WO2023281940A1 - 自動分析装置の制御方法、自動分析装置 - Google Patents

自動分析装置の制御方法、自動分析装置 Download PDF

Info

Publication number
WO2023281940A1
WO2023281940A1 PCT/JP2022/022249 JP2022022249W WO2023281940A1 WO 2023281940 A1 WO2023281940 A1 WO 2023281940A1 JP 2022022249 W JP2022022249 W JP 2022022249W WO 2023281940 A1 WO2023281940 A1 WO 2023281940A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
reaction vessel
sample
organic solvent
control method
Prior art date
Application number
PCT/JP2022/022249
Other languages
English (en)
French (fr)
Inventor
昌平 早川
晋弥 松岡
巌 鈴木
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2023533465A priority Critical patent/JPWO2023281940A1/ja
Priority to CN202280042296.6A priority patent/CN117480395A/zh
Publication of WO2023281940A1 publication Critical patent/WO2023281940A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • This disclosure relates to an automatic analyzer.
  • An automatic analyzer that analyzes the components of a sample dispenses the sample liquid into the reaction container, and also dispenses other necessary liquids such as reagent solutions and solvents into the same reaction container.
  • a solvent such as an organic solvent, which is required to strictly control the amount of waste for legal reasons or other reasons, may be used. In this case, it is typically necessary to dispose of the reaction vessel and solvent separately.
  • Patent Document 1 describes an automatic analyzer that uses an organic solvent.
  • ethyl acetate organic solvent
  • Patent Document 1 it is common to discard the reaction containers after collecting the residual liquid by sucking the residual liquid from all the reaction containers. That is, in conventional automatic analyzers, residual liquid is recovered from all reaction vessels regardless of whether or not the reaction vessels contain an organic solvent. Therefore, the amount of waste liquid increases and the throughput of waste liquid treatment may decrease.
  • the present disclosure has been made in view of the above problems, and can suppress the amount of waste liquid of solvents such as organic solvents whose waste amount is strictly controlled, and can improve the throughput of waste liquid treatment. , to provide a control method for an automatic analyzer.
  • the method for controlling an automatic analyzer according to the present disclosure acquires information about the amount of organic solvent contained in the liquid introduced into the reaction vessel, and whether or not to aspirate the residual liquid in the reaction vessel according to the information. determine whether
  • FIG. 1 is a configuration diagram of an automatic analyzer 1 according to Embodiment 1.
  • FIG. 4 is a flowchart for explaining the operation of analyzing a sample by the automatic analyzer 1.
  • FIG. 4 is a flowchart for explaining the operation of analyzing a sample by the automatic analyzer 1.
  • FIG. 4 is a flowchart for explaining the operation of analyzing a sample by the automatic analyzer 1.
  • FIG. 3 is a processing flow chart diagrammatically illustrating the flowchart of FIG. 2 ;
  • FIG. 1 is a configuration diagram of an automatic analyzer 1 according to Embodiment 1 of the present disclosure.
  • the automatic analyzer 1 is an apparatus for analyzing components contained in a sample.
  • the automatic analyzer 1 includes a reaction disk 11 on which a reaction container 12 is mounted, a sample liquid dispensing probe 131, a reagent liquid dispensing probe 132, a residual liquid suction probe 133 (residual liquid suction mechanism), a residual liquid tank 14, a reaction vessel A moving mechanism 151 , a waste pot 152 (a waste container holding section), a controller 161 and a storage section 162 are provided.
  • the sample liquid dispensing probe 131 dispenses the sample liquid into the reaction container 12 .
  • the reagent liquid dispensing probe 132 dispenses the reagent liquid into the reaction container 12 .
  • the residual liquid suction probe 133 sucks the residual liquid in the reaction container 12 and discharges it to the residual liquid tank 14 . The operation procedure of these probes will be described later.
  • the reaction container moving mechanism 151 moves the reaction container 12 between the reaction disk 11 and the waste pot 152.
  • Waste pot 152 contains used reaction vessel 12 . The user appropriately discards the used reaction vessel 12 in the disposal pot 152 .
  • the controller 161 controls each part (reaction disk 11, each probe, reaction container moving mechanism 151) provided in the automatic analyzer 1.
  • the storage unit 162 is a storage device that stores data used by the controller 161 . The operation of the controller 161 will be described later together with the operation of each probe and reaction container moving mechanism 151 .
  • FIGS. 2A to 2C are flowcharts explaining the operation of the automatic analyzer 1 to analyze a sample. Each step will be described below.
  • Controller 161 refers to storage unit 162 using the information.
  • the storage unit 162 stores in advance information about the amount of the organic solvent contained in the reaction vessel 12 in the analysis step for each sample type and analysis item.
  • the controller 161 refers to the information to determine the amount of organic solvent contained in the reaction vessel 12 in subsequent steps. A specific example will be described in the steps below.
  • the reaction container moving mechanism 151 places the first reaction container 12 (first reaction container) on the reaction disk 11 (S202).
  • the sample liquid dispensing probe 131 dispenses the sample liquid into the first reaction container (S203).
  • the sample liquid may be diluted by introducing a diluent into the first reaction vessel (S203' described later).
  • the reagent liquid dispensing probe 132 dispenses the reagent liquid into the first reaction container. At this time, magnetic particles for adsorbing sample components are also put into the first reaction container.
  • the reagent liquid dispensing probe 132 may dispense a liquid containing magnetic particles into the first reaction container. The reagent solution and the magnetic particles may be dispensed simultaneously or separately.
  • Fig. 2A Step S205
  • An incubation step is performed to allow the sample and the reagent to react.
  • the first reaction vessel is maintained at 37° C. and waited for a predetermined time. This facilitates chemical reactions between the sample and reagents.
  • Fig. 2A Step S206
  • the reagent liquid dispensing probe 132 dispenses the solvent used for washing into the first reaction container.
  • the reagent liquid dispensing probe 132 aspirates and discards the solvent used for washing.
  • This solvent may be an organic solvent depending on the sample type and analysis items.
  • S207 may be performed without performing this step.
  • the reagent liquid dispensing probe 132 dispenses a solvent for eluting the sample components adhering to the magnetic particles into the first reaction vessel.
  • This solvent may be an organic solvent depending on the sample type and analysis items.
  • the magnetic particles are attracted to the walls of the first reaction vessel by magnets arranged around them.
  • Fig. 2A Step S208
  • the reagent liquid dispensing probe 132 aspirates the eluate (liquid in which the sample components are eluted in S207) in the first reaction container, and dispenses the eluate into the second reaction container 12 (second reaction container). do.
  • the magnetic particles remain in the first reaction vessel.
  • the eluate (sample) in the second reaction vessel is subjected to the component analysis step described below.
  • Fig. 2A Step S208: Supplement
  • Analytical devices such as mass spectrometers are generally designed to analyze liquids. Therefore, if magnetic particles are mixed in the sample liquid, the analyzer may malfunction. Therefore, in this step, the eluate was transferred to the second reaction vessel. This step may be omitted when using a sample type or an analysis item that does not contain such unnecessary particles in the liquid.
  • the controller 161 calculates the concentration of the specific organic solvent contained in the first reaction vessel by referring to the information acquired in S201.
  • the organic solvent referred to here is required, for example, by law to strictly control the amount of waste.
  • the controller 161 determines whether the organic solvent concentration in the first reaction vessel calculated in S209 is equal to or higher than the reference value.
  • the reference value may be stored in advance in the storage unit 162 for each type of organic solvent, for example. If it is equal to or greater than the reference value, proceed to S211; otherwise, skip to S212.
  • the residual liquid suction probe 133 sucks the residual liquid in the first reaction container and discharges it to the residual liquid tank 14 .
  • This step is performed only when the concentration of the organic solvent in the first reaction vessel is equal to or higher than the reference value in S210. That is, the residual liquid tank 14 and the residual liquid suction probe 133 are used in this step only when "Yes" in S210.
  • Fig. 2B Steps S212 to S214
  • the reaction vessel moving mechanism 151 discards the first reaction vessel to the disposal pot 152 (S212).
  • the reagent liquid dispensing probe 132 adjusts the solvent composition in the second reaction container as necessary (S213).
  • Component analysis is performed by providing the second reaction vessel to the mass spectrometer (S214).
  • S213 is for obtaining a suitable solvent composition for the mass spectrometer to perform the analysis.
  • the reaction disk 11 moves the second reaction container to a predetermined disposal position.
  • the disposal position referred to here may be, for example, an arbitrary empty position on the reaction disk 11 where the sample is not analyzed.
  • Fig. 2C Step S216
  • the controller 161 calculates the concentration of the specific organic solvent contained in the second reaction vessel by referring to the information acquired in S201.
  • the calculation procedure and the significance of the organic solvent are the same as in S209.
  • FIG. 2C Step S217)
  • the controller 161 determines whether the organic solvent concentration in the second reaction vessel calculated in S216 is equal to or higher than the reference value.
  • the reference value in this step may be the same as or different from the reference value in S209.
  • FIG. 2C Step S2128
  • the residual liquid suction probe 133 sucks the residual liquid in the second reaction container and discharges it to the residual liquid tank 14 . Similar to S211, this step is performed only when the concentration of the organic solvent in the second reaction vessel is equal to or higher than the reference value in S217.
  • FIG. 3 is a processing flow diagram that graphically illustrates the flowchart of FIG. Following S205 (incubation), the solvent is replaced after S206 (washing) is performed, and the process proceeds to S207, or the process proceeds to S207 without performing S206 (that is, the eluate is additionally introduced without replacing the solvent). There are cases. In any case, after transferring the eluate from the first reaction vessel to the second reaction vessel, it is determined whether or not the residual liquid is to be recovered from the first reaction vessel before discarding the first reaction vessel. .
  • the controller 161 needs to calculate the organic solvent concentration in the first reaction vessel for each sample type and analysis item.
  • concentration of the organic solvent is determined by the type, concentration, and liquid volume of the sample liquid, reagent liquid, washing liquid, elution liquid, and composition adjusting liquid used in each step. Therefore, the controller 161 can use information about these to perform S209.
  • the automatic analyzer 1 acquires information about the amount of the organic solvent contained in the liquid (for example, reagent liquid, sample liquid, washing liquid, elution liquid, composition adjustment liquid) introduced into the reaction vessel 12. , according to the information, it is determined whether or not the reaction vessel 12 contains an organic solvent, and if it does, the residual liquid is sucked from the reaction vessel 12 and discarded. This eliminates the need to collect residual liquid from all reaction vessels 12 .
  • the initialization processing time can be shortened by shortening the recovery time. The effect of shortening the time required for recovering the residual liquid is the same even in processes other than the initialization process.
  • the automatic analyzer 1 After transferring the sample from the first reaction container to the second reaction container, the automatic analyzer 1 according to the first embodiment determines whether or not the organic solvent is contained in the first reaction container at a reference value or more. . This makes it possible to improve the efficiency of the process of discarding the first reaction vessel, since it is determined whether or not to aspirate the residual liquid when the first reaction vessel is discarded. Furthermore, since the same judgment is performed for the second reaction vessel, the efficiency of the process of discarding the second reaction vessel can also be improved.
  • the automatic analyzer 1 drives the residual liquid aspiration probe 133 to aspirate the residual liquid from the reaction vessel 12 only when it is determined that the reaction vessel 12 contains an organic solvent. As a result, the frequency of use of the residual liquid suction probe 133 is suppressed, so that the maintenance frequency of the residual liquid suction probe 133 can be reduced.
  • the automatic analyzer 1 sucks the residual liquid in the reaction container 12 and discharges it into the residual liquid tank 14 only when it is determined that the organic solvent is contained in the reaction container 12 . As a result, the amount of residual liquid contained in the residual liquid tank 14 is suppressed, so that the replacement frequency of the residual liquid tank 14 can be reduced.
  • the sample liquid after performing S203, the sample liquid may be diluted with a diluent before proceeding to S204 (S203′ in FIG. 3).
  • S203′ a diluent
  • the concentration of the organic solvent may be determined in the same manner as in S209 to S211, and the remaining liquid may be sucked.
  • the storage unit 162 may store in advance information describing the relationship between at least one of the analysis item or the sample type and whether or not the reaction vessel 12 contains an organic solvent.
  • the controller 161 can determine whether or not the reaction vessel 12 contains an organic solvent by reading the information.
  • the present disclosure is not limited to the embodiments described above, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present disclosure in an easy-to-understand manner, and do not necessarily include all the configurations described.
  • part of an embodiment can be replaced with the configuration of another embodiment.
  • the configuration of another embodiment can be added to the configuration of one embodiment.
  • a part of the configuration of each embodiment can be added, deleted or replaced with a part of the configuration of another embodiment.
  • the controller 161 can be configured by hardware such as a circuit device that implements the function, or the software that implements the function is executed by an arithmetic unit (for example, Central Processing Unit: CPU). It can also be configured by
  • the present disclosure can also be applied when it is necessary to strictly manage the amount of substances other than organic solvents. For example, if a hazardous substance is used in the analysis process, it can be determined whether or not the hazardous substance in the reaction vessel is sucked by comparing the waste amount with the reference value according to the present disclosure.
  • the present disclosure can also be applied to general liquids containing organic substances that are considered unsafe. For example, organic substances such as formic acid and ammonia correspond to this.

Abstract

本開示は、有機溶媒などのように廃棄量を厳密に管理する溶媒の廃液量を抑制するとともに、廃液処理のスループットを向上することができる、自動分析装置の制御方法を提供することを目的とする。本開示に係る自動分析装置の制御方法は、反応容器に対して導入する液体に含まれる有機溶媒の量についての情報を取得し、その情報にしたがって、反応容器内の残液を吸引するか否かを決定する。

Description

自動分析装置の制御方法、自動分析装置
 本開示は、自動分析装置に関する。
 試料の成分を分析する自動分析装置は、反応容器内に試料液を分注するとともに、試薬液や溶媒などその他必要な液体を同じ反応容器内に分注する。このとき、例えば有機溶媒などのように、法律上の理由やその他の理由により廃棄量を厳密に管理することが求められる溶媒を使用することがある。この場合は典型的には、反応容器と溶媒を分けて廃棄する必要がある。
 下記特許文献1は、有機溶媒を使用する自動分析装置について記載している。同文献においては、遠沈管14内へ酢酸エチル(有機溶媒)を分注し(同文献の0084参照)、使用済みの遠沈管14を投棄ポット73へ廃棄する(同文献の0087参照)。
特開2001-108688号公報
 特許文献1のような従来技術においては、全ての反応容器から残液を吸引することによってその残液を回収した後、反応容器を廃棄するのが通常である。すなわち従来の自動分析装置においては、反応容器が有機溶媒を収容しているか否かに関わらず全ての反応容器から残液を回収する。したがって、廃液量が増加するとともに、廃液処理のスループットが低下する可能性がある。
 本開示は、上記のような課題に鑑みてなされたものであり、有機溶媒などのように廃棄量を厳密に管理する溶媒の廃液量を抑制するとともに、廃液処理のスループットを向上することができる、自動分析装置の制御方法を提供することを目的とする。
 本開示に係る自動分析装置の制御方法は、反応容器に対して導入する液体に含まれる有機溶媒の量についての情報を取得し、その情報にしたがって、反応容器内の残液を吸引するか否かを決定する。
 本開示に係る自動分析装置の制御方法によれば、有機溶媒の廃液量を抑制するとともに、廃液処理のスループットを向上することができる。本開示のその他特徴、利点、構成などについては、以下の詳細説明を参照することにより明らかになる。
実施形態1に係る自動分析装置1の構成図である。 自動分析装置1が試料を分析する動作を説明するフローチャートである。 自動分析装置1が試料を分析する動作を説明するフローチャートである。 自動分析装置1が試料を分析する動作を説明するフローチャートである。 図2のフローチャートを図式化した処理フロー図である。
<実施の形態1>
 図1は、本開示の実施形態1に係る自動分析装置1の構成図である。自動分析装置1は試料に含まれる成分を分析する装置である。自動分析装置1は、反応容器12を載置する反応ディスク11、試料液分注プローブ131、試薬液分注プローブ132、残液吸引プローブ133(残液吸引機構)、残液タンク14、反応容器移動機構151、廃棄ポット152(廃棄容器保持部)、コントローラ161、記憶部162を備える。
 試料液分注プローブ131は、試料液を反応容器12内へ分注する。試薬液分注プローブ132は、試薬液を反応容器12内へ分注する。残液吸引プローブ133は、反応容器12内の残液を吸引して残液タンク14へ吐出する。これらプローブの動作手順については後述する。
 反応容器移動機構151は、反応容器12を反応ディスク11と廃棄ポット152との間で移動させる。廃棄ポット152は、使用済の反応容器12を収容する。ユーザは廃棄ポット152内の使用済の反応容器12を適宜廃棄する。
 コントローラ161は、自動分析装置1が備える各部(反応ディスク11、各プローブ、反応容器移動機構151)を制御する。記憶部162は、コントローラ161が用いるデータを格納する記憶装置である。コントローラ161の動作については、各プローブおよび反応容器移動機構151の動作と併せて後述する。
 図2A~図2Cは、自動分析装置1が試料を分析する動作を説明するフローチャートである。以下各ステップについて説明する。
(図2A:ステップS201)
 ユーザは、試料の種別についての情報、分析項目についての情報、などをコントローラ161に対して入力する。コントローラ161はその情報を用いて記憶部162を参照する。記憶部162は、試料の種別と分析項目ごとに、分析工程において反応容器12に収容される有機溶媒の量についての情報をあらかじめ格納している。コントローラ161はその情報を参照することにより、以後のステップにおいて反応容器12に収容される有機溶媒の量を判断する。具体例は後述のステップで説明する。
(図2A:ステップS202~S203)
 反応容器移動機構151は、1つ目の反応容器12(第1反応容器)を反応ディスク11上に載置する(S202)。試料液分注プローブ131は、試料液を第1反応容器内に分注する(S203)。S203の後、希釈液を第1反応容器へ投入することによって試料液を希釈してもよい(後述のS203’)。
(図2A:ステップS204)
 試薬液分注プローブ132は、試薬液を第1反応容器内に分注する。このとき、試料成分を吸着するための磁性粒子を併せて第1反応容器へ投入する。例えば磁性粒子を含む液体を試薬液分注プローブ132が第1反応容器へ分注すればよい。試薬液と磁性粒子は同時に分注してもよいし、個別に分注してもよい。
(図2A:ステップS205)
 試料と試薬を反応させるインキュベート工程を実施する。例えば第1反応容器を37℃に維持して所定時間待機する。これにより試料と試薬との間の化学反応を促進する。
(図2A:ステップS206)
 磁性粒子に付着した試料成分以外の余分な成分を洗浄する。具体的には、洗浄のために用いる溶媒を試薬液分注プローブ132が第1反応容器内に分注する。試薬液分注プローブ132は、洗浄が完了すると、洗浄のために用いた溶媒を吸引して廃棄する。試料種別や分析項目によっては、この溶媒が有機溶媒である場合がある。さらに分析項目によっては、本ステップを実施せずにS207を実施する場合もある。
(図2A:ステップS207)
 試薬液分注プローブ132は、磁性粒子に付着した試料成分を溶出するための溶媒を第1反応容器へ分注する。試料種別や分析項目によっては、この溶媒が有機溶媒である場合がある。磁性粒子は周囲に配した磁石により第1反応容器の壁面へ吸着される。
(図2A:ステップS208)
 試薬液分注プローブ132は、第1反応容器内の溶出液(S207によって試料成分が溶出した液体)を吸引し、その溶出液を2つ目の反応容器12(第2反応容器)に分注する。磁性粒子は第1反応容器内に残す。第2反応容器内の溶出液(試料)は、後述の成分分析工程に供される。
(図2A:ステップS208:補足)
 質量分析装置などの分析装置は、液体を分析することを想定して構成されているのが一般的である。したがって試料液のなかに磁性粒子が混在していると、分析装置が故障する可能性がある。そこで本ステップにおいて、溶出液を第2反応容器へ移し替えることとした。このような不要な粒子類が液体内に含まれない試料種別や分析項目を用いる場合は、本ステップを省略してもよい。
(図2B:ステップS209)
 コントローラ161は、S201において取得した情報を参照することにより、第1反応容器内に含まれている特定の有機溶媒の濃度を計算する。ここでいう有機溶媒は、例えば法令によって廃棄量を厳密に管理することが求められているものである。本ステップ時点において第1反応容器内に有機溶媒が含まれているか否かおよびその濃度は、試料種別や分析項目によって定まる。その有機溶媒を含む試料液・試薬液・洗浄液・溶出液などの種別、濃度、液量、導入順序などは、試料種別や分析項目にしたがってあらかじめ規定されているからである。有機溶媒が全く含まれない場合は、濃度=0となる。
(図2B:ステップS210)
 コントローラ161は、S209において計算した第1反応容器内の有機溶媒濃度が基準値以上であるか否かを判断する。基準値は例えば有機溶媒の種別ごとに記憶部162内にあらかじめ格納しておけばよい。基準値以上である場合はS211へ進み、それ以外であればS212へスキップする。
(図2B:ステップS211)
 残液吸引プローブ133は、第1反応容器内の残液を吸引し、残液タンク14へ吐出する。本ステップはS210において第1反応容器内に有機溶媒濃度が基準値以上含まれている場合のみ実施される。すなわち残液タンク14と残液吸引プローブ133が本ステップにおいて使用されるのは、S210において「Yes」であった場合のみである。
(図2B:ステップS212~S214)
 反応容器移動機構151は、第1反応容器を廃棄ポット152へ廃棄する(S212)。試薬液分注プローブ132は、第2反応容器内の溶媒組成を必要に応じて調整する(S213)。第2反応容器を質量分析装置へ供することにより、成分分析を実施する(S214)。S213は、質量分析装置が分析を実施するのに適した溶媒組成を得るためのものである。
(図2C:ステップS215)
 反応ディスク11は、第2反応容器を所定の廃棄位置へ移動させる。ここでいう廃棄位置は例えば、反応ディスク11上において試料に対する分析を実施しない任意の空き位置とすればよい。
(図2C:ステップS216)
 コントローラ161は、S201において取得した情報を参照することにより、第2反応容器内に含まれている特定の有機溶媒の濃度を計算する。計算手順と有機溶媒の意義はS209と同じである。
(図2C:ステップS217)
 コントローラ161は、S216において計算した第2反応容器内の有機溶媒濃度が基準値以上であるか否かを判断する。本ステップにおける基準値は、S209における基準値と同じでもよいし異なる値でもよい。
(図2C:ステップS218)
 残液吸引プローブ133は、第2反応容器内の残液を吸引し、残液タンク14へ吐出する。本ステップはS211と同様に、S217において第2反応容器内に有機溶媒濃度が基準値以上含まれている場合のみ実施される。
(図2C:ステップS219)
 反応容器移動機構151は、第2反応容器を廃棄ポット152へ廃棄する。
 図3は、図2のフローチャートを図式化した処理フロー図である。S205(インキュベート)に続いて、S206(洗浄)を実施した後に溶媒を入れ替えてS207へ進む場合と、S206を実施せずそのままS207へ進む(すなわち溶媒を入れ替えず溶出液を追加的に導入する)場合とがある。いずれの場合においても、溶出液を第1反応容器から第2反応容器へ移し替えた後、第1反応容器を廃棄する前に、第1反応容器から残液を回収するか否かを判定する。
 S206(洗浄)を実施する場合は、洗浄のために用いる溶媒を第1反応容器から取り出した後、S207(溶出)のための溶媒を第1反応容器へ導入する。したがってS209において第1反応容器内に存在する有機溶媒濃度は、溶出溶媒に含まれる有機溶媒濃度の影響が最も大きい。これに対してS206を実施しない場合は、試料液・試薬液・溶出液それぞれに含まれる有機溶媒がS209において第1反応容器内に十分残っている可能性がある。S206を実施するか否かは、試料種別や分析項目によってあらかじめ規定されている。
 したがってコントローラ161は、S209において、このような試料種別や分析項目ごとに、第1反応容器内の有機溶媒濃度を計算する必要がある。各ステップにおいて用いる試料液・試薬液・洗浄液・溶出液・組成調整液の種別・濃度・液量によってその有機溶媒濃度が定まる。したがってコントローラ161は、これらについての情報を用いて、S209を実施することができる。第2反応容器(S215)についても同様である。
<実施の形態1:まとめ>
 本実施形態1に係る自動分析装置1は、反応容器12に対して導入する液体(例えば試薬液・試料液・洗浄液・溶出液・組成調整液)が含む有機溶媒の量についての情報を取得し、その情報にしたがって、反応容器12内に有機溶媒が含まれるか否かを判定し、含まれる場合は反応容器12から残液を吸引した上で廃棄する。これにより、全ての反応容器12から残液を回収する必要がなくなる。例えば自動分析装置1を初期化する際に、従来であれば全ての反応容器12から残液を回収するので、これにともなって多大な時間を要する。これに対して本実施形態1によれば、回収時間を短縮することにより、初期化処理時間を短縮できる。初期化処理以外においても、残液を回収するのにともなう時間を短縮する効果は同様である。
 本実施形態1に係る自動分析装置1は、第1反応容器から第2反応容器へ試料を移し替えた後、第1反応容器内に有機溶媒が基準値以上含まれているか否かを判定する。これにより、第1反応容器を廃棄する機会において、残液を吸引するか否かを判定することになるので、第1反応容器を廃棄する工程の効率を向上できる。さらに第2反応容器についても同様の判定を実施するので、第2反応容器を廃棄する工程の効率も向上できる。
 本実施形態1に係る自動分析装置1は、反応容器12内に有機溶媒が含まれていると判定した場合のみ、残液吸引プローブ133を駆動して反応容器12から残液を吸引する。これにより、残液吸引プローブ133の使用頻度を抑制することになるので、残液吸引プローブ133のメンテナンス頻度を削減することができる。
 本実施形態1に係る自動分析装置1は、反応容器12内に有機溶媒が含まれていると判定した場合のみ、反応容器12内の残液を吸引して残液タンク14へ吐出する。これにより、残液タンク14が収容する残液量を抑制することになるので、残液タンク14の交換頻度を削減することができる。
<実施の形態2>
 実施形態1において、S203を実施した後、S204へ進む前に、試料液を希釈液によって希釈してもよい(図3のS203’)。希釈した試料液を別の反応容器へ移し替える場合は、移し替え前の反応容器を廃棄する必要がある。この時点において、S209~S211と同様に有機溶媒濃度を判定して残液を吸引してもよい。
 実施形態1において、反応容器12内に有機溶媒が含まれるか否かは、試料種別が同じであっても、分析項目に依拠する場合もある。例えば試料の種別が同じであっても、使用する試薬が分析項目ごとに異なる場合があるからである。したがって記憶部162は、分析項目または試料種別のうち少なくともいずれかと、反応容器12内に有機溶媒が含まれるか否かとの間の関係を記述した情報を、あらかじめ保持しておいてもよい。コントローラ161は、その情報を読み取ることにより、反応容器12内に有機溶媒が含まれるか否かを判定できる。
<本開示の変形例について>
 本開示は、上述した実施形態に限定されるものでなく、様々な変形例を含んでいる。例えば、上述した実施形態は、本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備える必要はない。また、ある実施形態の一部を他の実施形態の構成に置き換えることができる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の実施形態の構成の一部を追加、削除または置換することもできる。
 以上の実施形態において、コントローラ161は、その機能を実装した回路デバイスなどのハードウェアによって構成することもできるし、その機能を実装したソフトウェアを演算装置(例えばCentral Processing Unit:CPU)が実行することによって構成することもできる。
 本開示は、有機溶媒以外の物質の廃棄量を厳密に管理する必要がある場合においても適用することができる。例えば分析過程において有害物質を用いる場合、その廃棄量と基準値を本開示にしたがって比較することにより、反応容器内の有害物質を吸引するか否かを判定することができる。例えば、安全ではないと考えられている有機物を含む液体一般に対して本開示を適用することもできる。例えばギ酸、アンモニアなどの有機物がこれに当たる。
1:自動分析装置
11:反応ディスク
12:反応容器
131:試料液分注プローブ
132:試薬液分注プローブ
133:残液吸引プローブ
14:残液タンク
151:反応容器移動機構
152:廃棄ポット
161:コントローラ
162:記憶部

Claims (9)

  1.  試料を分析する自動分析装置を制御する制御方法であって、
     前記試料を収容する反応容器に対して加える液体が有機溶媒を基準値以上含むか否かについての情報を取得するステップ、
     前記情報にしたがって、前記反応容器内に有機溶媒が前記基準値以上含まれるか否かを判定するステップ、
     前記反応容器内に有機溶媒が前記基準値以上含まれると判定した場合は、前記反応容器内に残っている残液を前記反応容器から吸引し、含まれないと判定した場合は吸引しないステップ、
     廃棄する反応容器を保持する廃棄容器保持部へ前記反応容器を移動させるステップ、
     を有することを特徴とする制御方法。
  2.  前記情報を取得するステップにおいては、前記液体に含まれる有機溶媒の濃度と前記液体の液量とを用いて、前記液体に含まれる有機溶媒の量を計算し、その計算結果にしたがって前記情報を取得する
     ことを特徴とする請求項1記載の制御方法。
  3.  前記制御方法はさらに、前記試料を分析する際の分析項目、前記試料の種別、のうち少なくともいずれかと、前記液体に含まれる有機溶媒の量との間の対応関係を記述したデータを取得するステップを有し、
     前記情報を取得するステップにおいては、前記試料を分析する際の分析項目、前記試料の種別、のうち少なくともいずれかを用いて前記データを参照することにより、前記情報を取得する
     ことを特徴とする請求項1記載の制御方法。
  4.  前記制御方法はさらに、
     前記試料を含む試料液を第1の前記反応容器に対して分注するステップ、
     前記第1の前記反応容器内の液体を第2の前記反応容器へ移し替えるステップ、
     を有し、
     前記判定するステップにおいては、前記第1の前記反応容器内に有機溶媒が前記基準値以上含まれるか否かを判定し、
     前記残液を吸引しまたは吸引しないステップにおいては、前記第1の前記反応容器内に有機溶媒が前記基準値以上含まれると判定した場合は前記第1の前記反応容器内の残液を吸引し、含まれないと判定した場合は吸引せず、
     前記反応容器を移動させるステップにおいては、前記第1の前記反応容器を前記廃棄容器保持部へ移動させる
     ことを特徴とする請求項1記載の制御方法。
  5.  前記制御方法はさらに、
     前記試料を含む試料液を第1の前記反応容器に対して分注するステップ、
     前記第1の前記反応容器内の液体を第2の前記反応容器へ移し替えるステップ、
     前記第2の前記反応容器が収容している液体に対して分析を実施するステップ、
     を有し、
     前記判定するステップにおいては、前記分析が完了した後に前記第2の前記反応容器内に有機溶媒が前記基準値以上含まれるか否かを判定し、
     前記残液を吸引しまたは吸引しないステップにおいては、前記第2の前記反応容器内に有機溶媒が前記基準値以上含まれると判定した場合は前記第2の前記反応容器内の残液を吸引し、含まれないと判定した場合は吸引せず、
     前記反応容器を移動させるステップにおいては、前記第2の前記反応容器を前記廃棄容器保持部へ移動させる
     ことを特徴とする請求項1記載の制御方法。
  6.  前記液体は、
      前記試料を含む試料液、
      前記試料と反応させる試薬を含む試薬液、
      前記反応容器が収容している不要成分を洗浄するために用いる洗浄液、
      前記試料を溶出させる溶出液、
      前記試料の成分を分析する分析装置に対して供給する試料液の組成を調整することにより生成した組成調整液、
     のうち少なくともいずれかである
     ことを特徴とする請求項1記載の制御方法。
  7.  前記自動分析装置は、前記残液を収容する残液タンクを備え、
     前記制御方法はさらに、前記反応容器から前記残液を吸引した場合はその吸引した残液を前記残液タンクへ吐出し、吸引しなかった場合は吐出しないステップを有する
     ことを特徴とする請求項1記載の制御方法。
  8.  前記自動分析装置は、前記残液を前記反応容器から吸引する残液吸引機構を備え、
     前記制御方法はさらに、前記反応容器内に有機溶媒が基準値以上含まれると判定した場合は、分析実施後に前記残液を吸引するように前記残液吸引機構を駆動し、含まれないと判定した場合は駆動しない
     ことを特徴とする請求項1記載の制御方法。
  9.  試料を分析する自動分析装置であって、
     請求項1記載の制御方法を実施することにより前記自動分析装置を制御するコントローラを備えることを特徴とする自動分析装置。
PCT/JP2022/022249 2021-07-08 2022-06-01 自動分析装置の制御方法、自動分析装置 WO2023281940A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023533465A JPWO2023281940A1 (ja) 2021-07-08 2022-06-01
CN202280042296.6A CN117480395A (zh) 2021-07-08 2022-06-01 自动分析装置的控制方法、自动分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-113307 2021-07-08
JP2021113307 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023281940A1 true WO2023281940A1 (ja) 2023-01-12

Family

ID=84800237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022249 WO2023281940A1 (ja) 2021-07-08 2022-06-01 自動分析装置の制御方法、自動分析装置

Country Status (3)

Country Link
JP (1) JPWO2023281940A1 (ja)
CN (1) CN117480395A (ja)
WO (1) WO2023281940A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307060A (ja) * 1989-05-22 1990-12-20 Shimadzu Corp 自動分析方法とその装置
JPH10260118A (ja) * 1997-03-19 1998-09-29 Dainippon Seiki:Kk 液体試料中の成分物質の自動抽出装置および液体試料中の成分物質の自動濃度測定装置
JPH11316235A (ja) * 1998-05-02 1999-11-16 Shimadzu Corp 自動分析装置
JP2001108688A (ja) 1999-10-07 2001-04-20 Dainippon Seiki:Kk 液体試料中の成分物質の自動抽出装置および液体試料中の成分物質の自動濃度測定装置ならびに液体試料中の成分物質の抽出方法
JP2014002099A (ja) * 2012-06-20 2014-01-09 Shimadzu Corp 原子吸光分光光度計のオートサンプラ
WO2019176136A1 (ja) * 2018-03-14 2019-09-19 株式会社島津製作所 廃液監視装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02307060A (ja) * 1989-05-22 1990-12-20 Shimadzu Corp 自動分析方法とその装置
JPH10260118A (ja) * 1997-03-19 1998-09-29 Dainippon Seiki:Kk 液体試料中の成分物質の自動抽出装置および液体試料中の成分物質の自動濃度測定装置
JPH11316235A (ja) * 1998-05-02 1999-11-16 Shimadzu Corp 自動分析装置
JP2001108688A (ja) 1999-10-07 2001-04-20 Dainippon Seiki:Kk 液体試料中の成分物質の自動抽出装置および液体試料中の成分物質の自動濃度測定装置ならびに液体試料中の成分物質の抽出方法
JP2014002099A (ja) * 2012-06-20 2014-01-09 Shimadzu Corp 原子吸光分光光度計のオートサンプラ
WO2019176136A1 (ja) * 2018-03-14 2019-09-19 株式会社島津製作所 廃液監視装置

Also Published As

Publication number Publication date
CN117480395A (zh) 2024-01-30
JPWO2023281940A1 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
JP5613522B2 (ja) 検体分析装置
JP4959450B2 (ja) 化学分析装置
EP2028494A2 (en) Sample analyzer and sample analyzing method
US11441975B2 (en) Controlling method of preprocessing apparatus
US20090081794A1 (en) Sample analyzer and method for analyzing samples
JP5452507B2 (ja) 自動分析装置
CN113811773A (zh) 自动分析装置及其清洗方法
WO2016009764A1 (ja) 液体攪拌方法
US20080240994A1 (en) Liquid aspirating tube, liquid dispensing apparatus and liquid dispensing method
JP2012026987A (ja) 核酸分析装置
WO2014088004A1 (ja) 自動分析装置
US20130084213A1 (en) Sample processing apparatus
US20170315047A1 (en) Pretreatment apparatus and sample analyzer
WO2023281940A1 (ja) 自動分析装置の制御方法、自動分析装置
CN111542756B (zh) 自动分析装置
EP3101416B1 (en) Automatic analytical apparatus
JP6184806B2 (ja) 自動化処理モジュール内でチップを廃棄する自動化される方法および処理モジュールを備える処理システム
WO2016006097A1 (ja) 前処理装置
JP6610127B2 (ja) 液体分注装置及び液体分注方法
WO2022091545A1 (ja) 自動分析装置
JP2019132749A (ja) マイクロ流路内に保持された検体の前処理方法、その前処理方法を実行するための前処理装置及びその前処理装置を備えた分析システム
CN110691975B (zh) 自动分析装置和分析方法
WO2024062751A1 (ja) 自動分析装置
WO2023162461A1 (ja) 自動分析装置
WO2022239431A1 (ja) 自動分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533465

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022837361

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE