JP2005320376A - Rubber composition for seismic isolation laminate and seismic isolation laminate using the same - Google Patents

Rubber composition for seismic isolation laminate and seismic isolation laminate using the same Download PDF

Info

Publication number
JP2005320376A
JP2005320376A JP2004137658A JP2004137658A JP2005320376A JP 2005320376 A JP2005320376 A JP 2005320376A JP 2004137658 A JP2004137658 A JP 2004137658A JP 2004137658 A JP2004137658 A JP 2004137658A JP 2005320376 A JP2005320376 A JP 2005320376A
Authority
JP
Japan
Prior art keywords
seismic isolation
rubber
rubber composition
weight
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004137658A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tachibana
博之 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2004137658A priority Critical patent/JP2005320376A/en
Publication of JP2005320376A publication Critical patent/JP2005320376A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition for a seismic isolation support structure, which can be vulcanized for a long period of time with suppressed reversion and can follow a large horizontal deformation while it retains a stress at 100% shear deformation as an index of seismic isolation performance and to provide an seismic isolation laminate using such a rubber composition. <P>SOLUTION: The rubber composition is obtained by compounding 99 to 90 pts.wt. diene rubber as a base material with 1 to 10 pts.wt. liquid polyisoprene. The liquid polyisoprene is desirably a polyisoprene/maleic anhydride adduct or a polyisoprene/monomethyl maleate adduct. Desirably, the above rubber composition further contains 0.5 to 10 pts.wt. metal α,β-unsaturated carboxylate, especially zinc methacrylate for the purpose of effectively suppressing reversion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建築物や橋梁等の免震支承構造体に使用される積層体用のゴム組成物、及び当該ゴム組成物を用いた免震積層体に関するものである。   The present invention relates to a rubber composition for a laminated body used for a base-isolated bearing structure such as a building or a bridge, and a base-isolated laminated body using the rubber composition.

近年、地震による建物、橋梁等の構築物の被害を防止するために、ゴム層と金属層が上下方向に交互に積層され、互いに接着された積層体を備えた免震支承構造体が普及しつつある。この免震支承構造体では、構築物に伝わる振動周期を地震の周期よりも長くする機能(いわゆる免震機能)と、振動を減衰させる機能(いわゆる減衰機能)により、地震による構築物の被害を軽減する。   In recent years, in order to prevent damage to buildings, bridges, and other structures due to earthquakes, seismic isolation bearing structures with laminated bodies in which rubber layers and metal layers are alternately laminated in the vertical direction and bonded to each other are becoming widespread. is there. This seismic isolation structure reduces the damage to structures caused by earthquakes by making the vibration period transmitted to the structure longer than the earthquake period (so-called seismic isolation function) and damping the vibration (so-called damping function). .

免震支承構造体の免震機能は、ゴム層のバネ特性を利用するのが一般的であるが、減衰機能は、ゴム層自体の減衰機能により発揮される場合(高減衰ゴム)と、別途減衰機能を有するダンパー(オイルダンパー、摩擦ダンパー、鉛ダンパー等)を設置することにより発揮される場合がある。高減衰ゴムを用いる場合、別途ダンパーを設置する必要がないため免震支承構造体のコストが安いが、ゴムの温度依存性やクリープ等のために、免震機能は、ダンパーを設置する場合に比べて劣る。特許文献1及び2には、ゴム積層体用の高減衰性ゴム組成物が開示されている。   The seismic isolation function of the base-isolated bearing structure generally uses the spring characteristics of the rubber layer. However, the damping function is demonstrated by the damping function of the rubber layer itself (high damping rubber). It may be exhibited by installing a damper (oil damper, friction damper, lead damper, etc.) having a damping function. When using high-damping rubber, it is not necessary to install a separate damper, so the cost of the base-isolated bearing structure is low. However, due to the temperature dependence of the rubber and creep, the seismic isolation function is used when installing a damper. It is inferior compared. Patent Documents 1 and 2 disclose high-damping rubber compositions for rubber laminates.

一方、別途ダンパーを設置する場合は、ダンパーを設置する分だけコスト高になってしまうが、減衰機能は、高減衰性ゴムを用いる場合と比較して高く、信頼性の高い免震支承構造体を得ることが可能である。特許文献3及び4には、ダンパー併用式免震積層体に用いることができるゴム組成物が開示されている。
特開平11−80424号公報 特開平11−263879号公報 特開平11−5873号公報 特開平11−34218号公報
On the other hand, if a separate damper is installed, the cost will be higher by the amount of the damper installed, but the damping function is higher than when using high-damping rubber, and a highly reliable seismic isolation structure. It is possible to obtain Patent Documents 3 and 4 disclose rubber compositions that can be used for a damper combined type seismic isolation laminate.
Japanese Patent Laid-Open No. 11-80424 JP-A-11-263879 Japanese Patent Laid-Open No. 11-5873 JP-A-11-34218

ここで、免震積層体には上記免震機能と減衰機能の他に、耐剪断破壊性能、すなわち水平方向の変形に対する追従性も重要と考えられる。大地震時に生じる水平方向の大変形に耐えることができなければ、構築物を元の位置に戻せないだけでなく、構築物の崩壊も招きかねないからである。しかし、免震支承構造体に対する免震性能の要求水準は、年々アップしてきている。従来、特に橋梁用の支承ゴムの剪断破壊伸びは、300%程度であることが要求されていたが、最近では350%以上であることが要求されるようになってきている。この免震積層体における350%以上という値は、25mm幅×25mm長さ×5mm厚のゴム片を2枚の鋼板間に加硫接着した試験片による剪断破壊伸びでは、420%以上に相当することが過去のデータから明らかである。   Here, in addition to the above-mentioned seismic isolation function and damping function, it is also considered important for the seismic isolation laminate to have shear fracture resistance, that is, followability to horizontal deformation. This is because not being able to return the structure to its original position if it cannot withstand the large horizontal deformation caused by a large earthquake, it may cause the structure to collapse. However, the required level of base isolation performance for base isolation bearing structures has been increasing year by year. Conventionally, the shear fracture elongation of the bearing rubber for bridges in particular has been required to be about 300%, but recently it has been required to be 350% or more. The value of 350% or more in this seismic isolation laminate corresponds to 420% or more in the shear fracture elongation of a test piece obtained by vulcanizing and bonding a rubber piece of 25 mm width × 25 mm length × 5 mm thickness between two steel plates. This is clear from past data.

ここで、100%剪断応力(MPa)は、建物等の構造物の固有周期を長くして地震を緩和する能力の指標であるが、ゴムとしては数値が高くなるほど剪断破壊伸び(%)が小さくなり、地震時の大きな変位に追従しにくくなる。このため、特に橋梁用の支承ゴム等では100%剪断応力(MPa)が0.8〜1.4の範囲のものが多く、かつ剪断破壊伸びが、現在要求されている水準である350%以上(試験片では420%以上)であることが望ましい。しかし、例えば特許文献3及び4のゴム組成物では、免震支承構造体に要求される最近の免震性能を満たすことが困難になっていた。   Here, 100% shear stress (MPa) is an index of the ability to mitigate earthquakes by lengthening the natural period of structures such as buildings, but as rubber, the higher the numerical value, the smaller the shear fracture elongation (%). It becomes difficult to follow a large displacement during an earthquake. For this reason, in particular, rubber bearings for bridges and the like often have 100% shear stress (MPa) in the range of 0.8 to 1.4, and the shear fracture elongation is 350% or more, which is the level currently required. (420% or more for the test piece) is desirable. However, for example, in the rubber compositions of Patent Documents 3 and 4, it has been difficult to satisfy the recent seismic isolation performance required for the seismic isolation bearing structure.

一方、免震積層体は、大きいものでは直径又は一辺が1mを超えるものもあり、ゴム製品としては極めて大型で厚肉の部類に属する。このような大型厚肉製品を加熱・加圧して加硫する際に、熱源から離れた外径と内径の中間部分まで十分加硫するためには、加熱時間を長くして中間部分まで熱を伝える必要がある。しかし、加熱時間を長くすれば熱源に近い部分が過剰に熱せられ、この部分のゴムが劣化し、ゴム層と金属層との接着力が低下することになる。特に、天然ゴムに硫黄を混練した配合ゴムは、一般的に長時間加熱すると加硫戻りを起こし、品質が低下しやすい。   On the other hand, some seismic isolation laminates have a diameter or a side exceeding 1 m, and are extremely large and thick as rubber products. When vulcanizing by heating and pressurizing such a large thick product, in order to sufficiently vulcanize the middle part of the outer diameter and inner diameter away from the heat source, the heating time is lengthened and the heat is heated to the middle part. I need to tell. However, if the heating time is lengthened, the portion near the heat source is excessively heated, the rubber in this portion is deteriorated, and the adhesive force between the rubber layer and the metal layer is lowered. In particular, a compounded rubber in which sulfur is kneaded with natural rubber generally causes reversion of vulcanization when heated for a long time, and the quality is likely to deteriorate.

加硫戻りを抑制する方法として、硫黄の配合量を減少させることが行われるが、硫黄の配合量を少なくするとゴム層と金属層の接着力が低下し、地震時に構築物の加重を受けた状態で水平方向に大変形が生じた際に、ゴム層と金属層の接着界面が剥離し、免震支承構造体の機能が損なわれるおそれがある。   As a method to suppress vulcanization reversion, the amount of sulfur is reduced, but if the amount of sulfur is reduced, the adhesive strength between the rubber layer and the metal layer decreases, and the structure is subjected to weight during an earthquake. When a large deformation occurs in the horizontal direction, the adhesive interface between the rubber layer and the metal layer peels off, and the function of the seismic isolation bearing structure may be impaired.

本発明は、長時間加硫しても加硫戻りによる品質低下を抑制することができ、かつ免震機能の指標である100%剪断変形時の応力を維持しつつ、水平方向の大きな変形にも追従することができる免震支承構造体用のゴム組成物、及びそのようなゴム組成物を用いた免震積層体を提供することを目的とする。   The present invention can suppress a deterioration in quality due to reversion even after vulcanization for a long time, and can maintain a stress at the time of 100% shear deformation, which is an index of the seismic isolation function, while allowing large deformation in the horizontal direction. It is an object of the present invention to provide a rubber composition for a seismic isolation bearing structure that can also follow, and a seismic isolation laminate using such a rubber composition.

本発明は、ジエン系基材ゴムに所定量の液状ポリイソプレンを配合したゴム組成物に関する。また、本発明は、そのようなゴム組成物から構成される免震積層体に関する。   The present invention relates to a rubber composition in which a predetermined amount of liquid polyisoprene is blended with a diene base rubber. Moreover, this invention relates to the seismic isolation laminated body comprised from such a rubber composition.

具体的に、本発明は、ジエン系ゴム99〜90重量部に液状ポリイソプレン1〜10重量部を配合することを特徴とする免震積層体用ゴム組成物に関する(請求項1)。また、本発明は、そのような免震積層体用ゴム組成物からなるゴム層と金属層が上下方向に交互に積層された積層体を備える免震積層体(請求項7)に関する。   Specifically, the present invention relates to a rubber composition for a seismic isolation laminate, wherein 1 to 10 parts by weight of liquid polyisoprene is blended with 99 to 90 parts by weight of a diene rubber (claim 1). The present invention also relates to a seismic isolation laminate (Claim 7) comprising a laminate in which rubber layers and metal layers made of such a rubber composition for a seismic isolation laminate are alternately laminated in the vertical direction.

ゴム組成物は、長時間の加硫中に分子切断と再結合が同時に起こるが、分子切断の比率が高いと加硫戻りが大きくなって品質が低下する。本発明のゴム組成物は、ジエン系ゴムに液状ポリイソプレンを配合することにより、分子の切断が起こりにくくなるか、又は分子の再結合が起こりやすくなることで、加硫戻りが生じにくくなる。それにより本発明の組成物は、25mm幅×25mm長さ×5mm厚のゴム片を2枚の鋼板間に加硫接着した試験片において、100%剪断応力(MPa)が0.8〜1.4の範囲で、かつ420%以上の高い剪断破壊伸びを示す。   In the rubber composition, molecular cleavage and recombination occur simultaneously during vulcanization for a long time. However, if the ratio of molecular cleavage is high, the vulcanization return increases and the quality deteriorates. In the rubber composition of the present invention, by blending liquid polyisoprene with a diene rubber, molecular breakage is less likely to occur, or molecular recombination is likely to occur, so that reversion is less likely to occur. Thereby, the composition of the present invention has a 100% shear stress (MPa) of 0.8 to 1. in a test piece obtained by vulcanizing and bonding a rubber piece of 25 mm width × 25 mm length × 5 mm thickness between two steel plates. 4 shows a high shear fracture elongation of 420% or more.

液状ポリイソプレンが1重量部未満では加硫戻り抑制効果が期待できず、10重量部を超えても加硫戻り抑制効果が飽和するだけでなく、剪断破壊伸び(%)が低下する。   If the amount of liquid polyisoprene is less than 1 part by weight, the effect of suppressing vulcanization return cannot be expected. If the amount of liquid polyisoprene exceeds 10 parts by weight, not only the effect of suppressing vulcanization return is saturated but also the shear fracture elongation (%) decreases.

液状ポリイソプレンに官能基があると、切断された分子の再結合が起こりやすくなるとともに、分子構造上の規則性がより乱れて伸張結晶性が抑制され、図1に示すように、ハードニング開始歪みが高歪み側にシフトされ、同じ剪断応力における剪断破壊伸び(%)が増大する。このため本発明のゴム組成物に用いる液状ポリイソプレンとしては、官能基を有する無水マレイン酸付加物又はマレイン酸モノメチルエステル付加物であることが好ましい(請求項2)。   When a functional group is present in liquid polyisoprene, recombination of the cleaved molecule is likely to occur, and the regularity of the molecular structure is more disturbed to suppress the stretched crystallinity. As shown in FIG. The strain is shifted to the higher strain side, increasing the shear failure elongation (%) at the same shear stress. Therefore, the liquid polyisoprene used in the rubber composition of the present invention is preferably a maleic anhydride adduct or a maleic acid monomethyl ester adduct having a functional group (Claim 2).

本発明のゴム組成物は、オイル硫黄との共架橋剤としてα,β不飽和カルボン酸金属塩、又はα,β不飽和カルボン酸と金属化合物をさらに含有させてもよい(請求項3)。α,β不飽和カルボン酸金属塩、又はα,β不飽和カルボン酸と金属化合物は、加硫戻り抑制効果と剪断破壊伸びに加えて、金属との接着性を向上させる効果が期待できる。特に、α,β不飽和カルボン酸としては、メタクリル酸、アクリル酸、マレイン酸、フマル酸、イタコン酸等が挙げられ、ベースゴムの分散性と共架橋性に優れる点でメタクリル酸及びアクリル酸が好ましい。α,β不飽和カルボン酸金属塩の金属としては、亜鉛、ニッケル、マグネシウム、ナトリウム、カリウム等が挙げられ、共架橋性に優れる点で亜鉛を用いることが好ましい(請求項4)。メタクリル酸金属塩を含有させる場合には、0.5重量部未満では上記効果が期待できず、10重量部を超えると剪断破壊伸び(%)が低下することから、0.5重量部以上10重量部以下とすることが好ましい(請求項5)。また、α,β不飽和カルボン酸として、特に、メタクリル酸又はアクリル酸を亜鉛化合物と共に含有させてもよい(請求項6)。   The rubber composition of the present invention may further contain an α, β unsaturated carboxylic acid metal salt, or an α, β unsaturated carboxylic acid and a metal compound as a co-crosslinking agent with oil sulfur. The α, β unsaturated carboxylic acid metal salt, or the α, β unsaturated carboxylic acid and the metal compound can be expected to have an effect of improving adhesion to the metal in addition to the effect of suppressing vulcanization and shear fracture elongation. In particular, α, β unsaturated carboxylic acids include methacrylic acid, acrylic acid, maleic acid, fumaric acid, itaconic acid, etc., and methacrylic acid and acrylic acid are excellent in terms of dispersibility and co-crosslinking property of the base rubber. preferable. Examples of the metal of the α, β-unsaturated carboxylic acid metal salt include zinc, nickel, magnesium, sodium, potassium, and the like, and it is preferable to use zinc in terms of excellent co-crosslinking properties. When a metal methacrylate is contained, the above effect cannot be expected if the amount is less than 0.5 parts by weight, and if the amount exceeds 10 parts by weight, the shear fracture elongation (%) decreases. It is preferable that the amount is not more than parts by weight. In addition, as the α, β unsaturated carboxylic acid, methacrylic acid or acrylic acid may be included together with the zinc compound (Claim 6).

本発明のゴム組成物は、ジエン系ゴム99〜90重量部に液状ポリイソプレン1〜10重量部を配合することにより加硫戻りによる品質低下が起きにくいため、硫黄配合量を減少させる必要がなく、ゴム層と金属層の接着界面が剥離しにくい。しかも、免震機能の指標である100%剪断変形時の応力を維持しつつ、地震時に生じる水平方向の大きな変形にも追従することが可能である。本発明のゴム組成物を免震積層体に用いることにより、従来の免震積層体と比較して免震性能が高まり、より効果的に地震による構築物の崩壊を防止することが可能となる。   In the rubber composition of the present invention, since blending 1 to 10 parts by weight of liquid polyisoprene with 99 to 90 parts by weight of a diene rubber makes it difficult for the quality to deteriorate due to reversion, there is no need to reduce the amount of sulfur. The adhesive interface between the rubber layer and the metal layer is difficult to peel off. Moreover, it is possible to follow a large horizontal deformation that occurs during an earthquake while maintaining the stress during 100% shear deformation, which is an index of the seismic isolation function. By using the rubber composition of the present invention for the seismic isolation laminate, the seismic isolation performance is enhanced as compared with the conventional seismic isolation laminate, and the collapse of the structure due to the earthquake can be more effectively prevented.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳細に説明するが、本発明は、その要旨を超えない限り下記に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. However, the present invention is not limited to the following unless it exceeds the gist.

図2に本発明の一実施形態に係る免震積層体の断面図を示す。鉛ダンパー併用式免震積層体1は、ゴム層2と金属層3とが複数枚ずつ、上下方向に交互に積層された積層体4を備えている。ゴム層2と金属層3とは、加硫接着されている。ゴム層2及び金属層3の平面形状は、円形である。積層体4は、その外周に外皮ゴム5を備えている。ゴム層2と外皮ゴム5とは、積層体4の加硫時にゴム流動により一体とされる。金属層3には種々の金属材料が適用可能であるが、一般的にはスチールが用いられる。積層体4の上下には、スチール等からなるフランジ部6a、6bが設けられている。フランジ部6a、6bとこのフランジ部6a、6bに当接するゴム層2とは、加硫接着されている。免震積層体の中心部には鉛ダンパー7が積層体を上下に貫通するように設置される。上方のフランジ部6aは適切な連結手段(図示されず)により基礎地盤と連結され、上方のフランジ部6bは適切な連結手段(図示されず)により建物、橋梁等の構築物と連結される。   FIG. 2 shows a cross-sectional view of the seismic isolation laminate according to one embodiment of the present invention. The lead damper combined type seismic isolation laminate 1 includes a laminate 4 in which a plurality of rubber layers 2 and metal layers 3 are alternately laminated in the vertical direction. The rubber layer 2 and the metal layer 3 are vulcanized and bonded. The planar shape of the rubber layer 2 and the metal layer 3 is circular. The laminated body 4 includes an outer rubber 5 on the outer periphery thereof. The rubber layer 2 and the outer rubber 5 are integrated by rubber flow when the laminated body 4 is vulcanized. Although various metal materials can be applied to the metal layer 3, steel is generally used. On the top and bottom of the laminate 4, flange portions 6a and 6b made of steel or the like are provided. The flange portions 6a and 6b and the rubber layer 2 in contact with the flange portions 6a and 6b are vulcanized and bonded. A lead damper 7 is installed at the center of the seismic isolation laminate so as to penetrate the laminate vertically. The upper flange portion 6a is connected to the foundation ground by appropriate connection means (not shown), and the upper flange portion 6b is connected to a structure such as a building or a bridge by appropriate connection means (not shown).

図3に本発明の別の実施形態に係る免震積層体の断面図を示す。ダンパー非併用式免震積層体11は、鉛ダンパー7を有しない点を除き、図2に示す鉛ダンパー併用式免震積層体1と基本構造は同じである。図2のダンパー非併用式免震積層体11は、積層体14を上下に貫通するように中心孔17を有して中心部が空洞となっているが、こうした中心孔17を有さない、図4に示すダンパー非併用式免震積層体も、本発明に係る免震積層体に含まれる。   FIG. 3 shows a cross-sectional view of a seismic isolation laminate according to another embodiment of the present invention. The basic structure of the non-damper combined seismic isolation layer 11 is the same as that of the lead damper combined type seismic isolation layer 1 shown in FIG. 2 except that the lead damper 7 is not provided. 2 has a center hole 17 so as to penetrate the laminate 14 up and down, and the center portion is hollow, but does not have such a center hole 17. The non-damper combined seismic isolation laminate shown in FIG. 4 is also included in the seismic isolation laminate according to the present invention.

ゴム層2には、本発明のゴム組成物が用いられる。本発明のゴム組成物の基材となる未加硫ゴムは、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等のジエン系ゴムであればよいが、破壊特性に優れる点においては、天然ゴムが適している。   For the rubber layer 2, the rubber composition of the present invention is used. The unvulcanized rubber used as the base material of the rubber composition of the present invention is natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile butadiene. A diene rubber such as rubber (NBR) may be used, but natural rubber is suitable in terms of excellent fracture characteristics.

さらに、本発明のゴム組成物には、加硫剤、加硫促進剤、加硫遅延剤、加硫促進助剤、老化防止剤、補強剤、軟化剤、充填剤等の薬品を適時配合することもできる。
(ゴム組成物の製造)
Furthermore, the rubber composition of the present invention is appropriately mixed with chemicals such as a vulcanizing agent, a vulcanization accelerator, a vulcanization retarder, a vulcanization acceleration aid, an anti-aging agent, a reinforcing agent, a softening agent, and a filler. You can also.
(Manufacture of rubber composition)

天然ゴム(SMR製CV60)95重量部を1.5リットルのBR型バンバリーに投入し、素練りした。これに、液状ポリイソプレン(1)(クラレ製LIR−30:ポリイソプレンのモノメチルエステル付加物)5重量部と、補強剤としてHAFカーボンブラック(東海カーボン製シースト3)48重量部と、加硫促進助剤として酸化亜鉛(堺化学製酸化亜鉛)3重量部、加工助剤としてステアリン酸(日本油脂製ステアリン酸椿)1重量部と、老化防止剤としてN−フェニル−N−イソプロピル−p−フェニレンジアミン1重量部と、硫黄(細井化学工業製オイル硫黄)1.2重量部と、スルフェンアミド系加硫促進剤としてN−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド(CBS:大内新興化学工業株式会社製、商品名「ノクセラーCZ−G」)0.8重量部、チウラム系加硫促進剤としてテトラキス(2−エチルヘキシル)チウラムジスルフィド(TOT:大内新興化学工業株式会社製、商品名「ノクセラーTOT−N」)0.5重量部とを投入し、5分間混練して排出させた。排出されたゴム組成物をオープンロールで練り、厚み5.0mmのシートとなるようにシーティングした。この未加硫ゴムシートを物性試験用試験片の作製に用いた。なお、加硫温度と時間は、免震積層体が大型で、加硫時に熱が伝わりにくく長時間を要する点より、150℃×300minとした。   95 parts by weight of natural rubber (SMR CV60) was put into a 1.5 liter BR type Banbury and masticated. Further, 5 parts by weight of liquid polyisoprene (1) (Kuraray LIR-30: monomethyl ester adduct of polyisoprene), 48 parts by weight of HAF carbon black (Tokai Carbon Seast 3) as a reinforcing agent, and vulcanization acceleration 3 parts by weight of zinc oxide (zinc oxide manufactured by Sakai Chemical) as an auxiliary agent, 1 part by weight of stearic acid (stearic acid slag manufactured by NOF Corporation) as a processing aid, and N-phenyl-N-isopropyl-p-phenylene as an anti-aging agent 1 part by weight of diamine, 1.2 parts by weight of sulfur (oil sulfur manufactured by Hosoi Chemical Co., Ltd.) and N-cyclohexyl-2-benzothiazole sulfenamide (CBS: Ouchi Shinsei Chemical Industry) as a sulfenamide-based vulcanization accelerator Product name "Noxeller CZ-G") 0.8 parts by weight, tetrakis (2-ethylhexyl) as thiuram vulcanization accelerator Ulam disulfide (TOT: Ouchi Shinko Chemical Industry Co., Ltd., trade name "Nocceler TOT-N") were charged and 0.5 parts by weight, was drained and kneaded for 5 minutes. The discharged rubber composition was kneaded with an open roll and sheeted to form a sheet having a thickness of 5.0 mm. This unvulcanized rubber sheet was used for preparing a test piece for physical property testing. The vulcanization temperature and time were set to 150 ° C. × 300 min from the point that the seismic isolation laminate was large and heat was not easily transmitted during vulcanization, requiring a long time.

液状ポリイソプレン(1)5重量部の代わりに、液状ポリイソプレン(2)(クラレ製LIR−403:ポリイソプレンの無水マレイン酸付加物)5重量部を用いた以外は、実施例1と同じである。   Instead of 5 parts by weight of liquid polyisoprene (1), the same as Example 1 except that 5 parts by weight of liquid polyisoprene (2) (Kuraray LIR-403: polyisoprene maleic anhydride adduct) was used. is there.

液状ポリイソプレン(2)1重量部を用いた以外は、実施例2と同じである。   The same as Example 2, except that 1 part by weight of liquid polyisoprene (2) was used.

液状ポリイソプレン(2)10重量部を用いた以外は、実施例2と同じである。   The same as Example 2 except that 10 parts by weight of liquid polyisoprene (2) was used.

液状ポリイソプレン(1)5重量部の代わりに、液状ポリイソプレン(3)(クラレ製LIR−410:ポリイソプレンの無水マレイン酸付加物)5重量部を用いた以外は、実施例1と同じである。   Instead of 5 parts by weight of liquid polyisoprene (1), the same as Example 1 except that 5 parts by weight of liquid polyisoprene (3) (Kuraray LIR-410: maleic anhydride adduct of polyisoprene) was used. is there.

共架橋剤としてメタクリル酸亜鉛2重量部をさらに配合した以外は、実施例2と同じである。   Example 2 is the same as Example 2 except that 2 parts by weight of zinc methacrylate is further added as a co-crosslinking agent.

メタクリル酸亜鉛を0.5重量部とした以外は、実施例6と同じである。   The same as Example 6, except that 0.5 parts by weight of zinc methacrylate was used.

メタクリル酸亜鉛を5重量部とした以外は、実施例6及び7と同じである。   The same as Examples 6 and 7, except that 5 parts by weight of zinc methacrylate was used.

メタクリル酸亜鉛を10重量部とした以外は、実施例6〜8と同じである。   The same as Examples 6 to 8, except that 10 parts by weight of zinc methacrylate was used.

共架橋剤としてアクリル酸マグネシウム2重量部を配合した以外は、実施例2と同じである。   Example 2 is the same as Example 2 except that 2 parts by weight of magnesium acrylate is added as a co-crosslinking agent.

共架橋剤としてメタクリル酸1.0重量部と硫化亜鉛1.0重量部を配合した以外は、実施例2と同じである。   Example 2 is the same as Example 2 except that 1.0 part by weight of methacrylic acid and 1.0 part by weight of zinc sulfide are blended as a co-crosslinking agent.

[比較例1]
天然ゴムを100重量部とし、液状ポリイソプレン(1)を配合しない以外は、実施例1と同じである。
[Comparative Example 1]
Example 1 is the same as Example 1 except that the natural rubber is 100 parts by weight and the liquid polyisoprene (1) is not blended.

[比較例2]
HAFカーボンブラックを55重量部とした以外は、比較例1と同じである。
[Comparative Example 2]
The same as Comparative Example 1 except that the HAF carbon black was 55 parts by weight.

[比較例3]
天然ゴムを80重量部とし、液状ポリイソプレン(2)を20重量部とした以外は、実施例1と同じである。
[Comparative Example 3]
The same as Example 1, except that the natural rubber was 80 parts by weight and the liquid polyisoprene (2) was 20 parts by weight.

実施例及び比較例のゴム組成物の原料組成並びに物性の一覧は、表1に示した。   Table 1 shows a list of raw material compositions and physical properties of the rubber compositions of Examples and Comparative Examples.

Figure 2005320376
Figure 2005320376

(加硫戻り抑制効果)
全ての実施例及び比較例のゴム組成物の加硫(条件:150℃、300min)時において、レオメーターの最大トルクと加硫終了時トルクを測定し、トルク差を求めた。このトルク差=最大トルク−加硫終了時トルク(dNm:デシ・ニュートン・メートル)は、ゴム組成物の加硫戻りの指標であり、トルク差が小さいほど加硫戻りが小さく、トルク差が大きいほど加硫戻りが大きいことを表す。各ゴム組成物のトルク差は、表1に記載した通りである。
(Reduction effect of vulcanization return)
At the time of vulcanization (conditions: 150 ° C., 300 min) of the rubber compositions of all Examples and Comparative Examples, the maximum torque of the rheometer and the torque at the end of vulcanization were measured to obtain a torque difference. This torque difference = maximum torque−torque at the end of vulcanization (dNm: Deci Newton meter) is an index of vulcanization return of the rubber composition. The smaller the torque difference, the smaller the vulcanization return and the greater the torque difference. It shows that vulcanization reversion is so large. The torque difference of each rubber composition is as described in Table 1.

液状ポリイソプレンを配合していない比較例1及び2は、トルク差がそれぞれ1.5及び1.7であったが、実施例のトルク差は、全て1以下であった。特に、実施例4及び実施例6〜8は、トルク差が0であり、加硫戻りが非常に小さいゴム組成物であった。   In Comparative Examples 1 and 2 in which liquid polyisoprene was not blended, the torque differences were 1.5 and 1.7, respectively, but the torque differences in the examples were all 1 or less. In particular, Example 4 and Examples 6 to 8 were rubber compositions having a torque difference of 0 and very low reversion.

実施例1、2及びの5の比較から、同じ5重量部を天然ゴム95重量部に配合する場合の加硫戻り抑制効果は、液状ポリイソプレン(1)よりも液状ポリイソプレン(2)及び(3)が高かったが、ゴム組成物の100%剪断応力(MPa)と剪断破壊伸び(%)は、同等であった。また、実施例2〜4及び比較例3の比較から、液状ポリイソプレン(2)の配合量が多いほど加硫戻り抑制効果が高いことが考察されたが、20重量部にまで配合量を増加させると剪断破壊伸び(%)が低下したことから、液状ポリイソプレン(2)は、1〜10重量部とすることが好ましかった。   From the comparison of Examples 1, 2 and 5, from the fact that the same 5 parts by weight is blended with 95 parts by weight of natural rubber, the effect of suppressing the vulcanization return is higher than that of liquid polyisoprene (1) and liquid polyisoprene (2). Although 3) was high, the 100% shear stress (MPa) and the shear fracture elongation (%) of the rubber composition were equivalent. In addition, it was considered from the comparison between Examples 2 to 4 and Comparative Example 3 that the higher the amount of liquid polyisoprene (2), the higher the effect of suppressing vulcanization return, but the amount was increased to 20 parts by weight. As a result, the shear fracture elongation (%) was lowered, so that the liquid polyisoprene (2) was preferably 1 to 10 parts by weight.

実施例2及び実施例6〜9の比較から、メタクリル酸亜鉛を0.5重量部以上添加することによりトルク差が0となり、加硫戻りを効果的に抑制することが確認された。ただし、メタクリル酸亜鉛の添加量が増えると剪断破壊伸び(%)が低下する傾向が見られたので、メタクリル酸亜鉛の添加量は、10重量部以下にすることが好ましい。   From the comparison between Example 2 and Examples 6 to 9, it was confirmed that by adding 0.5 parts by weight or more of zinc methacrylate, the torque difference became 0 and the reversion was effectively suppressed. However, since the shear fracture elongation (%) tended to decrease as the amount of zinc methacrylate added increased, the amount of zinc methacrylate added is preferably 10 parts by weight or less.

(材料剪断試験に用いる試験片の作成)
実施例及び比較例のゴム組成物
上記実施例1〜9及び比較例1〜3のゴム組成物のシートを、図2に符号8で示されるような厚み5mm、縦25.0mm×横25.0mmのブロック状のゴム片に打ち抜いた。符号9a及び9bで示される金属板として、厚み2.6mmの鋼板を縦25.0mm×横60.0mmに切断した。金属板9a、9bの接着面をサンドブラストにより研磨して脱脂し、直後に塩素含有量が15重量%の加硫接着剤を塗布して乾燥させた。そして、図4に示されるようにゴム片8の上面及び下面に金属板9a、9bを貼り付け、150℃×300minの条件で加硫して、材料剪断試験に用いる試験片を得た。
(Preparation of specimens used for material shear test)
Rubber compositions of Examples and Comparative Examples Sheets of the rubber compositions of Examples 1 to 9 and Comparative Examples 1 to 3 have a thickness of 5 mm, a length of 25.0 mm and a width of 25. Punched into a 0 mm block of rubber. As a metal plate indicated by reference numerals 9a and 9b, a steel plate having a thickness of 2.6 mm was cut into a length of 25.0 mm and a width of 60.0 mm. The adhesive surfaces of the metal plates 9a and 9b were degreased by sandblasting, and immediately after that, a vulcanized adhesive having a chlorine content of 15% by weight was applied and dried. Then, as shown in FIG. 4, metal plates 9a and 9b were attached to the upper and lower surfaces of the rubber piece 8, and vulcanized under conditions of 150 ° C. × 300 min to obtain a test piece used for the material shear test.

(剪断破壊試験)
上記各試験片の上側金属板9aを固定し、下側金属板9bを図2中右側に50mm/minの速度で引っ張り、ゴム片8の厚みと同じ5mm変位したときの応力(100%応力:MPa)を測定した。また、応力測定後、上記各試験片が破断するまで同じ速度で引っ張り、破断時における下側金属板9bの変位(mm)を測定した。この変位の、ゴム片8の厚みである5mmに対する比率(%)を剪断破壊伸びとした。各試験片についての100%剪断応力及び剪断破壊伸びの測定結果は、表1に示した通りである。
(Shear fracture test)
The upper metal plate 9a of each test piece is fixed, the lower metal plate 9b is pulled to the right in FIG. 2 at a speed of 50 mm / min, and the stress (100% stress: MPa). Further, after the stress measurement, the test piece was pulled at the same speed until it broke, and the displacement (mm) of the lower metal plate 9b at the time of breakage was measured. The ratio (%) of this displacement to 5 mm which is the thickness of the rubber piece 8 was defined as shear fracture elongation. The measurement results of 100% shear stress and shear fracture elongation for each test piece are as shown in Table 1.

地震の震動周期を長くして緩和する能力の指標とされる100%剪断応力(MPa)は、実施例及び比較例とも、従来から常用されている0.8〜1.4MPaのレベルを維持できていることがわかる。   The 100% shear stress (MPa), which is an index of the ability to ease the seismic period of the earthquake by lengthening it, can maintain the level of 0.8 to 1.4 MPa that has been conventionally used in both Examples and Comparative Examples. You can see that

一方、剪断破壊伸び(%)については、比較例が390〜410%であるのに対し、実施例は420〜470%であり、実施例の方が伸びの数値が50%以上向上していることがわかる。   On the other hand, as for the shear fracture elongation (%), the comparative example is 390 to 410%, while the example is 420 to 470%, and the numerical value of elongation in the example is improved by 50% or more. I understand that.

地震時の大きな変位は、水平方向に生じるため、上記試験片による剪断破壊伸びは、図2乃至4に示した免震積層体の水平変位対応力の指標となる。実施例のゴム組成物を用いた図3に示す構造の免震積層体は、比較例のゴム組成物を用いた同じ構造の免震積層体よりも、50%以上大きな水平方向の変位350%まで破壊されなかった。このような免震積層体を備えることにより、ダンパー式免震支梁構造体の安全性、信頼性及び復元性を高めることが可能となる。   Since a large displacement at the time of an earthquake occurs in the horizontal direction, the shear fracture elongation by the test piece is an indicator of the horizontal displacement response force of the seismic isolation laminate shown in FIGS. The base-isolated laminate having the structure shown in FIG. 3 using the rubber composition of the example has a horizontal displacement of 350% that is 50% or more larger than the base-isolated laminate having the same structure using the rubber composition of the comparative example. It was not destroyed until. By providing such a base-isolated laminated body, it becomes possible to improve the safety, reliability, and recoverability of the damper type base-isolated support beam structure.

このように、本実施例のゴム組成物は、比較例のゴム組成物と比較して、剪断破壊性能が高く、図2乃至4に示すような免震積層体に用いる場合には、より大きな水平方向の変位に耐えることができる。また、本実施例のゴム組成物を用いた免震積層体は、各種免震支承構造体に用いることができるが、特に、図2に示すダンパー併用式免震支承構造体に用いることが好ましく、従来品と比較してより高い安全性、信頼性及び復元性を発揮することが可能となる。   Thus, the rubber composition of the present example has higher shear fracture performance than the rubber composition of the comparative example, and is larger when used in a seismic isolation laminate as shown in FIGS. Can withstand horizontal displacement. The seismic isolation laminate using the rubber composition of the present embodiment can be used for various types of base isolation bearing structures, and is particularly preferably used for the damper combined type base isolation bearing structure shown in FIG. As a result, it is possible to exhibit higher safety, reliability, and recoverability compared to conventional products.

本発明のゴム組成物の剪断破壊伸びの改善効果を表す概念図である。It is a conceptual diagram showing the improvement effect of the shear fracture elongation of the rubber composition of this invention. 本発明の一実施形態に係るダンパー併用式免震積層体の断面図である。It is sectional drawing of the damper combined use type seismic isolation laminated body which concerns on one Embodiment of this invention. 本発明の別の実施形態に係るダンパー非併用式免震積層体の断面図である。It is sectional drawing of the damper non-combination type seismic isolation laminated body which concerns on another embodiment of this invention. 本発明のさらに別の実施形態に係るダンパー非併用式免震積層体の断面図である。It is sectional drawing of the damper non-combination-type seismic isolation laminated body which concerns on another embodiment of this invention. 剪断破壊試験に用いる試験片を示した斜視図である。It is the perspective view which showed the test piece used for a shear fracture test.

符号の説明Explanation of symbols

1:ダンパー併用式免震積層体
11:中心孔を有するダンパー非併用式免震積層体
21:中心孔を有さないダンパー非併用式免震積層体
2,12,22:ゴム層
3,13,23:金属層
4,14,24:積層体
5,15,25:外皮ゴム
6a,16a,26a:下部フランジ部
6b,16b,26b:上部フランジ部
7:鉛ダンパー
17:中心孔
8:ゴム片
9a:上側金属板
9b:下側金属板
1: Damper combined type seismic isolation laminate 11: Damper non-use type seismic isolation laminate with center hole 21: Damper non-use type seismic isolation laminate without center hole 2, 12, 22: Rubber layer 3, 13 , 23: Metal layer 4, 14, 24: Laminate 5, 15, 25: Outer rubber 6a, 16a, 26a: Lower flange 6b, 16b, 26b: Upper flange 7: Lead damper 17: Center hole 8: Rubber Piece 9a: Upper metal plate 9b: Lower metal plate

Claims (7)

ジエン系ゴム99〜90重量部に液状ポリイソプレン1〜10重量部を配合したことを特徴とする免震積層体用ゴム組成物。   A rubber composition for a base-isolated laminate, comprising 99 to 90 parts by weight of a diene rubber and 1 to 10 parts by weight of liquid polyisoprene. 前記液状ポリイソプレンが、無水マレイン酸付加物又はマレイン酸モノメチルエステル付加物である請求項1に記載の免震積層体用ゴム組成物。   The rubber composition for a base-isolated laminate according to claim 1, wherein the liquid polyisoprene is a maleic anhydride adduct or a maleic acid monomethyl ester adduct. α,β不飽和カルボン酸金属塩、又はα,β不飽和カルボン酸と金属化合物をさらに含有する請求項1又は2に記載の免震積層体用ゴム組成物。   The rubber composition for a seismic isolation laminate according to claim 1 or 2, further comprising an α, β unsaturated carboxylic acid metal salt, or an α, β unsaturated carboxylic acid and a metal compound. 前記α,β不飽和カルボン酸金属塩が、メタクリル酸亜鉛又はアクリル酸亜鉛である請求項3に記載の免震積層体用ゴム組成物。   The rubber composition for a seismic isolation laminate according to claim 3, wherein the α, β unsaturated carboxylic acid metal salt is zinc methacrylate or zinc acrylate. 前記α,β不飽和カルボン酸金属塩の含有量が、0.5重量部以上10重量部以下である請求項3に記載の免震積層体用ゴム組成物。   The rubber composition for a seismic isolation laminate according to claim 3, wherein the content of the α, β unsaturated carboxylic acid metal salt is 0.5 parts by weight or more and 10 parts by weight or less. 前記α,β不飽和カルボン酸が、メタクリル酸又はアクリル酸である請求項3に記載の免震積層体用ゴム組成物。   The rubber composition for a base-isolated laminate according to claim 3, wherein the α, β unsaturated carboxylic acid is methacrylic acid or acrylic acid. 請求項1乃至6に記載の免震積層体用ゴム組成物からなるゴム層と金属層が、上下方向に交互に積層された積層体を備える免震積層体。   A base-isolated laminate comprising a laminate in which rubber layers and metal layers made of the rubber composition for a base-isolated laminate according to claim 1 are alternately laminated in the vertical direction.
JP2004137658A 2004-05-06 2004-05-06 Rubber composition for seismic isolation laminate and seismic isolation laminate using the same Pending JP2005320376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137658A JP2005320376A (en) 2004-05-06 2004-05-06 Rubber composition for seismic isolation laminate and seismic isolation laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137658A JP2005320376A (en) 2004-05-06 2004-05-06 Rubber composition for seismic isolation laminate and seismic isolation laminate using the same

Publications (1)

Publication Number Publication Date
JP2005320376A true JP2005320376A (en) 2005-11-17

Family

ID=35467875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137658A Pending JP2005320376A (en) 2004-05-06 2004-05-06 Rubber composition for seismic isolation laminate and seismic isolation laminate using the same

Country Status (1)

Country Link
JP (1) JP2005320376A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030016A (en) * 2007-07-05 2009-02-12 Sumitomo Rubber Ind Ltd High damping rubber composition and damping member
CN101806097A (en) * 2010-03-22 2010-08-18 北京工业大学 Tensile prestress rubber earthquake isolation support
WO2011105266A1 (en) * 2010-02-26 2011-09-01 東海ゴム工業株式会社 Vibration-isolating rubber composition
JP2011174034A (en) * 2010-01-29 2011-09-08 Tokai Rubber Ind Ltd Vibration-proof rubber composition
CN102518726A (en) * 2011-12-23 2012-06-27 河南科技大学 Rubber spring damping device of heavy-load mining dumper balance suspension
CN102529634A (en) * 2012-01-16 2012-07-04 河南科技大学 Balancing suspension for A-shaped frame heavy-duty mining hinged dumper
WO2012120638A1 (en) * 2011-03-08 2012-09-13 東海ゴム工業株式会社 Rubber vibration-damping composition, production method therefor, and vulcanized product thereof
KR101501053B1 (en) * 2012-12-28 2015-03-11 (주)창민우구조컨설탄트 Energy dissipation device in structure of diagrid using viscoelasticity damper
WO2015137296A1 (en) * 2014-03-14 2015-09-17 株式会社クラレ Rubber composition
CN105155720A (en) * 2015-10-08 2015-12-16 无锡圣丰建筑新材料有限公司 Adjustable steel cable position limiting shock isolation rubber support seat
CN114133634A (en) * 2021-08-30 2022-03-04 河北震安减隔震技术有限公司 Constraint composite material and composite layer for energy dissipation core material, preparation method of constraint composite material and composite damper

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030016A (en) * 2007-07-05 2009-02-12 Sumitomo Rubber Ind Ltd High damping rubber composition and damping member
JP2011174034A (en) * 2010-01-29 2011-09-08 Tokai Rubber Ind Ltd Vibration-proof rubber composition
WO2011105266A1 (en) * 2010-02-26 2011-09-01 東海ゴム工業株式会社 Vibration-isolating rubber composition
JP2011195807A (en) * 2010-02-26 2011-10-06 Tokai Rubber Ind Ltd Rubber vibration insulator composition
CN101806097A (en) * 2010-03-22 2010-08-18 北京工业大学 Tensile prestress rubber earthquake isolation support
JP5728569B2 (en) * 2011-03-08 2015-06-03 住友理工株式会社 Anti-vibration rubber composition, method for producing the same, and vulcanized product thereof
WO2012120638A1 (en) * 2011-03-08 2012-09-13 東海ゴム工業株式会社 Rubber vibration-damping composition, production method therefor, and vulcanized product thereof
CN102518726A (en) * 2011-12-23 2012-06-27 河南科技大学 Rubber spring damping device of heavy-load mining dumper balance suspension
CN102529634A (en) * 2012-01-16 2012-07-04 河南科技大学 Balancing suspension for A-shaped frame heavy-duty mining hinged dumper
KR101501053B1 (en) * 2012-12-28 2015-03-11 (주)창민우구조컨설탄트 Energy dissipation device in structure of diagrid using viscoelasticity damper
WO2015137296A1 (en) * 2014-03-14 2015-09-17 株式会社クラレ Rubber composition
JP5922849B2 (en) * 2014-03-14 2016-05-24 株式会社クラレ Rubber composition
CN105155720A (en) * 2015-10-08 2015-12-16 无锡圣丰建筑新材料有限公司 Adjustable steel cable position limiting shock isolation rubber support seat
CN105155720B (en) * 2015-10-08 2017-10-31 无锡圣丰建筑新材料有限公司 The adjustable spacing shock insulation rubber bearing of cable wire
CN114133634A (en) * 2021-08-30 2022-03-04 河北震安减隔震技术有限公司 Constraint composite material and composite layer for energy dissipation core material, preparation method of constraint composite material and composite damper

Similar Documents

Publication Publication Date Title
US7758937B2 (en) Rubber composition and vulcanized rubber product using the same
JP2005320376A (en) Rubber composition for seismic isolation laminate and seismic isolation laminate using the same
JP6136106B2 (en) Rubber composition for high damping rubber bearing and high damping rubber bearing
JP5250940B2 (en) Rubber composition for high damping bearing and high damping bearing
JP4595171B2 (en) Rubber composition for high damping bearing
JP4030412B2 (en) Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition
JP2010121033A (en) Rubber composition for high damping laminate, and high damping laminate
JP4260100B2 (en) High damping laminate rubber composition
JP2009149856A (en) Rubber composition for high-damping laminate, and high-damping laminate
JP2000017112A (en) Chloroprene rubber composition and support using the same
JP2001206987A (en) Rubber composition, layered product and hose
JP4057335B2 (en) High damping rubber and seismic isolation structure using the same
JP4941384B2 (en) High damping laminate
JP4938287B2 (en) Rubber composition
JP3645469B2 (en) Rubber composition for laminates with improved fracture characteristics
JP5712735B2 (en) Rubber composition for rubber bearing side wall and rubber bearing body
JP6108123B2 (en) Rubber bearing
JPH10219033A (en) Rubber composition for high-attenuation support
JP6718589B2 (en) Rubber composition for fender
JP6960086B2 (en) Rubber composition for fender
JP5038608B2 (en) High damping rubber composition
JP5998490B2 (en) Rubber composition for air spring
JP2004027080A (en) Rubber composition for anti-seismic laminate
JP2007230064A (en) Rubber laminate, its manufacturing method, and rubber hose
JP4172385B2 (en) Seismic isolation rubber bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119