JP5574616B2 - Rubber composition for laminated rubber of seismic isolation structure - Google Patents

Rubber composition for laminated rubber of seismic isolation structure Download PDF

Info

Publication number
JP5574616B2
JP5574616B2 JP2009102339A JP2009102339A JP5574616B2 JP 5574616 B2 JP5574616 B2 JP 5574616B2 JP 2009102339 A JP2009102339 A JP 2009102339A JP 2009102339 A JP2009102339 A JP 2009102339A JP 5574616 B2 JP5574616 B2 JP 5574616B2
Authority
JP
Japan
Prior art keywords
rubber
fatty acid
rubber composition
laminated
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009102339A
Other languages
Japanese (ja)
Other versions
JP2010248453A (en
Inventor
圭 木村
圭司 西村
伸夫 室田
隆志 菊地
宣幸 奥津
宏幸 出浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009102339A priority Critical patent/JP5574616B2/en
Publication of JP2010248453A publication Critical patent/JP2010248453A/en
Application granted granted Critical
Publication of JP5574616B2 publication Critical patent/JP5574616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Springs (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、免震構造体の積層ゴム用ゴム組成物、特には、マリンズ効果を十分に抑制することが可能で、弾性率の履歴依存性が小さい免震構造体の積層ゴム用ゴム組成物に関するものである。   The present invention relates to a rubber composition for a laminated rubber having a base-isolated structure, and more particularly, a rubber composition for a laminated rubber having a base-isolated structure capable of sufficiently suppressing the Malins effect and having a small history dependence of elastic modulus. It is about.

従来、ゴム等の粘弾性的性質を有する軟質板と鋼板等の硬質板とを交互に積層した積層ゴムを用いた免震構造体が、建築物の基礎免震、橋梁や高架道路等の構造物の支承等として使用されており、該免震構造体は、建築物や構造物に地震等による振動が付加された際に、付加されたエネルギーを減衰させ、構造物、建築物やその中の人及び設備等に対する被害を最小限にする役割を果たしている(下記特許文献1参照)。   Conventionally, seismic isolation structures using laminated rubber in which soft plates with viscoelastic properties, such as rubber, and hard plates, such as steel plates, are laminated alternately, are used for structures such as basic seismic isolation of buildings, bridges and elevated roads. The seismic isolation structure is used to support structures, structures and structures and their structures when the vibrations due to earthquakes are applied to buildings and structures. It plays a role of minimizing damage to humans and equipment (see Patent Document 1 below).

一方、一般的な加硫ゴムにおいては、繰り返し変形を受けることで弾性率が低下する現象、所謂、マリンズ効果が起こり、所望の性能を安定して発揮できず、ゴム部材を用いた製品の設計を複雑にしている場合がある。特に、免震構造体の積層ゴムに用いられるゴム部材においては、マリンズ効果に起因する変形後の弾性率の低下が大きいため、マリンズ効果の小さいゴム組成物の開発が求められている。   On the other hand, in general vulcanized rubber, the phenomenon that the elastic modulus decreases due to repeated deformation, the so-called Mullins effect occurs, the desired performance cannot be stably exhibited, and the product design using the rubber member May be complicated. In particular, in rubber members used for laminated rubber of seismic isolation structures, there is a great demand for the development of a rubber composition having a small Malin's effect because the elastic modulus after deformation caused by the Malin's effect is greatly reduced.

これに対して、例えば、特開2000−336207号公報(特許文献2)には、履歴依存性の小さい高減衰ゴム組成物として、ジエン系ゴムと、樹脂と、軟化剤と、補強剤とを含み、二段階の混練を経て製造されたゴム組成物が開示されており、また、特開2007−126560号公報(特許文献3)には、エチレンオキサイドが付加された芳香族オリゴマーと、ゴム成分とを含むゴム組成物が開示されている。   On the other hand, for example, JP 2000-336207 A (Patent Document 2) includes a diene rubber, a resin, a softening agent, and a reinforcing agent as a highly damped rubber composition having a small history dependency. In addition, a rubber composition produced through two-stage kneading is disclosed, and JP-A 2007-126560 (Patent Document 3) discloses an aromatic oligomer to which ethylene oxide is added, and a rubber component. A rubber composition comprising

特開2002−48190号公報JP 2002-48190 A 特開2000−336207号公報JP 2000-336207 A 特開2007−126560号公報JP 2007-126560 A

しかしながら、特開2000−336207号公報や特開2007−126560号公報に開示のゴム組成物を用いた積層ゴムをもってしても、マリンズ効果を十分に抑制することができず、依然として弾性率の履歴依存性に改善の余地が有った。   However, even with the laminated rubber using the rubber composition disclosed in Japanese Patent Application Laid-Open No. 2000-336207 and Japanese Patent Application Laid-Open No. 2007-126560, the Malins effect cannot be sufficiently suppressed, and the history of the elastic modulus still remains. There was room for improvement in dependency.

そこで、本発明の目的は、上記従来技術の問題を解決し、マリンズ効果を十分に抑制することが可能で、弾性率の履歴依存性が小さい免震構造体の積層ゴム用ゴム組成物を提供することにある。   Accordingly, an object of the present invention is to provide a rubber composition for laminated rubber having a base-isolated structure that solves the above-described problems of the prior art, can sufficiently suppress the Malins effect, and has a small history dependence of elastic modulus. There is to do.

本発明者らは、上記目的を達成するために鋭意検討した結果、ゴム成分に脂肪酸塩を配合してゴム組成物を構成することで、該ゴム組成物を用いた積層ゴムのマリンズ効果を十分に抑制できることを見出し、本発明を完成させるに至った。   As a result of diligent studies to achieve the above object, the inventors of the present invention have a sufficient Malins effect of a laminated rubber using the rubber composition by composing a rubber composition by adding a fatty acid salt to the rubber component. As a result, the present invention has been completed.

即ち、本発明の免震構造体の積層ゴム用ゴム組成物は、ゴム成分100質量部に対して、脂肪酸塩を0.1質量部以上配合してなり、前記脂肪酸塩がオレイン酸カリウムを含むことを特徴とする。 That is, the laminated rubber The rubber composition for a seismic isolation structure of the present invention, with respect to 100 parts by mass of the rubber component, Ri name by blending fatty acid salt 0.1 parts by mass or more, the fatty acid salt is potassium oleate It is characterized by including .

本発明の免震構造体の積層ゴム用ゴム組成物の好適例においては、前記脂肪酸塩の配合量が、前記ゴム成分100質量部に対して3質量部以下である。この場合、ゴム組成物の加工性が良好である。   In a preferred example of the rubber composition for laminated rubber of the seismic isolation structure of the present invention, the amount of the fatty acid salt is 3 parts by mass or less with respect to 100 parts by mass of the rubber component. In this case, the processability of the rubber composition is good.

本発明の免震構造体の積層ゴム用ゴム組成物において、前記脂肪酸塩、オレイン酸カリウム、オレイン酸亜鉛、ステアリン酸カリウム及びステアリン酸亜鉛を含むことが好ましい。 In the laminated rubber Rubber composition of the seismic isolation system of the present invention, the fatty acid salt, potassium oleate, zinc oleate, preferably contains potassium stearate and zinc stearate.

本発明によれば、ゴム成分に対して脂肪酸塩を特定量配合してなり、マリンズ効果を十分に抑制することが可能な免震構造体の積層ゴム用ゴム組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the rubber composition for laminated rubber of the seismic isolation structure which mix | blends a specific amount of fatty acid salt with respect to a rubber component, and can fully suppress a Malins effect can be provided.

本発明のゴム組成物を用いた積層ゴムを具える免震構造体の一例の断面図である。It is sectional drawing of an example of the seismic isolation structure which provides the laminated rubber using the rubber composition of this invention. 試験サンプルの斜視図である。It is a perspective view of a test sample.

以下に、本発明を詳細に説明する。本発明の免震構造体の積層ゴム用ゴム組成物は、ゴム成分100質量部に対して、脂肪酸塩を0.1質量部以上配合してなり、前記脂肪酸塩がオレイン酸カリウムを含むことを特徴とする。脂肪酸塩が配合された本発明のゴム組成物を免震構造体の積層ゴムに用いることで、積層ゴムのマリンズ効果を十分に抑制することができる。そのため、本発明のゴム組成物を用いた積層ゴムを具える免震構造体は、変形による履歴依存性が小さく、免震構造体を用いた建築物や、構造物の設計者にとって、構造計算、設計が容易となるという格別の効果を奏する。 The present invention is described in detail below. Rubber The rubber composition for a seismic isolation structure of the present invention, with respect to 100 parts by mass of the rubber component, Ri name by blending fatty acid salt 0.1 part by mass or more, that the fatty acid salt comprises potassium oleate It is characterized by. By using the rubber composition of the present invention in which the fatty acid salt is blended for the laminated rubber of the seismic isolation structure, the Malins effect of the laminated rubber can be sufficiently suppressed. Therefore, the seismic isolation structure including the laminated rubber using the rubber composition of the present invention is less dependent on history due to deformation, and the structural calculation is performed for the building using the base isolation structure and the designer of the structure. It has a special effect that the design is easy.

本発明の免震構造体の積層ゴム用ゴム組成物のゴム成分は、特に限定されるものではなく、天然ゴム(NR)の他、スチレン−ブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、クロロプレンゴム、ブチルゴム(IIR)、ハロゲン化ブチルゴム、エチレン−プロピレンゴム(EPR)、フッ素ゴム、シリコーンゴム、ウレタンゴム等が挙げられる。これらゴム成分は、一種単独で使用してもよく、二種以上を組み合わせて用いてもよい。これらゴム成分の中でも、天然ゴム及びブタジエンゴムが好ましく、ゴム成分の30質量%以上が天然ゴムであることが更に好ましい。   The rubber component of the rubber composition for laminated rubber of the seismic isolation structure of the present invention is not particularly limited. In addition to natural rubber (NR), styrene-butadiene rubber (SBR), butadiene rubber (BR), isoprene Examples thereof include rubber (IR), chloroprene rubber, butyl rubber (IIR), halogenated butyl rubber, ethylene-propylene rubber (EPR), fluorine rubber, silicone rubber, urethane rubber and the like. These rubber components may be used alone or in a combination of two or more. Among these rubber components, natural rubber and butadiene rubber are preferable, and 30% by mass or more of the rubber component is more preferably natural rubber.

本発明の免震構造体の積層ゴム用ゴム組成物は、脂肪酸塩を含む。上述のように、積層ゴム用ゴム組成物に脂肪酸塩を配合することで、マリンズ効果を抑制することができる。ここで、該脂肪酸塩の配合量は、上記ゴム成分100質量部に対して0.1質量部以上であり、3質量部以下であることが好ましく、1.0〜3.0質量部の範囲が特に好ましい。脂肪酸塩の配合量がゴム成分100質量部に対して0.1質量部未満では、マリンズ効果を十分に抑制することができず、一方、3質量部を超えると、ゴム組成物のムーニー粘度が低下して、ゴム組成物の加工性が低下する。また、脂肪酸塩の配合量が1.0質量部以上であれば、マリンズ効果を十分に抑制できる。   The rubber composition for laminated rubber of the seismic isolation structure of the present invention contains a fatty acid salt. As described above, the Malins effect can be suppressed by blending a fatty acid salt with the rubber composition for laminated rubber. Here, the compounding amount of the fatty acid salt is 0.1 parts by mass or more, preferably 3 parts by mass or less, and is in the range of 1.0 to 3.0 parts by mass with respect to 100 parts by mass of the rubber component. Is particularly preferred. If the blending amount of the fatty acid salt is less than 0.1 parts by mass with respect to 100 parts by mass of the rubber component, the Malin's effect cannot be sufficiently suppressed, whereas if it exceeds 3 parts by mass, the Mooney viscosity of the rubber composition is increased. It falls and the processability of a rubber composition falls. Moreover, if the compounding quantity of a fatty acid salt is 1.0 mass part or more, the Malins effect can fully be suppressed.

上記脂肪酸塩は、脂肪酸と金属との塩である。ここで、脂肪酸塩を構成する脂肪酸としては、オレイン酸、ステアリン酸、パルミチン酸等が挙げられ、一方、脂肪酸塩を構成する金属としては、K、Na、Ca、Zn、Mg、Ba等が挙げられる。また、上記脂肪酸塩として、具体的には、オレイン酸カリウム、ステアリン酸カリウム、パルミチン酸カリウム、オレイン酸亜鉛、ステアリン酸亜鉛、パルミチン酸亜鉛が挙げられ、これらの中でも、オレイン酸カリウム、オレイン酸亜鉛、ステアリン酸カリウム及びステアリン酸亜鉛が好ましい。これら脂肪酸塩は、一種単独で用いてもよいし、二種以上を混合して用いてもよい。   The fatty acid salt is a salt of a fatty acid and a metal. Here, examples of the fatty acid constituting the fatty acid salt include oleic acid, stearic acid, and palmitic acid, and examples of the metal constituting the fatty acid salt include K, Na, Ca, Zn, Mg, Ba, and the like. It is done. Specific examples of the fatty acid salt include potassium oleate, potassium stearate, potassium palmitate, zinc oleate, zinc stearate, and zinc palmitate. Among these, potassium oleate and zinc oleate Potassium stearate and zinc stearate are preferred. These fatty acid salts may be used individually by 1 type, and 2 or more types may be mixed and used for them.

本発明の免震構造体の積層ゴム用ゴム組成物は、例えば、上記ゴム成分に対して、上記脂肪酸塩と共に、ゴム工業界で通常使用される配合剤、例えば、充填剤、石油炭化水素、加硫剤、ステアリン酸等の硬化脂肪酸、亜鉛華、各種プロセスオイル、加硫促進剤、老化防止剤、樹脂等を、本発明の目的を害しない範囲内で適宜選択して、通常の配合量の範囲内で配合して、混練り、熱入れ、押出等することにより製造することができる。   The rubber composition for laminated rubber of the seismic isolation structure of the present invention is, for example, a compounding agent usually used in the rubber industry together with the fatty acid salt, for example, a filler, petroleum hydrocarbon, Normal compounding amount by appropriately selecting a vulcanizing agent, a hardened fatty acid such as stearic acid, zinc white, various process oils, a vulcanization accelerator, an anti-aging agent, a resin and the like within a range not impairing the object of the present invention. It can manufacture by mix | blending within the range of kneading | mixing, kneading | mixing, heating and extruding.

上記充填剤としては、カーボンブラック、シリカ等が挙げられる。なお、充填剤の配合量は、上記ゴム成分100質量部に対して20〜70質量部の範囲が好ましく、25〜65質量部の範囲が更に好ましい。   Examples of the filler include carbon black and silica. In addition, the compounding quantity of a filler has the preferable range of 20-70 mass parts with respect to 100 mass parts of said rubber components, and the range of 25-65 mass parts is still more preferable.

上記石油炭化水素としては、α−メチルスチレン、o−ビニルトルエン、m−ビニルトルエン、p−ビニルトルエン等のC9系の芳香族不飽和炭化水素や、1−ペンテン、2−ペンテン、2−メチル−1−ブテン、3−メチル−1−ブテン、2−メチル−2−ブテン、2−メチル−1,3−ブタジエン、1,3−ペンタジエン等のC5系の脂肪族不飽和炭化水素が挙げられる。 Examples of the petroleum hydrocarbon include C 9 aromatic unsaturated hydrocarbons such as α-methylstyrene, o-vinyltoluene, m-vinyltoluene, p-vinyltoluene, 1-pentene, 2-pentene, 2- C 5 aliphatic unsaturated hydrocarbons such as methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-butene, 2-methyl-1,3-butadiene, 1,3-pentadiene, etc. Can be mentioned.

上記加硫剤としては、粉末硫黄、高分散性硫黄、不溶性硫黄等のゴム用加硫剤として一般に用いられている硫黄が好ましい。なお、該加硫剤の配合量は、上記ゴム成分100質量部に対して0.5〜10.0質量部の範囲が好ましく、1.0〜6.0質量部の範囲が更に好ましい。   As the vulcanizing agent, sulfur generally used as a vulcanizing agent for rubber such as powdered sulfur, highly dispersible sulfur, insoluble sulfur and the like is preferable. In addition, the compounding quantity of this vulcanizing agent has the preferable range of 0.5-10.0 mass parts with respect to 100 mass parts of said rubber components, and the range of 1.0-6.0 mass parts is still more preferable.

上記プロセスオイルとしては、ナフテン系プロセスオイル、パラフィン系プロセスオイル、アロマティック系プロセスオイル等が挙げられる。   Examples of the process oil include naphthenic process oil, paraffinic process oil, and aromatic process oil.

上記加硫促進剤としては、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド(CZ)、N,N−ジシクロヘキシル−2−ベンゾチアジルスルフェンアミド(DZ)、ジベンゾチアジルジスルフィド(MBTS)、ジフェニルグアニジン(DPG)等が挙げられる。なお、該加硫促進剤の配合量は、上記ゴム成分100質量部に対して0.5〜5質量部の範囲が好ましい。   Examples of the vulcanization accelerator include N-cyclohexyl-2-benzothiazylsulfenamide (CZ), N, N-dicyclohexyl-2-benzothiazylsulfenamide (DZ), dibenzothiazyl disulfide (MBTS), Examples include diphenylguanidine (DPG). In addition, the compounding quantity of this vulcanization accelerator has the preferable range of 0.5-5 mass parts with respect to 100 mass parts of said rubber components.

上記老化防止剤としては、N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミン(6C)、2,2,4−トリメチル−1,2−ジヒドロキノリン重合体(TMDQ)、6−エトキシ−2,2,4−トリメチル−1,2−ジヒドロキノリン(ETMDQ)等が挙げられる。なお、該老化防止剤の配合量は、上記ゴム成分100質量部に対して0.5〜5質量部の範囲が好ましい。   Examples of the antiaging agent include N-1,3-dimethylbutyl-N′-phenyl-p-phenylenediamine (6C), 2,2,4-trimethyl-1,2-dihydroquinoline polymer (TMDQ), 6 -Ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline (ETMDQ) and the like. In addition, the compounding quantity of this anti-aging agent has the preferable range of 0.5-5 mass parts with respect to 100 mass parts of said rubber components.

上記樹脂としては、フェノール樹脂、ロジン樹脂、DCPD樹脂、C5系石油樹脂、C9系石油樹脂、脂環系石油樹脂、C5系石油樹脂とC9系石油樹脂とを共重合させた樹脂、キシレン樹脂、テルペン樹脂、ケトン樹脂、ポリエステルポリオール樹脂等が挙げられる。なお、該樹脂の配合量は、上記ゴム成分100質量部に対して5〜60質量部の範囲が好ましく、5〜40質量部の範囲が更に好ましい。 As the resin, a phenol resin, rosin resin, DCPD resins, C 5 petroleum resins, C 9 petroleum resins, alicyclic petroleum resins, C 5 petroleum resins and C 9 resin obtained by copolymerizing a petroleum resin , Xylene resin, terpene resin, ketone resin, polyester polyol resin and the like. In addition, the range of 5-60 mass parts is preferable with respect to 100 mass parts of said rubber components, and, as for the compounding quantity of this resin, the range of 5-40 mass parts is still more preferable.

本発明のゴム組成物は、免震構造体の積層ゴムに用いられる。本発明のゴム組成物は、例えば、シート状に成形され、得られたゴムシートと、剛性を有する剛性板とを交互に積層して積層ゴムを構成する。そして、該積層ゴムは、免震構造体の主要部を構成し、振動により水平方向のせん断力を受けた際に、振動のエネルギーを効果的に吸収して、振動を速やかに減衰することができる。以下に、図を参照しながら本発明のゴム組成物を用いた積層ゴムを具える免震構造体を詳細に説明する。   The rubber composition of the present invention is used for laminated rubber of seismic isolation structures. The rubber composition of the present invention is formed into a sheet shape, for example, and the obtained rubber sheet and a rigid plate having rigidity are alternately laminated to constitute a laminated rubber. The laminated rubber constitutes the main part of the seismic isolation structure, and when it receives a shearing force in the horizontal direction due to vibration, it can effectively absorb the vibration energy and quickly attenuate the vibration. it can. Hereinafter, a seismic isolation structure including a laminated rubber using the rubber composition of the present invention will be described in detail with reference to the drawings.

図1に示す免震構造体1は、剛性を有する剛性板2と弾性を有する弾性板3とが交互に積層されてなる積層ゴム4と、該積層ゴム4の両端(上端及び下端)に固定されたフランジ板5とを具え、更に、積層ゴム4の外周面が被覆材6で覆われている。そして、本発明においては、弾性板3に、上述した本発明のゴム組成物を用いる。   A seismic isolation structure 1 shown in FIG. 1 is fixed to laminated rubber 4 in which rigid plates 2 having rigidity and elastic plates 3 having elasticity are alternately laminated, and to both ends (upper and lower ends) of the laminated rubber 4. Further, the outer peripheral surface of the laminated rubber 4 is covered with a covering material 6. In the present invention, the rubber composition of the present invention described above is used for the elastic plate 3.

積層ゴム4を構成する剛性板2と弾性板3とは、例えば、加硫接着により、あるいは接着剤により強固に貼り合わされている。なお、加硫接着においては、剛性板2と未加硫ゴム組成物とを積層してから加硫を行い、未加硫ゴム組成物の加硫物が弾性板3となる。ここで、剛性板2としては、鋼板等の金属板、セラミックス板、FRP等の強化プラスチックス板等を使用することができる。   The rigid plate 2 and the elastic plate 3 constituting the laminated rubber 4 are firmly bonded by, for example, vulcanization adhesion or an adhesive. In the vulcanization adhesion, the rigid plate 2 and the unvulcanized rubber composition are laminated and then vulcanized, and the vulcanized product of the unvulcanized rubber composition becomes the elastic plate 3. Here, as the rigid plate 2, a metal plate such as a steel plate, a ceramic plate, a reinforced plastic plate such as FRP, or the like can be used.

また、積層ゴム4は、被覆材6で覆われていなくてもよいが、図示例のように、積層ゴム4の外周面が被覆材6で覆われている場合、積層ゴム4に外部から雨や光が届かなくなり、酸素やオゾン、紫外線による積層ゴム4の劣化を防止できる。なお、被覆材6としては、加硫ゴム等を使用することができる。   Further, the laminated rubber 4 may not be covered with the covering material 6, but when the outer peripheral surface of the laminated rubber 4 is covered with the covering material 6 as in the illustrated example, the laminated rubber 4 is exposed to rain from the outside. And the light does not reach, and the deterioration of the laminated rubber 4 due to oxygen, ozone and ultraviolet rays can be prevented. As the covering material 6, vulcanized rubber or the like can be used.

そして、本発明のゴム組成物を積層ゴム4の弾性板3に用いた免震構造体は、マリンズ効果が十分に抑制されているため、変形による履歴依存性が小さく、設計が容易であるという格別の効果を奏する。   And the seismic isolation structure using the rubber composition of the present invention for the elastic plate 3 of the laminated rubber 4 has a sufficiently low history dependency due to deformation and is easy to design because the Mullins effect is sufficiently suppressed. There is a special effect.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

表1及び2に示す成分をバンバリーミキサーにより混練して、ゴム組成物を調製した。なお、練りステージAの後、練りステージBを行い、二段階の混練を経て、ゴム組成物を調製した。次に、得られたゴム組成物のムーニー粘度、弾性率、履歴依存性を下記の方法で測定した。結果を表1及び2に示す。   The components shown in Tables 1 and 2 were kneaded with a Banbury mixer to prepare a rubber composition. In addition, after kneading stage A, kneading stage B was performed, and a rubber composition was prepared through two stages of kneading. Next, the Mooney viscosity, elastic modulus, and history dependency of the obtained rubber composition were measured by the following methods. The results are shown in Tables 1 and 2.

(1)ムーニー粘度
JIS K6300−1に準拠して、ムーニー粘度[ML(1+4)127℃]を測定した。
(1) Mooney viscosity Mooney viscosity [ML (1 + 4) 127 ° C] was measured according to JIS K6300-1.

(2)弾性率
上記ゴム組成物を、ゴム圧延用ロールを用いて2mm厚に圧延し、ゴムシートを作製した。次に、得られたゴムシートを25mm×25mmのサイズに打ち抜いた1枚の方形状ゴムシート7を作製し、これを25mm×60mm×厚み2.3mmの接着剤を塗布した2枚の鉄板8で、図2に示すように、断面クランク状となるように挟んだ。次に、鉄板8とこれに接するゴムシート7の面とを接着した状態で加硫を行い、鉄板8とゴムシート7とを接着して、試験サンプルを準備した。次に、該試験サンプルを、バネ剛性、損失エネルギー測定装置(鷺宮製作所製、型式:EFH−26−8−10)に配置し、上述の2枚の鉄板8をゴムシート7に対して外側および内側に、周波数0.2Hzで、50%、100%、250%のせん断歪を加えて、各せん断歪時の弾性率を測定した。なお、測定は、合計3回行い、その平均値を求めた。
(2) Elastic modulus The rubber composition was rolled to a thickness of 2 mm using a roll for rubber rolling to produce a rubber sheet. Next, one rectangular rubber sheet 7 obtained by punching the obtained rubber sheet into a size of 25 mm × 25 mm was produced, and this was applied to two iron plates 8 coated with an adhesive of 25 mm × 60 mm × thickness 2.3 mm. Thus, as shown in FIG. Next, vulcanization was performed in a state where the iron plate 8 and the surface of the rubber sheet 7 in contact with the iron plate 8 were adhered, and the iron plate 8 and the rubber sheet 7 were adhered to prepare a test sample. Next, the test sample is placed in a spring stiffness and loss energy measuring device (manufactured by Kakinomiya Seisakusho, model: EFH-26-8-10). Inside, 50%, 100%, and 250% shear strain was applied at a frequency of 0.2 Hz, and the elastic modulus at each shear strain was measured. In addition, the measurement was performed 3 times in total and the average value was calculated | required.

(3)履歴依存性
上記の方法で、一回目に測定した弾性率を三回目に測定した弾性率で除して比を求め、弾性率の履歴依存性の指標とした。比が1に近い程、一回目に測定した弾性率と三回目に測定した弾性率との差が小さく、弾性率の履歴依存性が小さいことを示す。
(3) History dependence By the above method, the elastic modulus measured at the first time was divided by the elastic modulus measured at the third time to obtain a ratio, which was used as an index of the history dependence of the elastic modulus. The closer the ratio is to 1, the smaller the difference between the elastic modulus measured at the first time and the elastic modulus measured at the third time, and the smaller the history dependence of the elastic modulus.

Figure 0005574616
Figure 0005574616

Figure 0005574616
Figure 0005574616

*1 天然ゴム:RSS#4
*2 カーボンブラックA:旭カーボン(株)製、「アサヒサーマル」
*3 硬化脂肪酸:日本油脂(株)製、「FA−KR」
*4 亜鉛華:白水化学工業(株)製、「3号亜鉛華」
*5 石油炭化水素:新日本石油(株)製、「プロトワックス1」
*6 老化防止剤6C:住友化学工業(株)製、「ANTIGENE 6C」
*7 脂肪酸塩:Schill+Seilacher製、「Struktol(ストラクトール)EF44」、オレイン酸亜鉛とオレイン酸カリウムとステアリン酸亜鉛とステアリン酸カリウムとの混合物
*8 ナフテンオイル:Sun Refining & Marketing製、「Sunthene 4240」
*9 亜鉛華混合硫黄:鶴見化学製、「Z硫黄」
*10 加硫促進剤CZ:大内新興化学工業(株)製、「ノクセラーCZ」
*11 ブタジエンゴム:旭化成製、「ジエンNF35R」
*12 カーボンブラックB:旭カーボン(株)製、「旭#80−N」
*13 フェノール樹脂:住友ベークライト(株)製、「スミライトレジン217」
*14 シクロペンタジエン系樹脂:日本ゼオン(株)製、「クイントン1325」
*15 ポリオール芳香族オリゴマー:フドー(株)製、「L5」
*16 ヘビーアロマオイル:出光興産(株)製、「ダイアナプロセスオイルAH−58」
* 1 Natural rubber: RSS # 4
* 2 Carbon Black A: “Asahi Thermal” manufactured by Asahi Carbon Co., Ltd.
* 3 Hardened fatty acid: “FA-KR” manufactured by NOF Corporation
* 4 Zinc flower: “No. 3 Zinc flower” manufactured by Hakusui Chemical Industry Co., Ltd.
* 5 Petroleum hydrocarbons: Protowax 1 manufactured by Nippon Oil Corporation
* 6 Anti-aging agent 6C: “ANTIGENE 6C” manufactured by Sumitomo Chemical Co., Ltd.
* 7 Fatty acid salt: manufactured by Schill + Seilacher, “Struktol EF44”, a mixture of zinc oleate, potassium oleate, zinc stearate and potassium stearate * 8 Naphthenic oil: “Sun Refine 4240”
* 9 Zinc flower mixed sulfur: "Z sulfur" manufactured by Tsurumi Chemical
* 10 Vulcanization accelerator CZ: “Noxeller CZ” manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 11 Butadiene rubber: Asahi Kasei, “Diene NF35R”
* 12 Carbon Black B: “Asahi # 80-N” manufactured by Asahi Carbon Co., Ltd.
* 13 Phenol resin: “Sumilite Resin 217” manufactured by Sumitomo Bakelite Co., Ltd.
* 14 Cyclopentadiene resin: “Quinton 1325” manufactured by Nippon Zeon Co., Ltd.
* 15 Polyol aromatic oligomer: “L5” manufactured by Fudou Co., Ltd.
* 16 Heavy Aroma Oil: “Diana Process Oil AH-58” manufactured by Idemitsu Kosan Co., Ltd.

表1及び2から、脂肪酸塩を配合することで、マリンズ効果が抑制され、弾性率の履歴依存性、特には、250%せん断歪時の弾性率の履歴依存性が小さくなることが分かる。   From Tables 1 and 2, it can be seen that by blending the fatty acid salt, the Malins effect is suppressed, and the hysteresis dependence of the elastic modulus, particularly, the hysteresis dependence of the elastic modulus at 250% shear strain is reduced.

また、実施例4及び8の結果から、脂肪酸塩を3質量部よりも多く配合すると、ゴム組成物のムーニー粘度が低くなりすぎ、加工性が低下することが分かる。このことから、脂肪酸塩の配合量は、加工性の観点から、ゴム成分100質量部に対して3質量部以下が好ましいことが分かる。   From the results of Examples 4 and 8, it can be seen that when the fatty acid salt is added in an amount of more than 3 parts by mass, the Mooney viscosity of the rubber composition becomes too low, and the processability decreases. From this, it is understood that the blending amount of the fatty acid salt is preferably 3 parts by mass or less with respect to 100 parts by mass of the rubber component from the viewpoint of processability.

1 免震構造体
2 剛性板
3 弾性板
4 積層ゴム
5 フランジ板
6 被覆材
7 方形状ゴムシート
8 鉄板
DESCRIPTION OF SYMBOLS 1 Seismic isolation structure 2 Rigid board 3 Elastic board 4 Laminated rubber 5 Flange board 6 Coating material 7 Rectangular rubber sheet 8 Iron plate

Claims (3)

ゴム成分100質量部に対して、脂肪酸塩を0.1質量部以上配合してなり、
前記脂肪酸塩がオレイン酸カリウムを含む
ことを特徴とする免震構造体の積層ゴム用ゴム組成物。
Per 100 parts by mass of the rubber component, Ri name by blending fatty acid salt 0.1 part by mass or more,
A rubber composition for laminated rubber having a base-isolated structure, wherein the fatty acid salt contains potassium oleate .
前記脂肪酸塩の配合量が、前記ゴム成分100質量部に対して3質量部以下であることを特徴とする請求項1に記載の免震構造体の積層ゴム用ゴム組成物。   The rubber composition for laminated rubber of a seismic isolation structure according to claim 1, wherein the amount of the fatty acid salt is 3 parts by mass or less with respect to 100 parts by mass of the rubber component. 前記脂肪酸塩が、オレイン酸カリウム、オレイン酸亜鉛、ステアリン酸カリウム及びステアリン酸亜鉛を含むことを特徴とする請求項1に記載の免震構造体の積層ゴム用ゴム組成物。 Wherein the fatty acid salt is potassium oleate, zinc oleate, Rubber The rubber composition for a seismic isolation structure according to claim 1, characterized in that it comprises potassium stearate and zinc stearate.
JP2009102339A 2009-04-20 2009-04-20 Rubber composition for laminated rubber of seismic isolation structure Active JP5574616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102339A JP5574616B2 (en) 2009-04-20 2009-04-20 Rubber composition for laminated rubber of seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102339A JP5574616B2 (en) 2009-04-20 2009-04-20 Rubber composition for laminated rubber of seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2010248453A JP2010248453A (en) 2010-11-04
JP5574616B2 true JP5574616B2 (en) 2014-08-20

Family

ID=43311144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102339A Active JP5574616B2 (en) 2009-04-20 2009-04-20 Rubber composition for laminated rubber of seismic isolation structure

Country Status (1)

Country Link
JP (1) JP5574616B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358880B2 (en) * 2006-12-28 2013-12-04 横浜ゴム株式会社 Rubber composition for tire tread
JP5358881B2 (en) * 2006-12-28 2013-12-04 横浜ゴム株式会社 Rubber composition for tire tread
JP5712735B2 (en) * 2011-03-31 2015-05-07 横浜ゴム株式会社 Rubber composition for rubber bearing side wall and rubber bearing body
JP5902497B2 (en) * 2012-02-02 2016-04-13 高圧ガス工業株式会社 Damping coating composition and damping material using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622803B2 (en) * 1995-11-28 2005-02-23 日本ゼオン株式会社 Rubber composition
JP2000109713A (en) * 1998-10-09 2000-04-18 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition and quake-free supporting apparatus using the same
JP3977589B2 (en) * 1999-11-11 2007-09-19 東海ゴム工業株式会社 Seismic isolation rubber laminate
JP2001310973A (en) * 2000-04-27 2001-11-06 Showa Electric Wire & Cable Co Ltd Vibration damping material
JP4030412B2 (en) * 2002-11-13 2008-01-09 横浜ゴム株式会社 Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition
JP2006334908A (en) * 2005-06-01 2006-12-14 Nippon Zeon Co Ltd Laminate
JP2007284482A (en) * 2006-04-12 2007-11-01 Toyo Tire & Rubber Co Ltd Rubber composition

Also Published As

Publication number Publication date
JP2010248453A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4847978B2 (en) High damping rubber composition and damping member
TWI454525B (en) High decay composition
JP6261131B2 (en) High damping composition, seismic damper and seismic isolation bearing
TWI546342B (en) Highly damping composition and viscoelastic damper
KR101805206B1 (en) High damping composition
JP5574616B2 (en) Rubber composition for laminated rubber of seismic isolation structure
TW201809104A (en) Highly damping rubber composition and viscoelastic damper
JP2011126992A (en) Highly damping composition
JP2017082171A (en) High attenuation rubber composition and viscoelastic damper
JP2010260933A (en) Rubber composition for seismic isolation structure
KR101780829B1 (en) High damping composition
JP5234891B2 (en) Rubber composition
JP2013053251A (en) Highly damping composition
JP5621183B2 (en) Rubber composition for seismic isolation structure
JP2015160903A (en) High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing
JP4938287B2 (en) Rubber composition
JP2010121033A (en) Rubber composition for high damping laminate, and high damping laminate
JP2019031607A (en) High attenuation rubber composition and viscoelastic damper
JP2014224180A (en) Highly damping composition and viscoelastic damper
JP5043310B2 (en) Low repulsion rubber composition and seismic isolation structure using the same
JPH10219029A (en) Rubber composition for high-attenuation rubber support
JP5038608B2 (en) High damping rubber composition
JP5545165B2 (en) Rubber composition for seismic isolation structure
JP2017210532A (en) High attenuation rubber composition and viscoelastic damper
JP2015038169A (en) Rubber composition for base-isolated structure, and rubber for base-isolated structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5574616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250