩化ビニル樹脂
WO2018124241A1 (ja) * 2016-12-28 2018-07-05 株式会社クラレ ポリビニルアルコール組成物及びその用途

Also Published As

Publication number Publication date
TW202307028A (zh) 2023-02-16
CN117597414A (zh) 2024-02-23
JPWO2023282239A1 (ja) 2023-01-12
EP4368644A1 (en) 2024-05-15
TWI828202B (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
US10301402B2 (en) Dispersion stabilizer for suspension polymerization, production method for vinyl-based polymer, and vinyl chloride resin
TWI582115B (zh) 懸浮聚合用分散安定劑及乙烯系樹脂之製造方法
JP4223545B2 (ja) ビニル化合物の懸濁重合用分散安定剤およびビニル化合物重合体の製造方法
JP5548677B2 (ja) 懸濁重合用分散安定剤
JP7375808B2 (ja) ポリビニルアルコール系樹脂、ポリビニルアルコール系樹脂の製造方法、分散剤及び懸濁重合用分散剤
JPWO2018096937A1 (ja) 変性ビニルアルコール系重合体及びその製造方法
CN108290968B (zh) 悬浮聚合用分散助剂、使用该分散助剂的乙烯系聚合物的制造方法以及氯乙烯树脂
EP3536714B1 (en) Dispersion assistant for suspension polymerization and method for producing vinyl-based polymer using the same
WO2023282239A1 (ja) 分散安定剤及びビニル系重合体の製造方法
WO2023282240A1 (ja) 分散安定剤及びビニル系重合体の製造方法
JPWO2019004352A1 (ja) 変性ポリビニルアルコール樹脂の製造方法
JP6866130B2 (ja) 懸濁重合用分散助剤およびそれを用いるビニル系重合体の製造方法、並びに塩化ビニル樹脂
JP5465635B2 (ja) ビニル系化合物の懸濁重合用分散安定剤
JP5548678B2 (ja) ビニル系樹脂の製造方法
JP2023174786A (ja) 懸濁重合用分散助剤およびその水性液、並びに、それらを用いるビニル系樹脂の製造方法
JP2013224384A (ja) ポリビニルアセタール系樹脂の製造方法
JPWO2008059763A1 (ja) 一酸化炭素−ビニルアルコール系共重合体の製造方法ならびに一酸化炭素−ビニルアルコール系共重合体とこれを用いた耐水性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837654

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533127

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280047193.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022837654

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022837654

Country of ref document: EP

Effective date: 20240207

NENP Non-entry into the national phase

Ref country code: DE