WO2023276994A1 - Rubber composition for rubber bearing body side walls, and rubber bearing body using same - Google Patents

Rubber composition for rubber bearing body side walls, and rubber bearing body using same Download PDF

Info

Publication number
WO2023276994A1
WO2023276994A1 PCT/JP2022/025684 JP2022025684W WO2023276994A1 WO 2023276994 A1 WO2023276994 A1 WO 2023276994A1 JP 2022025684 W JP2022025684 W JP 2022025684W WO 2023276994 A1 WO2023276994 A1 WO 2023276994A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
bearing body
diene
rubber composition
Prior art date
Application number
PCT/JP2022/025684
Other languages
French (fr)
Japanese (ja)
Inventor
圭市 村谷
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to CN202280007974.5A priority Critical patent/CN116648483A/en
Priority to JP2022567745A priority patent/JP7217396B1/en
Publication of WO2023276994A1 publication Critical patent/WO2023276994A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition for rubber bearing side walls and a rubber bearing using the same, for forming side walls of rubber bearings having anti-vibration properties and seismic isolation properties.
  • the polymer component is an ethylene-propylene-diene terpolymer (hereinafter abbreviated as "EPDM”), which has excellent weather resistance. ) is recommended.
  • EPDM ethylene-propylene-diene terpolymer
  • JP 2009-001603 A Japanese Patent No. 5712735 Japanese Patent No. 5735886
  • EPDM is used as the polymer component of the covering rubber
  • the adhesion of the covering rubber to the rubber bearing (main body) deteriorates, and the covering rubber tends to crystallize at low temperatures and become hard, functioning well in cold regions. It becomes easy to cause problems such as the loss of resistance (becoming inferior in low-temperature resistance) and the durability (tensile strength) being inferior when the coating rubber is greatly deformed. Therefore, it is required to solve the above problems while maintaining the weather resistance of EPDM.
  • the present invention has been made in view of such circumstances, and a rubber bearing that exhibits high adhesion to a rubber bearing and exhibits excellent performance in terms of low-temperature resistance, durability, and weather resistance.
  • a side wall rubber composition and a rubber bearing using the same are provided.
  • the polymer component of the side wall forming material of the rubber bearing body is a diene containing natural rubber or isoprene rubber as a main component.
  • the use of a combination of system rubber and liquid rubber was investigated. Then, by using an EPDM whose diene content and ethylene content show specific ranges as the EPDM and a liquid rubber whose molecular weight shows a specific range as the liquid rubber, a rubber bearing (main body) It has been found that it can exhibit high adhesion to , and can exhibit excellent performance in low temperature resistance, durability, and weather resistance.
  • the rubber composition for the side wall of a rubber bearing which has the above-described structure, exhibits high adhesiveness to the rubber bearing and exhibits excellent performance in terms of low-temperature resistance, durability, and weather resistance. And the reason why it is possible to provide a rubber bearing using it is considered as follows. That is, in the present invention, the diene content of EPDM is adjusted within a specific range so that it is larger than usual, and furthermore, together with the EPDM, a diene rubber containing natural rubber or isoprene rubber as a main component is used in combination, thereby improving adhesion. It is considered that the increase in the amount of diene, which is the starting point of the reaction, has made it possible to improve the adhesiveness.
  • the ethylene content of the EPDM is adjusted within a specific range so as to be lower than usual, thereby lowering the crystallinity and improving the low-temperature property.
  • the ethylene content of EPDM is lowered, the durability is normally lowered. Therefore, it is considered that the decrease in durability due to the decrease in ethylene content as described above was suppressed.
  • the liquid rubber has a good affinity with EPDM, functions as a softening agent, and has a higher molecular weight than a generally used softening agent (process oil), thus contributing to durability as described above. It is considered to be a thing.
  • a rubber composition for a side wall of a rubber bearing containing the following (A) to (C) as polymer components.
  • (A) A diene-based rubber containing at least one of natural rubber and isoprene rubber as a main component (excluding EPDM and liquid rubber).
  • (B) EPDM having a diene content of 10% by mass or more and an ethylene content of 55% by mass or less.
  • (C) Liquid rubber having a molecular weight of 1,000 to 60,000.
  • the rubber bearing sidewall according to [1], wherein (A) and (B) have a mass ratio of (A)/(B) 50/50 to 90/10. rubber composition.
  • the rubber composition for the side wall of a rubber bearing according to the present invention is used as a material for a side member formed so as to surround the outer surface of the rubber bearing, thereby achieving high adhesion to the rubber bearing. In addition to exhibiting excellent performance in low temperature resistance, durability, and weather resistance.
  • FIG. 3 is a cross-sectional view showing an example of a seismic isolation bearing
  • the rubber composition for the side wall of a rubber bearing body of the present invention (hereinafter abbreviated as "the present rubber composition") comprises the following (A) to (C) as polymer components.
  • the rubber composition desirably contains only the following (A) to (C) as polymer components, but if necessary, may contain a small amount of other polymer components.
  • a diene-based rubber containing at least one of natural rubber and isoprene rubber as a main component excluding EPDM and liquid rubber.
  • EPDM having a diene content of 10% by mass or more and an ethylene content of 55% by mass or less.
  • C Liquid rubber having a molecular weight of 1,000 to 60,000.
  • X and/or Y (X and Y are arbitrary configurations) means at least one of X and Y, and only X, only Y, or X and Y. It means three ways.
  • the diene rubber (A) a diene rubber containing at least one of natural rubber (NR) and isoprene rubber (IR) (NR and/or IR) as a main component is used.
  • the "main component” usually means 55% by mass or more of the diene rubber (A), preferably 60% by mass or more of the diene rubber (A), more preferably means that it accounts for 70% by mass or more of the diene rubber (A), more preferably 100% by mass of the diene rubber (A).
  • butadiene rubber (BR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), Butyl rubber (IIR) and the like may be used alone or in combination of two or more.
  • the diene rubber (A) does not include EPDM (ethylene-propylene-diene terpolymer) and liquid rubber.
  • EPDM ethylene-propylene-diene terpolymer
  • liquid rubber means rubber exhibiting a viscosity of 1500 Pa ⁇ s or less at room temperature (23°C). The viscosity can be measured using, for example, a Brookfield viscometer.
  • Specific EPDM (B) an EPDM having a diene content of 10% by mass or more is used from the viewpoint of obtaining desired adhesion and the like. From the same point of view, the diene content is preferably 12% by mass or more, more preferably 14% by mass or more. If the diene content is too low, the desired adhesiveness cannot be obtained, leading to peeling. The upper limit of the diene content is usually 20% by mass, preferably 18% by mass, more preferably 16% by mass. As the specific EPDM (B), an EPDM having an ethylene content of 55% by mass or less is used from the viewpoint of obtaining desired low-temperature properties.
  • the ethylene content is preferably less than 48% by mass, more preferably less than 45% by mass, and particularly preferably less than 43% by mass. If the ethylene content is too high, desired low-temperature properties cannot be obtained. Moreover, the lower limit of the ethylene content is usually 30% by mass, preferably 35% by mass, and more preferably 40% by mass.
  • a diene-based monomer having 5 to 20 carbon atoms is preferable as the diene-based monomer used as the third component constituting the specific EPDM (B).
  • the specific liquid rubber (C) a liquid rubber having a molecular weight of 1,000 to 60,000 is used from the viewpoint of obtaining desired durability. From the same point of view, the molecular weight of the liquid rubber is preferably 10,000 to 55,000, more preferably 25,000 to 50,000.
  • the weight-average molecular weight (Mw) is indicated when the value is high (the same applies to those used in the examples below).
  • the weight-average molecular weight (Mw) is the weight-average molecular weight in terms of standard polystyrene molecular weight.
  • the specific liquid rubber (C) is a rubber having the above molecular weight and a viscosity of 1500 Pa ⁇ s or less at room temperature (23°C).
  • the (C) is in a ratio of 5 to 30 parts by mass with respect to the total amount of 100 parts by mass of the (A) and (B). is preferable from the viewpoint of obtaining From the same point of view, in the present rubber composition, the ratio of (C) is preferably 10 to 25 parts by mass, preferably 15 to 20 parts by mass, with respect to 100 parts by mass of the total amount of (A) and (B). Parts by mass are more preferred.
  • the rubber composition generally contains fillers such as carbon black and silica, together with a diene rubber (A) containing NR and/or IR as a main component, a specific EPDM (B), and a specific liquid rubber (C). , a cross-linking agent is blended.
  • a cross-linking agent is blended.
  • vulcanization accelerators, vulcanization auxiliaries, anti-aging agents, softening agents and the like are also blended into the present rubber composition, if necessary.
  • the specific liquid rubber (C) functions as a softening agent, it is preferable that the rubber composition does not contain a softening agent.
  • Carbon black As the carbon black, various grades of carbon black such as SAF grade, ISAF grade, HAF grade, MAF grade, FEF grade, GPF grade, SRF grade, FT grade and MT grade are used. These are used alone or in combination of two or more. Among them, SAF grade carbon black is preferably used from the viewpoint of mechanical strength, elongation at break, and the like.
  • the content of the carbon black is 20 to 60 parts by mass with respect to the total amount of 100 parts by mass of (A) and (B). It is preferable from the viewpoint of elongation and the like. From the same point of view, in the present rubber composition, the ratio of the carbon black is preferably 30 to 50 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). More preferably, the ratio is 35 to 45 parts by mass. If the content of the carbon black is too small, the desired reinforcing properties tend not to be obtained. A trend becomes apparent.
  • cross-linking agent examples include sulfur vulcanizing agents such as sulfur and sulfur chloride, 2,4-dichlorobenzoyl peroxide, benzoyl peroxide, 1,1-di-t-butylperoxy-3,3,5-trimethyl Cyclohexane, 2,5-dimethyl-2,5-dibenzoylperoxyhexane, n-butyl-4,4'-di-t-butylperoxyvalerate, dicumyl peroxide, t-butylperoxybenzoate, di-t- Butylperoxy-diisopropylbenzene, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, di-t-butylperoxide, 2,5-dimethyl-2,5-di -Peroxide vulcanizing agents such as t-butylperoxyhexy
  • the content of the cross-linking agent is preferably 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). It is preferable from the viewpoint of obtaining the durability of. From the same point of view, in the present rubber composition, the ratio of the cross-linking agent is 0.75 to 2.5 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). is preferred, and the ratio is more preferably 1.0 to 2.0 parts by mass. If the content of the cross-linking agent is too low, the tensile strength tends to decrease. Conversely, if the content of the cross-linking agent is too high, scorch resistance tends to deteriorate and elongation tends to decrease. become visible.
  • vulcanization accelerator examples include thiazole-based, sulfenamide-based, thiuram-based, aldehyde-ammonia-based, aldehyde-amine-based, guanidine-based, and thiourea-based vulcanization accelerators. These are used alone or in combination of two or more. Among these, sulfenamide-based vulcanization accelerators are preferable because of their excellent cross-linking reactivity.
  • the content of the vulcanization accelerator is 0.5 to 2.5 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). It is preferably in the range of 1.0 to 2.0 parts by mass.
  • thiazole-based vulcanization accelerator examples include dibenzothiazyl disulfide (MBTS), 2-mercaptobenzothiazole (MBT), 2-mercaptobenzothiazole sodium salt (NaMBT), and 2-mercaptobenzothiazole zinc salt (ZnMBT). etc. These are used alone or in combination of two or more.
  • MBTS dibenzothiazyl disulfide
  • MBT 2-mercaptobenzothiazole
  • NaMBT 2-mercaptobenzothiazole sodium salt
  • ZnMBT 2-mercaptobenzothiazole zinc salt
  • sulfenamide vulcanization accelerator examples include N-oxydiethylene-2-benzothiazolylsulfenamide (NOBS), N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), Nt -butyl-2-benzothiazolylsulfenamide (BBS), N,N'-dicyclohexyl-2-benzothiazolylsulfenamide and the like. These are used alone or in combination of two or more.
  • thiuram-based vulcanization accelerator examples include tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), tetrabutylthiuram disulfide (TBTD), tetrakis(2-ethylhexyl)thiuram disulfide (TOT), and tetrabenzylthiuram. disulfide (TBzTD) and the like. These are used alone or in combination of two or more.
  • TMTD tetramethylthiuram disulfide
  • TETD tetraethylthiuram disulfide
  • TBTD tetrabutylthiuram disulfide
  • TOT tetrakis(2-ethylhexyl)thiuram disulfide
  • TBzTD tetrabenzylthiuram. disulfide
  • vulcanizing aid examples include stearic acid, magnesium oxide, zinc oxide and the like. These are used alone or in combination of two or more.
  • the content of the vulcanization aid is preferably in a ratio of 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). More preferably, it ranges from 0.3 to 7 parts by mass.
  • Anti-aging agent examples include carbamate-based anti-aging agents, phenylenediamine-based anti-aging agents, phenol-based anti-aging agents, diphenylamine-based anti-aging agents, quinoline-based anti-aging agents, imidazole-based anti-aging agents, and waxes. can give. These are used alone or in combination of two or more.
  • the content of the anti-aging agent is preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B), and more It is preferably in the range of 1 to 10 parts by mass.
  • Softener examples include naphthenic oil, paraffinic oil, and aromatic oil. These are used alone or in combination of two or more.
  • the content of the softening agent is preferably 0 to 20 parts by mass, more preferably 0 parts by mass, with respect to 100 parts by mass of the total amount of (A) and (B). It is in the range of to 10 parts by mass.
  • the specific liquid rubber (C) functions as a softening agent, the desired performance can be exhibited even if the softening agent is not included. be able to.
  • the present rubber composition can be prepared by blending the above components and kneading them using a kneader such as a kneader, a Banbury mixer, or a roll.
  • a kneader such as a kneader, a Banbury mixer, or a roll.
  • This rubber composition is a rubber composition exclusively used for forming the side walls of rubber bearings having anti-vibration properties and seismic isolation properties.
  • the rubber composition is preferably used as a material for side walls of large bearings such as bridge bearings and building bearings.
  • a seismic isolation bearing for a bridge or building is, for example, as shown in FIG.
  • Side members 5 made of covering rubber are provided.
  • the side member 5 is made of a crosslinked body of the present rubber composition.
  • the illustrated upper mounting plate 3 and lower mounting plate 4 are metal mounting plates, and are adhesively fixed to the upper and lower portions of the laminate of the hard plate 1 and the rubber layer 2 .
  • the lower mounting plate 4 is fixed to a lower structure such as a bridge pier
  • the upper mounting plate 3 is fixed to an upper structure such as a bridge girder.
  • the hard plate for example, a metal plate such as a rolled steel plate or an iron plate, a hard plastic plate material, or the like is used.
  • the rubber composition which is the material of the rubber layer 2, contains diene rubber such as NR and IR as a polymer component and a vulcanizing agent.
  • diene rubber such as NR and IR
  • the rubber composition can be prepared by kneading the mixture of the above materials using a kneader such as a kneader, a Banbury mixer, an open roll, or a twin-screw stirrer.
  • the present rubber bearing (see FIG. 1) is produced, for example, as follows. That is, first, a rubber composition as a material for the rubber layer 2 is prepared as described above. Next, a plurality of hard plates 1 of a predetermined size are prepared, and an upper mounting plate 3 and a lower mounting plate 4 are also prepared. Then, on the lower mounting plate 4, an unvulcanized rubber sheet obtained by molding the rubber composition, which is the material for the rubber layer 2, into a sheet shape and punching out to a predetermined size, and the hard plate 1 are alternately stacked. , the upper mounting plate 3 is stacked to produce a laminate (rubber bearing). An adhesive may be applied in advance to the lamination surfaces of the hard plate 1 and the like.
  • the present rubber composition prepared as described above is molded into a sheet to produce an unvulcanized rubber sheet.
  • the unvulcanized rubber sheet is semi-crosslinked to the extent that it is not completely crosslinked (to the extent that vulcanization adhesion is obtained). It is semi-crosslinked by heating at 10° C. for 1 to 30 minutes.
  • this is set in a predetermined mold, and the unvulcanized rubber sheet is placed in a By heating at 180° C. for 1 to 24 hours for cross-linking and vulcanization bonding to the rubber bearing, a rubber bearing (the present rubber bearing) having side members 5 made of the present rubber composition can be produced. can.
  • the laminate (rubber bearing) is formed by setting the hard plate 1, the upper mounting plate 3, and the lower mounting plate 4 in a mold so as to have a predetermined arrangement, and filling the gap in the mold. It can also be produced by injecting a rubber composition, which is the material for the rubber layer 2, by injection molding or the like, heating and vulcanizing it, and then removing it from the mold.
  • the present rubber bearing can also be produced as follows. That is, using a rubber composition which is a material for the rubber layer 2, a rubber sheet (rubber layer 2) having a predetermined thickness is formed by extrusion molding or the like, and then this is bonded to a predetermined hard plate 1 using an appropriate adhesive. are alternately laminated and adhered to produce a rubber block, and if necessary, the upper mounting plate 3 and the lower mounting plate 4 are adhered to the upper and lower surfaces of the rubber block to integrate them.
  • the present rubber bearing can be manufactured by forming the side member 5 on the outer surface of the rubber bearing thus obtained by the method described above.
  • the side member 5 is formed by injection molding the rubber composition between the outer peripheral surface of the rubber bearing and the inner peripheral surface of the mold. It can also be formed by injecting and cross-linking the rubber composition.
  • the heating conditions for the cross-linking conform to the above production method. However, the step of semi-crosslinking as in the above manufacturing method is not necessary, and the crosslinkage may be performed by heating as it is.
  • the dimensions of the rubber bearing thus obtained are, for example, an outer diameter of about 20 to 200 cm and a total thickness of about 10 to 80 cm. Further, the thickness of each layer constituting the present rubber bearing body may be within a range in which the intended function of each layer can be sufficiently achieved.
  • the thickness of the rubber layer 2 is about 0.5 to 7 cm per layer, and the thickness of the side member 5 is about 0.5 to 10 cm.
  • the number of laminated hard plates 1 and rubber layers 2 in the present rubber bearing can also be appropriately set according to the application of the seismic isolation laminated body.
  • the outer shape of the present rubber bearing can be appropriately set according to its application, such as a cylindrical shape, an elliptical columnar shape, a prismatic shape, or the like.
  • EPDM (ii) JSR Corporation, product name: EP331 (ethylene content: 47% by mass, diene content: 11.3% by mass)
  • Examples 1 to 10, Comparative Examples 1 to 5 Each of the above polymer components and a softening agent are blended in the ratios shown in Tables 1 and 2 below, and further, stearic acid (manufactured by NOF Corporation, product name: beads stearic acid Sakura) 2 parts by mass and zinc oxide (Sakai Chemical Kogyosha, product name: two types of zinc oxide) 5 parts by mass, amine anti-aging agent (Seiko Chemical Co., product name: Ozonon 6C) 3 parts by mass, wax (Ouchi Shinko Kagaku Co., product name : Sannok) 4 parts by mass, 35 parts by mass of SAF grade carbon black (manufactured by Tokai Carbon Co., Ltd., product name: Seast 9M), and a sulfenamide-based vulcanization accelerator (manufactured by Ouchi Shinko Kagaku Co., Ltd., product name: Noccellar CZ -G) 1 part by mass and 1
  • the components excluding the vulcanizing agent and the vulcanization accelerator were kneaded in a Banbury mixer for 5 minutes, discharged when the temperature reached 150°C, and after obtaining a masterbatch, vulcanization was performed on the masterbatch.
  • the rubber composition was prepared by blending the agent and the vulcanization accelerator in the proportions shown in the table and kneading them with an open roll.
  • Keq (-30° C.) and Keq (20° C.) at each measurement temperature were obtained from the obtained load/deflection curves for a total of 10 times from the second time to the eleventh time.
  • G (temperature dependence) was calculated from the following formula. Then, " ⁇ (very good)” for G less than 1.5, “ ⁇ (good)” for G 1.5 or more and less than 1.6, and "X” for G of 1.6 or more (poor)”.
  • G (temperature dependence) Keq (-30°C)/Keq (20°C)
  • the rubber compositions of Examples exhibit high adhesion due to cross-linking, and exhibit excellent performance in low-temperature resistance, tensile strength (durability), and ozone resistance (weather resistance). Therefore, it can be seen that the rubber composition is excellent as a rubber composition for the side wall of a rubber bearing body. Therefore, it is judged that the rubber compositions of the examples are excellent as materials for side members of seismic isolation bearings for use in bridges and buildings, as shown in FIG.
  • the rubber composition of Comparative Example 1 was inferior in ozone resistance (weather resistance) to that of Examples because the polymer component was natural rubber alone.
  • the rubber composition of Comparative Example 2 had a lower diene content in the EPDM, and thus the adhesiveness was inferior to that of the Examples. Since the rubber composition of Comparative Example 3 contained a large amount of ethylene in the EPDM, the low temperature resistance was inferior to that of Examples.
  • the rubber composition of Comparative Example 4 used a softening agent having a molecular weight lower than that of liquid rubber (molecular weight of less than 1000), resulting in a tensile strength inferior to that of Examples.
  • the rubber composition of Comparative Example 5 contained no liquid rubber and contained a large proportion of EPDM, resulting in inferior tensile strength, low-temperature resistance, and adhesiveness to those of Examples.
  • the rubber composition for rubber bearing sidewalls of the present invention is a rubber composition exclusively used for forming sidewalls of rubber bearings having anti-vibration properties and seismic isolation properties.
  • the rubber composition is preferably used as a material for side walls of large bearings such as bridge bearings and building bearings. It can also be used as a vibration damper for products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides: a rubber composition for rubber bearing body side walls, the rubber composition exhibiting high adhesion to a rubber bearing body, while exhibiting excellent performance in terms of low temperature properties, durability and weather resistance; and a rubber bearing body which uses this rubber composition for rubber bearing body side walls. The above are achieved by means of a rubber bearing body that is obtained by alternately stacking rubber layers 2 and hard plates 1 and arranging a lateral surface material 5, which is formed of a covering rubber, so as to surround the outer lateral surface of the rubber bearing body, wherein the lateral surface material 5 is formed of a crosslinked product of a rubber composition for rubber bearing body side walls, the rubber composition containing polymer components (A)-(C) described below. (A) A diene rubber that is mainly composed of at least one of a natural rubber and an isoprene rubber, provided that this diene rubber excludes an ethylene-propylene-diene ternary copolymer and a liquid rubber. (B) An ethylene-propylene-diene ternary copolymer that has a diene content of 10% by mass or more and an ethylene content of 55% by mass or less. (C) A liquid rubber that has a molecular weight of 1,000 to 60,000.

Description

ゴム支承体側壁用ゴム組成物およびそれを用いたゴム支承体Rubber composition for side wall of rubber bearing and rubber bearing using the same
 本発明は、防振特性および免震特性を有するゴム支承体の側壁を形成するための、ゴム支承体側壁用ゴム組成物、およびそれを用いたゴム支承体に関するものである。 The present invention relates to a rubber composition for rubber bearing side walls and a rubber bearing using the same, for forming side walls of rubber bearings having anti-vibration properties and seismic isolation properties.
 近年、橋梁技術の進歩がめざましく、橋梁規模が年々大型化し、これに伴って長大橋が設計されている。前記長大橋の架設は、通常、所定の間隔で配設された橋脚の上に、多数のゴム製の支承体を設置し、この支承体を介して、前記橋脚に長スパンの橋桁を設置し、行われる。このようにしてゴム支承体を介在させることにより、前記長大橋において、防振支持および免震支持等の機能が効果的に得られるようになる。ところで、前記ゴム支承体には、極めて大きな荷重が負荷されることから、その荷重支持に優れるよう、通常、金属板等の剛性を有する硬質板を、ゴム層と交互に積層し一体化して、形成される。 In recent years, the progress of bridge technology has been remarkable, and the scale of bridges is increasing year by year, and along with this, long-span bridges are being designed. The construction of a long-span bridge is usually done by installing a large number of rubber bearings on piers arranged at predetermined intervals, and installing long-span girders on the piers via these bearings. , is done. By interposing the rubber bearings in this manner, functions such as anti-vibration support and seismic isolation support can be effectively obtained in the long-span bridge. By the way, since the rubber bearing is subjected to an extremely large load, in order to be excellent in supporting the load, hard plates having rigidity such as metal plates are usually laminated alternately with the rubber layers and integrated. It is formed.
 また、前記ゴム支承体には、その外側面を囲うように被覆ゴムからなる側面材が設けられたものも存在する(例えば、特許文献1~3参照)。
 そして、前記被覆ゴムには耐候性(耐オゾン性等)が要求されるため、そのポリマー成分には、耐候性に優れるエチレン-プロピレン-ジエン三元共重合体(以下、「EPDM」と略す。)の使用が推奨されている。
In addition, some rubber bearings are provided with a side member made of coated rubber so as to surround the outer surface thereof (see, for example, Patent Documents 1 to 3).
Since the coating rubber is required to have weather resistance (ozone resistance, etc.), the polymer component is an ethylene-propylene-diene terpolymer (hereinafter abbreviated as "EPDM"), which has excellent weather resistance. ) is recommended.
特開2009-001603号公報JP 2009-001603 A 特許第5712735号公報Japanese Patent No. 5712735 特許第5735886号公報Japanese Patent No. 5735886
 しかしながら、前記被覆ゴムのポリマー成分にEPDMを使用すると、ゴム支承体(本体)に対し前記被覆ゴムの接着性が悪くなる、前記被覆ゴムが低温で結晶化して硬くなりやすくなり寒冷地等で機能しなくなる(低温性に劣るようになる)、前記被覆ゴムが大きく変形した際の耐久性(引張強さ)に劣るようになる、といった問題が生じやすくなる。
 そのため、EPDMによる耐候性を維持しつつ、前記の問題を解決することが求められている。
However, when EPDM is used as the polymer component of the covering rubber, the adhesion of the covering rubber to the rubber bearing (main body) deteriorates, and the covering rubber tends to crystallize at low temperatures and become hard, functioning well in cold regions. It becomes easy to cause problems such as the loss of resistance (becoming inferior in low-temperature resistance) and the durability (tensile strength) being inferior when the coating rubber is greatly deformed.
Therefore, it is required to solve the above problems while maintaining the weather resistance of EPDM.
 本発明は、このような事情に鑑みなされたもので、ゴム支承体に対して高い接着性を示すとともに、低温性、耐久性、耐候性に優れた性能を発揮することができる、ゴム支承体側壁用ゴム組成物およびそれを用いたゴム支承体を提供する。 The present invention has been made in view of such circumstances, and a rubber bearing that exhibits high adhesion to a rubber bearing and exhibits excellent performance in terms of low-temperature resistance, durability, and weather resistance. A side wall rubber composition and a rubber bearing using the same are provided.
 本発明者は、前記事情に鑑みて、ゴム支承体の側壁の形成材料(ゴム支承体側壁用ゴム組成物)のポリマー成分として、EPDMの他に、天然ゴムやイソプレンゴムを主成分とするジエン系ゴムと、液状ゴムとを併せて用いることを検討した。そして、前記EPDMとして、そのジエン含有量およびエチレン含有量が特定の範囲を示すEPDMを用いるとともに、前記液状ゴムとして、分子量が特定の範囲を示す液状ゴムを用いることにより、ゴム支承体(本体)に対して高い接着性を示すとともに、低温性、耐久性、耐候性に優れた性能を発揮することができることを見いだした。
 前記のような構成とすることにより、ゴム支承体に対して高い接着性を示すとともに、低温性、耐久性、耐候性に優れた性能を発揮することができる、ゴム支承体側壁用ゴム組成物およびそれを用いたゴム支承体を提供できる理由は、以下のように考えられる。すなわち、本発明では、EPDMのジエン含有量が通常よりも多くなるよう特定範囲内で調整し、さらに前記EPDMとともに、天然ゴムやイソプレンゴムを主成分とするジエン系ゴムを併用したことにより、接着反応の起点となるジエン量が増えたため、接着性を高めることができるようになったと考えられる。また、本発明では、EPDMのエチレン含有量が通常よりも少なくなるよう特定範囲内で調整したことにより、結晶性が低下し、前記低温性を改善することができるようになったと考えられる。なお、前記のようにEPDMのエチレン含有量を低下させると、通常であれば耐久性が低下するのだが、本発明では、特定の分子量を示す液状ゴムを併用することにより補強性が得られたことから、前記のようなエチレン含有量の低下に伴う耐久性の低下が抑えられたと考えられる。しかも、前記液状ゴムは、EPDMとの馴染みが良く、軟化剤としても機能し、一般的に使用される軟化剤(プロセスオイル)よりも分子量が高いことから、前記のように耐久性に寄与したものと考えられる。
In view of the above circumstances, the present inventors have found that the polymer component of the side wall forming material of the rubber bearing body (rubber composition for rubber bearing side wall), in addition to EPDM, is a diene containing natural rubber or isoprene rubber as a main component. The use of a combination of system rubber and liquid rubber was investigated. Then, by using an EPDM whose diene content and ethylene content show specific ranges as the EPDM and a liquid rubber whose molecular weight shows a specific range as the liquid rubber, a rubber bearing (main body) It has been found that it can exhibit high adhesion to , and can exhibit excellent performance in low temperature resistance, durability, and weather resistance.
The rubber composition for the side wall of a rubber bearing, which has the above-described structure, exhibits high adhesiveness to the rubber bearing and exhibits excellent performance in terms of low-temperature resistance, durability, and weather resistance. And the reason why it is possible to provide a rubber bearing using it is considered as follows. That is, in the present invention, the diene content of EPDM is adjusted within a specific range so that it is larger than usual, and furthermore, together with the EPDM, a diene rubber containing natural rubber or isoprene rubber as a main component is used in combination, thereby improving adhesion. It is considered that the increase in the amount of diene, which is the starting point of the reaction, has made it possible to improve the adhesiveness. Further, in the present invention, it is considered that the ethylene content of the EPDM is adjusted within a specific range so as to be lower than usual, thereby lowering the crystallinity and improving the low-temperature property. As described above, when the ethylene content of EPDM is lowered, the durability is normally lowered. Therefore, it is considered that the decrease in durability due to the decrease in ethylene content as described above was suppressed. Moreover, the liquid rubber has a good affinity with EPDM, functions as a softening agent, and has a higher molecular weight than a generally used softening agent (process oil), thus contributing to durability as described above. It is considered to be a thing.
 すなわち、本発明は、以下の[1]~[4]を提供する。
[1] 下記の(A)~(C)をポリマー成分とする、ゴム支承体側壁用ゴム組成物。
(A)天然ゴムおよびイソプレンゴムの少なくとも一方を主成分とするジエン系ゴム(但し、EPDMおよび液状ゴムを含まない)。
(B)ジエン含有量が10質量%以上、エチレン含有量が55質量%以下の、EPDM。
(C)分子量が1000~60000の液状ゴム。
[2] 前記(A)と(B)が、質量比で、(A)/(B)=50/50~90/10の割合になっている、[1]に記載のゴム支承体側壁用ゴム組成物。
[3] 前記(C)が、前記(A)と(B)の合計量100質量部に対し、5~30質量部の割合になっている、[1]または[2]に記載のゴム支承体側壁用ゴム組成物。
[4] ゴムと硬質板とが交互に積層されたゴム支承体であって、前記ゴム支承体は、その外側面を囲うように被覆ゴムからなる側面材を有し、前記被覆ゴムは、[1]~[3]のいずれかに記載のゴム支承体側壁用ゴム組成物の架橋体からなる、ゴム支承体。
That is, the present invention provides the following [1] to [4].
[1] A rubber composition for a side wall of a rubber bearing, containing the following (A) to (C) as polymer components.
(A) A diene-based rubber containing at least one of natural rubber and isoprene rubber as a main component (excluding EPDM and liquid rubber).
(B) EPDM having a diene content of 10% by mass or more and an ethylene content of 55% by mass or less.
(C) Liquid rubber having a molecular weight of 1,000 to 60,000.
[2] The rubber bearing sidewall according to [1], wherein (A) and (B) have a mass ratio of (A)/(B) = 50/50 to 90/10. rubber composition.
[3] The rubber bearing according to [1] or [2], wherein (C) is in a proportion of 5 to 30 parts by mass with respect to the total amount of 100 parts by mass of (A) and (B). A rubber composition for body side walls.
[4] A rubber bearing body in which rubber and hard plates are alternately laminated, wherein the rubber bearing body has a side member made of coated rubber so as to surround the outer surface thereof, and the coated rubber is composed of [ 1] A rubber bearing body comprising a crosslinked product of the rubber composition for side walls of a rubber bearing body according to any one of [3].
 以上のことから、本発明のゴム支承体側壁用ゴム組成物は、ゴム支承体の外側面を囲うように形成される側面材の材料として使用されることにより、ゴム支承体に対して高い接着性を示すとともに、低温性、耐久性、耐候性に優れた性能を発揮することができる。 As described above, the rubber composition for the side wall of a rubber bearing according to the present invention is used as a material for a side member formed so as to surround the outer surface of the rubber bearing, thereby achieving high adhesion to the rubber bearing. In addition to exhibiting excellent performance in low temperature resistance, durability, and weather resistance.
免震支承体の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a seismic isolation bearing;
 つぎに、本発明の実施の形態を詳しく説明する。 Next, an embodiment of the present invention will be described in detail.
 本発明のゴム支承体側壁用ゴム組成物(以下、「本ゴム組成物」と略す)は、下記の(A)~(C)をポリマー成分とする。なお、前記ゴム組成物は、下記の(A)~(C)のみをポリマー成分とすることが望ましいが、必要に応じ、他のポリマー成分を若干量含めるようにしてもよい。
(A)天然ゴムおよびイソプレンゴムの少なくとも一方を主成分とするジエン系ゴム(但し、EPDMおよび液状ゴムを含まない)。
(B)ジエン含有量が10質量%以上、エチレン含有量が55質量%以下の、EPDM。
(C)分子量が1000~60000の液状ゴム。
The rubber composition for the side wall of a rubber bearing body of the present invention (hereinafter abbreviated as "the present rubber composition") comprises the following (A) to (C) as polymer components. The rubber composition desirably contains only the following (A) to (C) as polymer components, but if necessary, may contain a small amount of other polymer components.
(A) A diene-based rubber containing at least one of natural rubber and isoprene rubber as a main component (excluding EPDM and liquid rubber).
(B) EPDM having a diene content of 10% by mass or more and an ethylene content of 55% by mass or less.
(C) Liquid rubber having a molecular weight of 1,000 to 60,000.
 前記本ゴム組成物における各成分の詳細について、以下に説明する。
 なお、本明細書において「Xおよび/またはY(X,Yは任意の構成)」とは、XおよびYの少なくとも一方を意味するものであって、Xのみ、Yのみ、XおよびY、の3通りを意味するものである。
Details of each component in the present rubber composition are described below.
In this specification, "X and/or Y (X and Y are arbitrary configurations)" means at least one of X and Y, and only X, only Y, or X and Y. It means three ways.
《ジエン系ゴム(A)》
 前記ジエン系ゴム(A)としては、天然ゴム(NR)およびイソプレンゴム(IR)の少なくとも一方(NRおよび/またはIR)を主成分とするジエン系ゴムが用いられる。なお、本発明において、「主成分」とは、通常は、ジエン系ゴム(A)の55質量%以上を意味するものであり、好ましくはジエン系ゴム(A)の60質量%以上、より好ましくはジエン系ゴム(A)の70質量%以上、さらに好ましくはジエン系ゴム(A)の100質量%を占めることを意味する。
<<Diene rubber (A)>>
As the diene rubber (A), a diene rubber containing at least one of natural rubber (NR) and isoprene rubber (IR) (NR and/or IR) as a main component is used. In the present invention, the "main component" usually means 55% by mass or more of the diene rubber (A), preferably 60% by mass or more of the diene rubber (A), more preferably means that it accounts for 70% by mass or more of the diene rubber (A), more preferably 100% by mass of the diene rubber (A).
 なお、前記ジエン系ゴム(A)としては、前記主成分の他、必要に応じ、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)等を、単独であるいは二種以上併せて用いてもよい。 As the diene rubber (A), in addition to the main component, if necessary, butadiene rubber (BR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), Butyl rubber (IIR) and the like may be used alone or in combination of two or more.
 また、本発明において、前記ジエン系ゴム(A)には、EPDM(エチレン-プロピレン-ジエン三元共重合体)および液状ゴムは含まないこととする。
 なお、本発明において、「液状ゴム」とは、常温(23℃)で1500Pa・s以下の粘度を示すゴムを意味する。前記粘度は、例えば、B型粘度計を用いて測定することができる。
In the present invention, the diene rubber (A) does not include EPDM (ethylene-propylene-diene terpolymer) and liquid rubber.
In the present invention, "liquid rubber" means rubber exhibiting a viscosity of 1500 Pa·s or less at room temperature (23°C). The viscosity can be measured using, for example, a Brookfield viscometer.
《特定のEPDM(B)》
 前記特定のEPDM(B)としては、所望の接着性等を得る観点から、ジエン含有量が10質量%以上のEPDMが用いられる。同様の観点から、前記ジエン含有量は、好ましくは12質量%以上、より好ましくは14質量%以上である。なお、前記ジエン含有量が少なすぎると、所望の接着性を得ることができず剥離につながるようになる。また、前記ジエン含有量の上限は、通常、20質量%であり、好ましくは18質量%、より好ましくは16質量%である。
 また、前記特定のEPDM(B)としては、所望の低温性等を得る観点から、エチレン含有量が55質量%以下のEPDMが用いられる。同様の観点から、前記エチレ含有量は、好ましくは48質量%未満、より好ましくは45質量%未満、特に好ましくは43質量%未満である。なお、前記エチレン含有量が多すぎると、所望の低温性等を得ることができない。また、前記エチレン含有量の下限は、通常、30質量%であり、好ましくは35質量%、より好ましくは40質量%である。
 前記特定のEPDM(B)を構成する第3成分として用いられるジエン系モノマーとしては、炭素数5~20のジエン系モノマーが好ましい。具体的には、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、2,5-ジメチル-1,5-ヘキサジエン、1,4-オクタジエン、1,4-シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン(DCP)、5-エチリデン-2-ノルボルネン(ENB)、5-ブチリデン-2-ノルボルネン、2-メタリル-5-ノルボルネン、2-イソプロペニル-5-ノルボルネン等があげられる。これらは単独でもしくは二種以上併せて用いられる。これらジエン系モノマー(第3成分)のなかでも、ジシクロペンタジエン(DCP)、5-エチリデン-2-ノルボルネン(ENB)が好ましい。
《Specific EPDM (B)》
As the specific EPDM (B), an EPDM having a diene content of 10% by mass or more is used from the viewpoint of obtaining desired adhesion and the like. From the same point of view, the diene content is preferably 12% by mass or more, more preferably 14% by mass or more. If the diene content is too low, the desired adhesiveness cannot be obtained, leading to peeling. The upper limit of the diene content is usually 20% by mass, preferably 18% by mass, more preferably 16% by mass.
As the specific EPDM (B), an EPDM having an ethylene content of 55% by mass or less is used from the viewpoint of obtaining desired low-temperature properties. From the same point of view, the ethylene content is preferably less than 48% by mass, more preferably less than 45% by mass, and particularly preferably less than 43% by mass. If the ethylene content is too high, desired low-temperature properties cannot be obtained. Moreover, the lower limit of the ethylene content is usually 30% by mass, preferably 35% by mass, and more preferably 40% by mass.
A diene-based monomer having 5 to 20 carbon atoms is preferable as the diene-based monomer used as the third component constituting the specific EPDM (B). Specifically, 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 2,5-dimethyl-1,5-hexadiene, 1,4-octadiene, 1,4-cyclohexadiene, cycloocta Diene, dicyclopentadiene (DCP), 5-ethylidene-2-norbornene (ENB), 5-butylidene-2-norbornene, 2-methallyl-5-norbornene, 2-isopropenyl-5-norbornene and the like. These are used alone or in combination of two or more. Among these diene monomers (third component), dicyclopentadiene (DCP) and 5-ethylidene-2-norbornene (ENB) are preferred.
 そして、本ゴム組成物において、前記(A)と(B)が、質量比で、(A)/(B)=50/50~90/10の割合になっていることが、所望の耐候性、接着性等を得る観点から好ましい。同様の観点から、(A)/(B)=60/40~80/20の割合がより好ましく、(A)/(B)=65/35~70/30の割合が特に好ましい。 In the present rubber composition, (A) and (B) are in a ratio by mass of (A)/(B) = 50/50 to 90/10 to achieve the desired weather resistance. , from the viewpoint of obtaining adhesion and the like. From the same point of view, the ratio of (A)/(B)=60/40 to 80/20 is more preferable, and the ratio of (A)/(B)=65/35 to 70/30 is particularly preferable.
《特定の液状ゴム(C)》
 前記特定の液状ゴム(C)としては、所望の耐久性等を得る観点から、分子量が1000~60000の液状ゴムが用いられる。同様の観点から、前記液状ゴムの分子量は、10000~55000であることが好ましく、25000~50000であることがより好ましい。
 なお、前記液状ゴム(C)の分子量は、その値が高いものは、重量平均分子量(Mw)の値を示したものである(後記の実施例で使用のものも同様)。ここで、前記重量平均分子量(Mw)は、標準ポリスチレン分子量換算による重量平均分子量であり、高速液体クロマトグラフ(Waters社製、「Waters 2695(本体)」と「Waters 2414(検出器)」)に、カラム:Shodex GPC KF-806L(排除限界分子量:2×107、分離範囲:100~2×107、理論段数:10000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm)の3本を直列にして用いることにより測定される。
<<Specific liquid rubber (C)>>
As the specific liquid rubber (C), a liquid rubber having a molecular weight of 1,000 to 60,000 is used from the viewpoint of obtaining desired durability. From the same point of view, the molecular weight of the liquid rubber is preferably 10,000 to 55,000, more preferably 25,000 to 50,000.
As for the molecular weight of the liquid rubber (C), the weight-average molecular weight (Mw) is indicated when the value is high (the same applies to those used in the examples below). Here, the weight-average molecular weight (Mw) is the weight-average molecular weight in terms of standard polystyrene molecular weight. , Column: Shodex GPC KF-806L (exclusion limit molecular weight: 2×10 7 , separation range: 100 to 2×10 7 , number of theoretical plates: 10,000 plates/line, filler material: styrene-divinylbenzene copolymer, filler Particle size: 10 μm) is measured by using three in series.
 前記特定の液状ゴム(C)は、前記の分子量を示すとともに、常温(23℃)で1500Pa・s以下の粘度を示すゴムである。具体的には、液状イソプレン(液状IR)、液状ブタジエン(液状BR)、液状イソプレン-ブタジエンブロックコポリマー(液状IR-BR)、液状スチレンブタジエン(液状SBR)、液状エチレンプロピレンゴム(液状EPM)、液状EPDM、液状アクリロニトリル-ブタジエンゴム(液状NBR)、液状水素添加アクリロニトリル-ブタジエンゴム(液状H-NBR)等があげられる。これらは単独でもしくは二種以上併せて用いられる。なかでも、液状イソプレン-ブタジエンブロックコポリマー(液状IR-BR)が好ましい。 The specific liquid rubber (C) is a rubber having the above molecular weight and a viscosity of 1500 Pa·s or less at room temperature (23°C). Specifically, liquid isoprene (liquid IR), liquid butadiene (liquid BR), liquid isoprene-butadiene block copolymer (liquid IR-BR), liquid styrene-butadiene (liquid SBR), liquid ethylene propylene rubber (liquid EPM), liquid Examples include EPDM, liquid acrylonitrile-butadiene rubber (liquid NBR), and liquid hydrogenated acrylonitrile-butadiene rubber (liquid H-NBR). These are used alone or in combination of two or more. Among them, a liquid isoprene-butadiene block copolymer (liquid IR-BR) is preferred.
 そして、本ゴム組成物において、前記(C)が、前記(A)と(B)の合計量100質量部に対し、5~30質量部の割合になっていることが、所望の耐久性等を得る観点から好ましい。同様の観点から、本ゴム組成物において、前記(C)の割合は、前記(A)と(B)の合計量100質量部に対し、10~25質量部であることが好ましく、15~20質量部であることがより好ましい。 In addition, in the present rubber composition, the (C) is in a ratio of 5 to 30 parts by mass with respect to the total amount of 100 parts by mass of the (A) and (B). is preferable from the viewpoint of obtaining From the same point of view, in the present rubber composition, the ratio of (C) is preferably 10 to 25 parts by mass, preferably 15 to 20 parts by mass, with respect to 100 parts by mass of the total amount of (A) and (B). Parts by mass are more preferred.
 本ゴム組成物には、NRおよび/またはIRを主成分とするジエン系ゴム(A)、特定のEPDM(B)、特定の液状ゴム(C)とともに、通常、カーボンブラック,シリカ等の充填材、架橋剤が配合される。また、本ゴム組成物には、必要に応じて、加硫促進剤、加硫助剤、老化防止剤、軟化剤等も配合される。
 なお、本ゴム組成物においては、前記特定の液状ゴム(C)が軟化剤としての機能を示すことから、軟化剤は不含とすることが好ましい。
The rubber composition generally contains fillers such as carbon black and silica, together with a diene rubber (A) containing NR and/or IR as a main component, a specific EPDM (B), and a specific liquid rubber (C). , a cross-linking agent is blended. In addition, vulcanization accelerators, vulcanization auxiliaries, anti-aging agents, softening agents and the like are also blended into the present rubber composition, if necessary.
In the present rubber composition, since the specific liquid rubber (C) functions as a softening agent, it is preferable that the rubber composition does not contain a softening agent.
《カーボンブラック》
 前記カーボンブラックとしては、例えば、SAF級,ISAF級,HAF級,MAF級,FEF級,GPF級,SRF級,FT級,MT級等の種々のグレードのカーボンブラックが用いられる。これらは単独でもしくは二種以上併せて用いられる。なかでも、機械的強度および破断伸び等の観点から、SAF級カーボンブラックが好ましく用いられる。
"Carbon black"
As the carbon black, various grades of carbon black such as SAF grade, ISAF grade, HAF grade, MAF grade, FEF grade, GPF grade, SRF grade, FT grade and MT grade are used. These are used alone or in combination of two or more. Among them, SAF grade carbon black is preferably used from the viewpoint of mechanical strength, elongation at break, and the like.
 本ゴム組成物において、前記カーボンブラックの含有量は、前記(A)と(B)の合計量100質量部に対し、20~60質量部の割合になっていることが、機械的強度および破断伸び等の観点から好ましい。同様の観点から、本ゴム組成物において、前記カーボンブラックの割合は、前記(A)と(B)の合計量100質量部に対し、30~50質量部の割合になっていることが好ましく、35~45質量部の割合になっていることがより好ましい。なお、前記カーボンブラックの含有量が少なすぎると、所望の補強性等が得られない傾向がみられ、逆に、前記カーボンブラックの含有量が多すぎると、耐スコーチ性の悪化や伸びが小さくなる傾向がみられるようになる。 In the present rubber composition, the content of the carbon black is 20 to 60 parts by mass with respect to the total amount of 100 parts by mass of (A) and (B). It is preferable from the viewpoint of elongation and the like. From the same point of view, in the present rubber composition, the ratio of the carbon black is preferably 30 to 50 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). More preferably, the ratio is 35 to 45 parts by mass. If the content of the carbon black is too small, the desired reinforcing properties tend not to be obtained. A trend becomes apparent.
《架橋剤》
 前記架橋剤としては、例えば、硫黄、塩化硫黄等の硫黄系加硫剤や、2,4-ジクロロベンゾイルペルオキシド、ベンゾイルペルオキシド、1,1-ジ-t-ブチルペルオキシ-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジベンゾイルペルオキシヘキサン、n-ブチル-4,4'-ジ-t-ブチルペルオキシバレレート、ジクミルパーオキサイド、t-ブチルペルオキシベンゾエート、ジ-t-ブチルペルオキシ-ジイソプロピルベンゼン、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキサン、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキシン-3、1,3-ビス-(t-ブチルパーオキシ-イソプロピル)ベンゼン等の過酸化物加硫剤があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、硫黄、ジクミルパーオキサイドが好適に用いられる。
《Crosslinking agent》
Examples of the cross-linking agent include sulfur vulcanizing agents such as sulfur and sulfur chloride, 2,4-dichlorobenzoyl peroxide, benzoyl peroxide, 1,1-di-t-butylperoxy-3,3,5-trimethyl Cyclohexane, 2,5-dimethyl-2,5-dibenzoylperoxyhexane, n-butyl-4,4'-di-t-butylperoxyvalerate, dicumyl peroxide, t-butylperoxybenzoate, di-t- Butylperoxy-diisopropylbenzene, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, di-t-butylperoxide, 2,5-dimethyl-2,5-di -Peroxide vulcanizing agents such as t-butylperoxyhexyne-3,1,3-bis-(t-butylperoxy-isopropyl)benzene. These are used alone or in combination of two or more. Among them, sulfur and dicumyl peroxide are preferably used.
 本ゴム組成物において、前記架橋剤の含有量は、前記(A)と(B)の合計量100質量部に対し、0.5~3.0質量部の割合になっていることが、所望の耐久性等を得る観点から好ましい。同様の観点から、本ゴム組成物において、前記架橋剤の割合は、前記(A)と(B)の合計量100質量部に対し、0.75~2.5質量部の割合になっていることが好ましく、1.0~2.0質量部の割合になっていることがより好ましい。なお、前記架橋剤の含有量が少なすぎると、引張り強度等が低下する傾向がみられ、逆に、前記架橋剤の含有量が多すぎると、耐スコーチ性の悪化や伸びが小さくなる傾向がみられるようになる。 In the present rubber composition, the content of the cross-linking agent is preferably 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). It is preferable from the viewpoint of obtaining the durability of. From the same point of view, in the present rubber composition, the ratio of the cross-linking agent is 0.75 to 2.5 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). is preferred, and the ratio is more preferably 1.0 to 2.0 parts by mass. If the content of the cross-linking agent is too low, the tensile strength tends to decrease. Conversely, if the content of the cross-linking agent is too high, scorch resistance tends to deteriorate and elongation tends to decrease. become visible.
《加硫促進剤》
 前記加硫促進剤としては、例えば、チアゾール系,スルフェンアミド系,チウラム系,アルデヒドアンモニア系,アルデヒドアミン系,グアニジン系,チオウレア系等の加硫促進剤があげられる。これらは単独でもしくは二種以上併せて用いられる。これらのなかでも、架橋反応性に優れる点で、スルフェンアミド系加硫促進剤が好ましい。
《Vulcanization accelerator》
Examples of the vulcanization accelerator include thiazole-based, sulfenamide-based, thiuram-based, aldehyde-ammonia-based, aldehyde-amine-based, guanidine-based, and thiourea-based vulcanization accelerators. These are used alone or in combination of two or more. Among these, sulfenamide-based vulcanization accelerators are preferable because of their excellent cross-linking reactivity.
 本ゴム組成物において、前記加硫促進剤の含有量は、前記(A)と(B)の合計量100質量部に対し、0.5~2.5質量部の割合になっていることが好ましく、より好ましくは1.0~2.0質量部の範囲である。 In the present rubber composition, the content of the vulcanization accelerator is 0.5 to 2.5 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). It is preferably in the range of 1.0 to 2.0 parts by mass.
 前記チアゾール系加硫促進剤としては、例えば、ジベンゾチアジルジスルフィド(MBTS)、2-メルカプトベンゾチアゾール(MBT)、2-メルカプトベンゾチアゾールナトリウム塩(NaMBT)、2-メルカプトベンゾチアゾール亜鉛塩(ZnMBT)等があげられる。これらは単独でもしくは二種以上併せて用いられる。 Examples of the thiazole-based vulcanization accelerator include dibenzothiazyl disulfide (MBTS), 2-mercaptobenzothiazole (MBT), 2-mercaptobenzothiazole sodium salt (NaMBT), and 2-mercaptobenzothiazole zinc salt (ZnMBT). etc. These are used alone or in combination of two or more.
 前記スルフェンアミド系加硫促進剤としては、例えば、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド(NOBS)、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-t-ブチル-2-ベンゾチアゾイルスルフェンアミド(BBS)、N,N'-ジシクロヘキシル-2-ベンゾチアゾイルスルフェンアミド等があげられる。これらは単独でもしくは二種以上併せて用いられる。 Examples of the sulfenamide vulcanization accelerator include N-oxydiethylene-2-benzothiazolylsulfenamide (NOBS), N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), Nt -butyl-2-benzothiazolylsulfenamide (BBS), N,N'-dicyclohexyl-2-benzothiazolylsulfenamide and the like. These are used alone or in combination of two or more.
 前記チウラム系加硫促進剤としては、例えば、テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド(TETD)、テトラブチルチウラムジスルフィド(TBTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT)、テトラベンジルチウラムジスルフィド(TBzTD)等があげられる。これらは単独でもしくは二種以上併せて用いられる。 Examples of the thiuram-based vulcanization accelerator include tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), tetrabutylthiuram disulfide (TBTD), tetrakis(2-ethylhexyl)thiuram disulfide (TOT), and tetrabenzylthiuram. disulfide (TBzTD) and the like. These are used alone or in combination of two or more.
《加硫助剤》
 前記加硫助剤としては、例えば、ステアリン酸、酸化マグネシウム、酸化亜鉛等があげられる。これらは単独でもしくは二種以上併せて用いられる。
《Vulcanizing aid》
Examples of the vulcanizing aid include stearic acid, magnesium oxide, zinc oxide and the like. These are used alone or in combination of two or more.
 本ゴム組成物において、前記加硫助剤の含有量は、前記(A)と(B)の合計量100質量部に対し、0.1~10質量部の割合になっていることが好ましく、より好ましくは0.3~7質量部の範囲である。 In the present rubber composition, the content of the vulcanization aid is preferably in a ratio of 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). More preferably, it ranges from 0.3 to 7 parts by mass.
《老化防止剤》
 前記老化防止剤としては、例えば、カルバメート系老化防止剤、フェニレンジアミン系老化防止剤、フェノール系老化防止剤、ジフェニルアミン系老化防止剤、キノリン系老化防止剤、イミダゾール系老化防止剤、ワックス類等があげられる。これらは単独でもしくは二種以上併せて用いられる。
《Anti-aging agent》
Examples of the anti-aging agent include carbamate-based anti-aging agents, phenylenediamine-based anti-aging agents, phenol-based anti-aging agents, diphenylamine-based anti-aging agents, quinoline-based anti-aging agents, imidazole-based anti-aging agents, and waxes. can give. These are used alone or in combination of two or more.
 本ゴム組成物において、前記老化防止剤の含有量は、前記(A)と(B)の合計量100質量部に対し、0.5~15質量部の割合になっていることが好ましく、より好ましくは1~10質量部の範囲である。 In the present rubber composition, the content of the anti-aging agent is preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B), and more It is preferably in the range of 1 to 10 parts by mass.
《軟化剤》
 前記軟化剤(プロセスオイル)としては、例えば、ナフテン系オイル、パラフィン系オイル、アロマ系オイル等があげられる。これらは単独でもしくは二種以上併せて用いられる。
《Softener》
Examples of the softening agent (process oil) include naphthenic oil, paraffinic oil, and aromatic oil. These are used alone or in combination of two or more.
 本ゴム組成物において、前記軟化剤の含有量は、前記(A)と(B)の合計量100質量部に対し、0~20質量部の割合になっていることが好ましく、より好ましくは0~10質量部の範囲である。
 なお、先にも述べたように、本ゴム組成物においては、前記特定の液状ゴム(C)が軟化剤としての機能を示すことから、軟化剤を不含としても、所望の性能を発揮することができる。
In the present rubber composition, the content of the softening agent is preferably 0 to 20 parts by mass, more preferably 0 parts by mass, with respect to 100 parts by mass of the total amount of (A) and (B). It is in the range of to 10 parts by mass.
As mentioned above, in the present rubber composition, since the specific liquid rubber (C) functions as a softening agent, the desired performance can be exhibited even if the softening agent is not included. be able to.
 ここで、本ゴム組成物は、前記各成分を配合し、これらをニーダー,バンバリーミキサー,ロール等の混練機を用いて混練することにより、調製することができる。 Here, the present rubber composition can be prepared by blending the above components and kneading them using a kneader such as a kneader, a Banbury mixer, or a roll.
 本ゴム組成物は、専ら、防振特性および免震特性を有するゴム支承体の側壁を形成するために用いられるゴム組成物である。そして、本ゴム組成物は、橋梁用支承体、建築物用支承体といった大型の支承体の側壁の材料として好ましく用いられる。 This rubber composition is a rubber composition exclusively used for forming the side walls of rubber bearings having anti-vibration properties and seismic isolation properties. The rubber composition is preferably used as a material for side walls of large bearings such as bridge bearings and building bearings.
 橋梁用または建築物用の免震支承体は、例えば、図1に示すように、硬質板1とゴム層2とが交互に積層され一体化されたものであり、その外側面を囲うように被覆ゴムからなる側面材5が設けられている。本発明の一実施形態であるゴム支承体(以下、「本ゴム支承体」と略す)は、前記側面材5が、本ゴム組成物の架橋体からなるものである。なお、図示の上部取付板3および下部取付板4は、金属製の取付板であり、硬質板1とゴム層2との積層体の上部および下部に接着固定されている。そして、前記免震支承体では、その下部取付板4が、橋脚等の下部構造体に固定されるようになっており、上部取付板3が、橋桁等の上部構造体に固定されるようになっている。 A seismic isolation bearing for a bridge or building is, for example, as shown in FIG. Side members 5 made of covering rubber are provided. In a rubber bearing (hereinafter abbreviated as "the present rubber bearing") which is one embodiment of the present invention, the side member 5 is made of a crosslinked body of the present rubber composition. The illustrated upper mounting plate 3 and lower mounting plate 4 are metal mounting plates, and are adhesively fixed to the upper and lower portions of the laminate of the hard plate 1 and the rubber layer 2 . In the seismic isolation bearing, the lower mounting plate 4 is fixed to a lower structure such as a bridge pier, and the upper mounting plate 3 is fixed to an upper structure such as a bridge girder. It's becoming
 前記硬質板1としては、例えば、圧延鋼板,鉄板などの金属板や、硬質プラスチック板材等が用いられる。 As the hard plate 1, for example, a metal plate such as a rolled steel plate or an iron plate, a hard plastic plate material, or the like is used.
 また、前記ゴム層2の材料であるゴム組成物は、NR,IR等のジエン系ゴムをポリマー成分とし、加硫剤を含有するものである。なお、前記ゴム組成物には、必要に応じ、カーボンブラック、軟化剤、老化防止剤、加工助剤、加硫促進剤、白色充填剤、反応性モノマー、発泡剤等を必要に応じて適宜配合しても差し支えない。
 そして、前記ゴム組成物は、前記の各材料を配合したものを、ニーダー,バンバリーミキサー,オープンロール,2軸スクリュー式撹拌機等の混練機を用いて混練することにより、調製することができる。
The rubber composition, which is the material of the rubber layer 2, contains diene rubber such as NR and IR as a polymer component and a vulcanizing agent. In addition, carbon black, a softening agent, an anti-aging agent, a processing aid, a vulcanization accelerator, a white filler, a reactive monomer, a foaming agent, etc., are appropriately added to the rubber composition as necessary. I don't mind.
The rubber composition can be prepared by kneading the mixture of the above materials using a kneader such as a kneader, a Banbury mixer, an open roll, or a twin-screw stirrer.
 ここで、本ゴム支承体(図1参照)は、例えば、つぎのようにして作製される。すなわち、まず、前記のようにして、ゴム層2用材料であるゴム組成物を調製する。つぎに、所定の大きさの硬質板1を複数枚準備し、さらに、上部取付板3および下部取付板4も準備する。
 そして、下部取付板4上に、前記ゴム層2用材料であるゴム組成物をシート状に成形して所定の寸法に打ち抜いた未加硫ゴムシートと硬質板1とを交互に重ね、最後に、上部取付板3を重ねることにより、積層体(ゴム支承体)を作製する。なお、前記硬質板1等の積層面には、予め、接着剤を塗布しておいてもよい。
 つぎに、先に記載のようにして調製した本ゴム組成物をシート状に成形して、未加硫ゴムシートを作製する。前記未加硫ゴムシートは、完全に架橋しない程度(加硫接着性が得られる程度)に半架橋させた状態のものであり、その成形条件は、厚みによっても異なるが、通常、130~180℃で1~30分間加熱し、半架橋させたものである。そして、前記未加硫ゴムシートを、前記積層体(ゴム支承体)の外側面を囲うように被覆した後、このものを所定の金型内にセットし、前記未加硫ゴムシートを130~180℃で1~24時間加熱して架橋し、ゴム支承体に加硫接着させることにより、本ゴム組成物からなる側面材5を備えたゴム支承体(本ゴム支承体)を製造することができる。
 なお、前記積層体(ゴム支承体)は、硬質板1、上部取付板3、および下部取付板4を、所定の配置となるよう成形金型内にセットし、この成形金型内の空隙に、ゴム層2用材料であるゴム組成物を射出成形等により注入して加熱加硫した後脱型することによっても、製造することができる。
Here, the present rubber bearing (see FIG. 1) is produced, for example, as follows. That is, first, a rubber composition as a material for the rubber layer 2 is prepared as described above. Next, a plurality of hard plates 1 of a predetermined size are prepared, and an upper mounting plate 3 and a lower mounting plate 4 are also prepared.
Then, on the lower mounting plate 4, an unvulcanized rubber sheet obtained by molding the rubber composition, which is the material for the rubber layer 2, into a sheet shape and punching out to a predetermined size, and the hard plate 1 are alternately stacked. , the upper mounting plate 3 is stacked to produce a laminate (rubber bearing). An adhesive may be applied in advance to the lamination surfaces of the hard plate 1 and the like.
Next, the present rubber composition prepared as described above is molded into a sheet to produce an unvulcanized rubber sheet. The unvulcanized rubber sheet is semi-crosslinked to the extent that it is not completely crosslinked (to the extent that vulcanization adhesion is obtained). It is semi-crosslinked by heating at 10° C. for 1 to 30 minutes. Then, after the unvulcanized rubber sheet is coated so as to surround the outer surface of the laminate (rubber bearing), this is set in a predetermined mold, and the unvulcanized rubber sheet is placed in a By heating at 180° C. for 1 to 24 hours for cross-linking and vulcanization bonding to the rubber bearing, a rubber bearing (the present rubber bearing) having side members 5 made of the present rubber composition can be produced. can.
The laminate (rubber bearing) is formed by setting the hard plate 1, the upper mounting plate 3, and the lower mounting plate 4 in a mold so as to have a predetermined arrangement, and filling the gap in the mold. It can also be produced by injecting a rubber composition, which is the material for the rubber layer 2, by injection molding or the like, heating and vulcanizing it, and then removing it from the mold.
 また、本ゴム支承体は、つぎのようにして作製することもできる。すなわち、ゴム層2用材料であるゴム組成物を用い、押出成形等により所定厚みのゴムシート(ゴム層2)に成形した後、これを、適当な接着剤を用いて、所定の硬質板1と交互に積層し接着して、ゴムブロックを作製し、さらに必要に応じて、その上下面に上部取付板3および下部取付板4を接着して一体化する。このようにして得られたゴム支承体の外側面に対し、先に述べた手法により側面材5を形成することにより、本ゴム支承体を製造することができる。 In addition, the present rubber bearing can also be produced as follows. That is, using a rubber composition which is a material for the rubber layer 2, a rubber sheet (rubber layer 2) having a predetermined thickness is formed by extrusion molding or the like, and then this is bonded to a predetermined hard plate 1 using an appropriate adhesive. are alternately laminated and adhered to produce a rubber block, and if necessary, the upper mounting plate 3 and the lower mounting plate 4 are adhered to the upper and lower surfaces of the rubber block to integrate them. The present rubber bearing can be manufactured by forming the side member 5 on the outer surface of the rubber bearing thus obtained by the method described above.
 なお、前記側面材5は、前記ゴム支承体を所定の金型内にセットした後、本ゴム組成物を、前記ゴム支承体の外周面と金型内周面との間に射出成形等により注入し、本ゴム組成物を架橋させることによっても、形成することができる。
 前記架橋の際の加熱条件は、先の製造方法に準じる。但し、先の製造方法のように半架橋させる工程は必要ではなく、そのまま加熱して架橋させればよい。
After setting the rubber bearing in a predetermined mold, the side member 5 is formed by injection molding the rubber composition between the outer peripheral surface of the rubber bearing and the inner peripheral surface of the mold. It can also be formed by injecting and cross-linking the rubber composition.
The heating conditions for the cross-linking conform to the above production method. However, the step of semi-crosslinking as in the above manufacturing method is not necessary, and the crosslinkage may be performed by heating as it is.
 このようにして得られる本ゴム支承体の寸法は、例えば、その外径は、20~200cm程度であり、また、本ゴム支承体の総厚みは、10~80cm程度である。さらに、本ゴム支承体を構成する各層の厚みも、各層の目的とする機能が充分に達成され得るような範囲内であればよく、例えば、硬質板1の厚みは、1層0.1~2cm程度であり、ゴム層2の厚みは、1層0.5~7cm程度であり、側面材5の厚みは、0.5~10cm程度である。さらに、本ゴム支承体における硬質板1やゴム層2の積層数に関しても、免震積層体の用途に応じて適宜に設定することができる。 The dimensions of the rubber bearing thus obtained are, for example, an outer diameter of about 20 to 200 cm and a total thickness of about 10 to 80 cm. Further, the thickness of each layer constituting the present rubber bearing body may be within a range in which the intended function of each layer can be sufficiently achieved. The thickness of the rubber layer 2 is about 0.5 to 7 cm per layer, and the thickness of the side member 5 is about 0.5 to 10 cm. Furthermore, the number of laminated hard plates 1 and rubber layers 2 in the present rubber bearing can also be appropriately set according to the application of the seismic isolation laminated body.
 なお、本ゴム支承体の外形は、円柱状,楕円柱状,角柱状等、その用途に応じて適宜に設定することができる。 It should be noted that the outer shape of the present rubber bearing can be appropriately set according to its application, such as a cylindrical shape, an elliptical columnar shape, a prismatic shape, or the like.
 つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.
 まず、実施例および比較例に先立ち、下記に示す材料(ポリマー成分および軟化剤)を準備した。 First, prior to Examples and Comparative Examples, the following materials (polymer component and softener) were prepared.
〔NR〕
 天然ゴム
[NR]
natural rubber
〔IR〕
 日本ゼオン社製、製品名:Nipol IR2200
[IR]
Nippon Zeon Co., Ltd., product name: Nipol IR2200
〔EPDM(i)〕
 三井化学社製、製品名:三井EPT 9090M(エチレン含有量:41質量%、ジエン含有量:14質量%)
[EPDM(i)]
Mitsui Chemicals, Inc., product name: Mitsui EPT 9090M (ethylene content: 41% by mass, diene content: 14% by mass)
〔EPDM(ii)〕
 JSR社製、製品名:EP331(エチレン含有量:47質量%、ジエン含有量:11.3質量%)
[EPDM (ii)]
JSR Corporation, product name: EP331 (ethylene content: 47% by mass, diene content: 11.3% by mass)
〔EPDM(iii)〕
 住友化学社製、製品名:エスプレン505(エチレン含有量:50質量%、ジエン含有量:10質量%)
[EPDM (iii)]
Sumitomo Chemical Co., Ltd., product name: Esprene 505 (ethylene content: 50% by mass, diene content: 10% by mass)
〔EPDM(iv)〕
 三井化学社製、製品名:三井EPT 8030M(エチレン含有量:47質量%、ジエン含有量:9.5質量%)
[EPDM (iv)]
Mitsui Chemicals, product name: Mitsui EPT 8030M (ethylene content: 47% by mass, diene content: 9.5% by mass)
〔EPDM(v)〕
 LANXESS社製、製品名:Keltan K3960Q(エチレン含有量:56質量%、ジエン含有量:11.4質量%)
[EPDM(v)]
LANXESS, product name: Keltan K3960Q (ethylene content: 56% by mass, diene content: 11.4% by mass)
〔液状ゴム (i)〕
 クラレ社製、製品名:LIR-30(重量平均分子量:28000)
[Liquid rubber (i)]
Kuraray Co., Ltd., product name: LIR-30 (weight average molecular weight: 28000)
〔液状ゴム (ii)〕
 クラレ社製、製品名:LIR-50(重量平均分子量:54000)
[Liquid rubber (ii)]
Kuraray Co., Ltd., product name: LIR-50 (weight average molecular weight: 54000)
〔液状ゴム (iii)〕
 EVONIK社製、製品名:POLYVEST110(分子量:1100)
[Liquid rubber (iii)]
EVONIK, product name: POLYVEST110 (molecular weight: 1100)
〔軟化剤〕
 日本サン石油社製、製品名:Sunpar110
[Softener]
Japan Sun Oil Co., Ltd., product name: Sunpar110
[実施例1~10、比較例1~5]
 前記各ポリマー成分および軟化剤を後記の表1および表2に示す割合で配合し、さらに、ステアリン酸(日油社製、製品名:ビーズステアリン酸さくら)2質量部と、酸化亜鉛(堺化学工業社製、製品名:酸化亜鉛二種)5質量部と、アミン系老化防止剤(精工化学社製、製品名:オゾノン6C)3質量部と、ワックス(大内新興化学社製、製品名:サンノック)4質量部と、SAF級カーボンブラック(東海カーボン社製、製品名:シースト9M)35質量部と、スルフェンアミド系加硫促進剤(大内新興化学社製、製品名:ノクセラーCZ-G)1質量部と、硫黄(鶴見化学工業社製、製品名:金華印微粉硫黄)1質量部とを加えて配合し、バンバリーミキサーおよびオープンロールを用いて混練して、ゴム組成物(ゴム支承体側壁用ゴム組成物)を調製した。具体的には、加硫剤および加硫促進剤を除く成分を、バンバリーミキサーで5分間混練し、150℃に達したときに放出し、マスターバッチを得た後、そのマスターバッチに、加硫剤および加硫促進剤を同表に示す割合で配合し、これらをオープンロールで混練して、前記ゴム組成物を調製した。
[Examples 1 to 10, Comparative Examples 1 to 5]
Each of the above polymer components and a softening agent are blended in the ratios shown in Tables 1 and 2 below, and further, stearic acid (manufactured by NOF Corporation, product name: beads stearic acid Sakura) 2 parts by mass and zinc oxide (Sakai Chemical Kogyosha, product name: two types of zinc oxide) 5 parts by mass, amine anti-aging agent (Seiko Chemical Co., product name: Ozonon 6C) 3 parts by mass, wax (Ouchi Shinko Kagaku Co., product name : Sannok) 4 parts by mass, 35 parts by mass of SAF grade carbon black (manufactured by Tokai Carbon Co., Ltd., product name: Seast 9M), and a sulfenamide-based vulcanization accelerator (manufactured by Ouchi Shinko Kagaku Co., Ltd., product name: Noccellar CZ -G) 1 part by mass and 1 part by mass of sulfur (manufactured by Tsurumi Chemical Industry Co., Ltd., product name: Kinkain fine powder sulfur) are added and blended, kneaded using a Banbury mixer and an open roll, and a rubber composition ( A rubber composition for side walls of a rubber bearing body) was prepared. Specifically, the components excluding the vulcanizing agent and the vulcanization accelerator were kneaded in a Banbury mixer for 5 minutes, discharged when the temperature reached 150°C, and after obtaining a masterbatch, vulcanization was performed on the masterbatch. The rubber composition was prepared by blending the agent and the vulcanization accelerator in the proportions shown in the table and kneading them with an open roll.
 このようにして得られた実施例および比較例のゴム組成物を用い、下記の基準に従って、各特性の評価を行った。その結果を、後記の表1および表2に併せて示した。 Using the rubber compositions of Examples and Comparative Examples thus obtained, each property was evaluated according to the following criteria. The results are also shown in Tables 1 and 2 below.
<引張強さ>
 得られた各ゴム組成物を用い、150℃×20分の条件でプレス成形(加硫)して、厚み2mmのゴムシートを作製した。そして、このゴムシートから、JIS5号ダンベルを打ち抜き、JIS K 6251に準拠して、25℃雰囲気下における引張強さ(引張強度)を測定した。
 そして、前記引張強度が、20MPa以上のものを「◎(excellent)」、15MPa以上20MPa未満のものを「○(very good)」、10MPa以上15MPa未満のものを「△(good)」、10MPa未満のものを「×(poor)」と評価した。
<Tensile strength>
Using each of the obtained rubber compositions, press molding (vulcanization) was performed at 150° C. for 20 minutes to prepare a rubber sheet having a thickness of 2 mm. A JIS No. 5 dumbbell was punched out from this rubber sheet, and the tensile strength (tensile strength) in an atmosphere at 25° C. was measured according to JIS K 6251.
Then, the tensile strength is "excellent" when it is 20 MPa or more, "○ (very good)" when it is 15 MPa or more and less than 20 MPa, "Δ (good)" when it is 10 MPa or more and less than 15 MPa, and less than 10 MPa. was evaluated as "x (poor)".
<低温性>
 得られた各ゴム組成物を用い、150℃×30分の加硫条件を採用して、JIS K 6394「加硫ゴム及び熱可塑性ゴムの動的性質試験法」に規定されている金具付円柱状の剪断方法用試験片を作製した。その後、得られた各試験片を用いて、JIS K 6394(1998)に規定される「6.大型試験装置による動的性質試験」に従って、試験温度:-30℃、20℃、試験振動数:0.5Hz、歪み振幅(剪断):250%の条件下において、それぞれ、荷重/撓み曲線を11回連続して測定した。
 そして、得られた2回目から11回目までの計10回の荷重/撓み曲線から、各測定温度での等価剛性:Keq(-30℃)、Keq(20℃)を求めた。得られた等価剛性を用い、以下の式から、G(温度依存性)をそれぞれ算出した。そして、Gが1.5未満のものを「○(very good)」、Gが1.5以上1.6未満のものを「△(good)」、Gが1.6以上のものを「×(poor)」と評価した。
  G(温度依存性)=Keq(-30℃)/Keq(20℃)
<Low temperature resistance>
Using each of the obtained rubber compositions, a circle with metal fittings specified in JIS K 6394 "Testing methods for dynamic properties of vulcanized rubber and thermoplastic rubber" was applied under vulcanization conditions of 150 ° C. for 30 minutes. A columnar shear test specimen was prepared. After that, using each of the obtained test pieces, test temperature: -30 ° C., 20 ° C., test frequency: Under the conditions of 0.5 Hz and strain amplitude (shear): 250%, the load/deflection curves were measured continuously 11 times.
Equivalent stiffnesses Keq (-30° C.) and Keq (20° C.) at each measurement temperature were obtained from the obtained load/deflection curves for a total of 10 times from the second time to the eleventh time. Using the obtained equivalent stiffness, G (temperature dependence) was calculated from the following formula. Then, "○ (very good)" for G less than 1.5, "△ (good)" for G 1.5 or more and less than 1.6, and "X" for G of 1.6 or more (poor)”.
G (temperature dependence) = Keq (-30°C)/Keq (20°C)
<接着性>
 得られた各ゴム組成物を用い、鉄板上で150℃×30分加熱して加硫(加硫接着)させた。このようにして得られた試験片における、鉄板とゴムとの間の接着性について、JIS K 6256の「加硫ゴムの接着試験方法」における「5.金属片とゴムの90度はく離試験」に準拠して、鉄板に接着したゴムを90度の方向に剥離して、その剥離部分の状態を目視観察した。そして、ゴム部の破損割合が100%のものを「○(very good)」、ゴム部と鉄板との間に界面剥離している部分があるものを「×(poor)」と評価した。
<Adhesion>
Each of the obtained rubber compositions was heated on an iron plate at 150° C. for 30 minutes for vulcanization (vulcanization adhesion). Regarding the adhesion between the iron plate and the rubber in the test piece thus obtained, it is determined in JIS K 6256 "Adhesion test method for vulcanized rubber" in "5. 90 degree peeling test between metal piece and rubber". Accordingly, the rubber adhered to the iron plate was peeled off at an angle of 90 degrees, and the state of the peeled portion was visually observed. A sample with a rubber part having a breakage rate of 100% was evaluated as "good (very good)", and a sample with a portion of interface peeling between the rubber part and the iron plate was evaluated as "poor (poor)".
<耐オゾン性>
 得られた各ゴム組成物を用い、150℃×20分の条件でプレス成形(加硫)して、厚み2mmのゴムシートを作製した。このゴムシートから、JIS1号ダンベルを打ち抜き、試験片を作製した。そして、JIS K 6259に準拠して、オゾン濃度200±20pphm、温度40℃のオゾン槽内に、前記試験片を、引張ひずみ80±2%を与えた状態で投入した。前記投入から672時間後において、前記試験片における亀裂の発生の有無を目視観察し、亀裂がないものを「〇(very good)」、亀裂があるものを「×(poor)」と評価した。
<Ozone resistance>
Using each of the obtained rubber compositions, press molding (vulcanization) was performed at 150° C. for 20 minutes to prepare a rubber sheet having a thickness of 2 mm. A JIS No. 1 dumbbell was punched from this rubber sheet to prepare a test piece. Then, according to JIS K 6259, the test piece was placed in an ozone bath having an ozone concentration of 200±20 pphm and a temperature of 40° C. with a tensile strain of 80±2%. After 672 hours from the charging, the presence or absence of cracks in the test pieces was visually observed, and those without cracks were evaluated as "very good", and those with cracks were evaluated as "x (poor)".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 前記表1の結果から、実施例のゴム組成物は、架橋により高い接着性を示すとともに、低温性、引張強さ(耐久性)、耐オゾン性(耐候性)に優れた性能を発揮することができるため、ゴム支承体側壁用ゴム組成物として優れていることがわかる。
 そのため、実施例のゴム組成物は、図1に示すような、橋梁用途や建築物用途の免震支承体の側面材の材料として優れていると判断される。
From the results in Table 1 above, the rubber compositions of Examples exhibit high adhesion due to cross-linking, and exhibit excellent performance in low-temperature resistance, tensile strength (durability), and ozone resistance (weather resistance). Therefore, it can be seen that the rubber composition is excellent as a rubber composition for the side wall of a rubber bearing body.
Therefore, it is judged that the rubber compositions of the examples are excellent as materials for side members of seismic isolation bearings for use in bridges and buildings, as shown in FIG.
 これに対して、前記表2の結果から、比較例1のゴム組成物は、そのポリマー成分が天然ゴム単独であるため、実施例よりも耐オゾン性(耐候性)に劣る結果が得られた。比較例2のゴム組成物は、そのEPDMのジエン含有量が少ないため実施例よりも接着性が劣る結果が得られた。比較例3のゴム組成物は、そのEPDMのエチレン含有量が多いため、実施例よりも低温性が劣る結果が得られた。比較例4のゴム組成物は、液状ゴムに比べ分子量が低い(分子量1000未満の)軟化剤を使用のため、実施例よりも引張強さが劣る結果となった。比較例5のゴム組成物は、液状ゴムが不含であり、しかもEPDMの比率が多いため、実施例よりも引張強さ、低温性、接着性が劣る結果となった。 On the other hand, from the results shown in Table 2, the rubber composition of Comparative Example 1 was inferior in ozone resistance (weather resistance) to that of Examples because the polymer component was natural rubber alone. . The rubber composition of Comparative Example 2 had a lower diene content in the EPDM, and thus the adhesiveness was inferior to that of the Examples. Since the rubber composition of Comparative Example 3 contained a large amount of ethylene in the EPDM, the low temperature resistance was inferior to that of Examples. The rubber composition of Comparative Example 4 used a softening agent having a molecular weight lower than that of liquid rubber (molecular weight of less than 1000), resulting in a tensile strength inferior to that of Examples. The rubber composition of Comparative Example 5 contained no liquid rubber and contained a large proportion of EPDM, resulting in inferior tensile strength, low-temperature resistance, and adhesiveness to those of Examples.
 前記実施例においては、本発明における具体的な形態について示したが、前記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 Although specific embodiments of the present invention have been described in the above examples, the above examples are merely illustrative and should not be construed as limiting. Various modifications apparent to those skilled in the art are intended to be within the scope of the invention.
 本発明のゴム支承体側壁用ゴム組成物は、専ら、防振特性および免震特性を有するゴム支承体の側壁を形成するために用いられるゴム組成物である。そして、本ゴム組成物は、橋梁用支承体、建築物用支承体といった大型の支承体の側壁の材料として好ましく用いられるが、それ以外にも、自動車用制振材、洗濯機等の一般家電製品の制振ダンパー等にも用いることができる。 The rubber composition for rubber bearing sidewalls of the present invention is a rubber composition exclusively used for forming sidewalls of rubber bearings having anti-vibration properties and seismic isolation properties. The rubber composition is preferably used as a material for side walls of large bearings such as bridge bearings and building bearings. It can also be used as a vibration damper for products.
 1 硬質板
 2 ゴム層
 5 側面材
REFERENCE SIGNS LIST 1 hard plate 2 rubber layer 5 side member

Claims (4)

  1.  下記の(A)~(C)をポリマー成分とする、ゴム支承体側壁用ゴム組成物。
    (A)天然ゴムおよびイソプレンゴムの少なくとも一方を主成分とするジエン系ゴム。但し、エチレン-プロピレン-ジエン三元共重合体および液状ゴムを含まない。
    (B)ジエン含有量が10質量%以上、エチレン含有量が55質量%以下の、エチレン-プロピレン-ジエン三元共重合体。
    (C)分子量が1000~60000の液状ゴム。
    A rubber composition for a side wall of a rubber bearing, comprising the following (A) to (C) as polymer components.
    (A) A diene rubber containing at least one of natural rubber and isoprene rubber as a main component. However, ethylene-propylene-diene terpolymer and liquid rubber are not included.
    (B) An ethylene-propylene-diene terpolymer having a diene content of 10% by mass or more and an ethylene content of 55% by mass or less.
    (C) Liquid rubber having a molecular weight of 1,000 to 60,000.
  2.  前記(A)と(B)が、質量比で、(A)/(B)=50/50~90/10の割合になっている、請求項1記載のゴム支承体側壁用ゴム組成物。 The rubber composition for the side wall of a rubber bearing body according to claim 1, wherein (A) and (B) have a mass ratio of (A)/(B) = 50/50 to 90/10.
  3.  前記(C)が、前記(A)と(B)の合計量100質量部に対し、5~30質量部の割合になっている、請求項1または2記載のゴム支承体側壁用ゴム組成物。 3. The rubber composition for a side wall of a rubber bearing body according to claim 1, wherein (C) is in a proportion of 5 to 30 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). .
  4.  ゴムと硬質板とが交互に積層されたゴム支承体であって、
     前記ゴム支承体は、その外側面を囲うように被覆ゴムからなる側面材を有し、
     前記被覆ゴムは、請求項1~3のいずれか一項に記載のゴム支承体側壁用ゴム組成物の架橋体からなる、ゴム支承体。
    A rubber bearing body in which rubber and hard plates are alternately laminated,
    The rubber bearing body has a side member made of coated rubber so as to surround its outer surface,
    A rubber bearing, wherein the covering rubber comprises a crosslinked product of the rubber composition for side walls of a rubber bearing according to any one of claims 1 to 3.
PCT/JP2022/025684 2021-06-30 2022-06-28 Rubber composition for rubber bearing body side walls, and rubber bearing body using same WO2023276994A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280007974.5A CN116648483A (en) 2021-06-30 2022-06-28 Rubber composition for rubber support side wall and rubber support using the same
JP2022567745A JP7217396B1 (en) 2021-06-30 2022-06-28 Rubber composition for side wall of rubber bearing and rubber bearing using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021109210 2021-06-30
JP2021-109210 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276994A1 true WO2023276994A1 (en) 2023-01-05

Family

ID=84689941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025684 WO2023276994A1 (en) 2021-06-30 2022-06-28 Rubber composition for rubber bearing body side walls, and rubber bearing body using same

Country Status (4)

Country Link
JP (1) JP7217396B1 (en)
CN (1) CN116648483A (en)
TW (1) TW202311413A (en)
WO (1) WO2023276994A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001603A (en) * 2007-06-19 2009-01-08 Bridgestone Corp Rubber sheet for rubber support coating, and coating material for rubber support
JP2012211277A (en) * 2011-03-31 2012-11-01 Yokohama Rubber Co Ltd:The Rubber composition for rubber bearing wall, and rubber bearing
JP2013035943A (en) * 2011-08-08 2013-02-21 Bridgestone Corp Rubber composition for rubber bearing coating, and rubber for rubber bearing coating using the same
JP2017137414A (en) * 2016-02-03 2017-08-10 中日本高速技術マーケティング株式会社 Coated rubber composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001603A (en) * 2007-06-19 2009-01-08 Bridgestone Corp Rubber sheet for rubber support coating, and coating material for rubber support
JP2012211277A (en) * 2011-03-31 2012-11-01 Yokohama Rubber Co Ltd:The Rubber composition for rubber bearing wall, and rubber bearing
JP2013035943A (en) * 2011-08-08 2013-02-21 Bridgestone Corp Rubber composition for rubber bearing coating, and rubber for rubber bearing coating using the same
JP2017137414A (en) * 2016-02-03 2017-08-10 中日本高速技術マーケティング株式会社 Coated rubber composition

Also Published As

Publication number Publication date
TW202311413A (en) 2023-03-16
JPWO2023276994A1 (en) 2023-01-05
JP7217396B1 (en) 2023-02-02
CN116648483A (en) 2023-08-25

Similar Documents

Publication Publication Date Title
US7758937B2 (en) Rubber composition and vulcanized rubber product using the same
JP4668926B2 (en) Laminated body, manufacturing method thereof, and tire using the same
JP5822030B1 (en) Rubber composition, rubber composition metal laminate, and vulcanized rubber product
JPWO2007141973A1 (en) Pneumatic tire
US8691386B2 (en) Bonded body of a carbon thin film covered article and a rubber
JP4629420B2 (en) Laminated body, manufacturing method thereof, and tire using the same
US20140312542A1 (en) Chipping-resistant vibration damper in form of sheet
JP4939027B2 (en) Method for producing adhesive composition
JP7217396B1 (en) Rubber composition for side wall of rubber bearing and rubber bearing using the same
JP5955497B2 (en) Rubber composition for bonding brass plating wire and hydraulic hose
JP4976730B2 (en) Tire member laminate and tire using the tire member laminate
JP2005320376A (en) Rubber composition for seismic isolation laminate and seismic isolation laminate using the same
JP4595171B2 (en) Rubber composition for high damping bearing
JP4030412B2 (en) Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition
JP2024006367A (en) Rubber composition for sheet conveying roller, and sheet conveying roller
JP2007276267A (en) Method for producing laminate for tire member
JP6467802B2 (en) Rubber composition metal laminate for hose and vulcanized rubber product
JP6108123B2 (en) Rubber bearing
JP6118049B2 (en) Manufacturing method of laminate
JP5712735B2 (en) Rubber composition for rubber bearing side wall and rubber bearing body
JP2018002953A (en) Vulcanized rubber composition
JP6182963B2 (en) Laminate, vulcanized rubber product, conveyor belt, and method for producing vulcanized rubber product
JP6230979B2 (en) Rubber bearing
JP2024006368A (en) Rubber composition for sheet conveyance rollers and sheet conveyance roller
JP2007320480A (en) Pneumatic tire

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022567745

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833141

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007974.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE