JP4030412B2 - Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition - Google Patents

Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition Download PDF

Info

Publication number
JP4030412B2
JP4030412B2 JP2002329682A JP2002329682A JP4030412B2 JP 4030412 B2 JP4030412 B2 JP 4030412B2 JP 2002329682 A JP2002329682 A JP 2002329682A JP 2002329682 A JP2002329682 A JP 2002329682A JP 4030412 B2 JP4030412 B2 JP 4030412B2
Authority
JP
Japan
Prior art keywords
rubber
mass
laminate
rubber composition
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002329682A
Other languages
Japanese (ja)
Other versions
JP2004161897A (en
Inventor
康一 伊海
淳 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2002329682A priority Critical patent/JP4030412B2/en
Publication of JP2004161897A publication Critical patent/JP2004161897A/en
Application granted granted Critical
Publication of JP4030412B2 publication Critical patent/JP4030412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高減衰積層体用ゴム組成物、および、該ゴム組成物を高減衰積層体のゴム層に用いたゴム積層体に関する。詳しくは、せん断弾性率(モジュラス)の温度依存性が小さく、減衰性能に優れる高減衰積層体用ゴム組成物、および、該ゴム組成物を高減衰積層体のゴム層に用いた高減衰積層体であるゴム積層体に関する。
【0002】
【従来の技術】
近年、震動エネルギーの吸収装置、すなわち、防震、除震、免震装置等が急速に普及しつつある。このような吸収装置の一形態として知られている橋梁の支承やビルの基礎免震等には、ゴム組成物と硬質板とを交互に積層した免震ゴム装置が用いられている。これは、ゴム組成物を硬質板との積層体とすることにより、上下方向には非常に硬く、横方向には柔らかく、すなわち、せん断剛性(せん断弾性)を小さくして、建築物の固有震動周期を地震の震動周期からずらすように作用させ、地震により建物が受ける加速度を非常に小さくするものである。このような用途に用いるゴム組成物には、振動を熱に変換して振動エネルギーを減衰させるという高減衰性が求められる。
従来、このようなゴム組成物に高減衰を発現させるためには、該ゴム組成物(成分、含量等)を改良する方法、該ゴム組成物中にカーボンブラック等の充填剤や軟化点の高い樹脂等を多量に配合する方法、ガラス転移点の高いポリマーを添加する方法が知られている(例えば、特許文献1参照。)。
【0003】
これらの方法で得られるゴム組成物は、ヒステリシスロスが大きく減衰性に優れるものの、ゴム組成物のせん断弾性率(モジュラス)の温度依存性が大きくなり、特に低温域ではモジュラスが大きくなり、通年で安定した特性が得られないという問題がある。
【0004】
上記問題を解決する方法として、ジエン系ゴム100質量部に対し、ワックスを40質量部以下含有する高減衰積層体用ゴム組成物が提案されており(例えば、特許文献2。)、
また、天然ゴムを主成分として含有するゴム100質量部に対して、カーボンブラックとシリカの合計50〜150質量部と、石油樹脂10〜50質量部を含有し、カーボンブラックとシリカの質量比率が95/5〜25/75である高減衰ゴム組成物であって、該カーボンブラックの窒素吸着比表面積が150m2 /g以上、カーボンブラックのDBP吸油量が60ml/100g以上、である高減衰ゴム組成物、および、天然ゴムを主成分とし、さらにその他のゴムを含有するゴム100質量部に対して、カーボンブラックとシリカの合計50〜150質量部と、石油樹脂10〜50質量部を含有し、カーボンブラックとシリカの質量比率が75/25〜25/75である高減衰ゴム組成物が提案されている(例えば、特許文献3および4。)。
【0005】
【特許文献1】
特開平7−126437号公報
【特許文献2】
特開2000−38476号公報
【特許文献3】
特開2001−187826号公報
【特許文献4】
特開2001−206983号公報
【0006】
【発明が解決しようとする課題】
本発明者らは、上記特許文献2〜4の各公報記載のゴム組成物の温度依存性および減衰性について鋭意検討を行ったところ、さらに改善する余地を見出した。そこで、本発明は、せん断弾性率(モジュラス)の温度依存性が小さく、減衰性能に優れる高減衰積層体用ゴム組成物、および、該ゴム組成物をゴム層に用いたゴム積層体を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、特定のジエン系ゴムと特定の樹脂とを含有する高減衰積層体用ゴム組成物が、せん断弾性率(モジュラス)の温度依存性が小さく、減衰性能に優れる高減衰積層体用ゴム組成物となることを見出し、本発明の高減衰積層体用ゴム組成物および該ゴム組成物を用いたゴム積層体を完成した。すなわち、本発明は、下記(1)〜(2)に記載の高減衰積層体用ゴム組成物、および下記(3)記載のゴム積層体を提供する。
【0008】
(1)ジエン系ゴムと樹脂とを含有する高減衰積層体用ゴム組成物であって、
上記ジエン系ゴムが、天然ゴム、イソプレンゴムおよびブタジエンゴムを含み、
上記イソプレンゴムが、cis−1,4−ポリイソプレン単位を91〜96%含有するイソプレンゴムであり、
上記ジエン系ゴムが、該ジエン系ゴムの質量に対して、上記イソプレンゴムを10〜80質量%含み、上記ブタジエンゴムを20〜60質量%含み、
さらに、上記天然ゴムおよび上記イソプレンゴムを、該天然ゴムと該イソプレンゴムとの質量比(該天然ゴムの質量/該イソプレンゴムの質量)が0.6〜9 . 0となるように含み、
上記樹脂が、C 5 系の脂肪族不飽和炭化水素とC 9 系の芳香族不飽和炭化水素との共重合体であり、
上記共重合体の軟化点が100℃以上であることを特徴とする高減衰積層体用ゴム組成物(第1の態様)。
【0009】
(2)上記樹脂を、上記ジエン系ゴム100質量部に対して10〜60質量部含有していることを特徴とする上記(1)に記載の高減衰積層体用ゴム組成物。
【0010】
(3)上記(1)または(2)に記載の高減衰積層体用ゴム組成物を用いてなるゴム層と、硬質板とを交互に積層したゴム積層体(第2の態様)。
【0013】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の第1の態様である高減衰積層体用ゴム組成物(以下、本発明の組成物ともいう)は、ジエン系ゴムと樹脂とを含有する高減衰積層体用ゴム組成物であって、上記ジエン系ゴムが、天然ゴム(NR)、イソプレンゴム(IR)およびブタジエンゴム(BR)を含み、上記イソプレンゴムが、cis−1,4−ポリイソプレン単位を91〜96%含有するイソプレンゴム(以下、低シスIRともいう)であり、上記ジエン系ゴムが、該ジエン系ゴムの質量に対して、上記イソプレンゴムを10〜80質量%含み、上記ブタジエンゴムを20〜60質量%含み、さらに、上記天然ゴムおよび上記イソプレンゴムを、該天然ゴムと該イソプレンゴムとの質量比(該天然ゴムの質量/該イソプレンゴムの質量)が0.6〜9 . 0となるように含み、上記樹脂が、C 5 系の脂肪族不飽和炭化水素とC 9 系の芳香族不飽和炭化水素との共重合体であり、上記共重合体の軟化点が100℃以上であることを特徴とする高減衰積層体用ゴム組成物である。
【0014】
<ジエン系ゴム>
上記ジエン系ゴムは、NR上記低シスIRおよびBRを含む未加硫のジエン系ゴムであれば特に限定されず、NR、低シスIRおよびBR以外のジエン系ゴムを含んでいてもよい。
NR低シスIRおよびBR以外のジエン系ゴムとしては、具体的には、例えばスチレン−ブタジエン共重合ゴム(SBR)、アクリロニトリル−ブタジエン共重合ゴム(NBR、NIR、NBIR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br−IIR、Cl−IIR)、クロロプレンゴム(CR)、エチレンプロピレンジエンゴム(EPDM)等の種々の未加硫ジエン系ゴムが挙げられ、2種以上を併用してもよい
【0015】
ここで、上記低シスIRは、上述したようにcis−1,4−ポリイソプレン単位を96%以下含有するIRであって、cis−1,4−ポリイソプレン単位を好ましくは91〜94%、より好ましくは91〜93%含有するIRである。cis−1,4−ポリイソプレン単位をこの割合で含有していれば、後述するNRの伸張結晶化をより効果的に抑制することができる理由から好ましい。
【0016】
また、上記ジエン系ゴムは、該ジエン系ゴムの質量に対して、上記低シスIRを10〜80質量%、好ましくは15〜60質量%含み、上記BRを20〜60質量%含み、さらに、上記NRおよび上記低シスIRを、該NRと該低シスIRとの質量比(NRの質量/低シスIRの質量)が0.6〜9. 0、好ましくは0. 8〜6. 0、より好ましくは0. 8〜3. 0となるように含む。
上記低シスIRを含む割合がこの範囲であれば、NRの伸張結晶化を抑制することができるため、得られる本発明の組成物の低温(−20〜0℃、例えば−10℃)時のモジュラスを低く保つこと、すなわちモジュラスの温度依存性を小さくすることが可能となり、さらに加工性が良好となる理由から好ましい。
また、上記BRを含む割合がこの範囲であれば、BRのガラス転移点が低いため、得られる本発明の組成物のモジュラスの温度依存性が小さくなり、さらに破断特性(破断強度、破断伸び)が良好となる理由から好ましい。
さらに、上記NRおよび上記低シスIRを含む割合(NRの質量/低シスIRの質量)がこの範囲であれば、得られる本発明の組成物の加工性および破断強度が良好となる理由から好ましい。
ここで、上記NRの伸張結晶化とは、NRを室温下、300%程度伸張させると分子配列が揃うことで結晶化が生起する現象である。また、低温(−20〜0℃、例えば−10℃)下においては、結晶化速度が上がることから150%程度の伸張でも該伸張結晶化に基づく結晶化、およびそれに伴う硬度の上昇が確認できる。そのため、NRを含有する本発明の組成物においては、上述したように、低シスIRを含有させることで、低温(−20〜0℃、例えば−10℃)下におけるNRの伸張結晶化を制御している。これは、NRと類似の構造を有するIRにおいて、シス1, 4結合量が少ない低シスIRを用いることで、分子配列が揃うことを妨げることができるためと考えられる。
【0017】
<樹脂>
上記樹脂は、軟化点が100℃以上であり、C 5 系の脂肪族不飽和炭化水素とC 9 系の芳香族不飽和炭化水素との共重合体を用いることができる以下に、具体例を示す。
【0018】
5 系の脂肪族不飽和炭化水素としては、具体的には、例えば、ナフサの熱分解により得られるC5 留分中に含まれるペンテン−(1)、ペンテン−(2)、2−メチルブテン−(1)、3−メチルブテン−(1)、2−メチルブテ−(2)等のオレフィン系炭化水素や、2−メチルブタジエン−(1,3)、ペンタジエン−(1,2)、ペンタジエン−(1,3)、3−メチルブタジエン−(1,2)等のジオレフィン系炭化水素等が挙げられる。
【0019】
9 系の芳香族不飽和炭化水素としては、具体的には、例えば、ナフサの熱分解により得られるC9 留分中に含まれるα−メチルスチレン、o−ビニルトルエン、m−ビニルトルエン、p−ビニルトルエン等のビニル置換芳香族炭化水素等が挙げられる。
これらは、適当な触媒の存在下で、フリーデル−クラフツ反応等により重合あるいは共重合可能である。ここで、重合あるいは共重合により得られるC9 系の芳香族不飽和炭化水素の重合体(共重合体)は、一種のC9 系の芳香族不飽和炭化水素の重合体であっても、二種以上のC9 系の芳香族不飽和炭化水素の共重合体であってもよい。
【0020】
また、C9 系の芳香族不飽和炭化水素とC5 系の脂肪族不飽和炭化水素との共重合体は、C9 系の芳香族不飽和炭化水素ユニットが60モル%以上であるものが好ましく、90モル%以上であるものがさらに好ましい。C5 系の脂肪族不飽和炭化水素ユニットが多くなるに従い、該共重合体の軟化点が低下する傾向にある。上記熱可塑性樹脂は、ジエン系ゴムの物性に対し、その分子量および二重結合の反応性が影響を与えるので、軟化点(JIS K2207)が100℃以上のものであり、120℃以上のものが好ましい
【0021】
これらの樹脂としては、市販品を利用することができ、例えば、ハイレジン#120(東邦化学社製)、エスコレッツ8180(エクソン化学社製)、YSレジンTO125(ヤスハラケミカル社製)、アルコンP125(荒川化学工業社製)等が挙げられる。
【0022】
また、上記樹脂は、上記ジエン系ゴム100質量部に対して10〜60質量部、好ましくは20〜50質量部、より好ましくは25〜50質量部含有していることが、得られる本発明の組成物の減衰性および破断特性(破断強度、破断伸び)が良好となる理由から好ましい。
【0023】
本発明の組成物には、上記ジエン系ゴムおよび樹脂に加え、さらに未加硫時に、本発明の特徴を損なわない範囲において、補強剤、充填剤、加硫剤、加硫促進剤、可塑剤、老化防止剤、有機系活性剤等の添加剤を含有することができる。
【0024】
補強剤、充填剤としては、カーボンブラック、シリカ、炭酸カルシウム、クレー、タルク、フェノール樹脂等が挙げられる。これらの補強剤、充填剤は、所望の物性を得るために必要な量を任意に配合することができる。
【0025】
加硫剤としては、具体的には、例えば、硫黄、テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド(TETD)、ジペンタメチレンチウラムジスルフィド(DPTT)等の有機含硫黄化合物、ジクミルペルオキシド等の有機過酸化物、酸化亜鉛(亜鉛華)、マグネシア等の金属酸化物、キノンジオキシム等が挙げられる。このような加硫剤は、所望の物性を得るために必要な量を任意に配合することができるが、一般的な配合量としては、ジエン系ゴム100質量部に対し、0.1〜10質量部が好ましい。
【0026】
加硫促進剤としては、具体的には、例えば、メルカプトベンゾチアゾール(MBT)等のチアゾール類、N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド(CBS)等のスルフェンアミド類、ジフェニルグアニジン等のグアニジン類等が挙げられる。このような加硫促進剤の配合量は、ジエン系ゴム100質量部に対し、0.5〜5.0質量部が好ましい。
【0027】
可塑剤としては、具体的には、例えば、プロセスオイル、石油樹脂、DOP(ジオクチルフタレート)、ジオクチルセバケート等の合成可塑剤、植物油、液状ゴム等が挙げられる。このような可塑剤の配合量は、所望の物性を得るために必要な量を任意に配合することができ特に限定されるものではないが、一般的には、ジエン系ゴム100質量部に対し、0〜50質量部が好ましい。
【0028】
老化防止剤としては、具体的には、例えば、N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン(6PPD)、N,N’−ジナフチル−p−フェニレンジアミン(DNPD)、N−イソプロピル−N’−フェニル−p−フェニレンジアミン(IPPD)、スチレン化フェノール(SP)等が挙げられる。このような老化防止剤の配合量は、ジエン系ゴム100質量部に対し、0.5〜3質量部が好ましい。ただし、本発明の組成物が免震等の振動エネルギーの吸収装置等に用いられる際、該組成物が外面に露出しない場合は、老化防止剤を配合しなくてもよい。
【0029】
有機系活性剤としては、具体的には、例えば、ステアリン酸、オレイン酸、ラウリン酸、ステアリン酸亜鉛等が挙げられる。このような有機系活性剤の配合量は、ジエン系ゴム100質量部に対し、0.5〜3質量部が好ましい。
上述の添加剤は、単独または2種以上の混合物として用いることもできる。
【0030】
また、本発明の組成物の製造は、上記成分を混合し、必要に応じて適宜添加剤を配合した未加硫ゴム組成物を、ニーダ、バンバリーミキサー等を用いて混練することにより行われるがこれに限定されない。該混練物は130〜170℃の温度で加熱することにより加硫されて、加硫ゴム組成物が得られる。
【0031】
本発明の第2の態様であるゴム積層体(以下、本発明のゴム積層体ともいう)は、第1の態様に係る本発明の組成物を用いてなるゴム層と、硬質板とを交互に積層したゴム積層体であって、橋梁の支承やビルの基礎免震等に用いられる構造体である。
図1に、本発明のゴム積層体の一例を表す免震積層体1の断面図を示す。本発明の組成物2と、例えば一般構造用鋼板、冷間圧延鋼板等からなる硬質板3とが交互に積層されて免震積層体が構成される。この積層体を製造するには、成形・加硫して、シート状のゴム組成物を得た後、接着剤により硬質板と接着してもよいし、また、あらかじめ未加硫のゴム配合物をシート状に成形し、硬質板と積層した後に加熱して加硫・接着を同時に行って製造することもできる。
このような免震積層体1は、各種の免震、除震、防震等の振動エネルギーの吸収装置(例えば、道路橋の支承や、橋梁、ビルの基礎免震、戸建免震用途等)に好適に用いられる。
【0032】
本発明の組成物は、機械的特性および従来の高減衰ゴムと同等以上の高い減衰性を維持しながら、せん断弾性率(モジュラス)の温度依存性が小さく、年間を通して安定したせん断弾性を有するため、高減衰積層体であるゴム積層体のゴム層、例えば、上述したように免震積層体用のゴム組成物として好適に用いることができる。
【0033】
【実施例】
以下、本発明を実施例により具体的に説明する。
(実施例1〜3、比較例1〜3)
下記表1に示す割合で天然ゴム(NR)、イソプレンゴム(IR)、低シスIR、ブタジエンゴム(BR)、カーボンブラック、樹脂、アロマオイル、老化防止剤、酸化亜鉛、ステアリン酸、硫黄、加硫促進剤を配合して未加硫のゴム組成物を調製した。
上記各成分のうち、加硫促進剤と硫黄を除くゴム成分および添加剤を、神戸製鋼(株)製B型バンバリーミキサー(1.8L)を用いて5分間混合した後、この混合物に加硫促進剤と硫黄を加えて、8インチの試験用練りロール器で4分間混練して未加硫ゴム組成物を得た。
なお、下記表1の各成分の値は質量部を表す。
【0034】
【表1】

Figure 0004030412
【0035】
表1中の各成分は以下に示すものを用いた。
・天然ゴム:STR20
・イソプレンゴム:cis−1,4−ポリイソプレン単位を98%含有するイソプレンゴム(NIPOL IR−2200(日本ゼオン社製))
・低シスIR:cis−1,4−ポリイソプレン単位を91%含有するイソプレンゴム(KRATON IR−307(クレイトンポリマージャパン社製))
・ブタジエンゴム:NIPOL BR−1220(日本ゼオン社製))
・カーボンブラック:ISAFショウブラックN220(昭和キャボット社製)
・樹脂:ハイレジン#120(東邦化学社製)
・アロマオイル:ダイアナプロセスAH−20(出光興産社製)
・老化防止剤:ノクラック 6C(大内新興化学社製)
・酸化亜鉛:亜鉛華3号(正同化学社製)
・ステアリン酸:LUNAC YA(花王石鹸社製)
・硫黄:粉末イオウ(軽井沢精練所製)
・加硫促進剤:ノクセラーCZ(大内新興化学社製)
【0036】
未加硫ゴム組成物およびその加硫物について以下に示す物性の評価を行った。結果を下記表2に示す。なお、加硫物は、実施例1〜3および比較例1〜3で得られた各未加硫ゴム組成物を加硫用プレス機を用いて148℃で45分間プレス加硫して得られたものを用いた。
【0037】
▲1▼未加硫粘度比
得られた各未加硫ゴム組成物の粘度測定を、JIS K6300に準拠して行った。ムーニー粘度計(島津製作所社製)を用い、各未加硫ゴム組成物を100℃にて測定したときの最低ムーニー粘度を求め、比較例1を100とした際の他の未加硫ゴム組成物の粘度比を求めた。
【0038】
▲2▼機械的特性
JIS K6251-1993 に準拠して、得られた各加硫物を厚さ2mmのダンベル状試験片(ダンベル状3号形)に切り出し、100%モジュラス(M100 )〔MPa〕、300%モジュラス(M300 )〔MPa〕、破断強度(TB )〔MPa〕、破断伸び(EB )〔%〕を測定した。
【0039】
▲3▼引張り試験による特性値
得られた各加硫物から幅10mm、厚さ2mmの短冊状のサンプル作製した。オートグラフ引張り試験機において、上記各サンプルをクロスヘッドスピード500mmの条件で、5回150%伸張させた際の5回目の特性値(モジュラス、ヒステリシスロス)を評価した。
(a)モジュラス M
25℃および−10℃における、150%伸張時のモジュラス(MPa)を測定し、モジュラス(以下、単に「M」ともいう)の温度比(25℃におけるMに対する、−10℃におけるM、以下「M(−10/25)」とする。)を算出した。なお、下記表2中において、25℃におけるモジュラスを「M(25)」と表し、−10℃におけるモジュラスを「M(−10)」と表した。
(b)ヒステリシスロス
エネルギーの減衰性(図2において、ヒステリシスロス=(ABCDEA/ABCFA)×100)を算出した。
ここで、図2は応力−歪曲線を表すグラフである。
【0040】
【表2】
Figure 0004030412
【0041】
表2に示す結果より、実施例1〜3に示す本発明の組成物は、低シスIRを含有することから低温時のモジュラスを低く保つことができ、さらにM(−10/25)の値が小さくなることから、比較例よりも、せん断弾性率(モジュラス)の温度依存性に優れる結果となった。また、減衰性についても比較例と同等以上の結果が得られた。
【0042】
<ラップシェアせん断試験>
ラップシェア型せん断試験用試料として、実施例3および比較例1で得られた各未加硫ゴム組成物を幅25mm×長さ25mm×厚さ4. 8mmのサイズに圧延したものと、表面をサンドブラストして金属接着剤を塗布した鋼板(幅25mm×長さ100mm×厚さ20mm)とを、図3のラップシェア型せん断試験用試料4の側面図に示すように配置(積層)した後に、130℃で120分プレス加硫したものを用いた。なお、図3においては、未加硫ゴム組成物を幅25mm×長さ25mm×厚さ4. 8mmのサイズに圧延したものは、単に、圧延した未加硫ゴム組成物5として表し、表面をサンドブラストして金属接着剤を塗布した鋼板(幅25mm×長さ100mm×厚さ20mm)は、単に、鋼板6として表している。
【0043】
ラップシェアせん断試験を加振機(サギノミヤ社製)、入力信号発振機、出力信号処理機を用いて、以下に示す条件で行った。
作製した各ラップシェア型せん断試験用試料を用いて、2軸せん断試験機による変形周波数0.5Hz、測定温度(−20、−10、0、10、20、30および40℃)下、200%歪み時のせん断弾性係数Geqを測定した。結果を下記表3に示す。なお、下記表3中において、Geq(−20℃)とは、変形周波数0.5Hz、測定温度−20℃下、200%歪み時のせん断弾性係数のことである。
測定温度は、ゴム積層体を形成するゴム層のゴム組成物の温度(試料温度)であり、試料温度を調整する方法は、試験機に装備された恒温槽による。すなわち、試料中への熱電対を埋め込んだ状態で試験体をセットし、試料温度をモニタしながら、設定温度に達した時点で試験を開始した。また、該ゴム組成物の厚さ(試料厚さ)を「t=4. 8mm」として測定した。
【0044】
【表3】
Figure 0004030412
【0045】
表3に示す結果より、実施例3で得られた未加硫ゴム組成物を用いてなるゴム層を有する本発明のゴム積層体は、低シスIRを含むジエン系ゴムをゴム組成物として含有していることから、ラップシェアせん断試験においても、せん断弾性係数Geqの温度依存性に優れる結果となることが分かった。
【0046】
【発明の効果】
本発明の高減衰積層体用ゴム組成物は、モジュラスの温度依存性が小さく、減衰性能に優れる。そのため、防振装置、除振装置、免震装置等の振動エネルギーの吸収を目的とする積層体に好適に用いることができる。また、本発明のゴム積層体は、せん断弾性率の温度依存性が小さく、減衰性能に優れるゴム組成物を用いているので、優れた免震性能を有するため有用である。
【図面の簡単な説明】
【図1】 本発明のゴム積層体の一例を示す免震積層体の断面図である。
【図2】 オートグラフ引張り試験時の応力−歪曲線を示すグラフである。
【図3】 ラップシェア型せん断試験用試料の側面図である。
【符号の説明】
1 免震積層体
2 ゴム組成物
3 硬質板
4 ラップシェア型せん断試験用試料
5 圧延した未加硫ゴム組成物
6 鋼板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber composition for a high damping laminate and a rubber laminate using the rubber composition for a rubber layer of the high damping laminate. Specifically, the rubber composition for a high damping laminate having a small temperature dependence of the shear modulus (modulus) and excellent damping performance, and the high damping laminate using the rubber composition as a rubber layer of the high damping laminate It is related with the rubber laminated body which is.
[0002]
[Prior art]
In recent years, devices for absorbing vibration energy, that is, seismic isolation, seismic isolation, seismic isolation devices, etc., are rapidly spreading. A seismic isolation rubber device in which a rubber composition and a hard plate are alternately laminated is used for bridge support, building base isolation, or the like, which is known as one form of such an absorption device. This is because the rubber composition is laminated with a hard plate, so that it is extremely hard in the vertical direction and soft in the horizontal direction. It acts to deviate the period from the vibration period of the earthquake, and makes the acceleration received by the building very small. A rubber composition used for such applications is required to have a high damping property that attenuates vibration energy by converting vibration into heat.
Conventionally, in order to develop such rubber composition with high damping, a method for improving the rubber composition (component, content, etc.), a filler such as carbon black in the rubber composition, and a high softening point A method of blending a large amount of resin or the like and a method of adding a polymer having a high glass transition point are known (for example, see Patent Document 1).
[0003]
Although the rubber composition obtained by these methods has a large hysteresis loss and excellent damping property, the temperature dependence of the shear modulus (modulus) of the rubber composition increases, and the modulus increases particularly at low temperatures. There is a problem that stable characteristics cannot be obtained.
[0004]
As a method for solving the above problem, a rubber composition for a high-attenuation laminated body containing 40 parts by mass or less of wax with respect to 100 parts by mass of diene rubber has been proposed (for example, Patent Document 2).
Moreover, with respect to 100 mass parts of rubber containing natural rubber as a main component, a total of 50 to 150 mass parts of carbon black and silica and 10 to 50 mass parts of petroleum resin are contained, and the mass ratio of carbon black and silica is High damping rubber composition having 95/5 to 25/75, wherein the carbon black has a nitrogen adsorption specific surface area of 150 m 2 / g or more, and the DBP oil absorption of the carbon black is 60 ml / 100 g or more. It contains 50 to 150 parts by mass of carbon black and silica, and 10 to 50 parts by mass of petroleum resin, with respect to 100 parts by mass of the composition and rubber mainly composed of natural rubber and further containing other rubbers. In addition, a high damping rubber composition having a mass ratio of carbon black to silica of 75/25 to 25/75 has been proposed (for example, Patent Document 3 and .).
[0005]
[Patent Document 1]
JP-A-7-126437 [Patent Document 2]
JP 2000-38476 A [Patent Document 3]
JP 2001-187826 A [Patent Document 4]
Japanese Patent Laid-Open No. 2001-206983
[Problems to be solved by the invention]
The inventors of the present invention have made extensive studies on the temperature dependency and damping properties of the rubber compositions described in the above-mentioned Patent Documents 2 to 4, and found room for further improvement. Accordingly, the present invention provides a rubber composition for a high-damping laminate having a small temperature dependence of shear modulus (modulus) and excellent damping performance, and a rubber laminate using the rubber composition as a rubber layer. For the purpose.
[0007]
[Means for Solving the Problems]
The inventors of the present invention provide a high-damping laminate in which a rubber composition for a high-damping laminate containing a specific diene rubber and a specific resin has low temperature dependence of shear modulus (modulus) and excellent damping performance. The rubber composition for high attenuation laminates of the present invention and the rubber laminate using the rubber composition were completed. That is, this invention provides the rubber composition for high attenuation | damping laminated bodies as described in the following (1)- (2) , and the rubber laminated body as described in the following (3) .
[0008]
(1) A rubber composition for a high-damping laminate comprising a diene rubber and a resin,
The diene rubber includes natural rubber, isoprene rubber and butadiene rubber,
The isoprene rubber is an isoprene rubber containing 91 to 96% of cis-1,4-polyisoprene units;
The diene rubber contains 10 to 80% by mass of the isoprene rubber and 20 to 60% by mass of the butadiene rubber with respect to the mass of the diene rubber.
Further comprising as said natural rubber and said isoprene rubber, the mass ratio of the natural rubber and the isoprene rubber (weight / weight of the isoprene rubber of the natural rubber) is from 0.6 to 9.0,
The resin is a copolymer of a C 5 based aliphatic unsaturated hydrocarbon and C 9 based aromatic unsaturated hydrocarbons,
A rubber composition for a high-attenuation laminate , wherein the softening point of the copolymer is 100 ° C. or higher (first aspect).
[0009]
(2) The rubber composition for a high attenuation laminate according to the above (1), wherein the resin is contained in an amount of 10 to 60 parts by mass with respect to 100 parts by mass of the diene rubber.
[0010]
(3) A rubber laminate in which a rubber layer using the rubber composition for a high attenuation laminate according to (1) or (2) and a hard plate are alternately laminated (second aspect).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The rubber composition for a high attenuation laminate according to the first aspect of the present invention (hereinafter, also referred to as the composition of the present invention) is a rubber composition for a high attenuation laminate containing a diene rubber and a resin. The diene rubber contains natural rubber (NR), isoprene rubber (IR) and butadiene rubber (BR), and the isoprene rubber contains 91 to 96% of cis-1,4-polyisoprene units. (Hereinafter also referred to as low cis IR), and the diene rubber contains 10 to 80% by mass of the isoprene rubber and 20 to 60% by mass of the butadiene rubber with respect to the mass of the diene rubber. Furthermore, the natural rubber and the isoprene rubber, as the mass ratio of the natural rubber and the isoprene rubber (weight / weight of the isoprene rubber of the natural rubber) is from 0.6 to 9.0 containing , Wherein the resin is a copolymer of a C 5 based aliphatic unsaturated hydrocarbon and C 9 based aromatic unsaturated hydrocarbons, the softening point of the copolymer is 100 ° C. or higher And a rubber composition for a high attenuation laminate.
[0014]
<Diene rubber>
The diene rubber, NR, if unvulcanized diene rubber containing the low-cis IR and BR is not particularly limited, NR, may contain a diene rubber other than the low-cis IR and BR.
Specific examples of diene rubbers other than NR , low cis IR, and BR include, for example , styrene-butadiene copolymer rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR, NIR, NBRIR), and butyl rubber (IIR). And various unvulcanized diene rubbers such as halogenated butyl rubber (Br-IIR, Cl-IIR), chloroprene rubber (CR), and ethylene propylene diene rubber (EPDM). .
[0015]
Here, the low cis IR is IR containing 96% or less of cis-1,4-polyisoprene units as described above, preferably 91-94% of cis-1,4-polyisoprene units, More preferably, it is IR containing 91 to 93%. If the cis-1,4-polyisoprene unit is contained in this proportion, it is preferable for the reason that the crystallization of NR described below can be more effectively suppressed.
[0016]
Further, the diene rubber contains 10 to 80% by mass, preferably 15 to 60% by mass of the low cis IR with respect to the mass of the diene rubber, and contains 20 to 60% by mass of the BR . The NR and the low cis IR have a mass ratio of NR to the low cis IR (NR mass / low cis IR mass) of 0.6 to 9.0, preferably 0.8 to 6.0, more preferably from 0.8 to 3.0 and so as to including.
If the ratio including the low cis IR is within this range, NR elongation crystallization can be suppressed, so that the resulting composition of the present invention at low temperatures (-20 to 0 ° C, for example, -10 ° C). This is preferable because the modulus can be kept low, that is, the temperature dependence of the modulus can be reduced, and the workability is further improved.
In addition, if the ratio including BR is within this range, since the glass transition point of BR is low, the temperature dependence of the modulus of the resulting composition of the present invention is reduced, and the breaking properties (breaking strength, breaking elongation) are further reduced. Is preferable because of good.
Furthermore, if the ratio including the NR and the low cis IR (the mass of NR / the mass of the low cis IR) is within this range, it is preferable because the workability and breaking strength of the resulting composition of the present invention are good. .
Here, the NR stretch crystallization is a phenomenon in which crystallization occurs when the NR is stretched by about 300% at room temperature and the molecular arrangement is aligned. In addition, at low temperatures (-20 to 0 ° C., for example, −10 ° C.), the crystallization speed increases, so that crystallization based on the extension crystallization and the accompanying increase in hardness can be confirmed even at about 150% extension. . Therefore, in the composition of the present invention containing NR, as described above, the low cis IR is contained to control the elongation crystallization of NR under a low temperature (-20 to 0 ° C., for example, −10 ° C.). is doing. This is presumably because in the IR having a structure similar to NR, the use of a low cis IR with a small amount of cis 1,4 bonds can prevent the alignment of molecular sequences.
[0017]
<Resin>
The resin has a softening point of 100 ° C. or higher, and a copolymer of a C 5 aliphatic unsaturated hydrocarbon and a C 9 aromatic unsaturated hydrocarbon can be used . A specific example is shown below.
[0018]
Specific examples of the C 5 aliphatic unsaturated hydrocarbon include, for example, pentene- (1), pentene- (2), 2-methylbutene contained in a C 5 fraction obtained by thermal decomposition of naphtha. -(1), 3-methylbutene- (1), olefinic hydrocarbons such as 2-methylbute- (2), 2-methylbutadiene- (1,3), pentadiene- (1,2), pentadiene- ( 1,3), diolefin hydrocarbons such as 3-methylbutadiene- (1,2) and the like.
[0019]
Specific examples of the C 9 aromatic unsaturated hydrocarbon include, for example, α-methylstyrene, o-vinyltoluene, m-vinyltoluene, contained in a C 9 fraction obtained by thermal decomposition of naphtha, and vinyl-substituted aromatic hydrocarbons such as p-vinyltoluene.
These can be polymerized or copolymerized by Friedel-Crafts reaction or the like in the presence of a suitable catalyst. Here, a polymer of aromatic unsaturated hydrocarbons C 9 system obtained by polymerization or copolymerization (copolymer) may be a polymer of aromatic unsaturated hydrocarbon kind of C 9 based, It may be a copolymer of two or more C 9 aromatic unsaturated hydrocarbons.
[0020]
A copolymer of a C 9 -type aromatic unsaturated hydrocarbon and a C 5 -type aliphatic unsaturated hydrocarbon has a C 9 -type aromatic unsaturated hydrocarbon unit of 60 mol% or more. What is 90 mol% or more is more preferable. As the number of C 5 aliphatic unsaturated hydrocarbon units increases, the softening point of the copolymer tends to decrease. The thermoplastic resin has a softening point (JIS K2207) of 100 ° C. or higher and a temperature of 120 ° C. or higher because the molecular weight and the reactivity of the double bond affect the physical properties of the diene rubber. Is preferred .
[0021]
Commercially available products can be used as these resins. For example, High Resin # 120 (manufactured by Toho Chemical Co., Ltd.), Escorez 8180 (manufactured by Exxon Chemical Co., Ltd.), YS Resin TO125 (manufactured by Yashara Chemical Co., Ltd.), Alcon P125 (Arakawa Chemical Co., Ltd.) Manufactured by Kogyo Co., Ltd.).
[0022]
Moreover, it is 10-60 mass parts with respect to 100 mass parts of said diene rubbers, Preferably it is 20-50 mass parts, More preferably, it contains 25-50 mass parts of the said resin of the obtained this invention. It is preferable because the damping properties and breaking properties (breaking strength, breaking elongation) of the composition are good.
[0023]
The composition of the present invention includes a reinforcing agent, a filler, a vulcanizing agent, a vulcanization accelerator, and a plasticizer, in addition to the diene rubber and resin, as long as the characteristics of the present invention are not impaired when unvulcanized. Further, additives such as an anti-aging agent and an organic activator can be contained.
[0024]
Examples of the reinforcing agent and filler include carbon black, silica, calcium carbonate, clay, talc, and phenol resin. These reinforcing agents and fillers can be arbitrarily blended in amounts necessary for obtaining desired physical properties.
[0025]
Specific examples of the vulcanizing agent include sulfur, organic sulfur-containing compounds such as tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), dipentamethylene thiuram disulfide (DPTT), dicumyl peroxide, and the like. Examples thereof include organic peroxides, zinc oxide (zinc white), metal oxides such as magnesia, and quinone dioxime. Such a vulcanizing agent can be arbitrarily blended in an amount necessary for obtaining desired physical properties. As a general blending amount, it is 0.1 to 10 with respect to 100 parts by mass of the diene rubber. Part by mass is preferred.
[0026]
Specific examples of the vulcanization accelerator include thiazoles such as mercaptobenzothiazole (MBT), sulfenamides such as N-cyclohexyl-2-benzothiazolesulfenamide (CBS), and diphenylguanidine. Examples include guanidines. The blending amount of such a vulcanization accelerator is preferably 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the diene rubber.
[0027]
Specific examples of the plasticizer include process plastics, petroleum resins, synthetic plasticizers such as DOP (dioctyl phthalate) and dioctyl sebacate, vegetable oils, and liquid rubber. The amount of the plasticizer to be blended is not particularly limited because it can be arbitrarily blended in an amount necessary for obtaining desired physical properties. However, in general, it is based on 100 parts by mass of the diene rubber. 0 to 50 parts by mass is preferable.
[0028]
Specific examples of the antioxidant include N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine (6PPD), N, N′-dinaphthyl-p-phenylenediamine (DNPD). ), N-isopropyl-N′-phenyl-p-phenylenediamine (IPPD), styrenated phenol (SP), and the like. As for the compounding quantity of such an anti-aging agent, 0.5-3 mass parts is preferable with respect to 100 mass parts of diene rubbers. However, when the composition of the present invention is used for an apparatus for absorbing vibration energy such as seismic isolation, an anti-aging agent may not be blended if the composition is not exposed on the outer surface.
[0029]
Specific examples of the organic activator include stearic acid, oleic acid, lauric acid, and zinc stearate. As for the compounding quantity of such an organic type active agent, 0.5-3 mass parts is preferable with respect to 100 mass parts of diene rubbers.
The above-mentioned additives can be used alone or as a mixture of two or more.
[0030]
The composition of the present invention is produced by mixing the above-mentioned components and kneading an unvulcanized rubber composition appropriately mixed with additives as necessary using a kneader, a Banbury mixer or the like. It is not limited to this. The kneaded product is vulcanized by heating at a temperature of 130 to 170 ° C. to obtain a vulcanized rubber composition.
[0031]
The rubber laminate (hereinafter also referred to as the rubber laminate of the present invention) according to the second aspect of the present invention comprises a rubber layer using the composition of the present invention according to the first aspect and a hard plate alternately. It is a rubber laminate that is laminated to the base and used for bridge support and building base isolation.
In FIG. 1, sectional drawing of the seismic isolation laminated body 1 showing an example of the rubber laminated body of this invention is shown. The composition 2 of the present invention and a hard plate 3 made of, for example, a general structural steel plate, a cold-rolled steel plate or the like are alternately laminated to constitute a seismic isolation laminate. In order to produce this laminate, after molding and vulcanizing to obtain a sheet-like rubber composition, it may be bonded to a hard plate with an adhesive, or an unvulcanized rubber compound in advance. It can also be manufactured by forming a sheet into a sheet, laminating it with a hard plate, and heating to vulcanize and bond at the same time.
Such a seismic isolation laminate 1 is a device for absorbing vibration energy such as various types of seismic isolation, seismic isolation, and seismic isolation (for example, support for road bridges, base isolation for bridges and buildings, seismic isolation for detached houses, etc.) Is preferably used.
[0032]
Since the composition of the present invention maintains the mechanical properties and the high damping property equivalent to or higher than that of the conventional high damping rubber, the temperature dependence of the shear modulus (modulus) is small and the shear elasticity is stable throughout the year. It can be suitably used as a rubber layer of a rubber laminate which is a high-attenuation laminate, for example, a rubber composition for a seismic isolation laminate as described above.
[0033]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
(Examples 1-3, Comparative Examples 1-3)
Natural rubber (NR), isoprene rubber (IR), low cis IR, butadiene rubber (BR), carbon black, resin, aroma oil, anti-aging agent, zinc oxide, stearic acid, sulfur, additive An unvulcanized rubber composition was prepared by blending a sulfur accelerator.
Among the above components, the rubber component and additives excluding the vulcanization accelerator and sulfur are mixed for 5 minutes using a B-type Banbury mixer (1.8 L) manufactured by Kobe Steel, and then vulcanized into this mixture. An accelerator and sulfur were added and kneaded for 4 minutes in an 8 inch test kneading roll to obtain an unvulcanized rubber composition.
In addition, the value of each component of the following Table 1 represents a mass part.
[0034]
[Table 1]
Figure 0004030412
[0035]
The following components were used in Table 1.
・ Natural rubber: STR20
Isoprene rubber: Isoprene rubber containing 98% of cis-1,4-polyisoprene units (NIPOL IR-2200 (manufactured by Nippon Zeon))
Low cis IR: Isoprene rubber containing 91% of cis-1,4-polyisoprene units (KRATON IR-307 (manufactured by Kraton Polymer Japan))
-Butadiene rubber: NIPOL BR-1220 (manufactured by Nippon Zeon))
・ Carbon black: ISAF Show Black N220 (made by Showa Cabot)
Resin: High Resin # 120 (Toho Chemical Co., Ltd.)
Aroma oil: Diana Process AH-20 (made by Idemitsu Kosan Co., Ltd.)
Anti-aging agent: NOCRACK 6C (Ouchi Shinsei Chemical Co., Ltd.)
・ Zinc oxide: Zinc Hana 3 (manufactured by Shodo Chemical Co., Ltd.)
・ Stearic acid: LUNAC YA (manufactured by Kao Soap Co.)
・ Sulfur: Sulfur powder (manufactured by Karuizawa Refinery)
・ Vulcanization accelerator: Noxeller CZ (Ouchi Shinsei Chemical Co., Ltd.)
[0036]
The following physical properties were evaluated for the unvulcanized rubber composition and the vulcanized product. The results are shown in Table 2 below. The vulcanized product was obtained by press vulcanizing each unvulcanized rubber composition obtained in Examples 1-3 and Comparative Examples 1-3 at 148 ° C. for 45 minutes using a vulcanizing press. Used.
[0037]
(1) Unvulcanized viscosity ratio Viscosity measurement of each obtained unvulcanized rubber composition was performed according to JIS K6300. Using a Mooney viscometer (manufactured by Shimadzu Corporation), the minimum Mooney viscosity when each unvulcanized rubber composition was measured at 100 ° C. was determined. The viscosity ratio of the product was determined.
[0038]
(2) Mechanical properties In accordance with JIS K6251-1993, the obtained vulcanizates were cut into 2 mm thick dumbbell-shaped test pieces (dumbbell-shaped No. 3), and 100% modulus (M 100 ) [MPa ], 300% modulus (M 300 ) [MPa], breaking strength (T B ) [MPa], elongation at break (E B ) [%] were measured.
[0039]
{Circle around (3)} Characteristic values obtained by a tensile test A strip-shaped sample having a width of 10 mm and a thickness of 2 mm was prepared from each vulcanizate obtained. In the autograph tensile tester, the fifth characteristic value (modulus, hysteresis loss) when each of the above samples was stretched 150% five times under the condition of a crosshead speed of 500 mm was evaluated.
(A) Modulus M
The modulus (MPa) at 150% elongation at 25 ° C. and −10 ° C. was measured, and the temperature ratio of the modulus (hereinafter also simply referred to as “M”) (M at −10 ° C. relative to M at 25 ° C., hereinafter “ M (−10/25) ”) was calculated. In Table 2 below, the modulus at 25 ° C. was expressed as “M (25)”, and the modulus at −10 ° C. was expressed as “M (−10)”.
(B) Attenuation of hysteresis loss energy (in FIG. 2, hysteresis loss = (ABCDEA / ABCFA) × 100) was calculated.
Here, FIG. 2 is a graph showing a stress-strain curve.
[0040]
[Table 2]
Figure 0004030412
[0041]
From the results shown in Table 2, since the compositions of the present invention shown in Examples 1 to 3 contain low cis IR, the modulus at low temperature can be kept low, and the value of M (−10/25) As a result, the temperature dependence of the shear modulus (modulus) was superior to that of the comparative example. Moreover, the same or better result as the comparative example was obtained for the damping property.
[0042]
<Lap shear test>
As a sample for a lap shear type shear test, each unvulcanized rubber composition obtained in Example 3 and Comparative Example 1 was rolled into a size of 25 mm in width, 25 mm in length, and 4.8 mm in thickness. After placing (stacking) a steel plate (width 25 mm × length 100 mm × thickness 20 mm) sandblasted and coated with a metal adhesive as shown in the side view of the sample 4 for lap shear type shear test of FIG. What was press-vulcanized at 130 ° C. for 120 minutes was used. In FIG. 3, an unvulcanized rubber composition rolled to a size of width 25 mm × length 25 mm × thickness 4.8 mm is simply represented as a rolled unvulcanized rubber composition 5, and the surface is A steel plate (25 mm in width × 100 mm in length × 20 mm in thickness) coated with a metal adhesive by sandblasting is simply represented as a steel plate 6.
[0043]
A lap shear test was performed using a vibrator (manufactured by Saginamiya), an input signal oscillator, and an output signal processor under the following conditions.
Using each of the prepared lap shear type shear test samples, deformation rate of 0.5 Hz by a biaxial shear tester, 200% under measurement temperature (−20, −10, 0, 10, 20, 30, and 40 ° C.) The shear elastic modulus Geq at the time of strain was measured. The results are shown in Table 3 below. In Table 3 below, Geq (−20 ° C.) is a shear elastic modulus at a deformation frequency of 0.5 Hz, measurement temperature of −20 ° C., and 200% strain.
The measurement temperature is the temperature (sample temperature) of the rubber composition of the rubber layer forming the rubber laminate, and the method for adjusting the sample temperature is based on a thermostat equipped in the testing machine. That is, the test body was set with the thermocouple embedded in the sample, and the test was started when the set temperature was reached while monitoring the sample temperature. Further, the thickness (sample thickness) of the rubber composition was measured as “t = 4.8 mm”.
[0044]
[Table 3]
Figure 0004030412
[0045]
From the results shown in Table 3, the rubber laminate of the present invention having a rubber layer using the unvulcanized rubber composition obtained in Example 3 contains a diene rubber containing a low cis IR as a rubber composition. Therefore, it was found that the temperature dependence of the shear elastic modulus Geq was excellent also in the lap shear shear test.
[0046]
【The invention's effect】
The rubber composition for a highly attenuated laminate according to the present invention has a low modulus temperature dependency and excellent damping performance. Therefore, it can be suitably used for a laminated body for the purpose of absorbing vibration energy, such as a vibration isolator, a vibration isolator, and a seismic isolator. The rubber laminate of the present invention is useful because it has excellent seismic isolation performance because it uses a rubber composition that has a small temperature dependence of shear modulus and is excellent in damping performance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a seismic isolation laminate showing an example of a rubber laminate of the present invention.
FIG. 2 is a graph showing a stress-strain curve during an autograph tensile test.
FIG. 3 is a side view of a sample for a lap shear type shear test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Seismic isolation laminated body 2 Rubber composition 3 Hard plate 4 Sample for lap shear type shear test 5 Rolled unvulcanized rubber composition 6 Steel plate

Claims (3)

ジエン系ゴムと樹脂とを含有する高減衰積層体用ゴム組成物であって、
前記ジエン系ゴムが、天然ゴムイソプレンゴムおよびブタジエンゴムを含み、
前記イソプレンゴムが、cis−1,4−ポリイソプレン単位を91〜96%含有するイソプレンゴムであり、
前記ジエン系ゴムが、該ジエン系ゴムの質量に対して、前記イソプレンゴムを10〜80質量%含み、前記ブタジエンゴムを20〜60質量%含み、
さらに、前記天然ゴムおよび前記イソプレンゴムを、該天然ゴムと該イソプレンゴムとの質量比(該天然ゴムの質量/該イソプレンゴムの質量)が0.6〜9 . 0となるように含み、
前記樹脂が、C 5 系の脂肪族不飽和炭化水素とC 9 系の芳香族不飽和炭化水素との共重合体であり、
前記共重合体の軟化点が100℃以上であることを特徴とする高減衰積層体用ゴム組成物。
A rubber composition for a high damping laminate containing a diene rubber and a resin,
The diene rubber includes natural rubber , isoprene rubber and butadiene rubber ,
The isoprene rubber, Ri isoprene rubber der containing cis-1,4-polyisoprene units 91 to 96 percent,
The diene rubber contains 10 to 80% by mass of the isoprene rubber and 20 to 60% by mass of the butadiene rubber with respect to the mass of the diene rubber.
Further comprising the natural rubber and the isoprene rubber, as the mass ratio of the natural rubber and the isoprene rubber (weight / weight of the isoprene rubber of the natural rubber) is from 0.6 to 9.0,
Wherein the resin is a copolymer of a C 5 based aliphatic unsaturated hydrocarbon and C 9 based aromatic unsaturated hydrocarbons,
A rubber composition for a high attenuation laminate, wherein the copolymer has a softening point of 100 ° C or higher .
前記樹脂を、前記ジエン系ゴム100質量部に対して10〜60質量部含有していることを特徴とする請求項1に記載の高減衰積層体用ゴム組成物。The rubber composition for a high attenuation laminate according to claim 1, wherein the resin is contained in an amount of 10 to 60 parts by mass with respect to 100 parts by mass of the diene rubber. 請求項1または2に記載の高減衰積層体用ゴム組成物を用いてなるゴム層と、硬質板とを交互に積層したゴム積層体。The rubber laminated body which laminated | stacked the rubber layer which uses the rubber composition for highly attenuated laminated bodies of Claim 1 or 2, and the hard board alternately.
JP2002329682A 2002-11-13 2002-11-13 Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition Expired - Fee Related JP4030412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329682A JP4030412B2 (en) 2002-11-13 2002-11-13 Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329682A JP4030412B2 (en) 2002-11-13 2002-11-13 Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition

Publications (2)

Publication Number Publication Date
JP2004161897A JP2004161897A (en) 2004-06-10
JP4030412B2 true JP4030412B2 (en) 2008-01-09

Family

ID=32807610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329682A Expired - Fee Related JP4030412B2 (en) 2002-11-13 2002-11-13 Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition

Country Status (1)

Country Link
JP (1) JP4030412B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094923A (en) * 2009-12-15 2011-06-15 东洋橡胶工业株式会社 Producing method of shaft spring for railway vehicle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063426A (en) * 2005-08-31 2007-03-15 Bridgestone Corp Highly damping rubber composition
JP4938287B2 (en) * 2005-11-04 2012-05-23 株式会社ブリヂストン Rubber composition
JP2009079079A (en) * 2007-09-25 2009-04-16 Toyo Tire & Rubber Co Ltd Rubber composition for highly damping rubber and highly damping rubber
JP5574616B2 (en) * 2009-04-20 2014-08-20 株式会社ブリヂストン Rubber composition for laminated rubber of seismic isolation structure
JP5545165B2 (en) * 2010-10-19 2014-07-09 株式会社ブリヂストン Rubber composition for seismic isolation structure
JP2016117783A (en) * 2014-12-18 2016-06-30 東洋ゴム工業株式会社 Rubber composition for seismically isolated structure and rubber for seismically isolated structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094923A (en) * 2009-12-15 2011-06-15 东洋橡胶工业株式会社 Producing method of shaft spring for railway vehicle

Also Published As

Publication number Publication date
JP2004161897A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
KR101186117B1 (en) Rubber composition, cross-linked rubber composition and high-performance damping laminate
JP4030412B2 (en) Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition
JP2011168740A (en) Rubber composition, rubber composition for high damping laminate, and rubber composition for tire
JP6136106B2 (en) Rubber composition for high damping rubber bearing and high damping rubber bearing
US6403722B1 (en) Dynamically vulcanized elastomeric blends including hydrogenated acrylonitrile-butadiene copolymers
JP5313224B2 (en) Seismic isolation / damping device
JP3753493B2 (en) Rubber composition for high damping rubber bearing
JP4260100B2 (en) High damping laminate rubber composition
JP5714828B2 (en) Rubber composition for high damping bearing and high damping bearing
JP2009149856A (en) Rubber composition for high-damping laminate, and high-damping laminate
JP4595171B2 (en) Rubber composition for high damping bearing
JP5250940B2 (en) Rubber composition for high damping bearing and high damping bearing
JP2010121033A (en) Rubber composition for high damping laminate, and high damping laminate
JPH10219033A (en) Rubber composition for high-attenuation support
JP3645469B2 (en) Rubber composition for laminates with improved fracture characteristics
JP4941384B2 (en) High damping laminate
JP2004027080A (en) Rubber composition for anti-seismic laminate
JP4331003B2 (en) Rubber composition for high damping bearing and high damping bearing
JP2001158824A (en) Method for vulcanizing and bonding unvulcanized rubber, and rubber composition for vulcanization and bonding
JP2003306578A (en) High damping rubber and quake-absorbing structure using the same
JP2000001576A (en) Rubber composition for base isolation laminate
JP5987489B2 (en) Rubber composition for high damping rubber bearing and high damping rubber bearing
JP2004307594A (en) Highly attenuating rubber composition and quake-free structure using the same
JPH11263879A (en) Rubber composition for high-damping laminate
JP5038608B2 (en) High damping rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070727

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees