WO2023280191A1 - 一种聚酰胺复合反渗透膜及其制备方法 - Google Patents

一种聚酰胺复合反渗透膜及其制备方法 Download PDF

Info

Publication number
WO2023280191A1
WO2023280191A1 PCT/CN2022/104039 CN2022104039W WO2023280191A1 WO 2023280191 A1 WO2023280191 A1 WO 2023280191A1 CN 2022104039 W CN2022104039 W CN 2022104039W WO 2023280191 A1 WO2023280191 A1 WO 2023280191A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
osmosis membrane
phase liquid
membrane
polyamide
Prior art date
Application number
PCT/CN2022/104039
Other languages
English (en)
French (fr)
Inventor
赵亮
曾浩浩
龙竞
陈幸
屠娇娇
任朝华
刘玉
石楚道
何亮
Original Assignee
湖南沁森高科新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南沁森高科新材料有限公司 filed Critical 湖南沁森高科新材料有限公司
Priority to US18/039,279 priority Critical patent/US20230415103A1/en
Publication of WO2023280191A1 publication Critical patent/WO2023280191A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/00091Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/281Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling by applying a special coating to the membrane or to any module element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/38Graft polymerization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the invention belongs to the technical field of membranes, and in particular relates to a polyamide composite reverse osmosis membrane and a preparation method thereof.
  • Reverse osmosis technology is an advanced and energy-saving and effective separation technology today. Its principle is to separate the solute in the solution from the solvent under the pressure higher than the osmotic pressure of the solution, by means of the selective interception of the semi-permeable membrane that only allows water to pass through and does not allow other substances to pass through. Utilizing the separation characteristics of the reverse osmosis membrane, it can effectively remove impurities such as dissolved salts, colloids, organic matter, bacteria, and microorganisms in water, and has the advantages of low energy consumption, no pollution, advanced technology, and easy operation and maintenance.
  • reverse osmosis membrane The core of reverse osmosis technology is reverse osmosis membrane.
  • reverse osmosis membrane There are many kinds of reverse osmosis membranes.
  • polyamide composite reverse osmosis membrane has been widely concerned and used because of its excellent physical and chemical stability, but it also has many shortcomings. Specifically, due to the inherent hydrophobicity of the polyamide composite reverse osmosis membrane, various pollutants in the feed water can easily adhere to the membrane surface during application, resulting in attenuation of membrane flux and increase of energy consumption.
  • the object of the present invention is to provide a polyamide composite reverse osmosis membrane and a preparation method thereof.
  • the reverse osmosis membrane provided by the present invention has excellent anti-pollution performance and anti-oxidation ability, and is low in cleaning difficulty.
  • the invention provides a polyamide composite reverse osmosis membrane, comprising a nascent membrane and a temperature-responsive polypeptide grafted onto the surface of the nascent membrane;
  • the nascent membrane includes a support layer and a polyamide separation layer compounded on the support layer;
  • the temperature-responsive polypeptide is homopoly(L-glutamic acid ester) containing oligoethylene glycol.
  • the degree of polymerization of the homopoly(L-glutamate) containing oligoethylene glycol is 30-100.
  • the polyamide separation layer is formed by interfacial polymerization of the aqueous phase liquid and the oil phase liquid sequentially coated on the surface of the support layer;
  • the components of the water phase liquid include multifunctional amines, surfactants, polar solvents, pH regulators and water; the components of the oil phase liquid include multifunctional acyl halides and solvent oil.
  • the multifunctional amine is selected from m-phenylenediamine, ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, N-(2-hydroxyethyl)ethylenediamine, 1,2-diaminocyclic Hexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, diethylenetriamine, m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, s-phenylenediamine, piperazine and one or more of 4-aminomethylpiperazine.
  • the polyfunctional acid halide is trimesoyl chloride.
  • the present invention provides a preparation method of the polyamide composite reverse osmosis membrane described in the technical solution, comprising the following steps:
  • the components of the grafting liquid include temperature-responsive polypeptide, acid-binding agent and water.
  • the acid-binding agent is selected from one or more of triethylamine, diisopropylethylamine, potassium carbonate and sodium hydroxide.
  • the content of the temperature-responsive polypeptide in the grafting liquid is 5-30 g/L; the content of the acid-binding agent in the grafting liquid is 0.05-5 wt%.
  • the temperature of the grafting treatment is 20-50° C.; the time of the grafting treatment is 5-60 minutes.
  • the nascent membrane is prepared according to the following steps:
  • the components of the water phase liquid include multifunctional amines, surfactants, pH regulators, polar solvents and water; the components of the oil phase liquid include multifunctional acyl halides and solvent oil.
  • the invention provides a polyamide composite reverse osmosis membrane and a preparation method thereof.
  • the polyamide composite reverse osmosis membrane provided by the present invention includes a nascent membrane and a temperature-responsive polypeptide grafted onto the surface of the nascent membrane; the nascent membrane includes a support layer and a polyamide separation compound compounded on the support layer layer; the temperature-responsive polypeptide is homopoly(L-glutamate) containing oligoethylene glycol.
  • the invention grafts the temperature-responsive polypeptide onto the surface of the polyamide reverse osmosis membrane, without affecting the flux and desalination rate of the reverse osmosis membrane, so that the reverse osmosis membrane has good anti-pollution and anti-oxidation properties. , You can also effectively wash away the adhering pollutants by adjusting the cleaning temperature. The flux recovery rate after cleaning is extremely high, which can greatly extend the service life of the reverse osmosis membrane. More specifically, in the present invention, the amino groups on the temperature-responsive polypeptide can react with the acid chloride groups on the surface of the reverse osmosis membrane to graft the temperature-responsive polypeptide onto the surface of the polyamide reverse osmosis membrane.
  • the layer is not oxidized, thereby improving the oxidation resistance of the polyamide reverse osmosis membrane.
  • the polyamide composite reverse osmosis membrane provided by the invention has excellent anti-pollution performance and anti-oxidation ability, has low cleaning difficulty, and has very broad market prospects.
  • the invention provides a polyamide composite reverse osmosis membrane, comprising a nascent membrane and a temperature-responsive polypeptide grafted onto the surface of the nascent membrane; the nascent membrane includes a support layer and a Polyamide separation layer; the temperature-responsive polypeptide is homopoly(L-glutamic acid ester) containing oligoethylene glycol.
  • the support layer is preferably a polysulfone support layer; the thickness of the support layer is preferably 20-50 ⁇ m, specifically 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m or 50 ⁇ m, most preferably 40 ⁇ m; the molecular weight cut-off of the support layer is preferably 20000-30000 Da; the porosity of the support layer is preferably 5-7%.
  • the polyamide separation layer is preferably formed by interfacial polymerization of the aqueous phase liquid and the oil phase liquid sequentially coated on the surface of the support layer.
  • the components of the aqueous phase liquid preferably include polyfunctional amines, surfactants, polar solvents, pH regulators and water; the components of the oil phase liquid preferably include polyfunctional acyl halides and mineral spirits.
  • the polyfunctional amine in the aqueous phase liquid preferably includes m-phenylenediamine, ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, N-(2 -Hydroxyethyl)ethylenediamine, 1,2-diaminocyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, diethylenetriamine, m-phenylenediamine, p- One or more in phenylenediamine, ortho-phenylenediamine, s-phenylenediamine, piperazine and 4-aminomethylpiperazine, more preferably m-phenylenediamine; Described polyfunctional amine is in aqueous phase liquid
  • the mass concentration is preferably 0.5 to 5wt%, specifically 0.5wt%, 1wt%, 1.5
  • the surfactant in the aqueous phase liquid preferably includes sodium dodecylbenzenesulfonate and/or sodium lauryl sulfate, more preferably dodecylbenzenesulfonate Sodium acid;
  • the mass concentration of the surfactant in the aqueous phase liquid is preferably 0.1 to 2wt%, specifically 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.7wt%, 1wt% %, 1.2wt%, 1.5wt% or 2wt%, most preferably 0.3wt%.
  • the polar solvent in the aqueous phase liquid preferably includes dimethyl sulfoxide and/or N-methylpyrrolidone, more preferably N-methylpyrrolidone;
  • the mass concentration of the polar solvent in the aqueous phase liquid is preferably 1-10wt%, specifically 1wt%, 1.2wt%, 1.5wt%, 1.7wt%, 2wt%, 2.3wt%, 2.5wt%, 2.7wt%, 3wt%, 4wt%, 5wt%, 6wt%, 7wt%, 8wt%, 9wt% or 10wt%, most preferably 2wt%.
  • the pH regulator in the aqueous phase liquid is preferably an alkali metal hydroxide, more preferably sodium hydroxide; the pH regulator preferably adjusts the pH of the aqueous phase liquid to The value is adjusted to 7-9, more preferably 8.5-9.
  • the multifunctional acyl halide in the oil phase liquid is preferably trimesoyl chloride; the mass concentration of the multifunctional acyl halide in the oil phase liquid is preferably 0.05- 0.5wt%, specifically 0.05wt%, 0.1wt%, 0.15wt%, 0.2wt%, 0.25wt%, 0.3wt%, 0.35wt%, 0.4wt%, 0.45wt% or 0.5wt%, most preferably 0.3 wt%.
  • the solvent oil in the oil phase liquid is preferably an aliphatic hydrocarbon containing 4 to 12 carbon atoms, a cycloaliphatic hydrocarbon containing 4 to 12 carbon atoms, and a cycloaliphatic hydrocarbon containing 4 to 12 carbon atoms.
  • the abbreviation of the homopoly(L-glutamate) containing oligoethylene glycol is called PPLG m -g-OEG 2 (m represents the degree of polymerization);
  • the degree of polymerization of the homopoly(L-glutamate) containing oligoethylene glycol is preferably 30 to 100, specifically 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100.
  • the present invention also provides a method for preparing the polyamide composite reverse osmosis membrane described in the above technical solution, comprising the following steps:
  • the nascent membrane is immersed in the grafting solution for grafting treatment to obtain a polyamide composite reverse osmosis membrane.
  • the nascent membrane includes a support layer and a polyamide separation layer compounded on the support layer, which is prepared according to the following steps:
  • the material selection of the support layer, the composition of the water phase liquid and the oil phase liquid have been introduced above, and will not be repeated here; the coating of the water phase liquid
  • the method is preferably dip-coating, the temperature of the dip-coating is preferably 15-35°C, more preferably 25°C (room temperature), the time of the dip-coating is preferably 5-20s, more preferably 10s;
  • the water phase liquid is preferably rolled by stainless steel rollers; the volatilization of moisture on the surface of the support layer is preferably carried out in a closed space with a heating and ventilation system, and the internal temperature of the closed space is preferably controlled at 20-30°C.
  • the relative humidity of the closed space is preferably controlled at 40-80%, and the residence time of the support layer in the closed space is preferably 20-60s, more preferably 40s; the method of applying the oil phase liquid is preferably dip coating , the dip coating temperature is preferably 40-60°C, more preferably 50°C, the dip-coating time is preferably 30-60s, more preferably 45s; the heating and drying temperature is preferably 60-80°C.
  • the components of the grafting liquid include a temperature-responsive polypeptide, an acid-binding agent and water.
  • the specific selection of the temperature-responsive polypolypeptide has been introduced above and will not be repeated here;
  • the content of the temperature-responsive polypolypeptide in the grafting liquid is preferably 5-30 g/L, specifically 5 g/L L, 7g/L, 10g/L, 12g/L, 15g/L, 17g/L, 20g/L, 23g/L, 25g/L, 27g/L or 30g/L;
  • the acid-binding agent is preferably three One or more in ethylamine, diisopropylethylamine, potassium carbonate and sodium hydroxide, more preferably potassium carbonate or diisopropylethylamine;
  • the content is preferably 0.05-5wt%, specifically 0.05wt%, 0.1wt%, 0.15wt%, 0.2wt%, 0.3wt%, 0.5w
  • the temperature of the grafting treatment is preferably 20-50°C, specifically 20°C, 25°C, 30°C, 35°C, 40°C, 45°C or 50°C;
  • the time for branch treatment is preferably 5-60 min, specifically 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 35 min, 40 min, 45 min, 50 min, 55 min or 60 min.
  • the membrane material is rinsed with deionized water and dried to obtain the polyamide composite reverse osmosis membrane provided by the invention.
  • the technical solution provided by the invention grafts the temperature-responsive polypeptide onto the surface of the polyamide reverse osmosis membrane, without affecting the flux and desalination rate of the reverse osmosis membrane, so that the reverse osmosis membrane has good anti-pollution and anti-salt
  • the adhering pollutants can be effectively washed away by adjusting the cleaning temperature.
  • the flux recovery rate after cleaning is extremely high, which can greatly extend the service life of the reverse osmosis membrane.
  • the amino groups on the temperature-responsive polypeptide can react with the acid chloride groups on the surface of the reverse osmosis membrane to graft the temperature-responsive polypeptide onto the surface of the polyamide reverse osmosis membrane.
  • the layer is not oxidized, thereby improving the oxidation resistance of the polyamide reverse osmosis membrane.
  • the polyamide composite reverse osmosis membrane provided by the invention has excellent anti-pollution performance and anti-oxidation ability, has low cleaning difficulty, and has very broad market prospects.
  • An anti-pollution, easy-to-clean and anti-oxidation polyamide composite reverse osmosis membrane production method is as follows:
  • aqueous phase liquid Dissolve 30g of m-phenylenediamine, 3g of sodium dodecylbenzenesulfonate, and 20g of N-methylpyrrolidone in 947g of water, and use sodium hydroxide to adjust the pH value of the solution to 8.5-9 , and stir evenly to obtain an aqueous phase liquid.
  • Preparation of the composite reverse osmosis membrane dip-coat the aqueous phase liquid on the polysulfone support layer (thickness 40 ⁇ m, molecular weight cut-off 20000-30000Da, porosity 5-7%), dip-coating temperature is room temperature, dip-coating time is 10s, Then use a stainless steel roller to remove the excess water phase liquid on the surface, and then let the polysulfone bottom membrane that has absorbed the water phase liquid pass through a closed space with a heating and ventilation system, and control its internal temperature to 20-30 °C and relative humidity to 40-80 °C.
  • the residence time of the polysulfone bottom film in the device is 40s, so that the moisture on the film surface is further volatilized; after that, the oil phase solution is dipped on the film surface, the dipping temperature is 50°C, and the dipping time is 45s. Then drain the excess oil phase liquid on the surface, and then dry it in an oven at 60-80°C to form an ultra-thin separation layer of polyamide, that is, to obtain the nascent polyamide reverse osmosis membrane; finally, the nascent polyamide reverse osmosis The membrane was immersed in the grafting solution at 25° C. for 60 minutes, rinsed with deionized water and then dried to obtain a polyamide composite reverse osmosis membrane that is anti-pollution, easy to clean and anti-oxidation.
  • An anti-pollution, easy-to-clean and anti-oxidation polyamide composite reverse osmosis membrane production method is as follows:
  • a kind of polyamide composite reverse osmosis membrane production method of anti-pollution easy cleaning anti-oxidation is as follows:
  • An anti-pollution, easy-to-clean and anti-oxidation polyamide composite reverse osmosis membrane production method is as follows:
  • An anti-pollution, easy-to-clean and anti-oxidation polyamide composite reverse osmosis membrane production method is as follows:
  • a kind of production method of polyamide composite reverse osmosis membrane is as follows:
  • a kind of production method of polyamide composite reverse osmosis membrane is as follows:
  • a kind of production method of polyamide composite reverse osmosis membrane is as follows:
  • grafting liquid A add 10g/L of diethylenetriamine in deionized water, fully dissolve to obtain grafting liquid A;
  • grafting liquid B add 10g/L of diethylenetriamine in deionized water Maleic anhydride is fully dissolved to obtain graft liquid B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属于膜技术领域,尤其涉及一种聚酰胺复合反渗透膜及其制备方法。本发明提供的聚酰胺复合反渗透膜包括:初生态膜和接枝到初生态膜表面的温度响应聚多肽;所述初生态膜包括支撑层和复合在支撑层上的聚酰胺分离层;所述温度响应聚多肽为含寡聚乙二醇的均聚聚(L-谷氨酸酯)。本发明通过将温度响应聚多肽接枝到聚酰胺反渗透膜表面,在不影响反渗透膜的通量和脱盐率的前提下,使得反渗透膜在具有良好的抗污染、抗氧化性能的同时,还可以通过调节清洗温度来有效地洗去粘附的污染物,清洗后通量恢复率极高,可以大幅度延长反渗透膜的使用寿命。本发明提供的聚酰胺复合反渗透膜兼具优异的抗污染和抗氧化能力,且清洗难度低,市场前景十分广阔。

Description

一种聚酰胺复合反渗透膜及其制备方法
本申请要求于2021年07月08日提交中国专利局、申请号为202110771817.9、发明名称为“一种聚酰胺复合反渗透膜及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于膜技术领域,尤其涉及一种聚酰胺复合反渗透膜及其制备方法。
背景技术
反渗透技术是当今先进和节能有效的分离技术。其原理是在高于溶液渗透压的压力作用下,借助于只允许水透过而不允许其他物质透过的半透膜的选择截留作用将溶液中的溶质与溶剂分离。利用反渗透膜的分离特性,可以有效地去除水中的溶解盐、胶体、有机物、细菌、微生物等杂质,具有能耗低、无污染、工艺先进、操作维护简便等优点。
反渗透技术的核心是反渗透膜,反渗透膜种类繁多,其中聚酰胺复合反渗透膜因具有优良的物化稳定性得到了广泛的关注和使用,但其也存在诸多缺点。具体来说,聚酰胺复合反渗透膜由于其表面固有的疏水性,在应用过程中,进水中的各类污染物极易粘附在膜表面,导致膜通量的衰减和能耗的增加,必须通过对膜组件进行物理或化学清洗才能一定程度上除去污染层,而传统的清洗方法成本高,效果较差,甚至还会引起膜分离性能的下降乃至失效;与此同时,进水预处理过程中添加的活性氯抗菌剂也会氧化聚酰胺皮层,导致膜脱盐率出现较大幅度的下降。因此,提高反渗透膜的抗污染性能、降低其清洗难度以及提高反渗透膜的抗氧化能力具有十分重要的理论和实际意义。
发明内容
有鉴于此,本发明的目的在于提供一种聚酰胺复合反渗透膜及其制备方法,本发明提供的反渗透膜具有优异的抗污染性能和抗氧化能力,清洗 难度低。
本发明提供了一种聚酰胺复合反渗透膜,包括初生态膜和接枝到所述初生态膜表面的温度响应聚多肽;
所述初生态膜包括支撑层和复合在所述支撑层上的聚酰胺分离层;
所述温度响应聚多肽为含寡聚乙二醇的均聚聚(L-谷氨酸酯)。
优选的,所述含寡聚乙二醇的均聚聚(L-谷氨酸酯)的聚合度为30~100。
优选的,所述聚酰胺分离层由依次涂覆于支撑层表面的水相液和油相液进行界面聚合反应后形成;
所述水相液的成分包括多官能胺、表面活性剂、极性溶剂、pH调节剂和水;所述油相液的成分包括多官能酰基卤化物和溶剂油。
优选的,所述多官能胺选择间苯二胺、乙二胺、丙二胺、丁二胺、己二胺、N-(2-羟乙基)乙二胺、1,2-二氨基环己烷、1,3-二氨基环己烷、1,4-二氨基环己烷、二乙烯三胺、间苯二胺、对苯二胺、邻苯二胺、均苯三胺、哌嗪和4-氨基甲基哌嗪中的一种或多种。
优选的,所述多官能酰基卤化物为均苯三甲酰氯。
本发明提供了一种上述技术方案所述的聚酰胺复合反渗透膜的制备方法,包括以下步骤:
将初生态膜浸入到接枝液中进行接枝处理,得到聚酰胺复合反渗透膜;
所述接枝液的成分包括温度响应聚多肽、缚酸剂和水。
优选的,所述缚酸剂选择三乙胺、二异丙基乙基胺、碳酸钾和氢氧化钠中的一种或多种。
优选的,所述温度响应聚多肽在接枝液中的含量为5~30g/L;所述缚酸剂在接枝液中的含量为0.05~5wt%。
优选的,所述接枝处理的温度为20~50℃;所述接枝处理的时间为5~60min。
优选的,所述初生态膜按照以下步骤制备得到:
在支撑层表面涂覆水相液,除去表面多余水相液,并使支撑层表面水 分挥发;之后,在支撑层表面涂覆油相液,去除表面多余油相液;最后,将涂覆了水相液和油相液的支撑层进行加热干燥,加热干燥过程中,水相液和油相液在支撑层上发生界面聚合形成聚酰胺分离层,得到初生态膜;
所述水相液的成分包括多官能胺、表面活性剂、pH调节剂、极性溶剂和水;所述油相液的成分包括多官能酰基卤化物和溶剂油。
与现有技术相比,本发明提供了一种聚酰胺复合反渗透膜及其制备方法。本发明提供的聚酰胺复合反渗透膜包括初生态膜和接枝到所述初生态膜表面的温度响应聚多肽;所述初生态膜包括支撑层和复合在所述支撑层上的聚酰胺分离层;所述温度响应聚多肽为含寡聚乙二醇的均聚聚(L-谷氨酸酯)。本发明通过将温度响应聚多肽接枝到聚酰胺反渗透膜表面,在不影响反渗透膜的通量和脱盐率的前提下,使得反渗透膜在具有良好的抗污染、抗氧化性能的同时,还可以通过调节清洗温度来有效地洗去粘附的污染物,清洗后通量恢复率极高,可以大幅度延长反渗透膜的使用寿命。更具体来说,在本发明中温度响应聚多肽上带有的氨基可以与反渗透膜表面的酰氯基团反应从而将温度响应聚多肽接枝到聚酰胺反渗透膜表面,该过程操作简单,接枝效率高,且两者通过化学键链接,不易脱落;在温度较低时,聚酰胺反渗透膜表面的聚多肽链呈舒展状态,表现较强的亲水性,可以减少疏水性的污染物附着到膜表面,从而增强反渗透膜的抗污染能力;而温度较高时,聚酰胺反渗透膜表面的聚多肽链由舒展状态变为蜷缩状态,这会使得附着膜表面的污染物层破裂,从而被轻易的冲洗干净;由于聚酰胺反渗透膜在使用时温度通常低于30℃,这使得膜在正常使用工况下能够具有较好的抗污染性,而当需要对膜表面进行清洗时,只需要升高进水水温就可以达到很好的清洗效果;与此同时,聚多肽中的脂肪酰胺键可以作为牺牲层,优先与水体中的活性氯进行反应,这可以保护内层的聚酰胺层不被氧化,从而提高了聚酰胺反渗透膜的抗氧化性。本发明提供的聚酰胺复合反渗透膜兼具优异的抗污染性能和抗氧化能力,且清洗难度低,市场前景十分广阔。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种聚酰胺复合反渗透膜,包括初生态膜和接枝到所述初生态膜表面的温度响应聚多肽;所述初生态膜包括支撑层和复合在所述支撑层上的聚酰胺分离层;所述温度响应聚多肽为含寡聚乙二醇的均聚聚(L-谷氨酸酯)。
在本发明提供的聚酰胺复合反渗透膜中,所述支撑层优选为聚砜支撑层;所述支撑层的厚度优选为20~50μm,具体可为20μm、25μm、30μm、35μm、40μm、45μm或50μm,最优选为40μm;所述支撑层的截留分子量优选为20000~30000Da;所述支撑层的孔隙率优选为5~7%。
在本发明提供的聚酰胺复合反渗透膜中,所述聚酰胺分离层优选由依次涂覆于支撑层表面的水相液和油相液进行界面聚合反应后形成。其中,所述水相液的成分优选包括多官能胺、表面活性剂、极性溶剂、pH调节剂和水;所述油相液的成分优选包括多官能酰基卤化物和溶剂油。
在本发明提供的聚酰胺复合反渗透膜中,所述水相液中的多官能胺优选包括间苯二胺、乙二胺、丙二胺、丁二胺、己二胺、N-(2-羟乙基)乙二胺、1,2-二氨基环己烷、1,3-二氨基环己烷、1,4-二氨基环己烷、二乙烯三胺、间苯二胺、对苯二胺、邻苯二胺、均苯三胺、哌嗪和4-氨基甲基哌嗪中的一种或多种,更优选为间苯二胺;所述多官能胺在水相液的质量浓度优选为0.5~5wt%,具体可为0.5wt%、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%、4.5wt%或5wt%,最优选为3wt%。
在本发明提供的聚酰胺复合反渗透膜中,所述水相液中的表面活性剂优选包括十二烷基苯磺酸钠和/或月桂基硫酸钠,更优选为十二烷基苯磺酸钠;所述表面活性剂在水相液的质量浓度优选为0.1~2wt%,具体可为0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.7wt%、1wt%、1.2wt%、1.5wt%或2wt%,最优选为0.3wt%。
在本发明提供的聚酰胺复合反渗透膜中,所述水相液中的极性溶剂优选包括二甲基亚砜和/或N-甲基吡咯烷酮,更优选为N-甲基吡咯烷酮;所述极性溶剂在水相液的质量浓度优选为1~10wt%,具体可为1wt%、1.2wt%、1.5wt%、1.7wt%、2wt%、2.3wt%、2.5wt%、2.7wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%或10wt%,最优选为2wt%。
在本发明提供的聚酰胺复合反渗透膜中,所述水相液中的pH调节剂优选为碱金属氢氧化物,更优选为氢氧化钠;所述pH调节剂优选将水相液的pH值调节至7~9,更优选为8.5~9。
在本发明提供的聚酰胺复合反渗透膜中,所述油相液中的多官能酰基卤化物优选为均苯三甲酰氯;所述多官能酰基卤化物在油相液的质量浓度优选为0.05~0.5wt%,具体可为0.05wt%、0.1wt%、0.15wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、0.4wt%、0.45wt%或0.5wt%,最优选为0.3wt%。
在本发明提供的聚酰胺复合反渗透膜中,所述油相液中的溶剂油优选为含4~12个碳原子的脂肪烃、含4~12个碳原子的环脂烃和含4~12个碳原子的芳香烃中的一种或多种,更优选为牌号为Isopar G的溶剂油。
在本发明提供的聚酰胺复合反渗透膜中,所述含寡聚乙二醇的均聚聚(L-谷氨酸酯)的简称为PPLG m-g-OEG 2(m表示聚合度);所述含寡聚乙二醇的均聚聚(L-谷氨酸酯)的聚合度优选为30~100,具体可为30、35、40、45、50、55、60、65、70、75、80、85、90、95或100。
本发明还提供了一种上述技术方案所述聚酰胺复合反渗透膜的制备方法,包括以下步骤:
将初生态膜浸入到接枝液中进行接枝处理,得到聚酰胺复合反渗透膜。
在本发明提供的制备方法中,所述初生态膜包括支撑层和复合在所述支撑层上的聚酰胺分离层,按照以下步骤制备得到:
在支撑层表面涂覆水相液,除去表面多余水相液,并使支撑层表面水分挥发;之后,在支撑层表面涂覆油相液,去除表面多余油相液;最后,将涂覆了水相液和油相液的支撑层进行加热干燥,加热干燥过程中,水相液和油相液在支撑层上发生界面聚合形成聚酰胺分离层,得到初生态膜。
在本发明提供的上述初生态膜制备步骤中,所述支撑层的材料选择、水相液和油相液的成分组成在上文中已经介绍,在此不再赘述;所述涂覆水相液的方式优选为浸涂,所述浸涂的温度优选为15~35℃,更优选为25℃(室温),所述浸涂的时间优选为5~20s,更优选为10s;所述除去表面多余水相液的方式优选为不锈钢滚筒滚压;所述支撑层表面水分的挥发优选在带有供热及抽风系统的封闭空间中进行,所述封闭空间的内部温度优选控制在20~30℃,所述封闭空间的相对湿度优选控制在40~80%,支撑层在所述封闭空间中的停留时间优选为20~60s,更优选为40s;所述涂覆油相液的方式优选为浸涂,所述浸涂的温度优选为40~60℃,更优选为50℃,所述浸涂的时间优选为30~60s,更优选为45s;所述加热干燥的温度优选为60~80℃。
在本发明提供的制备方法中,所述接枝液的成分包括温度响应聚多肽、缚酸剂和水。其中,所述温度响应聚多肽的具体选择在上文中已经介绍,在此不再赘述;所述述温度响应聚多肽在接枝液中的含量优选为5~30g/L,具体可为5g/L、7g/L、10g/L、12g/L、15g/L、17g/L、20g/L、23g/L、25g/L、27g/L或30g/L;所述缚酸剂优选为三乙胺、二异丙基乙基胺、碳酸钾和氢氧化钠中的一种或多种,更优选为碳酸钾或二异丙基乙基胺;所述缚酸剂在接枝液中的含量优选为0.05~5wt%,具体可为0.05wt%、0.1wt%、0.15wt%、0.2wt%、0.3wt%、0.5wt%、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、4wt%或5wt%,最优选为0.1wt%或2wt%。
在本发明提供的制备方法中,所述接枝处理的温度优选为20~50℃,具体可为20℃、25℃、30℃、35℃、40℃、45℃或50℃;所述接枝处理的时间优选为5~60min,具体可为5min、10min、15min、20min、25min、30min、35min、40min、45min、50min、55min或60min。接枝处理结束后,将膜材料用去离子水漂洗,晾干,即可得到本发明提供的聚酰胺复合反渗透膜。
本发明提供的技术方案通过将温度响应聚多肽接枝到聚酰胺反渗透膜表面,在不影响反渗透膜的通量和脱盐率的前提下,使得反渗透膜在具有良好的抗污染、抗氧化性能的同时,还可以通过调节清洗温度来有效地 洗去粘附的污染物,清洗后通量恢复率极高,可以大幅度延长反渗透膜的使用寿命。更具体来说,在本发明中温度响应聚多肽上带有的氨基可以与反渗透膜表面的酰氯基团反应从而将温度响应聚多肽接枝到聚酰胺反渗透膜表面,该过程操作简单,接枝效率高,且两者通过化学键链接,不易脱落;在温度较低时,聚酰胺反渗透膜表面的聚多肽链呈舒展状态,表现较强的亲水性,可以减少疏水性的污染物附着到膜表面,从而增强反渗透膜的抗污染能力;而温度较高时,聚酰胺反渗透膜表面的聚多肽链由舒展状态变为蜷缩状态,这会使得附着膜表面的污染物层破裂,从而被轻易的冲洗干净;由于聚酰胺反渗透膜在使用时温度通常低于30℃,这使得膜在正常使用工况下能够具有较好的抗污染性,而当需要对膜表面进行清洗时,只需要升高进水水温就可以达到很好的清洗效果;与此同时,聚多肽中的脂肪酰胺键可以作为牺牲层,优先与水体中的活性氯进行反应,这可以保护内层的聚酰胺层不被氧化,从而提高了聚酰胺反渗透膜的抗氧化性。本发明提供的聚酰胺复合反渗透膜兼具优异的抗污染性能和抗氧化能力,且清洗难度低,市场前景十分广阔。
为更清楚起见,下面通过以下实施例和对比例进行详细说明。
实施例1
一种抗污染易清洗抗氧化的聚酰胺复合反渗透膜生产方法如下:
1)水相液的配制:将30g间苯二胺、3g十二烷基苯磺酸钠、20g N-甲基吡咯烷酮溶解于947g水中,采用氢氧化钠将溶液的pH值调节为8.5~9,搅拌均匀,得到水相液。
2)油相液的配制:将3g均苯三甲酰氯溶解于997g的Isopar G(异构烷烃溶剂,埃克森美孚)中,搅拌均匀,得到油相液。
3)接枝液的配制:按照PPLG 80-g-OEG 2(聚合度为80)浓度为10g/L、碳酸钾浓度为2wt%,将PPLG 80-g-OEG 2和碳酸钾加入去离子水中,充分溶解,得到接枝液。
4)复合反渗透膜的制备:在聚砜支撑层(厚度40μm,截留分子量20000~30000Da,孔隙率5~7%)上浸涂水相液,浸涂温度为室温,浸涂时间为10s,然后利用不锈钢滚筒除去表面多余的水相液,接着让吸附了 水相液的聚砜底膜经过一带有供热及抽风系统的封闭空间,控制其内部温度20~30℃,相对湿度40~80%,聚砜底膜在该装置中的停留时间为40s,让膜面的水份进一步挥发;之后,在膜面上浸涂油相溶液,浸涂温度为50℃,浸涂时间为45s,随后沥去表面多余油相液,接着放入60~80℃烘箱中烘干,形成聚酰胺超薄分离层,即得到初生态的聚酰胺反渗透膜;最后,将初生态的聚酰胺反渗透膜浸入25℃的接枝液中60分钟,用去离子水漂洗后晾干,得到抗污染易清洗抗氧化的聚酰胺复合反渗透膜。
5)抗污染性能和清洗难度评价:在1.55MPa、25℃与膜面流速1.1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到膜材料的初始通量;同样操作条件下将测试水溶液分别换为1000ppm的牛血清蛋白溶液和溶菌酶溶液,先过滤牛血清蛋白溶液150min,再过滤溶菌酶溶液90min,共计240min后,测试得到膜材料污染后的通量;再将测试溶液换为去离子水,在1.55MPa、50℃与膜面流速1L/min下过滤清洗20min,最后在1.55MPa、25℃与膜面流速1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到清洗后的膜材料的通量,测试结果见表1。
6)抗氧化能力评价:先对膜材料进行静态加速氧化,令膜材料与500ppm次氯酸钠水溶液接触作用6h,溶液pH=4.0,温度25℃;之后用纯水冲洗膜材料,并在纯水中浸泡48h;在1.55MPa、25℃与膜面流速1.1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到膜材料的水通量和脱盐率,测得的抗氧化性能数据见表2。
实施例2
一种抗污染易清洗抗氧化的聚酰胺复合反渗透膜生产方法如下:
1)水相液的配制:同实施例1。
2)油相液的配制:同实施例1。
3)接枝液的配制:按照PPLG 80-g-OEG 2(聚合度为80)浓度为20g/L、碳酸钾浓度为2wt%,将PPLG 80-g-OEG 2和碳酸钾加入去离子水中,充分溶解,得到接枝液。
4)复合反渗透膜的制备:参照实施例1,其区别仅在于采用的本实施例步骤3)中配制的接枝液。
5)抗污染性能和清洗难度评价:同实施例1。
6)抗氧化能力评价:同实施例1。
实施例3
一种抗污染易清洗抗氧化的聚酰胺复合反渗透膜生产方法如下:
1)水相液的配制:同实施例1。
2)油相液的配制:同实施例1。
3)接枝液的配制:按照PPLG 80-g-OEG 2(聚合度为80)浓度为30g/L、碳酸钾浓度为2wt%,将PPLG 80-g-OEG 2和碳酸钾加入去离子水中,充分溶解,得到接枝液。
4)复合反渗透膜的制备:参照实施例1,其区别仅在于采用的本实施例步骤3)中配制的接枝液。
5)抗污染性能和清洗难度评价:同实施例1。
6)抗氧化能力评价:同实施例1。
实施例4
一种抗污染易清洗抗氧化的聚酰胺复合反渗透膜生产方法如下:
1)水相液的配制:同实施例1。
2)油相液的配制:同实施例1。
3)接枝液的配制:按照PPLG 30-g-OEG 2(聚合度为30)浓度为20g/L、二异丙基乙基胺浓度为0.1wt%,将PPLG 30-g-OEG 2和二异丙基乙基胺加入去离子水中,充分溶解,得到接枝液。
4)复合反渗透膜的制备:参照实施例1,其区别仅在于采用的本实施例步骤3)中配制的接枝液。
5)抗污染性能和清洗难度评价:同实施例1。
6)抗氧化能力评价:同实施例1。
实施例5
一种抗污染易清洗抗氧化的聚酰胺复合反渗透膜生产方法如下:
1)水相液的配制:同实施例1。
2)油相液的配制:同实施例1。
3)接枝液的配制:按照PPLG 50-g-OEG 2(聚合度为50)浓度为20g/L、 碳酸钾浓度为2wt%,将PPLG 50-g-OEG 2和碳酸钾加入去离子水中,充分溶解,得到接枝液。
4)复合反渗透膜的制备:参照实施例1,其区别仅在于采用的本实施例步骤3)中配制的接枝液。
5)抗污染性能和清洗难度评价:同实施例1。
6)抗氧化能力评价:同实施例1。
对比例1
一种聚酰胺复合反渗透膜生产方法如下:
1)水相液的配制:同实施例1。
2)油相液的配制:同实施例1。
3)复合反渗透膜的制备:参照实施例1,其区别仅在于得到初生态的聚酰胺反渗透膜后不再进行接枝处理。
4)抗污染性能和清洗难度评价:在1.55MPa、25℃与膜面流速1.1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到膜材料的初始通量;同样操作条件下将测试水溶液分别换为1000ppm的牛血清蛋白溶液和溶菌酶溶液,先过滤牛血清蛋白溶液150min,再过滤溶菌酶溶液90min,共计240min后,测试得到膜材料污染后的通量;再将测试溶液换为去离子水,在1.55MPa、40℃与膜面流速1L/min下过滤清洗20min,最后在1.55MPa、25℃与膜面流速1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到清洗后的膜材料的通量,测试结果见表1。
5)抗氧化能力评价:先对膜材料进行静态加速氧化,令膜材料与500ppm次氯酸钠水溶液接触作用6h,溶液pH=4.0,温度25℃;之后用纯水冲洗膜材料,并在纯水中浸泡48h;在1.55MPa、25℃与膜面流速1.1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到膜材料的水通量和脱盐率,测得的抗氧化性能数据见表2。
对比例2
一种聚酰胺复合反渗透膜生产方法如下:
1)水相液的配制:同实施例1。
2)油相液的配制:同实施例1。
3)接枝液的配制:按照聚谷氨酸(聚合度为80)浓度为30g/L、碳酸钾浓度为2wt%,将聚谷氨酸和碳酸钾加入去离子水中,充分溶解,得到接枝液。
4)复合反渗透膜的制备:参照实施例1,其区别仅在于采用的本对比例步骤3)中配制的接枝液。
5)抗污染性能和清洗难度评价:在1.55MPa、25℃与膜面流速1.1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到膜材料的初始通量;同样操作条件下将测试水溶液分别换为1000ppm的牛血清蛋白溶液和溶菌酶溶液,先过滤牛血清蛋白溶液150min,再过滤溶菌酶溶液90min,共计240min后,测试得到膜材料污染后的通量;再将测试溶液换为去离子水,在1.55MPa、50℃与膜面流速1L/min下过滤清洗20min,最后在1.55MPa、25℃与膜面流速1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到清洗后的膜材料的通量,测试结果见表1。
6)抗氧化能力评价:先对膜材料进行静态加速氧化,令膜材料与500ppm次氯酸钠水溶液接触作用6h,溶液pH=4.0,温度25℃;之后用纯水冲洗膜材料,并在纯水中浸泡48h;在1.55MPa、25℃与膜面流速1.1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到膜材料的水通量和脱盐率,测得的抗氧化性能数据见表2。
对比例3
一种聚酰胺复合反渗透膜生产方法如下:
1)水相液的配制:同实施例1。
2)油相液的配制:同实施例1。
3)接枝液的配制:接枝液A:在去离子水中加入10g/L的二乙烯三胺,充分溶解,得到接枝液A;接枝液B:在去离子水中加入10g/L的马来酸酐,充分溶解,得到接枝液B。
4)复合反渗透膜的制备:参照实施例1,其区别仅在于得到初生态的聚酰胺反渗透膜后,先将初生态的聚酰胺反渗透膜浸入25℃的接枝液A中6h,用乙醇漂洗后再用去离子水漂洗烘干,然后再浸入到接枝后处理溶液B中室温(25℃)反应10h,烘干后即得聚酰胺复合反渗透膜。
5)抗污染性能和清洗难度评价:在1.55MPa、25℃与膜面流速1.1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到膜材料的初始通量;同样操作条件下将测试水溶液分别换为1000ppm的牛血清蛋白溶液和溶菌酶溶液,先过滤牛血清蛋白溶液150min,再过滤溶菌酶溶液90min,共计240min后得到膜材料污染后的通量;再将测试溶液换为去离子水,在0.5MPa、25℃与膜面流速3L/min下测试30min,以冲洗膜面粘附的蛋白质;再用在1.55MPa、25℃与膜面流速1L/min下过滤pH=3清洗10min,最后在1.55MPa、25℃与膜面流速1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到清洗后的膜材料的通量,测试结果见表1。
6)抗氧化能力评价:先对膜材料进行静态加速氧化,令膜材料与500ppm次氯酸钠水溶液接触作用6h,溶液pH=4.0,温度25℃;之后用纯水冲洗膜材料,并在纯水中浸泡48h;在1.55MPa、25℃与膜面流速1.1L/min下过滤2000ppm的氯化钠水溶液30min,测试得到膜材料的水通量和脱盐率,测得的抗氧化性能数据见表2。
表1聚酰胺复合反渗透膜抗污染性能和清洗后通量恢复数据
Figure PCTCN2022104039-appb-000001
表2聚酰胺复合反渗透膜抗氧化性能数据
Figure PCTCN2022104039-appb-000002
Figure PCTCN2022104039-appb-000003
从表1的结果来看,实施例1~5污染后的通量衰减率远远小于对比例1,清洗后通量回复率远远大于对比例1和对比例2;而从表2的结果可以看到,实施例1~5氧化后的脱盐率衰减率远远小于对比例1和对比例3;可见实施例1~5同时具有较好的抗污染、抗氧化能力且污染后易清洗。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对所公开的实施例的上述说明,使本领域专技术人员能够实现或使用本发明,对这些实施例的多种修改对本领域专业技术人员来说将是显而易见的。本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖性特点相一致的最宽的范围。

Claims (10)

  1. 一种聚酰胺复合反渗透膜,包括初生态膜和接枝到所述初生态膜表面的温度响应聚多肽;
    所述初生态膜包括支撑层和复合在所述支撑层上的聚酰胺分离层;
    所述温度响应聚多肽为含寡聚乙二醇的均聚聚(L-谷氨酸酯)。
  2. 根据权利要求1所述的聚酰胺复合反渗透膜,其特征在于,所述含寡聚乙二醇的均聚聚(L-谷氨酸酯)的聚合度为30~100。
  3. 根据权利要求1所述的聚酰胺复合反渗透膜,其特征在于,所述聚酰胺分离层由依次涂覆于支撑层表面的水相液和油相液进行界面聚合反应后形成;
    所述水相液的成分包括多官能胺、表面活性剂、极性溶剂、pH调节剂和水;所述油相液的成分包括多官能酰基卤化物和溶剂油。
  4. 根据权利要求3所述的聚酰胺复合反渗透膜,其特征在于,所述多官能胺选择间苯二胺、乙二胺、丙二胺、丁二胺、己二胺、N-(2-羟乙基)乙二胺、1,2-二氨基环己烷、1,3-二氨基环己烷、1,4-二氨基环己烷、二乙烯三胺、间苯二胺、对苯二胺、邻苯二胺、均苯三胺、哌嗪和4-氨基甲基哌嗪中的一种或多种。
  5. 根据权利要求3所述的聚酰胺复合反渗透膜,其特征在于,所述多官能酰基卤化物为均苯三甲酰氯。
  6. 一种权利要求1所述的聚酰胺复合反渗透膜的制备方法,包括以下步骤:
    将初生态膜浸入到接枝液中进行接枝处理,得到聚酰胺复合反渗透膜;
    所述接枝液的成分包括温度响应聚多肽、缚酸剂和水。
  7. 根据权利要求6所述的制备方法,其特征在于,所述缚酸剂选择三乙胺、二异丙基乙基胺、碳酸钾和氢氧化钠中的一种或多种。
  8. 根据权利要求6所述的制备方法,其特征在于,所述温度响应聚多肽在接枝液中的含量为5~30g/L;所述缚酸剂在接枝液中的含量为 0.05~5wt%。
  9. 根据权利要求6所述的制备方法,其特征在于,所述接枝处理的温度为20~50℃;所述接枝处理的时间为5~60min。
  10. 根据权利要求6所述的制备方法,其特征在于,所述初生态膜按照以下步骤制备得到:
    在支撑层表面涂覆水相液,除去表面多余水相液,并使支撑层表面水分挥发;之后,在支撑层表面涂覆油相液,去除表面多余油相液;最后,将涂覆了水相液和油相液的支撑层进行加热干燥,加热干燥过程中,水相液和油相液在支撑层上发生界面聚合形成聚酰胺分离层,得到初生态膜;
    所述水相液的成分包括多官能胺、表面活性剂、pH调节剂、极性溶剂和水;所述油相液的成分包括多官能酰基卤化物和溶剂油。
PCT/CN2022/104039 2021-07-08 2022-07-06 一种聚酰胺复合反渗透膜及其制备方法 WO2023280191A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/039,279 US20230415103A1 (en) 2021-07-08 2022-07-06 Polyamide composite reverse osmosis membrane and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110771817.9 2021-07-08
CN202110771817.9A CN113209843B (zh) 2021-07-08 2021-07-08 一种聚酰胺复合反渗透膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2023280191A1 true WO2023280191A1 (zh) 2023-01-12

Family

ID=77081192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104039 WO2023280191A1 (zh) 2021-07-08 2022-07-06 一种聚酰胺复合反渗透膜及其制备方法

Country Status (3)

Country Link
US (1) US20230415103A1 (zh)
CN (1) CN113209843B (zh)
WO (1) WO2023280191A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209843B (zh) * 2021-07-08 2021-10-22 湖南沁森高科新材料有限公司 一种聚酰胺复合反渗透膜及其制备方法
CN117654272B (zh) * 2024-02-01 2024-04-23 蓝星(杭州)膜工业有限公司 荷正电纳滤膜及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120241373A1 (en) * 2011-03-21 2012-09-27 International Business Machines Corporation Composite membranes and methods of preparation thereof
CN104190272A (zh) * 2014-09-04 2014-12-10 北京碧水源膜科技有限公司 一种抗污染复合反渗透膜及其制备方法
CN113209843A (zh) * 2021-07-08 2021-08-06 湖南沁森高科新材料有限公司 一种聚酰胺复合反渗透膜及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101530751A (zh) * 2009-03-13 2009-09-16 浙江理工大学 一种自清洁型反渗透膜
CN104324619A (zh) * 2014-03-12 2015-02-04 唐山曹妃甸海清源科技有限公司 一种高选择性复合纳滤膜及其制备方法
CN109731486A (zh) * 2019-03-08 2019-05-10 浙江工业大学 带有刷状两性离子聚合物修饰层的纳滤膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120241373A1 (en) * 2011-03-21 2012-09-27 International Business Machines Corporation Composite membranes and methods of preparation thereof
CN104190272A (zh) * 2014-09-04 2014-12-10 北京碧水源膜科技有限公司 一种抗污染复合反渗透膜及其制备方法
CN113209843A (zh) * 2021-07-08 2021-08-06 湖南沁森高科新材料有限公司 一种聚酰胺复合反渗透膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HE CHAOLIANG, JACKIE CHAN, XIAO CHUNSHENG, DING JIANXUN, ZHUANG XIULI, CHEN XUESI: "Synthesis and Characterization of a Temperature-Sensitive Poly(L-Glutamate)-G-Oligoethylene Glycol Graft Copolymer", 2011 NATIONAL POLYMER ACADEMIC PAPERS CONFERENCE PAPER ABSTRACTS, 28 September 2011 (2011-09-28), XP093021129 *
WU YAN: "Preparation and Thermoresponsive Properties of Poly (L-glutamate) Bearing Oligo Ethylene Glycol Pendants", CHINA MASTER'S' THESES FULL-TEXT DATABASE (ELECTRONIC JOURNAL)-INFORMATION & TECHNOLOGY), TIANJIN POLYTECHNIC UNIVERSITY, CN, no. 4, 15 April 2016 (2016-04-15), CN , XP093021124, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN113209843A (zh) 2021-08-06
CN113209843B (zh) 2021-10-22
US20230415103A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2023280191A1 (zh) 一种聚酰胺复合反渗透膜及其制备方法
CN110314559A (zh) 一种界面聚合复合膜的制备方法
US8616380B2 (en) Reverse osmosis composite membranes for boron removal
WO2016107292A1 (zh) 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法
CN114984782B (zh) 一种高通量高脱盐率的抗污染聚酰胺反渗透膜及其制备方法
Chen et al. High salt permeation nanofiltration membranes based on NMG-assisted polydopamine coating for dye/salt fractionation
CN107469649B (zh) 一种亲水性抗污染聚酰胺复合反渗透膜及其制备方法
WO2019179082A1 (zh) 金属有机框架反渗透膜及其制备方法
CN110449046A (zh) 一种mof改性抗污染复合反渗透膜及其制备方法
CN107081077A (zh) 一种荷正电复合纳滤膜及其制备方法
CN110975644B (zh) 一种抗污染和抗氧化聚酰胺复合反渗透膜及其制备方法
CN110585931B (zh) 一种含金属骨架化合物中间层的高通量耐有机溶剂复合纳滤膜及其制备方法
CN113856501A (zh) 一种复合纳滤膜及其制备方法和应用
US6325218B1 (en) Polyion complex separation membrane with a double structure
Jin et al. Taurine as an additive for improving the fouling resistance of nanofiltration composite membranes
CN115155322B (zh) 一种聚酰胺反渗透膜在线修复剂及其制备、修复方法
CN102814126A (zh) 一种高通量抗氧化纳滤膜的制备方法
CN105709616B (zh) 一种耐有机溶剂超滤膜的制备方法、所制备的膜及其应用
CN105251372B (zh) 一种抗污耐氯芳香聚酰胺复合膜的制备方法
CN115738768A (zh) 一种高脱盐率的聚酰胺反渗透膜及其制备方法
CN115463552B (zh) 一种抗污染耐氯反渗透膜及其制备方法和应用
CN112844081B (zh) 一种反渗透膜及其制备方法、清洗方法
CN115869779A (zh) 一种高效抑菌的抗污染反渗透膜及其制备方法
CN112619443A (zh) 复合反渗透膜及其制备方法
CN112619420A (zh) 一种丝瓜络改性复合反渗透膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18039279

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE