JP2017137414A - Coated rubber composition - Google Patents

Coated rubber composition Download PDF

Info

Publication number
JP2017137414A
JP2017137414A JP2016019152A JP2016019152A JP2017137414A JP 2017137414 A JP2017137414 A JP 2017137414A JP 2016019152 A JP2016019152 A JP 2016019152A JP 2016019152 A JP2016019152 A JP 2016019152A JP 2017137414 A JP2017137414 A JP 2017137414A
Authority
JP
Japan
Prior art keywords
rubber
parts
ethylene
mass
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016019152A
Other languages
Japanese (ja)
Other versions
JP6688456B2 (en
Inventor
上東 泰
Yasushi Uehigashi
泰 上東
紳一郎 熊谷
Shinichiro Kumagai
紳一郎 熊谷
匠史 西村
Shoji Nishimura
匠史 西村
鉱治 藤田
Koji Fujita
鉱治 藤田
小田 和也
Kazuya Oda
和也 小田
岳宏 冨田
Takehiro Tomita
岳宏 冨田
貴史 砂田
Takashi Sunada
貴史 砂田
藤井 信彦
Nobuhiko Fujii
信彦 藤井
戸谷 英樹
Hideki Totani
英樹 戸谷
阿部 靖
Yasushi Abe
靖 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Nexco Technical Marketing Co Ltd
Sumitomo Rubber Industries Ltd
Denka Co Ltd
Original Assignee
Central Nexco Technical Marketing Co Ltd
Sumitomo Rubber Industries Ltd
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Nexco Technical Marketing Co Ltd, Sumitomo Rubber Industries Ltd, Denka Co Ltd filed Critical Central Nexco Technical Marketing Co Ltd
Priority to JP2016019152A priority Critical patent/JP6688456B2/en
Publication of JP2017137414A publication Critical patent/JP2017137414A/en
Application granted granted Critical
Publication of JP6688456B2 publication Critical patent/JP6688456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coated rubber composition capable of forming a coated layer for rubber bearing, excellent in properties of both of vulcanization adhesiveness and ozone resistance.SOLUTION: Polyester polyol is further blended to a diene rubber and an ethylene-α-olefin rubber as rubber components. The blended percentage of polyester polyol is preferably 3 to 15 pts.mass based on 100 pts.mass of the total amount of the rubber components, The blended percentage of the ethylene-α-olefin rubber is preferably 20 to 50 pts.mass in 100 pts.mass of the total amount of the rubber component.SELECTED DRAWING: None

Description

本発明は、建築物の基礎に組み込まれて当該建築物の免震を担うゴム支承の被覆層を形成するために用いる被覆ゴム組成物に関するものである。   The present invention relates to a coated rubber composition used for forming a coating layer of a rubber bearing that is incorporated in a building foundation and is responsible for seismic isolation of the building.

近年、建築物の基礎にゴム支承を組み込んだ免震構造が普及しつつある。
かかる免震構造を構成するゴム支承は、例えばゴム組成物からなるゴム弾性層と鋼板等からなる硬質層とを複数層ずつ交互に積層した状態で互いに加硫接着して形成された積層体等からなる。
またゴム弾性層は通常、ゴム分として減衰性能に優れたジエン系ゴムを含むゴム組成物によって形成される。
In recent years, seismic isolation structures incorporating rubber bearings into the foundations of buildings have become widespread.
The rubber bearing constituting such a seismic isolation structure is, for example, a laminate formed by vulcanizing and bonding each other in a state where a rubber elastic layer made of a rubber composition and a hard layer made of a steel plate or the like are alternately laminated. Consists of.
The rubber elastic layer is usually formed of a rubber composition containing a diene rubber having excellent damping performance as a rubber component.

しかし上記ゴム組成物からなるゴム弾性層は耐オゾン性が不十分であり、特に建築物の大きな荷重が加えられて常に圧縮変形された状態で長期に亘って空気にさらされ続けるとオゾン劣化しやすいという問題がある。
そこでゴム支承の外周を耐オゾン性に優れた被覆層で被覆して、ゴム弾性層が直接に空気と接触しないようにする場合がある。
However, the rubber elastic layer made of the above rubber composition has insufficient ozone resistance. In particular, if the building is subjected to a large load and is always compressed and deformed, it will continue to be exposed to air for a long period of time. There is a problem that it is easy.
Therefore, the outer periphery of the rubber support may be covered with a coating layer excellent in ozone resistance so that the rubber elastic layer does not come into direct contact with air.

上記被覆層は、例えばゴム弾性層との加硫接着性を確保するためのジエン系ゴムと、耐オゾン性に優れたゴムとをゴム分として含む被覆ゴム組成物によって形成し、上記ゴム弾性層と硬質層の加硫接着と同時に加硫接着して形成するのが一般的である(例えば特許文献1等参照)。
被覆層のもとになる耐オゾン性に優れたゴムとしては、例えばエチレンプロピレンゴム(EPM)等のエチレン−α−オレフィン二元共重合ゴムや、エチレンプロピレンジエンゴム(EPDM)等のエチレン−α−オレフィン−非共役ポリエン三元共重合ゴムなどのエチレン−α−オレフィン系ゴムが好適に用いられる。
The coating layer is formed of a coating rubber composition containing, as rubber components, a diene rubber for ensuring vulcanization adhesion with a rubber elastic layer, and a rubber having excellent ozone resistance, and the rubber elastic layer In general, it is formed by vulcanization adhesion at the same time as vulcanization adhesion of the hard layer (see, for example, Patent Document 1).
Examples of rubbers excellent in ozone resistance that form the coating layer include ethylene-α-olefin binary copolymer rubbers such as ethylene propylene rubber (EPM) and ethylene-α such as ethylene propylene diene rubber (EPDM). -Ethylene-α-olefin rubber such as olefin-nonconjugated polyene terpolymer rubber is preferably used.

しかしジエン系ゴムとエチレン−α−オレフィン系ゴムの併用系では両ゴム分の配合割合の設定が難しいという問題がある。
すなわち地震によるゴム支承の大変形に良好に追従できることや材料費を削減して低コスト化を図ることなどを考慮すると、被覆層はできるだけ薄い上、それでもなお耐オゾン性に優れていることが求められる。
However, the combined use of diene rubber and ethylene-α-olefin rubber has a problem that it is difficult to set the blending ratio of both rubbers.
In other words, considering the fact that it can follow the large deformation of rubber bearings caused by earthquakes and reduce costs by reducing material costs, the coating layer should be as thin as possible and still have excellent ozone resistance. It is done.

かかる要求を満足するためにエチレン−α−オレフィン系ゴムの配合割合を多くすることが考えられるが、その場合には相対的にジエン系ゴムの割合が少なくなるためゴム弾性層に対する被覆層の加硫接着性が低下して、却って地震による大変形に追従できずにゴム支承から剥離しやすくなるおそれがある。そして被覆層が剥離すると地震後にゴム弾性層が空気に触れてオゾン劣化しやすくなってしまうという問題を生じる。   In order to satisfy these requirements, it is conceivable to increase the blending ratio of the ethylene-α-olefin rubber, but in that case, the ratio of the diene rubber is relatively reduced, so that the coating layer is added to the rubber elastic layer. There is a risk that the adhesiveness of the rubber will deteriorate, and on the contrary, it will not be able to follow the large deformation caused by the earthquake and will be easily peeled off from the rubber bearing. When the coating layer is peeled off, the rubber elastic layer comes into contact with the air after the earthquake and the ozone is likely to deteriorate.

被覆層を、例えば接着剤を介してゴム支承の外周に接着すれば上記の問題を解決できる。
しかしゴム支承は建築物の大きさに合わせて大型になることが多く、特にこうした大型のゴム支承の外周に接着剤を均一に塗布するとともに被覆層をきれいに接着するのは難しく、上記塗布および接着に手間がかかる上、接着剤の乾燥等に時間がかかるためゴム支承の生産性が大きく低下するおそれがある。
The above-mentioned problem can be solved by adhering the coating layer to the outer periphery of the rubber support through an adhesive, for example.
However, rubber bearings are often large in size according to the size of the building. In particular, it is difficult to apply adhesive uniformly to the outer periphery of such large rubber bearings and to adhere the coating layer cleanly. In addition, it takes time to dry the adhesive, and the productivity of the rubber bearing may be greatly reduced.

また生産性が低下することと多量の接着剤を必要とすることとが相まってゴム支承の製造コストが嵩むといった問題も生じる。
一方、被覆層の加硫接着性を向上するべくジエン系ゴムの配合割合を多くすると相対的にエチレン−α−オレフィン系ゴムの割合が少なくなるため被覆層の耐オゾン性の低下が懸念される。
In addition, there is a problem in that the production cost of the rubber bearing increases due to the decrease in productivity and the necessity of a large amount of adhesive.
On the other hand, if the blending ratio of the diene rubber is increased in order to improve the vulcanization adhesion of the coating layer, there is a concern that the ozone resistance of the coating layer may be lowered because the ratio of the ethylene-α-olefin rubber is relatively decreased. .

特開2013−35943号公報JP 2013-35943 A

本発明の目的は、加硫接着性および耐オゾン性の両方の特性に優れたゴム支承用の被覆層を形成しうる被覆ゴム組成物を提供することにある。   An object of the present invention is to provide a coated rubber composition capable of forming a coating layer for a rubber bearing excellent in both properties of vulcanization adhesion and ozone resistance.

本発明は、ゴム分としてジエン系ゴムおよびエチレン−α−オレフィン系ゴムを含み、さらにポリエステルポリオールを配合してなるゴム支承用の被覆ゴム組成物である。   The present invention is a rubber composition for rubber bearings comprising a diene rubber and an ethylene-α-olefin rubber as rubber components, and further blended with a polyester polyol.

本発明によれば、加硫接着性および耐オゾン性の両方の特性に優れたゴム支承用の被覆層を形成しうる被覆ゴム組成物を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the coating rubber composition which can form the coating layer for rubber | gum bearing excellent in both the characteristics of vulcanization adhesiveness and ozone resistance.

本発明は、ゴム分としてジエン系ゴムおよびエチレン−α−オレフィン系ゴムを含み、さらにポリエステルポリオールを配合してなるゴム支承用の被覆ゴム組成物である。
上記ポリエステルポリオールはエチレン−α−オレフィン系ゴムと適度の相溶性を有する上、分子中に多数の水酸基を有しているため、当該ポリエステルポリオールを配合することで、エチレン−α−オレフィン系ゴムの表面を多数の水酸基で修飾した状態とすることができる。
The present invention is a rubber composition for rubber bearings comprising a diene rubber and an ethylene-α-olefin rubber as rubber components, and further blended with a polyester polyol.
The polyester polyol has moderate compatibility with the ethylene-α-olefin rubber, and has a large number of hydroxyl groups in the molecule. The surface may be modified with a number of hydroxyl groups.

しかも上記水酸基は一級の水酸基であってゴム支承を構成するゴム弾性層中の反応性基等との反応性に優れており、ジエン系ゴムによる加硫接着を補助するために機能する。
そのため本発明の被覆ゴム組成物によれば、耐オゾン性に優れた被覆層を形成するべくエチレン−α−オレフィン系ゴムの割合を従来に比べて増加させても上記水酸基の機能によって当該被覆層の加硫接着性の低下を抑制できる結果、加硫接着性および耐オゾン性の両方の特性に優れたゴム支承用の被覆層を形成することが可能となる。
Moreover, the hydroxyl group is a primary hydroxyl group and has excellent reactivity with the reactive group in the rubber elastic layer constituting the rubber bearing, and functions to assist vulcanization adhesion by the diene rubber.
Therefore, according to the coating rubber composition of the present invention, even if the proportion of the ethylene-α-olefin rubber is increased as compared with the conventional one in order to form a coating layer excellent in ozone resistance, the coating layer is formed by the function of the hydroxyl group. As a result, it is possible to form a coating layer for rubber bearings excellent in both vulcanization adhesion and ozone resistance.

(ジエン系ゴム)
ジエン系ゴムとしては、ゴム支承のゴム弾性層を形成するゴム組成物との加硫接着性を有する種々のジエン系ゴムがいずれも使用可能である。特に加硫接着性を向上することを考慮すると上記ジエン系ゴムとしては、ゴム弾性層を形成するジエン系ゴムと同系のものを選択して用いるのが好ましい。
(Diene rubber)
As the diene rubber, any of various diene rubbers having vulcanization adhesion with the rubber composition forming the rubber elastic layer of the rubber support can be used. In view of improving vulcanization adhesion, it is preferable to select and use the same diene rubber as the diene rubber that forms the rubber elastic layer.

かかるジエン系ゴムとしては、例えば天然ゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、およびクロロプレンゴム(CR)等が挙げられる。中でも加硫接着性を向上する効果の点で天然ゴム、SBR、CRが好ましく、特に天然ゴムが好ましい。
またこれらジエン系ゴムとしてはそれぞれ伸展油を加えて柔軟性を調整した油展タイプのものと加えない非油展タイプのものとがあるが、このいずれも使用可能である。
Examples of the diene rubber include natural rubber, isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), and chloroprene rubber (CR). Of these, natural rubber, SBR, and CR are preferable in view of the effect of improving vulcanization adhesion, and natural rubber is particularly preferable.
These diene rubbers are classified into an oil-extended type in which flexibility is adjusted by adding an extending oil and a non-oil-extended type in which flexibility is not added, either of which can be used.

上記ジエン系ゴムの1種または2種以上を使用できる。
(エチレン−α−オレフィン系ゴム)
エチレン−α−オレフィン系ゴムとしては、前述したようにEPDM等のエチレン−α−オレフィン二元共重合ゴムやEPDM等のエチレン−α−オレフィン−非共役ポリエン三元共重合ゴムなどの、耐オゾン性に優れたエチレン−α−オレフィン系ゴムの1種または2種以上が挙げられる。
One or more of the above diene rubbers can be used.
(Ethylene-α-olefin rubber)
As described above, the ethylene-α-olefin-based rubber includes ozone-resistant, such as ethylene-α-olefin binary copolymer rubber such as EPDM and ethylene-α-olefin-nonconjugated polyene terpolymer rubber such as EPDM. Examples thereof include one or more ethylene-α-olefin rubbers having excellent properties.

特に汎用性の高いEPM、EPDMが好適に使用される。
このうちEPMとしては、エチレンとプロピレンを任意の割合で共重合させた種々のEPMがいずれも使用可能である。
またEPMとしては、伸展油を加えて柔軟性を調整した油展タイプのものと加えない非油展タイプのものとがあるが、このいずれも使用可能である。
In particular, highly versatile EPM and EPDM are preferably used.
Among these, as the EPM, any of various EPMs obtained by copolymerizing ethylene and propylene at an arbitrary ratio can be used.
Further, as EPM, there are an oil-extended type in which flexibility is adjusted by adding an extending oil and a non-oil-extended type in which flexibility is not added, either of which can be used.

これらEPMの1種または2種以上を使用できる。
EPMは主鎖中に二重結合を有しないため、被覆層の耐オゾン性、耐老化性、耐熱性等を向上する効果に特に優れている。
またEPDMとしては、エチレンとプロピレンに少量の第3成分(ジエン分)を加えることで主鎖中に二重結合を導入した種々のEPDMがいずれも使用可能である。
One or more of these EPMs can be used.
Since EPM does not have a double bond in the main chain, it is particularly excellent in the effect of improving the ozone resistance, aging resistance, heat resistance and the like of the coating layer.
As the EPDM, any of various EPDMs in which a double bond is introduced into the main chain by adding a small amount of a third component (diene component) to ethylene and propylene can be used.

EPDMとしては、第3成分の種類や量の違いによる様々な製品が提供されている。代表的な第3成分としては、例えばエチリデンノルボルネン(ENB)、1,4−ヘキサジエン(1,4−HD)、ジシクロペンタジエン(DCP)等が挙げられる。
EPDMとしても、伸展油を加えて柔軟性を調整した油展タイプのものと加えない非油展タイプのものとがあるが、このいずれも使用可能である。
As EPDM, various products are provided depending on the kind and amount of the third component. Representative examples of the third component include ethylidene norbornene (ENB), 1,4-hexadiene (1,4-HD), dicyclopentadiene (DCP), and the like.
As EPDM, there are an oil-extended type in which flexibility is adjusted by adding an extending oil and a non-oil-extended type in which flexibility is not added, either of which can be used.

これらEPDMの1種または2種以上を使用できる。
EPDMはEPMに比べて耐オゾン性等が少し低いものの、例えば硫黄架橋系の架橋成分を用いて架橋させることが可能で汎用性に優れているという利点がある。
(配合割合)
ジエン系ゴムとエチレン−α−オレフィン系ゴムとは、先述した加硫接着性と耐オゾン性とを両立しうる任意の割合で配合できる。
One or more of these EPDMs can be used.
Although EPDM has a slightly lower ozone resistance and the like than EPM, there is an advantage that it can be cross-linked using, for example, a sulfur cross-linking component and is excellent in versatility.
(Mixing ratio)
The diene rubber and the ethylene-α-olefin rubber can be blended at an arbitrary ratio capable of achieving both the above-described vulcanization adhesion and ozone resistance.

ただし本発明によれば、上記2種のゴム分にさらにポリエステルポリオールを配合して被覆層の加硫接着性の低下を抑制できることから従来に比べてエチレン−α−オレフィン系ゴムの割合を多めに設定でき、それによって被覆層の耐オゾン性をさらに向上できる。
具体的にはエチレン−α−オレフィン系ゴムの配合割合は、ゴム分の総量100質量部中の20質量部以上、50質量部以下とするのが好ましい。
However, according to the present invention, a polyester polyol can be further blended with the above two kinds of rubber components to suppress a decrease in vulcanization adhesion of the coating layer, so that the proportion of the ethylene-α-olefin rubber is larger than the conventional one. The ozone resistance of the coating layer can be further improved.
Specifically, the blending ratio of the ethylene-α-olefin rubber is preferably 20 parts by mass or more and 50 parts by mass or less in 100 parts by mass of the total amount of rubber.

エチレン−α−オレフィン系ゴムの配合割合がこの範囲未満では被覆層の耐オゾン性が不十分になるおそれがある。一方、エチレン−α−オレフィン系ゴムの配合割合が上記の範囲を超える場合には、相対的にジエン系ゴムの割合が少なくなって加硫接着性が不十分になるおそれがある。
なお配合割合は、いずれかのゴム分が油展タイプのものである場合、伸展油を除いた固形分としてのゴム分自体の割合が上記の範囲となるように設定する。
If the blending ratio of the ethylene-α-olefin rubber is less than this range, the coating layer may have insufficient ozone resistance. On the other hand, when the blending ratio of the ethylene-α-olefin rubber exceeds the above range, the ratio of the diene rubber is relatively small, and the vulcanization adhesion may be insufficient.
The blending ratio is set so that, when any rubber component is of the oil-extended type, the ratio of the rubber component itself as a solid component excluding the extending oil is within the above range.

(ポリエステルポリオール)
ポリエステルポリオールとしては、例えばカルボン酸と多価アルコールを脱水縮合して合成される種々のポリエステルポリオールが使用可能である。
かかるポリエステルポリオールとしては、例えばアジピン酸、フタル酸等のジカルボン酸と、エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール等のジオールとから合成される直鎖状のものを用いることもできる。
(Polyester polyol)
As the polyester polyol, for example, various polyester polyols synthesized by dehydration condensation of carboxylic acid and polyhydric alcohol can be used.
As such a polyester polyol, for example, a linear one synthesized from a dicarboxylic acid such as adipic acid or phthalic acid and a diol such as ethylene glycol, 1,4-butanediol, or 1,6-hexanediol is used. You can also.

ただし3つ以上の一級の水酸基を有する3価以上のポリエステルポリオールが好適に使用される。
かかる3価以上のポリエステルポリオールは分岐構造を有し、かつそれぞれの分岐末端に上記一級の水酸基を有する構造を有するとともに1分子あたりの水酸基数を示す水酸基価が高く、しかも多くの場合、上記多数の水酸基が1つの分子中で偏在した分子構造を有する。
However, trivalent or higher polyester polyols having three or more primary hydroxyl groups are preferably used.
Such a trivalent or higher valent polyester polyol has a branched structure and has a structure having the above primary hydroxyl group at each branch end and a high hydroxyl value indicating the number of hydroxyl groups per molecule. Have a molecular structure in which the hydroxyl groups are unevenly distributed in one molecule.

そのため上記分子構造中の、水酸基が偏在した側と反対側の部分でエチレン−α−オレフィン系ゴムに対する良好な相溶性を確保しながら、当該エチレン−α−オレフィン系ゴムの表面にできるだけ多数の水酸基を存在させることができ、より少量の配合で被覆ゴム組成物に良好な加硫接着性を付与することができる。
3価以上のポリエステルポリオールは、例えば多価カルボン酸および/または多価アルコールのうちの少なくとも1種として分岐構造を有する3官能以上のものを用いることによって合成できる。
Therefore, while ensuring good compatibility with the ethylene-α-olefin rubber at the portion opposite to the side where the hydroxyl groups are unevenly distributed in the molecular structure, as many hydroxyl groups as possible on the surface of the ethylene-α-olefin rubber. The vulcanized adhesive property can be imparted to the coated rubber composition with a smaller amount of the compound.
The trivalent or higher polyester polyol can be synthesized by using, for example, a trifunctional or higher functional polyol having a branched structure as at least one of a polyvalent carboxylic acid and / or a polyhydric alcohol.

かかる3価以上のポリエステルポリオールの具体例としては、例えば日本ゼオン(株)製のゼオファイン(登録商標)100M〔水酸基価:60mgKOH/g、1分子あたりの水酸基数:5以上、軟化点:103℃、重量平均分子量:45,000〕等が挙げられる。
ポリエステルポリオールの配合割合は、ゴム分の総量100質量部に対して3質量部以上、15質量部以下であるのが好ましい。
Specific examples of such trivalent or higher polyester polyols include, for example, Zeofine (registered trademark) 100M manufactured by Nippon Zeon Co., Ltd. [hydroxyl value: 60 mgKOH / g, number of hydroxyl groups per molecule: 5 or more, softening point: 103 ° C. , Weight average molecular weight: 45,000] and the like.
The blending ratio of the polyester polyol is preferably 3 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the total amount of rubber.

ポリエステルポリオールの配合割合がこの範囲未満ではエチレン−α−オレフィン系ゴムの表面を修飾する水酸基の数が不足して、当該水酸基による加硫接着を補助する効果が不十分になり、加硫接着性が低下して被覆層が剥離しやすくなるおそれがある。
一方、ポリエステルポリオールの配合割合が上記の範囲を超えてもエチレン−α−オレフィン系ゴムの表面を修飾する水酸基の数は飽和してそれ以上の効果が得られない。のみならず過剰のポリエステルポリオールが被覆層の柔軟性を低下させたり、被覆ゴム組成物のコストアップに繋がったりするおそれもある。
When the blending ratio of the polyester polyol is less than this range, the number of hydroxyl groups modifying the surface of the ethylene-α-olefin rubber is insufficient, and the effect of assisting vulcanization adhesion by the hydroxyl groups becomes insufficient, and vulcanization adhesion May decrease and the coating layer may be easily peeled off.
On the other hand, even if the blending ratio of the polyester polyol exceeds the above range, the number of hydroxyl groups modifying the surface of the ethylene-α-olefin rubber is saturated and no further effect can be obtained. In addition, the excess polyester polyol may decrease the flexibility of the coating layer, or may increase the cost of the coated rubber composition.

〈架橋成分〉
本発明の被覆ゴム組成物には、ゴム分を架橋させるとともにゴム弾性層と加硫接着させるための架橋成分を配合する。
エチレン−α−オレフィン系ゴムのうちEPDM等のエチレン−α−オレフィン−非共役ポリエン三元共重合ゴムはジエン系ゴムとともに硫黄加硫が可能であるため、架橋成分としては硫黄や、例えば4,4′−ジチオジモルホリン(R)等の含硫黄系加硫剤(分子中に硫黄を有する有機化合物)などの硫黄加硫系の架橋剤が挙げられる。
<Crosslinking component>
The coated rubber composition of the present invention is blended with a crosslinking component for crosslinking the rubber component and vulcanizing and bonding with the rubber elastic layer.
Among ethylene-α-olefin rubbers, ethylene-α-olefin-non-conjugated polyene terpolymer rubbers such as EPDM can be sulfur vulcanized together with diene rubbers. Sulfur vulcanizing crosslinking agents such as sulfur-containing vulcanizing agents (organic compounds having sulfur in the molecule) such as 4'-dithiodimorpholine (R) may be mentioned.

また上記硫黄加硫系の架橋剤とともに種々の促進剤、促進助剤を配合することもできる。
このうち促進剤としては、例えば2−メルカプトベンゾチアゾール(M)、ジ-2−ベンゾチアゾリルジスルフィド(DM)、テトラメチルチウラムモノスルフィド(TS)、テトラメチルチウラムジスルフィド(TT)、テトラエチルチウラムジスルフィド(TET)等の1種または2種以上が挙げられる。
Various accelerators and accelerator aids can be blended with the sulfur vulcanizing crosslinking agent.
Among them, examples of the accelerator include 2-mercaptobenzothiazole (M), di-2-benzothiazolyl disulfide (DM), tetramethylthiuram monosulfide (TS), tetramethylthiuram disulfide (TT), tetraethylthiuram disulfide. 1 type or 2 types or more, such as (TET), is mentioned.

また促進助剤としては、例えば酸化亜鉛(亜鉛華)等の金属酸化物や、ステアリン酸、オレイン酸、綿実脂肪酸等の脂肪酸などの1種または2種以上が挙げられる。
またエチレン−α−オレフィン系ゴムがEPM等のエチレン−α−オレフィン二元共重合ゴムである場合、かかるエチレン−α−オレフィン二元共重合ゴムは硫黄加硫できないため、架橋成分としてはさらに過酸化物架橋剤を併用する。
Examples of the promoter aid include one or more metal oxides such as zinc oxide (zinc white) and fatty acids such as stearic acid, oleic acid, and cottonseed fatty acid.
When the ethylene-α-olefin rubber is an ethylene-α-olefin binary copolymer rubber such as EPM, the ethylene-α-olefin binary copolymer rubber cannot be sulfur vulcanized. An oxide crosslinking agent is used in combination.

過酸化物架橋剤としては、例えばジベンゾイルパーオキサイド、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、α,α′−ジ(t−ブチルパーオキシ)ジイソプロピルベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ヘキシルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)へキシン−3、1,1−ジ(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、n−ブチル−4,4−ジ(t−ブチルパーオキシ)バレレート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシベンゾエート等の1種または2種以上が挙げられる。   Examples of the peroxide crosslinking agent include dibenzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, α, α'-di (t-butylperoxide). Oxy) diisopropylbenzene, t-butylcumyl peroxide, di-t-hexyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, n-butyl-4,4-di (t-butylperoxy) valerate, 2,5 -One kind of dimethyl-2,5-di (benzoylperoxy) hexane, t-hexylperoxybenzoate, t-butylperoxybenzoate, etc. There are two or more types.

上記各種架橋成分の配合割合は、ゴム分や架橋成分の種類や組み合わせ等に応じて適宜設定できる。
〈その他の成分〉
本発明の被覆ゴム組成物には、必要に応じて充填剤、可塑剤等の各種添加剤を配合してもよい。
The blending ratio of the various crosslinking components can be appropriately set according to the rubber content, the type and combination of the crosslinking components, and the like.
<Other ingredients>
You may mix | blend various additives, such as a filler and a plasticizer, with the covering rubber composition of this invention as needed.

このうち充填剤としては、例えばカーボンブラック、シリカ等が挙げられ、特にカーボンブラックが好ましい。
カーボンブラックとしては、その製造方法等によって分類される種々のカーボンブラックのうち充填剤として機能しうるカーボンブラックの1種または2種以上が使用可能である。
Among these, examples of the filler include carbon black and silica, and carbon black is particularly preferable.
As the carbon black, one or more of carbon blacks that can function as a filler among various carbon blacks classified according to the production method thereof can be used.

カーボンブラックの配合割合は、ゴム分の総量100質量部あたり20質量部以上であるのが好ましく、40質量部以下であるのが好ましい。
またシリカとしては、その製法によって分類される湿式法シリカ、乾式法シリカのいずれを用いてもよい。
充填剤としてシリカを配合する場合は、ゴム分との相互作用を高めるためシラン化合物を併用するのが好ましい。
The blending ratio of carbon black is preferably 20 parts by mass or more and preferably 40 parts by mass or less per 100 parts by mass of the total amount of rubber.
As the silica, any of wet process silica and dry process silica classified according to the production method may be used.
When silica is blended as a filler, it is preferable to use a silane compound in combination in order to enhance the interaction with the rubber component.

可塑剤は、特に非油展のゴム分を用いた被覆ゴム組成物の加工性を向上するとともに当該被覆ゴム層を架橋して形成される被覆層に柔軟性を付与するための成分であって、当該可塑剤としては、例えばジオクチルフタレート(DOP)等のフタル酸エステル系可塑剤やビス(2−エチルへキシル)アゼレート(DOZ)等の脂肪族二塩基酸エステル系可塑剤等の1種または2種以上が挙げられる。   A plasticizer is a component for improving the processability of a coated rubber composition using a non-oil-extended rubber component and imparting flexibility to a coating layer formed by crosslinking the coating rubber layer. As the plasticizer, for example, a phthalate ester plasticizer such as dioctyl phthalate (DOP) or an aliphatic dibasic ester plasticizer such as bis (2-ethylhexyl) azelate (DOZ) or the like Two or more types can be mentioned.

可塑剤の配合割合は、組み合わせるゴム分の種類や配合割合等と、被覆ゴム組成物に求められる加工性や被覆層に求められる柔軟性等に応じて任意に設定できるものの、ゴム分の総量100質量部あたり1質量部以上であるのが好ましく、10質量部以下であるのが好ましい。
本発明の被覆ゴム組成物には、さらに必要に応じて老化防止剤、オイル、液状ゴムその他の各種添加剤を任意の割合で配合してもよい。
Although the blending ratio of the plasticizer can be arbitrarily set according to the kind and blending ratio of the rubber to be combined and the processability required for the coated rubber composition, the flexibility required for the coating layer, etc., the total amount of rubber 100 The amount is preferably 1 part by mass or more and preferably 10 parts by mass or less per part by mass.
The coated rubber composition of the present invention may further contain an antioxidant, oil, liquid rubber, and other various additives at an arbitrary ratio, if necessary.

(ゴム支承)
本発明の被覆ゴム組成物によれば、以上で説明したように加硫接着性に優れる上、耐オゾン性にも優れたゴム支承用の被覆層を形成できる。
かかる被覆層を備えたゴム支承は、本発明の被覆ゴム組成物を用いること以外は従来同様にして製造できる。
(Rubber support)
According to the coated rubber composition of the present invention, as described above, it is possible to form a coating layer for a rubber bearing that is excellent in vulcanization adhesion and also excellent in ozone resistance.
A rubber bearing provided with such a coating layer can be produced in the same manner as in the prior art except that the coating rubber composition of the present invention is used.

例えばゴム弾性層と硬質層の積層体の外周を被覆層で被覆した構造のゴム支承を製造する場合は、まず加硫接着性を有するゴム組成物を所定の厚みに成形した、上記ゴム弾性層のもとになるシートと、鋼板等の硬質層とを交互に積層して積層体を形成する。
次いで本発明の被覆ゴム組成物を所定の厚みのシート状に成形したものを、上記積層体の外周に隙間を生じないように巻き付けた状態で全体を加熱すると、積層体を形成するシートが架橋されてゴム弾性層が形成され、また被覆ゴム組成物のシートが架橋されて被覆層が形成されるとともに、上記ゴム弾性層と硬質層、およびゴム弾性層と被覆層が互いに加硫接着されてゴム支承が完成する。
For example, when manufacturing a rubber bearing having a structure in which the outer periphery of a laminate of a rubber elastic layer and a hard layer is covered with a coating layer, a rubber composition having a vulcanized adhesive property is first molded to a predetermined thickness. The laminated body is formed by alternately laminating sheets serving as the basis and hard layers such as steel plates.
Next, when the coated rubber composition of the present invention is molded into a sheet having a predetermined thickness and is heated in a state where no gap is formed around the outer periphery of the laminate, the sheet forming the laminate is crosslinked. A rubber elastic layer is formed, and a sheet of the coated rubber composition is crosslinked to form a coating layer. The rubber elastic layer and the hard layer, and the rubber elastic layer and the coating layer are vulcanized and bonded to each other. The rubber bearing is completed.

ゴム弾性層のもとになるゴム分としては、加硫接着性を有する任意のゴムが使用可能である。ただし先述したようにゴム弾性層と被覆層の加硫接着性を向上することを考慮すると、被覆層中に含まれるジエン系ゴムと同系のジエン系ゴムをゴム分として用いるのが好ましい。
ゴム弾性層用のゴム組成物は、上記ゴム分に当該ゴム分を架橋させるための、例えば硫黄加硫系等の架橋剤や、カーボンブラック等の充填剤、さらにはフタル酸エステル系可塑剤や脂肪族二塩基酸エステル系可塑剤等の可塑剤を適宜の割合で配合して調製すればよい。
Any rubber having vulcanization adhesiveness can be used as the rubber component for the rubber elastic layer. However, in consideration of improving the vulcanization adhesion between the rubber elastic layer and the coating layer as described above, it is preferable to use a diene rubber similar to the diene rubber contained in the coating layer as the rubber component.
A rubber composition for a rubber elastic layer is a cross-linking agent such as a sulfur vulcanization system, a filler such as carbon black, a phthalate ester plasticizer, What is necessary is just to mix and prepare plasticizers, such as an aliphatic dibasic acid ester plasticizer, in a suitable ratio.

〈実施例1〉
〈被覆ゴム組成物〉
下記表1に示す各成分のうちゴム分を素練りしながらまず架橋剤以外の成分を加えて混練し、最後に架橋剤を加えてさらに混練して被覆ゴム組成物を調製した。
<Example 1>
<Coated rubber composition>
While kneading the rubber component among the components shown in Table 1 below, components other than the crosslinking agent were first added and kneaded, and finally the crosslinking agent was added and further kneaded to prepare a coated rubber composition.

Figure 2017137414
Figure 2017137414

表1中の各成分は下記のとおり。
天然ゴム:TSR20品
EPDM:エチレン含量50%、ジエン含量9.5%、非油展、住友化学(株)製のエスプレン(登録商標)505A
ポリエステルポリオール:日本ゼオン(株)製のゼオファイン(登録商標)100M
架橋剤:粉末硫黄
カーボンブラック:FEF、東海カーボン(株)製のシーストSO
可塑剤:DOZ、大八化学工業(株)製
EPDMの配合割合は、ゴム分の総量100質量部中の30質量部、ポリエステルポリオールの配合割合は、ゴム分の総量100質量部に対して10質量部であった。
Each component in Table 1 is as follows.
Natural rubber: TSR20 product EPDM: ethylene content 50%, diene content 9.5%, non-oil-extended, Esprene (registered trademark) 505A manufactured by Sumitomo Chemical Co., Ltd.
Polyester polyol: ZEOFINE (registered trademark) 100M manufactured by Nippon Zeon Co., Ltd.
Crosslinker: Powdered sulfur Carbon black: FEF, Toast Carbon Co., Ltd. Seast SO
Plasticizer: DOZ, manufactured by Daihachi Chemical Industry Co., Ltd. The blending ratio of EPDM is 30 parts by weight in 100 parts by weight of the total amount of rubber, and the blending ratio of polyester polyol is 10 with respect to 100 parts by weight of the total amount of rubber. Part by mass.

〈ゴム支承のサンプル〉
(ゴム組成物)
下記表2に示す各成分のうちゴム分を素練りしながらまず架橋剤以外の成分を加えて混練し、最後に架橋剤を加えてさらに混練してゴム弾性層用のゴム組成物を調製した。
<Rubber bearing sample>
(Rubber composition)
While kneading the rubber component among the components shown in Table 2 below, components other than the crosslinking agent were first added and kneaded, and finally a crosslinking agent was added and further kneaded to prepare a rubber composition for the rubber elastic layer. .

Figure 2017137414
Figure 2017137414

表2中の各成分は表1と同じとした。
(ゴム支承のサンプル作製)
上記ゴム弾性層用のゴム組成物を縦310mm×横310mm×厚み7.5mmのシート状に成形したものを8枚用意し、縦300mm×横300mm×厚み2.3mmの圧延鋼板(SS400)7枚と交互に重ね合わせて積層体を形成した。
Each component in Table 2 was the same as Table 1.
(Production of rubber bearing samples)
Eight pieces of the rubber composition for the rubber elastic layer formed into a sheet having a length of 310 mm × width of 310 mm × thickness of 7.5 mm are prepared, and a rolled steel plate (SS400) 7 having a length of 300 mm × width of 300 mm × thickness of 2.3 mm is prepared. A laminate was formed by alternately superposing the sheets.

次いで、先に調製した被覆ゴム組成物を幅77mm×長さ1250mm×厚み7.5mmのシート状に形成したものを上記積層体の外周に巻き付けた状態で、温度155℃×時間120分間の条件で加熱することにより、積層体を形成するシートを架橋させてゴム弾性層を形成し、また被覆ゴム組成物のシートを架橋させて被覆層を形成するとともに、上記ゴム弾性層と硬質層、およびゴム弾性層と被覆層を互いに加硫接着させてゴム支承のサンプルを作製した。   Next, a condition in which a temperature of 155 ° C. × time of 120 minutes is applied in a state where the previously prepared coated rubber composition is formed into a sheet having a width of 77 mm × length of 1250 mm × thickness of 7.5 mm is wrapped around the outer periphery of the laminate. Is heated to form a rubber elastic layer by cross-linking the sheet forming the laminate, and the coating rubber composition is formed by cross-linking the sheet of the coated rubber composition. A rubber bearing sample was prepared by vulcanizing and bonding the rubber elastic layer and the coating layer to each other.

〈実施例2〉
表1中のポリエステルポリオールを3質量部としたこと以外は実施例1と同様にして被覆ゴム組成物を調製した。EPDMの配合割合は、ゴム分の総量100質量部中の30質量部、ポリエステルポリオールの配合割合は、ゴム分の総量100質量部に対して3質量部であった。
<Example 2>
A coated rubber composition was prepared in the same manner as in Example 1 except that the polyester polyol in Table 1 was changed to 3 parts by mass. The blending ratio of EPDM was 30 parts by weight in 100 parts by weight of the total amount of rubber, and the blending ratio of polyester polyol was 3 parts by weight with respect to 100 parts by weight of the total amount of rubber.

また、かかる被覆ゴム組成物を用いて被覆層を形成したこと以外は実施例1と同様にしてゴム支承のサンプルを作製した。
〈実施例3〉
表1中のポリエステルポリオールを15質量部としたこと以外は実施例1と同様にして被覆ゴム組成物を調製した。EPDMの配合割合は、ゴム分の総量100質量部中の30質量部、ポリエステルポリオールの配合割合は、ゴム分の総量100質量部に対して15質量部であった。
A rubber bearing sample was prepared in the same manner as in Example 1 except that the coating layer was formed using such a coating rubber composition.
<Example 3>
A coated rubber composition was prepared in the same manner as in Example 1 except that the polyester polyol in Table 1 was changed to 15 parts by mass. The blending ratio of EPDM was 30 parts by weight in 100 parts by weight of the total amount of rubber, and the blending ratio of polyester polyol was 15 parts by weight with respect to 100 parts by weight of the total amount of rubber.

また、かかる被覆ゴム組成物を用いて被覆層を形成したこと以外は実施例1と同様にしてゴム支承のサンプルを作製した。
〈実施例4〉
表1中の天然ゴムに代えてSBR〔E−SBR、結合スチレン量中心値23.5%、非油展、日本ゼオン(株)製のNipol(登録商標)1502〕を同量配合したこと以外は実施例1と同様にして被覆ゴム組成物を調製した。EPDMの配合割合は、ゴム分の総量100質量部中の30質量部、ポリエステルポリオールの配合割合は、ゴム分の総量100質量部に対して10質量部であった。
A rubber bearing sample was prepared in the same manner as in Example 1 except that the coating layer was formed using such a coating rubber composition.
<Example 4>
Other than blending the same amount of SBR [E-SBR, bound styrene content center value 23.5%, non-oil extended, Nipol (registered trademark) 1502 manufactured by Nippon Zeon Co., Ltd.] instead of natural rubber in Table 1 A coated rubber composition was prepared in the same manner as in Example 1. The blending ratio of EPDM was 30 parts by weight in 100 parts by weight of the total amount of rubber, and the blending ratio of polyester polyol was 10 parts by weight with respect to 100 parts by weight of the total amount of rubber.

また、かかる被覆ゴム組成物を用いて被覆層を形成するとともに、表2中の天然ゴムに代えて上記SBRを同量配合して調製したゴム組成物を用いてゴム弾性層を形成したこと以外は実施例1と同様にしてゴム支承のサンプルを作製した。
〈実施例5〉
表1中の天然ゴムに代えてCR〔メルカプタン変性タイプ、昭和電工(株)製のショウプレン(登録商標)WRT〕を同量配合したこと以外は実施例1と同様にして被覆ゴム組成物を調製した。EPDMの配合割合は、ゴム分の総量100質量部中の30質量部、ポリエステルポリオールの配合割合は、ゴム分の総量100質量部に対して10質量部であった。
In addition to forming a coating layer using such a coating rubber composition, and forming a rubber elastic layer using a rubber composition prepared by blending the same amount of the above SBR in place of the natural rubber in Table 2 A rubber bearing sample was prepared in the same manner as in Example 1.
<Example 5>
A coated rubber composition was prepared in the same manner as in Example 1 except that the same amount of CR [mercaptan-modified type, Showrene (registered trademark) WRT manufactured by Showa Denko KK] was used instead of the natural rubber in Table 1. did. The blending ratio of EPDM was 30 parts by weight in 100 parts by weight of the total amount of rubber, and the blending ratio of polyester polyol was 10 parts by weight with respect to 100 parts by weight of the total amount of rubber.

また、かかる被覆ゴム組成物を用いて被覆層を形成するとともに、表2中の天然ゴムに代えて上記CRを同量配合して調製したゴム組成物を用いてゴム弾性層を形成したこと以外は実施例1と同様にしてゴム支承のサンプルを作製した。
〈実施例6〉
表1中の天然ゴムを80質量部、EPDMを20質量部としたこと以外は実施例1と同様にして被覆ゴム組成物を調製した。EPDMの配合割合は、ゴム分の総量100質量部中の20質量部、ポリエステルポリオールの配合割合は、ゴム分の総量100質量部に対して10質量部であった。
In addition to forming a coating layer using such a coating rubber composition, and other than forming a rubber elastic layer using a rubber composition prepared by blending the same amount of the above CR instead of the natural rubber in Table 2. A rubber bearing sample was prepared in the same manner as in Example 1.
<Example 6>
A coated rubber composition was prepared in the same manner as in Example 1 except that 80 parts by mass of natural rubber and 20 parts by mass of EPDM in Table 1 were used. The blending ratio of EPDM was 20 parts by weight in 100 parts by weight of the total amount of rubber, and the blending ratio of polyester polyol was 10 parts by weight with respect to 100 parts by weight of the total amount of rubber.

また、かかる被覆ゴム組成物を用いて被覆層を形成したこと以外は実施例1と同様にしてゴム支承のサンプルを作製した。
〈実施例7〉
表1中の天然ゴムを50質量部、EPDMを50質量部としたこと以外は実施例1と同様にして被覆ゴム組成物を調製した。EPDMの配合割合は、ゴム分の総量100質量部中の50質量部、ポリエステルポリオールの配合割合は、ゴム分の総量100質量部に対して10質量部であった。
A rubber bearing sample was prepared in the same manner as in Example 1 except that the coating layer was formed using such a coating rubber composition.
<Example 7>
A coated rubber composition was prepared in the same manner as in Example 1 except that the natural rubber in Table 1 was 50 parts by mass and EPDM was 50 parts by mass. The blending ratio of EPDM was 50 parts by weight in 100 parts by weight of the total amount of rubber, and the blending ratio of polyester polyol was 10 parts by weight with respect to 100 parts by weight of the total amount of rubber.

また、かかる被覆ゴム組成物を用いて被覆層を形成したこと以外は実施例1と同様にしてゴム支承のサンプルを作製した。
〈比較例1〉
表1中のポリエステルポリオールを配合しなかったこと以外は実施例1と同様にして被覆ゴム組成物を調製した。EPDMの配合割合は、ゴム分の総量100質量部中の30質量部であった。
A rubber bearing sample was prepared in the same manner as in Example 1 except that the coating layer was formed using such a coating rubber composition.
<Comparative example 1>
A coated rubber composition was prepared in the same manner as in Example 1 except that the polyester polyol in Table 1 was not blended. The blending ratio of EPDM was 30 parts by mass in 100 parts by mass of the total amount of rubber.

また、かかる被覆ゴム組成物を用いて被覆層を形成したこと以外は実施例1と同様にしてゴム支承のサンプルを作製した。
〈比較例2〉
表1中のEPDMを配合せず、天然ゴムを100質量部としたこと以外は実施例1と同様にして被覆ゴム組成物を調製した。EPDMの配合割合は、ゴム分の総量100質量部中の0質量部、ポリエステルポリオールの配合割合は、ゴム分の総量100質量部に対して10質量部であった。
A rubber bearing sample was prepared in the same manner as in Example 1 except that the coating layer was formed using such a coating rubber composition.
<Comparative example 2>
A coated rubber composition was prepared in the same manner as in Example 1 except that the EPDM in Table 1 was not blended and the natural rubber was 100 parts by mass. The blending ratio of EPDM was 0 part by weight in 100 parts by weight of the total amount of rubber, and the blending ratio of polyester polyol was 10 parts by weight with respect to 100 parts by weight of the total amount of rubber.

また、かかる被覆ゴム組成物を用いて被覆層を形成したこと以外は実施例1と同様にしてゴム支承のサンプルを作製した。
〈比較例3〉
表1中の天然ゴムを配合せず、EPDMを100質量部としたこと以外は実施例1と同様にして被覆ゴム組成物を調製した。EPDMの配合割合は、ゴム分の総量100質量部中の100質量部、ポリエステルポリオールの配合割合は、ゴム分の総量100質量部に対して10質量部であった。
A rubber bearing sample was prepared in the same manner as in Example 1 except that the coating layer was formed using such a coating rubber composition.
<Comparative Example 3>
A coated rubber composition was prepared in the same manner as in Example 1 except that the natural rubber in Table 1 was not blended and that EPDM was 100 parts by mass. The blending ratio of EPDM was 100 parts by weight in 100 parts by weight of the total amount of rubber, and the blending ratio of polyester polyol was 10 parts by weight with respect to 100 parts by weight of the total amount of rubber.

また、かかる被覆ゴム組成物を用いて被覆層を形成したこと以外は実施例1と同様にしてゴム支承のサンプルを作製した。
〈耐オゾン性試験〉
上記実施例1〜7、比較例1〜3で調製した被覆ゴム組成物を幅52mm×長さ45mm×厚み2mmのシート状に成形して150℃で架橋させたのち、サンプルの中央部が長さ方向へ20%伸長されるように治具を用いて固定した状態で試験温度40℃、オゾン濃度100pphmの条件でオゾンに曝し続けた際に、その表面や側面にクラックが発生するまでの時間を計測した。
A rubber bearing sample was prepared in the same manner as in Example 1 except that the coating layer was formed using such a coating rubber composition.
<Ozone resistance test>
After the coated rubber compositions prepared in Examples 1 to 7 and Comparative Examples 1 to 3 were formed into a sheet of width 52 mm × length 45 mm × thickness 2 mm and crosslinked at 150 ° C., the central portion of the sample was long. Time until cracks are generated on the surface and side surfaces when exposed to ozone at a test temperature of 40 ° C. and an ozone concentration of 100 pphm in a state where the jig is fixed so as to extend 20% in the vertical direction. Was measured.

そしてクラック発生までに要した時間が1100時間を超えたものを耐オゾン性良好(○)、1100時間未満であったものを耐オゾン性不良(×)と評価した。
〈加硫接着性試験〉
(被覆層のモデルの作製)
実施例1〜7、比較例1〜3で調製した被覆ゴム組成物を幅25mm×長さ150mm×厚み2mmのシート状に成形したものを被覆層のモデルとした。
And the thing which time required until crack generation | occurrence | production exceeded 1100 hours evaluated ozone resistance favorable ((circle)), and the thing which was less than 1100 hours evaluated ozone resistance defect (x).
<Vulcanization adhesion test>
(Preparation of coating layer model)
A model of the coating layer was obtained by molding the coated rubber compositions prepared in Examples 1 to 7 and Comparative Examples 1 to 3 into a sheet shape having a width of 25 mm, a length of 150 mm, and a thickness of 2 mm.

(ゴム弾性層のモデルの作製)
各実施例、比較例でゴム支承のモデルを作製した際に調製したゴム弾性層用のゴム組成物を幅25mm×長さ150mm×厚み2mmのシート状に成形したものをゴム弾性層のモデルとした。
(剥離強度比)
上記被覆層のモデルとゴム弾性層のモデルとを、それぞれ端から50mmの領域が重複するように重ね合わせた状態で、加硫金型を用いて150℃で加硫接着させた後、引張験機を用いて引張速さ50mm/分の条件で180度剥離試験をして最大はく離強度を測定した。
(Production of rubber elastic layer model)
A rubber elastic layer model obtained by molding a rubber composition for a rubber elastic layer, which was prepared when a rubber support model was prepared in each example and comparative example, into a sheet shape having a width of 25 mm, a length of 150 mm, and a thickness of 2 mm. did.
(Peel strength ratio)
Tensile test was conducted after the coating layer model and the rubber elastic layer model were vulcanized and bonded at 150 ° C. using a vulcanization mold in a state where the regions of 50 mm from the end overlapped each other. A maximum peel strength was measured by performing a 180 degree peel test using a machine at a tensile speed of 50 mm / min.

そして比較例1の最大剥離強度を100とした時の各実施例、比較例の最大剥離強度の比(剥離強度比)を求めた。剥離強度比は130以上であるものを合格とした。
(剥離状態)
また剥離面を観察して、材料破壊していたものを合格、界面剥離であったものを不合格として評価した。試験はN=5で実施し、合格のサンプルが3つ以上あれば合格(○)、層でなければ不合格(×)と判定した。
And the ratio (peel strength ratio) of each Example and the maximum peel strength of a comparative example when the maximum peel strength of the comparative example 1 was set to 100 was calculated | required. A peel strength ratio of 130 or higher was accepted.
(Peeling state)
Moreover, the peeling surface was observed, and what was material destruction was evaluated as a pass, and what was interface peeling was evaluated as a rejection. The test was carried out with N = 5, and it was judged as pass (◯) if there were three or more samples that passed, and rejected (x) if not a layer.

以上の結果を表3、表4に示す。   The above results are shown in Tables 3 and 4.

Figure 2017137414
Figure 2017137414

Figure 2017137414
Figure 2017137414

表3、表4の実施例1〜7、比較例1〜3の結果より、ゴム分としてジエン系ゴムとEPDM等のエチレン−α−オレフィン系ゴムとを併用するとともに、さらにポリエステルポリオールを配合することにより、加硫接着性および耐オゾン性の両方の特性に優れたゴム支承用の被覆層を形成しうる被覆ゴム組成物が得られることが判った。
また実施例1〜3の結果より、ポリエステルポリオールの配合割合は、ゴム分の総量100質量部に対して3質量部以上、15質量部以下であるのが好ましいことが判った。
From the results of Examples 1 to 7 and Comparative Examples 1 to 3 in Tables 3 and 4, a diene rubber and an ethylene-α-olefin rubber such as EPDM are used in combination as a rubber component, and a polyester polyol is further blended. Thus, it was found that a coated rubber composition capable of forming a coating layer for a rubber bearing excellent in both vulcanization adhesion and ozone resistance was obtained.
Moreover, it turned out that it is preferable that the compounding ratio of a polyester polyol is 3 to 15 mass parts with respect to 100 mass parts of the total amount of rubber | gum from the result of Examples 1-3.

実施例1、実施例6、7の結果より、EPDM等のエチレン−α−オレフィン系ゴムの配合割合は、ゴム分の総量100質量部中の20質量部以上、50質量部以下であるのが好ましいことが判った。
さらに実施例1、実施例4、5の結果より、ジエン系ゴムとしては天然ゴム、SBR、CRが好ましく、特に天然ゴムが好ましいことが判った。
From the results of Example 1 and Examples 6 and 7, the blending ratio of the ethylene-α-olefin rubber such as EPDM is 20 parts by mass or more and 50 parts by mass or less in 100 parts by mass of the total rubber content. It turned out to be preferable.
Further, from the results of Examples 1 and 4 and 5, it was found that natural rubber, SBR and CR are preferable as the diene rubber, and natural rubber is particularly preferable.

Claims (6)

ゴム分としてジエン系ゴムおよびエチレン−α−オレフィン系ゴムを含み、さらにポリエステルポリオールを配合してなるゴム支承用の被覆ゴム組成物。   A coated rubber composition for rubber support, comprising a diene rubber and an ethylene-α-olefin rubber as a rubber component, and further blended with a polyester polyol. 前記ポリエステルポリオールの配合割合は、前記ゴム分の総量100質量部に対して3質量部以上、15質量部以下である請求項1に記載の被覆ゴム組成物。   The coated rubber composition according to claim 1, wherein a blending ratio of the polyester polyol is 3 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the total amount of the rubber. 前記ポリエステルポリオールは3価以上である請求項1または2に記載の被覆ゴム組成物。   The coated rubber composition according to claim 1 or 2, wherein the polyester polyol is trivalent or higher. 前記エチレン−α−オレフィン系ゴムの配合割合は、前記ゴム分の総量100質量部中の20質量部以上、50質量部以下である請求項1ないし3のいずれか1項に記載の被覆ゴム組成物。   4. The coated rubber composition according to claim 1, wherein a blending ratio of the ethylene-α-olefin rubber is 20 parts by mass or more and 50 parts by mass or less in 100 parts by mass of the total amount of the rubber. object. 前記エチレン−α−オレフィン系ゴムはエチレン−α−オレフィン二元共重合ゴムおよびエチレン−α−オレフィン−非共役ポリエン三元共重合ゴムからなる群より選ばれた少なくとも1種である請求項1ないし4のいずれか1項に記載の被覆ゴム組成物。   The ethylene-α-olefin rubber is at least one selected from the group consisting of ethylene-α-olefin binary copolymer rubber and ethylene-α-olefin-nonconjugated polyene terpolymer rubber. 5. The coated rubber composition according to any one of 4 above. 前記ジエン系ゴムは天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、およびクロロプレンゴムからなる群より選ばれた少なくとも1種である請求項1ないし5のいずれか1項に記載の被覆ゴム組成物。   The coated rubber composition according to any one of claims 1 to 5, wherein the diene rubber is at least one selected from the group consisting of natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, and chloroprene rubber. .
JP2016019152A 2016-02-03 2016-02-03 Coated rubber composition Active JP6688456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016019152A JP6688456B2 (en) 2016-02-03 2016-02-03 Coated rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016019152A JP6688456B2 (en) 2016-02-03 2016-02-03 Coated rubber composition

Publications (2)

Publication Number Publication Date
JP2017137414A true JP2017137414A (en) 2017-08-10
JP6688456B2 JP6688456B2 (en) 2020-04-28

Family

ID=59565736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016019152A Active JP6688456B2 (en) 2016-02-03 2016-02-03 Coated rubber composition

Country Status (1)

Country Link
JP (1) JP6688456B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022082A1 (en) 2018-07-25 2020-01-30 デンカ株式会社 Rubber composition, vulcanized rubber, and molded article of said vulcanized rubber
WO2020122073A1 (en) * 2018-12-11 2020-06-18 株式会社ブリヂストン Rubber composition, tyre tread, and tyre
WO2020130105A1 (en) * 2018-12-19 2020-06-25 株式会社ブリヂストン Rubber composition and tire
WO2023276994A1 (en) * 2021-06-30 2023-01-05 住友理工株式会社 Rubber composition for rubber bearing body side walls, and rubber bearing body using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206989A (en) * 2000-01-28 2001-07-31 Bridgestone Corp Quake-absorbing structure
WO2001068738A1 (en) * 2000-03-14 2001-09-20 Zeon Corporation Polyester and polymer modifier
JP2006321837A (en) * 2005-05-17 2006-11-30 Toyo Tire & Rubber Co Ltd Rubber composition for vulcanization adhesion and vulcanized rubber-laminated metal plate
JP2008121228A (en) * 2006-11-09 2008-05-29 Bridgestone Corp Base isolation structure
JP2008274158A (en) * 2007-05-01 2008-11-13 Bridgestone Corp Rubber composition
JP2010255666A (en) * 2009-04-21 2010-11-11 Bridgestone Corp Base isolation structure
JP2013035943A (en) * 2011-08-08 2013-02-21 Bridgestone Corp Rubber composition for rubber bearing coating, and rubber for rubber bearing coating using the same
JP2013185026A (en) * 2012-03-07 2013-09-19 Bridgestone Corp Composition for plug of quake-absorbing structure, plug of quake-absorbing structure, and quake-absorbing structure
JP2015007468A (en) * 2013-05-30 2015-01-15 オイレス工業株式会社 Attenuation material, and vibration attenuation member using the attenuation material, and seismic isolator incorporated with the vibration attenuation member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206989A (en) * 2000-01-28 2001-07-31 Bridgestone Corp Quake-absorbing structure
WO2001068738A1 (en) * 2000-03-14 2001-09-20 Zeon Corporation Polyester and polymer modifier
JP2006321837A (en) * 2005-05-17 2006-11-30 Toyo Tire & Rubber Co Ltd Rubber composition for vulcanization adhesion and vulcanized rubber-laminated metal plate
JP2008121228A (en) * 2006-11-09 2008-05-29 Bridgestone Corp Base isolation structure
JP2008274158A (en) * 2007-05-01 2008-11-13 Bridgestone Corp Rubber composition
JP2010255666A (en) * 2009-04-21 2010-11-11 Bridgestone Corp Base isolation structure
JP2013035943A (en) * 2011-08-08 2013-02-21 Bridgestone Corp Rubber composition for rubber bearing coating, and rubber for rubber bearing coating using the same
JP2013185026A (en) * 2012-03-07 2013-09-19 Bridgestone Corp Composition for plug of quake-absorbing structure, plug of quake-absorbing structure, and quake-absorbing structure
JP2015007468A (en) * 2013-05-30 2015-01-15 オイレス工業株式会社 Attenuation material, and vibration attenuation member using the attenuation material, and seismic isolator incorporated with the vibration attenuation member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022082A1 (en) 2018-07-25 2020-01-30 デンカ株式会社 Rubber composition, vulcanized rubber, and molded article of said vulcanized rubber
KR20210042108A (en) 2018-07-25 2021-04-16 덴카 주식회사 Rubber composition, vulcanized rubber and molded products of the vulcanized rubber
US11390729B2 (en) 2018-07-25 2022-07-19 Denka Company Limited Rubber composition, vulcanized rubber, and molded article of said vulcanized rubber
WO2020122073A1 (en) * 2018-12-11 2020-06-18 株式会社ブリヂストン Rubber composition, tyre tread, and tyre
WO2020130105A1 (en) * 2018-12-19 2020-06-25 株式会社ブリヂストン Rubber composition and tire
JP7383639B2 (en) 2018-12-19 2023-11-20 株式会社ブリヂストン Rubber compositions and tires
WO2023276994A1 (en) * 2021-06-30 2023-01-05 住友理工株式会社 Rubber composition for rubber bearing body side walls, and rubber bearing body using same

Also Published As

Publication number Publication date
JP6688456B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP6688456B2 (en) Coated rubber composition
US7078104B2 (en) Bonded part and method for producing same
JP2002030187A (en) Rubber laminate and pneumatic tire obtained using the same
JP2008038059A (en) Rubber composition, its composite, and pneumatic tire using the same
WO2015060466A1 (en) Cold-resistant rubber composition
JP2007106166A (en) Pneumatic tire
US10221306B2 (en) Rubber composition for hose, and hose
JP2005320376A (en) Rubber composition for seismic isolation laminate and seismic isolation laminate using the same
JP6461614B2 (en) Coated rubber composition
WO1997023560A1 (en) Curable rubber composition for the seal against hot water
JP2001206987A (en) Rubber composition, layered product and hose
JP2006316812A (en) Transmission belt
JP2023094288A (en) Member for sole, shoe, and method for manufacturing member for sole
JP6108123B2 (en) Rubber bearing
JP5712735B2 (en) Rubber composition for rubber bearing side wall and rubber bearing body
JP2007092991A (en) Transmission belt and its manufacturing method
JP2007144714A (en) Manufacturing method of v-belt
JPS62172043A (en) Rubber composition and laminated material thereof
JP4424815B2 (en) Oil resistant conveyor belt
JP2008069276A (en) Rubber composition, fiber/rubber composite and hose
JP7217396B1 (en) Rubber composition for side wall of rubber bearing and rubber bearing using the same
JP4532818B2 (en) Rubber composition for air hoses for automobiles
JPS6217615B2 (en)
JP2023037378A (en) High-damping rubber composition and viscoelastic damper using same
JP2023037379A (en) High-damping rubber composition and viscoelastic damper using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200318

R150 Certificate of patent or registration of utility model

Ref document number: 6688456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250