WO2023282216A1 - コンクリートの打設方法 - Google Patents

コンクリートの打設方法 Download PDF

Info

Publication number
WO2023282216A1
WO2023282216A1 PCT/JP2022/026530 JP2022026530W WO2023282216A1 WO 2023282216 A1 WO2023282216 A1 WO 2023282216A1 JP 2022026530 W JP2022026530 W JP 2022026530W WO 2023282216 A1 WO2023282216 A1 WO 2023282216A1
Authority
WO
WIPO (PCT)
Prior art keywords
coarse aggregate
coarse
metal
mortar
aggregate
Prior art date
Application number
PCT/JP2022/026530
Other languages
English (en)
French (fr)
Inventor
順一 柴田
Original Assignee
株式会社I・B・H柴田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022028649A external-priority patent/JP7083556B1/ja
Application filed by 株式会社I・B・H柴田 filed Critical 株式会社I・B・H柴田
Publication of WO2023282216A1 publication Critical patent/WO2023282216A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/34Metals, e.g. ferro-silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/18Spacers of metal or substantially of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast

Definitions

  • the present invention relates to a concrete placing method.
  • Concrete is usually made by mixing cement, water, coarse aggregate (crushed stone and gravel) and fine aggregate (sand), so-called ready-mixed concrete, and solidifying it based on the hydration reaction between water and cement. It is widely used as a building material.
  • Concrete has the disadvantage that its tensile strength is very low at about 1/10 to 1/13 compared to its compressive strength.
  • it is common to arrange reinforcing bars in a matrix in the concrete but as a new coarse aggregate that can improve not only compressive strength but also tensile strength, metal A roughly tetrahedral coarse aggregate has been proposed (Patent Document 1). Since this coarse aggregate exhibits an anchoring effect in mortar due to its substantially tetrahedral outer shape, it is possible to improve tensile strength and shear strength compared to conventional coarse aggregate.
  • the coarse aggregate is made by passing a thin wire of No. 20 or more through the metal coarse aggregate body.
  • a wire has been proposed in which a wire can be easily wound (Patent Document 2). According to this coarse aggregate, the wire is wound around the main body of the coarse aggregate during stirring of the ready-mixed concrete. It is difficult to settle, and the dispersibility of coarse aggregate is improved.
  • the tensile strength of the coarse aggregate itself is too strong compared to the strength of the concrete mortar portion, so the interface between the coarse aggregate and mortar may separate and break the mortar part, and the coarse aggregate may not contribute to improving the tensile strength of concrete.
  • Patent Document 3 In order to further improve the adhesion between mortar and coarse aggregate, prevent breakage of the mortar part, and improve the tensile strength of concrete, coarse aggregate made by molding metal mesh material into hollow spheres is used. It has been proposed (Patent Document 3).
  • water, cement, sand, and coarse aggregate are mixed in advance in a mixer to prepare ready-mixed concrete, which is then poured into a formwork and compacted using a vibrator. is done.
  • the object of the present invention is to enable a predetermined amount of coarse aggregate to be driven into the formwork with a simple method and with as little labor as possible.
  • the inventor of the present invention previously filled the formwork with coarse metal aggregate that is bulkier than gravel and has rigidity that does not deform under its own weight, and then poured mortar into the formwork while vibrating it.
  • a method of placing concrete for filling is provided.
  • the metal coarse aggregate is bulkier than gravel, for example, a compressive strength test (JIS A 1108 concrete compressive strength test method) or a tensile strength test (JIS A 1113 concrete splitting tensile strength test method)
  • the weight of gravel in a cylindrical container with an inner diameter of 10 cm and a depth of 20 cm is about 2.5 kg. In particular, it means 1 kg or less.
  • the formwork is filled with coarse metal aggregate that is bulkier than gravel, and then the formwork is filled with mortar while being vibrated. can be filled into the formwork.
  • the mortar when the mortar is filled while vibrating, the mortar can enter the gaps in the bulky coarse aggregates and the gaps between the coarse aggregates. Even if the vibration is continued, the mortar does not enter the form any more, and the concrete is compacted. In this way, a mixer is not required, and concrete can be placed easily in terms of equipment and labor.
  • FIG. 1A is a perspective view of a coarse metal aggregate 10A that can be used in the present invention.
  • FIG. 1B is a perspective view of a coarse metal aggregate 10B that can be used in the present invention.
  • FIG. 1C is a perspective view of a coarse metal aggregate 10C that can be used in the present invention.
  • FIG. 1D is a perspective view of a coarse metal aggregate 10D that can be used in the present invention.
  • FIG. 1E is a perspective view of a coarse metal aggregate 10E that can be used in the present invention.
  • FIG. 1F is a perspective view of a coarse metal aggregate 10F that can be used in the present invention.
  • FIG. 1G is a perspective view of a coarse metal aggregate 10G that can be used in the present invention.
  • FIG. 1G is a perspective view of a coarse metal aggregate 10G that can be used in the present invention.
  • FIG. 1H is a perspective view of a coarse metal aggregate 10H that can be used in the present invention.
  • FIG. 2A is an explanatory diagram of a method for fabricating a specimen.
  • FIG. 2B is an explanatory diagram of a method for producing a specimen.
  • FIG. 2C is an explanatory diagram of a method for fabricating a specimen.
  • FIG. 2D is an explanatory diagram of a method for fabricating a specimen.
  • the method of placing concrete according to the present invention is roughly a method in which coarse metal aggregates are preliminarily filled into a formwork, and then mortar is filled into the formwork while being vibrated.
  • the coarse metal aggregate used in the present invention is bulkier than gravel and has a rigidity that does not deform under its own weight.
  • the fact that the metal coarse aggregate is bulkier than the gravel means that the weight when filled in a container of a predetermined capacity is lighter than the gravel, as described above.
  • Such coarse aggregates include metal coarse aggregates described in Patent Documents 1, 2, and 3, wire coarse aggregates described in Japanese Patent Application No. 2022-28649, and Japanese Patent Application No. 2022-89107. Coarse aggregates made of metal strips described above, coarse aggregates formed from floor nail-like wires, and the like can be used.
  • Metal coarse aggregate 10A shown in FIG. 1A can be mentioned as a metal coarse aggregate that can be produced by a forming machine, which is excellent in mass productivity and can be obtained at low cost.
  • This coarse aggregate 10A is made of a single wire 1, has a spiral portion, and has a rigidity that does not deform under its own weight.
  • a metal coarse aggregate 10B having two curved helical axes may be used.
  • the coarse aggregate 10B is made to have a diameter of less than 30 mm.
  • the metal coarse aggregate 10C shown in FIG. 1C has two curved spiral axes like the coarse aggregate 10B shown in FIG. 1B, but the diameter of the coarse aggregate is about 30 to 40 mm. . It is also preferable to have one circular spiral axis like the coarse aggregate 10D shown in FIG. 1D and the coarse aggregate 10E shown in FIG. 1E.
  • Each of these coarse aggregates 10A, 10B, 10C, 10D, and 10E is bulky by having a helical portion in which the wire 1 is wound with a gap.
  • the helical surface is twisted like the coarse aggregate 10F shown in FIG. 1F.
  • the coarse aggregates when a plurality of coarse aggregates are accumulated, the coarse aggregates are entangled with each other, the tensile strength of the concrete is increased, the concrete exhibits stickiness against excessive loads, and the explosion is prevented. be.
  • a coarse aggregate 10G shown in FIG. 1G which is formed of strip-shaped metal strips, can also be preferably used.
  • this coarse aggregate 10G both ends of the band-shaped piece 2 are branched, the branched portions are separated from each other, and the surfaces of both ends formed by the branched portions are in twisted positions. Therefore, when a plurality of coarse aggregates 10G are accumulated, the coarse aggregates 10G are not densely overlapped, and there are gaps between the coarse aggregates 10G, resulting in bulkiness.
  • the branched portions at the ends of the coarse aggregate 10G are separated from each other, when a plurality of coarse aggregates are accumulated, the branched portions of the accumulated coarse aggregates are entangled with each other, and the tensile strength of the concrete is reduced. It increases, exhibits tenacity against excessive loads, and prevents explosions.
  • the metal coarse aggregates are rigid enough not to be deformed by their own weight, and are formed of wire or strip-shaped metal, and do not overlap each other exactly by having loops or curved portions, Metal coarse aggregates of various shapes that are bulky and accumulated can be preferably used.
  • the axis of the helical portion of the metal coarse aggregate is curved or the surface formed by the loops or curved portions is twisted, a plurality of metal coarse aggregates will be entangled with each other due to the excitation. things are preferred.
  • a metal mesh 3 formed into a sphere can also be preferably used, like the coarse aggregate 10H shown in FIG. 1H.
  • This coarse aggregate 10H is bulky, and mortar enters into the spherical coarse aggregate 10H, which is preferable in that the coarse aggregate 10H and the mortar are easily integrated.
  • the maximum diameter of the coarse aggregate is approximately the same as that of gravel or crushed stone, which are conventional coarse aggregates. Specifically, it is preferable to set the maximum diameter of the coarse aggregate to the particle size and particle size range specified in JIS A 5005 and JIS A 5308.
  • wire When the coarse aggregate used in the present invention is made of wire, various types of iron wire, steel wire and the like can be used as the wire.
  • a spring material such as a piano wire or a hard steel wire may be used, a less expensive soft steel wire may be used, or a copper wire or the like may be used.
  • a magnetic material such as an iron wire as the wire, because the magnet can be used in the transportation process of the coarse aggregate and concrete products using it.
  • the use of steel wire is preferable in that the strength of the coarse aggregate itself increases and the strength of the concrete also increases.
  • the wire As the wire, a stranded wire obtained by twisting multiple wires or a wire with an irregular cross section may be used. As a result, the bond between the wire and the mortar portion can be strengthened and the strength of the concrete can be improved.
  • the wire diameter of the wire can be appropriately set according to the shape of the coarse aggregate, but is preferably 0.5 mm to 6 mm, more preferably 1 mm to 3 mm, and even more preferably 1 mm to 2 mm in terms of handleability.
  • the type of mortar used in the present invention is not particularly limited. It can be formed from common Portland cement, sand and water. No admixtures or special fibers used in making high-strength concrete are required.
  • the coarse aggregates in the form Before filling with mortar, it is preferable to vibrate the coarse aggregates in the form first, and to entangle the coarse aggregates as much as possible. In this case, it is preferable to vibrate the upper surface of the coarse aggregate filled in the mold with a vibrator so that the vibration spreads over the entire coarse aggregate in the mold.
  • a vibrator may be used to vibrate the bottom of the formwork from outside the formwork. Also, if necessary, a vibrator may be inserted into the mortar to vibrate it.
  • Example installation method A
  • a specimen was produced by the method of the example as shown in FIGS. 2A to 2C. That is, the sample-preparing container 20 is filled with the coarse aggregate 10 in such an amount as to fill the container 20 (FIG. 2A).
  • the above-described mortar 30 was poured onto the coarse aggregate 10 filled in the specimen-preparing container 20 (FIG. 2B). Since the mortar 30 piled on the coarse aggregate 10 permeates into the container 20 due to vibration, the shape of the coarse aggregate 10 appears near the opening of the container 20 (Fig. 2C). Therefore, the mortar 30 is piled up again on the coarse aggregate 10 and penetrated inside.
  • the unhardened concrete filled in the container was hardened by curing in water for 28 days, and the hardened material was removed from the container and used as a test piece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

型枠にコンクリートを打設するにあたり、簡便な方法で型枠内に粗骨材を均一に分散させる。砂利よりも嵩高く、自重により変形しない剛性を有する金属製粗骨材10Aを予め型枠(供試体作製用容器20)内に充填し、加振しつつ該型枠内にモルタル30を充填することによりコンクリートを打設する。型枠内に充填した金属製粗骨材をまず加振し、次いで加振しつつモルタルを充填することが好ましい。

Description

コンクリートの打設方法
 本発明は、コンクリートの打設方法に関する。
 コンクリートは、通常、セメント、水、粗骨材(砕石や砂利)及び細骨材(砂)を混合して得る所謂生コンクリートを、水とセメントとの水和反応に基づいて固化させたものであり、建築資材として広く使用されている。
 コンクリートは、圧縮強度に比して引張強度が1/10~1/13程度と非常に低いという欠点を有している。この欠点を補うため、コンクリート中に縦横にマトリックス状に組んだ鉄筋を配設することが一般的であるが、圧縮強度だけでなく引張強度も向上させることのできる新たな粗骨材として金属製の略四面体形状の粗骨材が提案されている(特許文献1)。この粗骨材は外形が略四面体形状であることによりモルタル中でアンカー効果を発揮するので、従前の粗骨材に比して引張強度や剪断強度を向上させることが可能となる。
 また、金属製の粗骨材とモルタルとの付着性を向上させるために、金属製の粗骨材本体に20番手以上の細いワイヤーを貫通させた粗骨材であって、粗骨材本体にワイヤーが容易に巻き付くようにしたものが提案されている(特許文献2)。この粗骨材によれば、生コンクリートの撹拌中に粗骨材本体にワイヤーが巻き付き、巻き付いたワイヤーにモルタルが捕捉され、粗骨材とモルタルが一体に移動するので生コンクリート中で粗骨材が沈降しにくく、粗骨材の分散性が良好になるというメリットを得られる。
 しかしながら、特許文献1に記載されているような金属製の粗骨材では、粗骨材自体の引張強度がコンクリートのモルタル部分の強度に比して強すぎるため、粗骨材とモルタルとの界面が剥離してモルタル部分が破断し、粗骨材がコンクリートの引張強度の向上に寄与できない場合がある。
 特許文献2に記載されているようにワイヤーが金属製の粗骨材本体に巻き付くようにすると粗骨材とモルタルとの付着性を向上させることができるが、ワイヤーの粗骨材本体への巻き付き方は一定しないため、引張強度にばらつきが生じる虞がある。
 これに対し、モルタルと粗骨材との付着性をさらに向上させてモルタル部分の破断を防止し、コンクリートの引張強度を向上させるため、金属製メッシュ材料を中空の球形に成形した粗骨材が提案されている(特許文献3)。
 一方、コンクリートの打設方法としては、水、セメント、砂、及び粗骨材を予めミキサーで混合して生コンクリートを調製し、それを型枠内に流し込み、バイブレータを用いて締め固めを行うことがなされている。
特許6485932号公報 特許6532073号公報 特許6667886号公報
 従来、粗骨材として広く使用されている砂利は、生コンクリート内でモルタルと分離し易く、型枠に流し込むときには、砂利が慣性力で流し込む方向に転がりやすい。そのため型枠内で砂利が偏在し、コンクリートの強度が不均一になることが懸念される。
 これに対し、特許文献1、2、3等に記載されている金属製の粗骨材を使用すると、金属製の粗骨材は砂利に比して嵩高く、モルタルの付着性も改善されているのでモルタル内で良好に分散する。
 しかしながら、粗骨材をモルタルに分散させた状態で、所定量の粗骨材を型枠内に均一に充填することは難しい。
 これに対し、本発明は簡便な方法で、できるだけ労力をかけずに型枠内に所定量の粗骨材を打ち込めるようにすることを課題とする。
 本発明者は上述の課題を解決するため、砂利よりも嵩高く、自重により変形しない剛性を有する金属製粗骨材を予め型枠内に充填し、加振しつつ該型枠内にモルタルを充填するコンクリートの打設方法を提供する。
 ここで、金属製粗骨材が砂利よりも嵩高いとは、例えば、圧縮強度試験(JIS A 1108 コンクリートの圧縮強度試験方法)や、引張強度試験(JIS A 1113 コンクリートの割裂引張強度試験方法)で使用する内径10cm、深さ20cmの円柱状の有底筒状容器一杯分の砂利の重量は2.5kg程度であるが、該容器一杯分の重量がこれにより軽いこと、好ましくは2kg以下、特に1kg以下であることをいう。
 本発明の方法に従い、砂利よりも嵩高く形成されている金属製粗骨材を予め型枠内に充し、次いで型枠に加振しつつモルタルを充填するので、必ず設計量の粗骨材を型枠に充填できる。
 次に加振しつつモルタルを充填すると、嵩高く形成されている粗骨材内の隙間や粗骨材同士の間隙にモルタルを入り込ませることができる。そして、加振を続けてもこれ以上はモルタルが型枠内に入っていかない状態でコンクリートが締め固められた状態となる。こうして、ミキサーが不要となり設備的にも労力的にも簡便にコンクリートを打設することが可能となる。
図1Aは、本発明で使用できる金属製粗骨材10Aの斜視図である。 図1Bは、本発明で使用できる金属製粗骨材10Bの斜視図である。 図1Cは、本発明で使用できる金属製粗骨材10Cの斜視図である。 図1Dは、本発明で使用できる金属製粗骨材10Dの斜視図である。 図1Eは、本発明で使用できる金属製粗骨材10Eの斜視図である。 図1Fは、本発明で使用できる金属製粗骨材10Fの斜視図である。 図1Gは、本発明で使用できる金属製粗骨材10Gの斜視図である。 図1Hは、本発明で使用できる金属製粗骨材10Hの斜視図である。 図2Aは、供試体の作製方法の説明図である。 図2Bは、供試体の作製方法の説明図である。 図2Cは、供試体の作製方法の説明図である。 図2Dは、供試体の作製方法の説明図である。
 以下、本発明の打設方法を、図面を参照しつつ詳細に説明する。なお、各図中、同一符号は同一又は同等の構成要素を表している。
(打設方法の概要)
 本発明のコンクリートの打設方法は、概略、金属製粗骨材を予め型枠に充し、次いで該型枠内にモルタルを加振しつつ充填する方法である。
(金属製粗骨材)
 本発明で使用する金属製粗骨材としては、砂利よりも嵩高く、自重により変形しない剛性を有するものとする。ここで、金属製粗骨材が砂利よりも嵩高いとは、上述のように、所定の容量の容器に充填した場合の重量が、砂利よりも軽いことをいう。
 このような粗骨材としては、例えば、特許文献1、2、3に記載の金属製粗骨材や、特願2022-28649号に記載の針金製粗骨材、特願2022-89107号に記載の金属帯製粗骨材、フロア釘様線材で形成された粗骨材等を使用することができる。
 フォーミングマシンで製造できることにより量産性に優れ、低コストに得ることのできる金属製粗骨材としては、例えば、図1Aに示す金属製粗骨材10Aをあげることができる。この粗骨材10Aは、1本の針金1で作製されており、螺旋状部分を有し、自重で変形しない剛性を有する。
 また、図1Bに示すように、2つの湾曲した螺旋軸を有する金属製粗骨材10Bとしてもよい。この粗骨材10Bは径が30mm未満に作製されている。図1Cに示す金属製粗骨材10Cは、図1Bに示した粗骨材10Bと同様に2つの湾曲した螺旋軸を有するが、粗骨材の径を30~40mm程度に作製したものである。図1Dに示す粗骨材10D及び図1Eに示す粗骨材10Eのように1つの円状の螺旋軸を有するものも好ましい。これらの粗骨材10A、10B、10C、10D、10Eはいずれも針金1を、間隙をあけて巻いた螺旋状部分を有することにより嵩高く形成されている。また、図1Fに示す粗骨材10Fのように螺旋面が捩れているものも好ましい。これらの粗骨材によれば、複数個の粗骨材が集積した場合に粗骨材同士が絡まり合い、コンクリートの引張強度が高まり、過大な負荷に対して粘りを発揮し、爆裂が防止される。
 図1Gに示す粗骨材10Gのように帯状金属の細片で形成されたものも好ましく使用することができる。この粗骨材10Gは、帯状片2の両端が分岐し、分岐部分同士が互いに離間し、分岐部分で形成される両端の面が捩れの位置にある。このため、複数個の粗骨材10Gが集積した場合に、粗骨材同士が密に重なり合うことがなく、粗骨材10G同士の間に間隙があき、嵩高いものとなる。また、粗骨材10Gの端部の分岐部分同士が離間しているので、複数個の粗骨材が集積した場合に、集積した粗骨材の分岐部分同士が絡まり合い、コンクリートの引張強度が高まり、過大な負荷に対して粘りを発揮し、爆裂が防止される。
 このように、本発明では、自重により変形しない剛性を有し、ワイヤー又は帯状金属で形成された金属製粗骨材であって、ループ又は湾曲部を有することにより互いにぴったりと重なり合うことがなく、嵩高く集積される種々の形状の金属製粗骨材を好ましく使用することができる。特に、金属製粗骨材が有する螺旋部分の軸が湾曲していたり、ループ又は湾曲部で形成される面が捩れていたりすることで、加振により複数の金属製粗骨材が互いに絡まり合うものが好ましい。
 この他、本発明では図1Hに示す粗骨材10Hのように、金属メッシュ3を球体に成形したもの(特許文献3)も好ましく使用することができる。この粗骨材10Hは嵩高く、球体状の粗骨材10H内にモルタルが入り込み、粗骨材10Hとモルタルが一体になりやすい点で好ましい。
 本発明の方法では、粗骨材を分散させた生コンクリートをポンプ圧送するという工程がないので、本発明で使用する粗骨材の径は、必ずしもポンプ圧送を可能とする大きさでなくてもよいが、取り扱い性の点から、粗骨材の最大径を、従来の粗骨材である砂利や砕石と同程度の大きさにすることが好ましい。具体的には、粗骨材の最大径をJIS A 5005、JIS A 5308に規定される粒度と粒径の範囲とすることが好ましい。
(針金)
 本発明で使用する粗骨材を針金製とする場合に、その針金としては、種々の鉄線、鋼線等を使用することができる。ピアノ線、硬鋼線等のバネ材を使用してもよく、より安価な軟鋼線を使用してもよく、銅線などを用いてもよい。また、針金として鉄線等の磁性材料を用いると、粗骨材やそれを用いたコンクリート製品の搬送工程で磁石を利用できるようになるので好ましい。一方、鋼線を使用すると粗骨材自体の強度が高くなることによりコンクリートの強度も高くなる点で好ましい。
 針金として、複数本の針金を撚り合わせた撚り線や、異形断面針金を使用してもよい。これにより、針金とモルタル部分との結合を強くしてコンクリートの強度を向上させることができる。
 針金の線径は粗骨材の形状に応じて適宜設定することができるが、取り扱い性の点から好ましくは0.5mm~6mm、より好ましくは1mm~3mm、さらに好ましくは1mm~2mmである。
(モルタル)
 本発明で使用するモルタルの種類は特に制限はない。一般的なポルトランドセメントと砂と水から形成することができる。高強度コンクリートの製造に使用される混和剤や特殊な繊維は不要である。
 また、砂としては、再生コンクリートから形成した再生コンクリート砂を使用することもできる。本発明において上述した金属製粗骨材を使用すると、再生コンクリート砂を使用する場合でも、一般的な砂を用いた場合と同様のコンクリート強度を発揮させることができる。
(打設方法)
 打設方法としては、まず、型枠内に粗骨材を充填し、次にその型枠内にモルタルを加振しつつ充填する。この場合、粗骨材は型枠内の捨てコンの上に充填することができる。また、モルタルは粗骨材の上から流し入れることができる。粗骨材の充填層の内部にトレミー管を挿入し、トレミー管を用いてモルタルを粗骨材の充填層の内部に圧入することは不要である。
 加振は、モルタルを充填する前に、まず、型枠内の粗骨材に対して行い、粗骨材同士をできるだけ絡め合わせることが好ましい。この場合、型枠内に充填された粗骨材の上面をバイブレータで加振し、振動を型枠内の粗骨材全体に行き渡らせることが好ましい。バイブレータで型枠外から型枠の底部を振動させることにより加振してもよい。また、必要に応じてモルタル内にバイブレータを挿入して加振してもよい。
 次に、加振しつつモルタルを充填する。モルタルの充填を複数回に分け、各充填回の間にも加振を続けることが好ましい。加振により個々の粗骨材が有する間隙や、粗骨材間の間隙にモルタルが入り込む。また、加振により粗骨材同士が絡まり合い、コンクリートの強度が向上する。
(粗骨材の適用例)
 本発明のコンクリートの打設方法の適用例としては、種々のコンクリートプレキャスト製品を挙げることができる。また、鉄筋を使用しないコンクリート構造物(例えば、ダム壁、地面に直に敷設される道路、建造物のベタ基礎、舗装広場等)にも好ましく適用できる。特殊な適用例としては、地面から離れた位置に設置される高速道路の鉄筋コンクリート床版等に好ましく適用できる。磁性材料で形成された粗骨材を使用した場合には、コンクリートパネルを電磁石に引きつけて搬送、設置、撤去することが可能となり、作業性が向上する。
 以下、本発明の粗骨材の効果を実験例により具体的に説明する。
実験例1~7
<供試体の作製>
 供試体型となる供試体作製用容器は内径10cm、深さ20cmの円柱状の有底筒状容器である。この容器を用いて次のようにして供試体を作製した。
 まず、次の配合でセメントと砂と水を混合してモルタルを作った。
 水:セメント:砂=0.55:3:3
(実施例の打設方法:イ)
 上述のモルタルを用いて、図2A~図2Cに示すように実施例の方法で供試体を作製した。即ち、供試体作製用容器20に、粗骨材10を、この容器20に約1杯となる量で充填し(図2A)、供試体作製用容器の設置台21をバイブレータで振動させつつ、供試体作製用容器20に充填した粗骨材10の上に、上述のモルタル30を盛るようにして流し入れた(図2B)。粗骨材10上に盛られたモルタル30は振動により容器20の内部に浸透していくため、容器20の開口部近傍では粗骨材10の形状が現れてくる(図2C)。そこで、再度粗骨材10の上にモルタル30を盛り、内部に浸透させる。これを、モルタル30が容器内部に浸透していかなくなるまで繰り返し、次いでモルタル30の表面をならす(図2D)。こうして容器20内に隙間無くモルタル30が詰まった充填物を得た。これを水中で28日間養生することにより硬化させ、この硬化物を容器から取り出して供試体とした。
(比較例の打設方法:ロ)
 比較試験として、上述のモルタルに粗骨材を加えて撹拌し、得られた混合物の適量を容器へ充填すると共に、容器を加振した。容器への充填と加振を繰り返した。この間、モルタルが容器から溢れ、粗骨材も容器から溢れ出てくるものがあるが、溢れ出た粗骨材は容器内に戻し、最終的に予め用意した粗骨材の全量又は9割以上が容器内に充填されるようにした。
 容器内に充填した未硬化コンクリートは、水中で28日間養生することにより硬化させ、この硬化物を容器から取り出して供試体とした。
 また、粗骨材として砂利を使用し、比較例の打設方法を上述と同様に行い、供試体を作製した。
<評価>
 それぞれについて圧縮強度試験(JIS A 1108 コンクリートの圧縮強度試験方法)と、引張強度試験(JIS A 1113 コンクリートの割裂引張強度試験方法)を行った。圧縮強度試験と引張強度試験は、一般財団法人建材試験センターで行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、実験例2、3の対比、実験例4、5の対比、実験例6、7の対比により、実施例の打設方法は、比較例の打設方法に比して圧縮強度や引張強度がやや低いが、実験例1の砂利を粗骨材とした場合と対比することにより引張強度が顕著に優れており、コンクリートとしては優れた強度を有している。
 実施例の打設方法によれば、予め粗骨材とモルタルを、ミキサーを用いて混合しておくことが不要なため、設備的にも労力的にも低コストに簡便にコンクリートを打設できることがわかる。
1 針金
2 帯状片
3 金属メッシュ
10、10A、10B、10C、10D、10E、10F、10G、10H 粗骨材
20 供試体作製用容器
21 設置台
30 モルタル

Claims (6)

  1.  砂利よりも嵩高く、自重により変形しない剛性を有する金属製粗骨材を予め型枠内に充填し、加振しつつ該型枠内にモルタルを充填するコンクリートの打設方法。
  2.  金属製粗骨材を充填した型枠内にモルタルを充填する前に、該型枠内の金属製粗骨材を加振する請求項1記載の打設方法。
  3.  型枠内に充填した金属製粗骨材の上面をバイブレータで加振する請求項1又は2記載の打設方法。
  4.  バイブレータで型枠外から型枠の底部を加振する請求項1又は2記載の打設方法。
  5.  金属製粗骨材が針金で形成されており、該針金が、自重により変形しない剛性のループ又は湾曲部を有する請求項1又は2記載の打設方法。
  6.  金属製粗骨材が帯状金属片で形成されており、該帯状金属片の少なくとも一方の端部が、該金属片の長手方向の切れ目により細片に分岐し、分岐部分同士が互いに離間している請求項1又は2記載の打設方法。
PCT/JP2022/026530 2021-07-04 2022-07-01 コンクリートの打設方法 WO2023282216A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021-111172 2021-07-04
JP2021111172 2021-07-04
JP2021-111840 2021-07-05
JP2021111840 2021-07-05
JP2022028649A JP7083556B1 (ja) 2021-07-04 2022-02-25 コンクリート用粗骨材
JP2022-028649 2022-02-25
JP2022036859 2022-03-10
JP2022-036859 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023282216A1 true WO2023282216A1 (ja) 2023-01-12

Family

ID=84800666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026530 WO2023282216A1 (ja) 2021-07-04 2022-07-01 コンクリートの打設方法

Country Status (1)

Country Link
WO (1) WO2023282216A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092882A (ja) * 1995-06-21 1997-01-07 Shin Etsu Chem Co Ltd コンクリート組成物及びコンクリート固化体の製造方法
JP6485932B1 (ja) * 2018-04-19 2019-03-20 株式会社I・B・H柴田 コンクリート用粗骨材及び補強コンクリート

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092882A (ja) * 1995-06-21 1997-01-07 Shin Etsu Chem Co Ltd コンクリート組成物及びコンクリート固化体の製造方法
JP6485932B1 (ja) * 2018-04-19 2019-03-20 株式会社I・B・H柴田 コンクリート用粗骨材及び補強コンクリート

Similar Documents

Publication Publication Date Title
US11718560B2 (en) Composite structural material and aggregate therefor
RU2122985C1 (ru) Бетонная смесь, бетонный элемент и способ его отверждения
EP0042935B2 (en) Shaped article and composite material and method for producing same
KR101668955B1 (ko) 3d 프린터를 이용한 섬유 보강 복합재료 구조물 제조방법 및 그 방법으로 제조된 구조물
US3616589A (en) Fiber reinforced concrete
KR101720467B1 (ko) 3d 프린터를 이용한 섬유 보강 복합재료 구조물 제조방법 및 그 방법으로 제조된 구조물
WO2023282216A1 (ja) コンクリートの打設方法
EP3760404A1 (en) Method for manufacturing layered concrete parts
CN106007510A (zh) 多孔火山岩骨料混凝土轨枕的制造方法
WO2023282215A1 (ja) コンクリート用粗骨材
Kadhim The Effects of Using Steel Fibers on Self-Compacting Concrete Properties: A Review
JP7083556B1 (ja) コンクリート用粗骨材
WO2002083590A2 (en) Cementitious mixtures
JP2867845B2 (ja) 繊維補強セメント系複合材料の製造方法
JP2023176685A (ja) コンクリート用粗骨材
JPH0459646A (ja) 造粒セメント混合物を用いたコンクリート建設物の施工方法
Mailyan et al. Technologies for creating directional orientation of fiber reinforcement in concrete
JP6667886B1 (ja) コンクリート用粗骨材
RU2451647C1 (ru) Способ ориентации металлических дисперсно-армирующих элементов в бетоне
JPH03100275A (ja) コンクリートの打設方法
AL-Ridha et al. Research Article Assessment of the Effect of Replacing Normal Aggregate by Porcelinite on the Behaviour of Layered Steel Fibrous Self-Compacting Reinforced Concrete Slabs under Uniform Load
KR101808636B1 (ko) 섬유보강 콘크리트를 이용한 중량 저감형 앵커블록의 제조방법
JP2573331B2 (ja) リブ付短繊維補強PCa板の製造方法
JP2001348282A (ja) 超軽量コンクリートの製造方法、プレキャストコンクリートおよび鉄筋コンクリート柱
JP2004182562A (ja) 高靭性セメント系複合材および高靭性セメント系複合材を製造するためのプレミックス材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE