JP2015160903A - High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing - Google Patents

High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing Download PDF

Info

Publication number
JP2015160903A
JP2015160903A JP2014037027A JP2014037027A JP2015160903A JP 2015160903 A JP2015160903 A JP 2015160903A JP 2014037027 A JP2014037027 A JP 2014037027A JP 2014037027 A JP2014037027 A JP 2014037027A JP 2015160903 A JP2015160903 A JP 2015160903A
Authority
JP
Japan
Prior art keywords
mass
parts
rubber
diene rubber
high attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014037027A
Other languages
Japanese (ja)
Inventor
伊藤 靖時
Yasutoki Ito
靖時 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014037027A priority Critical patent/JP2015160903A/en
Publication of JP2015160903A publication Critical patent/JP2015160903A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a novel high attenuation composition that has high attenuation performance and is capable of forming a high attenuation member whose elastic modulus deterioration after being subjected to a large deformation is as small as possible; and an earthquake-proof damper and an aseismic base isolation bearing, such as architectural structures, which include a viscoelastic body formed using the high attenuation composition as a formation material.SOLUTION: A high attenuation composition contains a diene rubber having sulfur crosslinking property, not more than 50 pts.mass of an ethylene propylene binary copolymer rubber not having sulfur crosslinking property with respect to 100 pts.mass of the diene rubber, and only a crosslinking ingredient of a sulfur crosslinking system as a crosslinking ingredient. Each of an earthquake-proof damper and an aseismic base isolation bearing includes a viscoelastic body composed of the high attenuation composition.

Description

本発明は、振動エネルギーの伝達を緩和したり吸収したりするための高減衰部材のもとになる高減衰組成物と、当該高減衰組成物からなる高減衰部材としての粘弾性体を備えた制震ダンパ、免震支承に関するものである。   The present invention includes a high damping composition that is a base of a high damping member for relaxing or absorbing the transmission of vibration energy, and a viscoelastic body as a high damping member made of the high damping composition. It relates to seismic dampers and seismic isolation bearings.

例えばビルや橋梁等の建築物、産業機械、航空機、自動車、鉄道車両、コンピュータやその周辺機器類、家庭用電気機器類、さらには自動車用タイヤ等の幅広い分野において高減衰部材が用いられる。高減衰部材を用いることで振動エネルギーの伝達を緩和したり吸収したりする、すなわち免震、制震、制振、防振等をすることができる。
高減衰部材は、振動が加えられた際のヒステリシスロスを大きくして減衰性能を高める、すなわち振動のエネルギーをできるだけ効率よく速やかに減衰できるようにするために、ゴム等のベースポリマを含み損失正接tanδのピークが高減衰部材の使用温度域に入るように調整された高減衰組成物によって形成するのが一般的である。
For example, high-attenuation members are used in a wide range of fields such as buildings such as buildings and bridges, industrial machines, airplanes, automobiles, railway vehicles, computers and peripheral equipment, household electrical equipment, and automobile tires. By using a high damping member, transmission of vibration energy can be reduced or absorbed, that is, seismic isolation, vibration control, vibration control, vibration isolation, and the like can be performed.
High damping members include a base polymer such as rubber to increase damping performance by increasing the hysteresis loss when vibration is applied, that is, to reduce the vibration energy as quickly and efficiently as possible. Generally, it is formed by a high attenuation composition adjusted so that the peak of tan δ falls within the operating temperature range of the high attenuation member.

かかる高減衰組成物を所定の立体形状に成形するとともに、ベースポリマがゴムである場合は架橋させることで高減衰部材が形成される。
ベースポリマとしてはジエン系ゴムが好適に用いられる。ジエン系ゴムは、ガラス転移温度が室温(2〜35℃)付近に存在しないため最も一般的な使用温度域である上記室温付近での剛性等の温度依存性を小さくして、広い温度範囲で安定した特性を示す高減衰部材を形成できるという利点がある。
The high attenuation composition is formed into a predetermined three-dimensional shape, and when the base polymer is rubber, the high attenuation member is formed by crosslinking.
Diene rubber is preferably used as the base polymer. Diene rubber does not have a glass transition temperature near room temperature (2 to 35 ° C), so the temperature dependence such as rigidity in the vicinity of the above room temperature, which is the most common operating temperature range, is reduced, and in a wide temperature range. There is an advantage that a high damping member showing stable characteristics can be formed.

高減衰組成物としては、ジエン系ゴム等のベースポリマに減衰性付与剤としてのシリカとシラン化合物(シリル化剤)とを加え、混練してシリカとシラン化合物とを反応させて調製したもの等が知られている(特許文献1等参照)。
しかしかかる従来の高減衰組成物では、高減衰部材の減衰性能を十分に高めることはできない。
High damping composition prepared by adding silica and silane compound (silylating agent) as damping properties to base polymer such as diene rubber, kneading and reacting silica and silane compound, etc. Is known (see Patent Document 1).
However, such a conventional high damping composition cannot sufficiently enhance the damping performance of the high damping member.

高減衰部材の減衰性能を現状よりもさらに高めるためには、シリカの配合割合をさらに増加させること等が考えられるが、多量のシリカを配合した高減衰組成物は混練時の粘度が上昇して加工性が低下する。そして高減衰部材を製造するために高減衰組成物を混練したり、所望の立体形状に成形加工したりするのが容易でないという問題を生じる。
そこでシリカに加えて、ベースポリマの剛性を低下させて高減衰組成物の混練時の粘度を低下させる成分として液状ゴムを配合して、高減衰組成物に良好な加工性を付与することが検討されている(例えば特許文献2、3等参照)。
In order to further improve the damping performance of the high damping member, it may be possible to further increase the blending ratio of silica, but the high damping composition blended with a large amount of silica increases the viscosity during kneading. Workability is reduced. And in order to manufacture a high attenuation | damping member, the problem that it is not easy to knead | mix a high attenuation | damping composition or to shape | mold into a desired solid shape arises.
Therefore, in addition to silica, adding liquid rubber as a component that lowers the stiffness of the base polymer and lowers the viscosity during kneading of the high damping composition, gives good workability to the high damping composition. (See, for example, Patent Documents 2 and 3).

しかし基本的に、フィラーとしてシリカを配合したこれら従来の高減衰組成物を用いて形成した高減衰部材はいずれも、大変形が加えられたあとの弾性率が大幅に低下するいわゆるマリンス効果(Mullins' effect)を生じ易く、大変形後には高減衰部材としての所期の性能を十分に発揮させることができないため様々な問題を生じる場合がある。
例えば高減衰部材としての、建築物の免震、制震を担う制震ダンパや免震支承の粘弾性体に、地震の初期の振動によって大変形が加えられて弾性率が大きく低下すると、その後に続く本震や余震等のエネルギーが建築物に伝わるのを確実に防止できなくなるおそれがある。そのため、かかる弾性率の低下を織り込んだ上で所期の性能を確保するために、制震ダンパや免震支承の製品としての設計が複雑になるという問題がある。
However, basically, all of the high damping members formed using these conventional high damping compositions containing silica as a filler have a so-called Malins effect (Mullins effect) that greatly reduces the elastic modulus after large deformation. 'effect) is likely to occur, and after a large deformation, the desired performance as a high damping member cannot be fully exhibited, and various problems may occur.
For example, if a large amount of deformation is applied to the viscoelastic body of a damping damper or seismic isolation bearing that is used as a high damping member for seismic isolation or seismic control of the building, the elastic modulus decreases greatly after that. There is a risk that it will not be possible to reliably prevent energy, such as the main shock and aftershocks following the, from being transmitted to the building. For this reason, there is a problem that the design of the damping damper and the seismic isolation bearing is complicated in order to ensure the desired performance after taking into account the decrease in the elastic modulus.

特開平7−41603号公報JP 7-41603 A 特開2009−30016号公報JP 2009-30016 A 特開2011−68850号公報JP 2011-68850 A 特開2006−52281号公報JP 2006-52281 A

本発明の目的は、高い減衰性能を有する上、大変形が加えられたあとの弾性率の低下ができるだけ小さい高減衰部材を形成しうる新規な高減衰組成物、およびかかる高減衰組成物を形成材料として用いて形成された粘弾性体を備える建築物等の制震ダンパ、免震支承を提供することにある。   An object of the present invention is to provide a novel high damping composition capable of forming a high damping member that has a high damping performance and also has a small decrease in elastic modulus after a large deformation is applied, and such a high damping composition. An object of the present invention is to provide seismic dampers and seismic isolation bearings for buildings having viscoelastic bodies formed as materials.

本発明は硫黄架橋性を有するジエン系ゴム、前記ジエン系ゴム100質量部あたり50質量部以下の硫黄架橋性を有しないエチレンプロピレン二元共重合ゴム(EPM)、および架橋成分として硫黄架橋系の架橋成分のみを含む高減衰組成物である。
また本発明は、上記本発明の高減衰組成物からなる粘弾性体を備える制震ダンパ、および免震支承である。
The present invention relates to a diene rubber having sulfur crosslinkability, an ethylene propylene binary copolymer rubber (EPM) having no sulfur crosslinkability of not more than 50 parts by mass per 100 parts by mass of the diene rubber, and a sulfur crosslinker as a crosslinking component. It is a highly attenuated composition containing only a crosslinking component.
Moreover, this invention is a damping damper provided with the viscoelastic body which consists of a high damping composition of the said invention, and a seismic isolation bearing.

本発明の高減衰組成物を用いて高減衰部材を製造するべく所定の立体形状に成形するとともに加熱等すると、硫黄架橋系の架橋成分によって、EPMは架橋させずに未反応で高粘度の状態を維持しながら、ジエン系ゴムのみを選択的に架橋させることができ、架橋後の高減衰部材に、上記未反応のEPMの機能によって高い粘性を付与できる。
そのため架橋されたジエン系ゴムによるゴム弾性と、未反応のEPMによる高い粘性との相乗効果に基づいて、高い減衰性能を有する上、大変形が加えられたあとの弾性率の低下ができるだけ小さい、制振ダンパや免震支承の粘弾性体等の高減衰部材を形成することが可能となる。
When the high damping composition of the present invention is used to form a high damping member into a predetermined three-dimensional shape and heated, the EPM is not cross-linked and is not reacted and has a high viscosity state due to the sulfur cross-linking component. While maintaining the above, only the diene rubber can be selectively crosslinked, and a high viscosity can be imparted to the highly attenuated member after crosslinking by the function of the unreacted EPM.
Therefore, based on the synergistic effect of the rubber elasticity of the crosslinked diene rubber and the high viscosity of the unreacted EPM, it has high damping performance, and the decrease in elastic modulus after large deformation is as small as possible. It becomes possible to form a high damping member such as a vibration damper or a viscoelastic body for a seismic isolation bearing.

なお本発明においてEPMの配合割合が、ジエン系ゴム100質量部あたり50質量部以下に限定されるのは、下記の理由による。
すなわちEPMの配合割合がこの範囲を超える場合には、相対的にジエン系ゴムの割合が少なくなって、当該ジエン系ゴムの架橋物によるゴム弾性が十分に得られないため、却って高減衰部材の減衰性能が低下したり、大変形が加えられたあとの弾性率の低下が大きくなったりする。
In the present invention, the EPM blending ratio is limited to 50 parts by mass or less per 100 parts by mass of the diene rubber for the following reason.
That is, when the blending ratio of the EPM exceeds this range, the ratio of the diene rubber is relatively reduced, and the rubber elasticity due to the crosslinked product of the diene rubber cannot be sufficiently obtained. The damping performance is lowered, and the elastic modulus is lowered greatly after a large deformation is applied.

これに対し、EPMの配合割合を上記の範囲とすることにより、当該EPMによる高減衰部材の粘性を向上する効果と、ジエン系ゴムの架橋物によるゴム弾性とのバランスをとって、高い減衰性能を有する上、大変形が加えられたあとの弾性率の低下ができるだけ小さい高減衰部材を形成できる。
なお特許文献4には、ゴム分としてEPMおよび/またはEPDMを含む高減衰組成物について記載されている。またゴム分としては、さらに天然ゴム、スチレンブタジエンゴム、ブタジエンゴム等のジエン系ゴムを併用できることも記載されている。
On the other hand, by setting the blending ratio of the EPM within the above range, the effect of improving the viscosity of the high damping member by the EPM and the rubber elasticity by the crosslinked product of the diene rubber are balanced, and high damping performance. In addition, it is possible to form a highly attenuating member in which the decrease in elastic modulus after large deformation is applied is as small as possible.
Patent Document 4 describes a highly attenuated composition containing EPM and / or EPDM as a rubber component. Further, it is also described that a diene rubber such as natural rubber, styrene butadiene rubber and butadiene rubber can be used in combination as the rubber component.

しかしEPMを含む系の架橋成分は過酸化物架橋系に限定されており、EPMをジエン系ゴムと併用して、硫黄架橋系の架橋成分によってジエン系ゴムのみを架橋させることや、それによって上記の効果を奏する高減衰部材を形成できることについて、特許文献4には一切記載されていない。   However, the crosslinking component of the system containing EPM is limited to the peroxide crosslinking system, and the EPM is used in combination with the diene rubber, and only the diene rubber is crosslinked by the sulfur crosslinking system crosslinking component. Patent Document 4 does not describe at all that a high-attenuation member that exhibits the above effect can be formed.

本発明の実施例、比較例の高減衰組成物からなる高減衰部材の減衰性能を評価するために作製する、高減衰部材のモデルとしての試験体を分解して示す分解斜視図である。It is a disassembled perspective view which decomposes | disassembles and shows the test body as a model of the high attenuation member produced in order to evaluate the attenuation performance of the high attenuation member which consists of the high attenuation composition of the Example of this invention, and a comparative example. 同図(a)(b)は、図1の試験体を変位させて変位量と荷重との関係を求めるための試験機の概略を説明する図である。FIGS. 7A and 7B are diagrams for explaining the outline of a testing machine for displacing the test body of FIG. 1 and obtaining the relationship between the displacement and the load. 図2の試験機を用いて試験体を変位させて求められる、変位量と荷重との関係を示すヒステリシスループの一例を示すグラフである。It is a graph which shows an example of the hysteresis loop which shows the relationship between the displacement amount and a load calculated | required by displacing a test body using the testing machine of FIG.

《高減衰組成物》
本発明の高減衰組成物は硫黄架橋性を有するジエン系ゴム、前記ジエン系ゴム100質量部あたり50質量部以下の硫黄架橋性を有しないエチレンプロピレン二元共重合ゴム、および架橋成分として硫黄架橋系の架橋成分のみを含むものである。
〈ジエン系ゴム〉
ジエン系ゴムとしては、例えば天然ゴム、スチレンブタジエンゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、アクリロニトリルブタジエンゴム等の、硫黄架橋性を有する種々のジエン系ゴムがいずれも使用可能である。中でも天然ゴム、および/またはポリイソプレンゴムが好ましく、特に入手がしやすく高減衰組成物をコスト安価に製造できるといった利点を有する天然ゴムが好ましい。
<< High damping composition >>
The high-damping composition of the present invention comprises a diene rubber having sulfur crosslinkability, an ethylene propylene binary copolymer rubber having no sulfur crosslinkability of not more than 50 parts by mass per 100 parts by mass of the diene rubber, and sulfur crosslinking as a crosslinking component. It contains only the crosslinking component of the system.
<Diene rubber>
As the diene rubber, any of various diene rubbers having sulfur crosslinkability such as natural rubber, styrene butadiene rubber, isoprene rubber, butadiene rubber, chloroprene rubber, and acrylonitrile butadiene rubber can be used. Of these, natural rubber and / or polyisoprene rubber are preferable, and natural rubber having an advantage that it is easily available and a highly-damping composition can be produced at low cost is preferable.

〈EPM〉
EPMとしては、エチレンとプロピレンの二元共重合ゴムであって、分子中に不飽和結合をもたないため硫黄架橋性を有しない種々のEPMが挙げられる。
(配合割合)
EPMの配合割合は、ジエン系ゴム100質量部あたり50質量部以下である必要がある。
<EPM>
Examples of the EPM include various EPMs which are binary copolymer rubbers of ethylene and propylene and have no sulfur crosslinkability because they have no unsaturated bond in the molecule.
(Mixing ratio)
The blending ratio of EPM needs to be 50 parts by mass or less per 100 parts by mass of the diene rubber.

EPMの配合割合がこの範囲を超える場合には、相対的にジエン系ゴムの割合が少なくなって、当該ジエン系ゴムの架橋物によるゴム弾性が十分に得られないため、却って高減衰部材の減衰性能が低下したり、大変形が加えられたあとの弾性率の低下が大きくなったりする。
これに対し、EPMの配合割合を上記の範囲とすることにより、当該EPMによる高減衰部材の粘性を向上する効果と、ジエン系ゴムの架橋物によるゴム弾性とのバランスをとって、高い減衰性能を有する上、大変形が加えられたあとの弾性率の低下ができるだけ小さい高減衰部材を形成できる。
When the blending ratio of the EPM exceeds this range, the ratio of the diene rubber is relatively small, and the rubber elasticity due to the crosslinked product of the diene rubber cannot be sufficiently obtained. The performance decreases, and the decrease in the elastic modulus after a large deformation is applied increases.
On the other hand, by setting the blending ratio of the EPM within the above range, the effect of improving the viscosity of the high damping member by the EPM and the rubber elasticity by the crosslinked product of the diene rubber are balanced, and high damping performance. In addition, it is possible to form a highly attenuating member in which the decrease in elastic modulus after large deformation is applied is as small as possible.

なおEPMの配合割合は、上記の範囲でもジエン系ゴム100質量部あたり10質量部以上、特に15質量部以上であるのが好ましい。
EPMの配合割合がこの範囲未満では、当該EPMを配合することによる、高減衰部材の粘性を向上する効果が十分に得られないため、高減衰部材の減衰性能が低下したり、大変形が加えられたあとの弾性率の低下が大きくなったりするおそれがある。
The blending ratio of EPM is preferably 10 parts by mass or more, particularly 15 parts by mass or more per 100 parts by mass of the diene rubber even in the above range.
If the blending ratio of the EPM is less than this range, the effect of improving the viscosity of the high damping member by blending the EPM cannot be sufficiently obtained, so that the damping performance of the high damping member is reduced or large deformation is added. There is a possibility that the decrease in the elastic modulus after being applied becomes large.

〈架橋成分〉
架橋成分は、先に説明したようにEPMを架橋させずにジエン系ゴムのみを選択的に架橋できる硫黄架橋系の架橋成分に限定される。
硫黄加硫系の架橋成分としては加硫剤、促進剤、および促進助剤を組み合わせたものが挙げられる。特に高減衰部材のゴム弾性が上昇して減衰性能が低下する問題を生じにくい加硫剤、促進剤、促進助剤を組み合わせるのが好ましい。
<Crosslinking component>
As described above, the crosslinking component is limited to a sulfur crosslinking component capable of selectively crosslinking only the diene rubber without crosslinking the EPM.
Examples of the sulfur-vulcanized crosslinking component include a combination of a vulcanizing agent, an accelerator, and an accelerator aid. In particular, it is preferable to combine a vulcanizing agent, a promoter, and a promoter aid that are unlikely to cause the problem that the rubber elasticity of the high damping member increases and the damping performance decreases.

このうち加硫剤としては、例えば硫黄や含硫黄有機化合物等が挙げられる。特に硫黄が好ましい。
促進剤としては、例えばスルフェンアミド系促進剤、チウラム系促進剤等が挙げられる。促進剤は、種類によって加硫促進のメカニズムが異なるため2種以上を併用するのが好ましい。
Among these, examples of the vulcanizing agent include sulfur and sulfur-containing organic compounds. In particular, sulfur is preferable.
Examples of the accelerator include sulfenamide accelerators and thiuram accelerators. It is preferable to use two or more accelerators in combination because the mechanism of vulcanization acceleration varies depending on the type.

このうちスルフェンアミド系促進剤としては、例えば大内新興化学工業(株)製のノクセラー(登録商標)NS〔N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド〕等が挙げられる。またチウラム系促進剤としては、例えば大内新興化学工業(株)製のノクセラーTBT〔テトラブチルチウラムジスルフィド〕等が挙げられる。
促進助剤としては例えば酸化亜鉛、ステアリン酸等が挙げられる。通常は両者を促進助剤として併用するのが好ましい。
Among these, examples of the sulfenamide-based accelerator include Noxeller (registered trademark) NS [N-tert-butyl-2-benzothiazolylsulfenamide] manufactured by Ouchi Shinko Chemical Industry Co., Ltd. Examples of the thiuram accelerator include Noxeller TBT [tetrabutylthiuram disulfide] manufactured by Ouchi Shinsei Chemical Co., Ltd.
Examples of the promoter aid include zinc oxide and stearic acid. Usually, it is preferable to use both of them as an auxiliary promoter.

加硫剤、促進剤、促進助剤の配合割合は特に限定されず、高減衰部材の用途等によって異なる減衰性能や物性等に応じて適宜調整すればよい。
ただし加硫剤の配合割合は、ジエン系ゴム100質量部あたり0.5質量部以上であるのが好ましく、3質量部以下であるのが好ましい。
またスルフェンアミド系促進剤の配合割合は、ジエン系ゴム100質量部あたり0.5質量部以上であるのが好ましく、3質量部以下であるのが好ましい。
The blending ratio of the vulcanizing agent, the accelerator, and the accelerator aid is not particularly limited, and may be adjusted as appropriate according to the attenuation performance and physical properties that vary depending on the use of the high attenuation member.
However, the blending ratio of the vulcanizing agent is preferably 0.5 parts by mass or more per 100 parts by mass of the diene rubber, and is preferably 3 parts by mass or less.
In addition, the blending ratio of the sulfenamide accelerator is preferably 0.5 parts by mass or more and preferably 3 parts by mass or less per 100 parts by mass of the diene rubber.

またチウラム系促進剤の配合割合は、ジエン系ゴム100質量部あたり0.5質量部以上であるのが好ましく、3質量部以下であるのが好ましい。
酸化亜鉛の配合割合は、ジエン系ゴム100質量部あたり1質量部以上であるのが好ましく、5質量部以下であるのが好ましい。
さらにステアリン酸の配合割合は、ジエン系ゴム100質量部あたり1質量部以上であるのが好ましく、3質量部以下であるのが好ましい。
The blending ratio of the thiuram accelerator is preferably 0.5 parts by mass or more and preferably 3 parts by mass or less per 100 parts by mass of the diene rubber.
The blending ratio of zinc oxide is preferably 1 part by mass or more and preferably 5 parts by mass or less per 100 parts by mass of the diene rubber.
Furthermore, the blending ratio of stearic acid is preferably 1 part by mass or more and preferably 3 parts by mass or less per 100 parts by mass of the diene rubber.

〈その他の成分〉
本発明の高減衰組成物には、上記の各成分に加えてさらにシリカ等の無機充てん剤やシラン化合物、軟化剤、粘着性付与剤、老化防止剤等の各種添加剤を、適宜の割合で配合してもよい。
(シリカ)
シリカとしては、その製法によって分類される湿式法シリカ、乾式法シリカのいずれを用いてもよい。またシリカとしては、高減衰部材の減衰性能を向上する効果をさらに向上することを考慮するとBET比表面積が100〜400m/g、特に200〜250m/gであるものを用いるのが好ましい。BET比表面積は、例えば柴田化学器械工業(株)製の迅速表面積測定装置SA−1000等を使用して、吸着気体として窒素ガスを用いる気相吸着法で測定した値でもって表すこととする。
<Other ingredients>
In the high attenuation composition of the present invention, in addition to each of the above components, various additives such as an inorganic filler such as silica, a silane compound, a softener, a tackifier, and an anti-aging agent are added at an appropriate ratio. You may mix | blend.
(silica)
As the silica, any of wet process silica and dry process silica classified by the production method may be used. In addition, it is preferable to use silica having a BET specific surface area of 100 to 400 m 2 / g, particularly 200 to 250 m 2 / g in consideration of further improving the effect of improving the damping performance of the high damping member. The BET specific surface area is expressed by a value measured by a gas phase adsorption method using nitrogen gas as an adsorbed gas, for example, using a rapid surface area measuring device SA-1000 manufactured by Shibata Chemical Instruments Co., Ltd.

シリカとしては、例えば東ソー・シリカ(株)製のNipSil(ニップシール)KQ等が挙げられる。
シリカの配合割合は、ジエン系ゴム100質量部あたり90質量部以上であるのが好ましく、150質量部以下であるのが好ましい。
シリカの配合割合がこの範囲未満では、高減衰部材に良好な減衰性能を付与できないおそれがある。
Examples of the silica include NipSil (nip seal) KQ manufactured by Tosoh Silica Co., Ltd.
The blending ratio of silica is preferably 90 parts by mass or more and preferably 150 parts by mass or less per 100 parts by mass of the diene rubber.
If the blending ratio of silica is less than this range, there is a possibility that good damping performance cannot be imparted to the high damping member.

またシリカの配合割合が上記の範囲を超える場合には高減衰組成物の加工性が低下したり、高減衰部材を繰り返し大変形させた際の耐久性が低下して、当該高減衰部材が破損したりするといった問題を生じるおそれがある。
これに対しシリカの配合割合を上記の範囲とすることで、高減衰部材にできるだけ良好な減衰性能を付与しながら、当該高減衰部材を繰り返し大変形させた際の耐久性を向上したり、高減衰組成物にできるだけ良好な加工性を付与したりできる。
In addition, when the blending ratio of silica exceeds the above range, the workability of the high attenuation composition is reduced, or the durability when the high attenuation member is repeatedly largely deformed is reduced, and the high attenuation member is damaged. There is a risk of causing problems.
On the other hand, by making the blending ratio of silica in the above range, it is possible to improve durability when repeatedly deforming the high attenuation member repeatedly while giving the high attenuation member as good attenuation performance as possible. As good workability as possible can be imparted to the damping composition.

(無機充てん剤)
シリカ以外の他の無機充てん剤としては、例えばカーボンブラック等が挙げられる。
またカーボンブラックとしては、その製造方法等によって分類される種々のカーボンブラックのうち、充てん剤として機能しうるカーボンブラックの1種または2種以上が使用可能である。
(Inorganic filler)
Examples of inorganic fillers other than silica include carbon black.
As the carbon black, one or more carbon blacks that can function as a filler can be used among various carbon blacks classified according to the production method thereof.

カーボンブラックの配合割合は、ジエン系ゴム100質量部あたり1質量部以上であるのが好ましく、5質量部以下であるのが好ましい。
(シラン化合物)
シラン化合物としては、式(a):
The blending ratio of carbon black is preferably 1 part by mass or more and preferably 5 parts by mass or less per 100 parts by mass of the diene rubber.
(Silane compound)
As the silane compound, the formula (a):

Figure 2015160903
Figure 2015160903

〔式中、R、R、R、およびRのうちの少なくとも1つはアルコキシ基を示す。ただしR、R、R、およびRが同時にアルコキシ基であることはなく、他はアルキル基またはアリール基を示す。〕
で表され、シランカップリング剤やシリル化剤等の、シリカの分散剤として機能しうる種々のシラン化合物が挙げられる。
[Wherein, at least one of R 1 , R 2 , R 3 , and R 4 represents an alkoxy group. However, R 1 , R 2 , R 3 , and R 4 are not simultaneously an alkoxy group, and the other represents an alkyl group or an aryl group. ]
And various silane compounds that can function as a silica dispersant, such as a silane coupling agent and a silylating agent.

特にヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン等のアルコキシシランが好ましい。
シラン化合物の配合割合は特に限定されないが、シリカ100質量部あたり5質量部以上であるのが好ましく、25質量部以下であるのが好ましい。
(軟化剤)
軟化剤は高減衰組成物の加工性をさらに向上するための成分であって、当該軟化剤としては、例えば室温(2〜35℃)で液状を呈する液状ゴムが挙げられる。また液状ゴムとしては、例えば液状ポリイソプレンゴム、液状ニトリルゴム(液状NBR)、液状スチレンブタジエンゴム(液状SBR)等の1種または2種以上が挙げられる。
In particular, alkoxysilanes such as hexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and diphenyldimethoxysilane are preferred.
The blending ratio of the silane compound is not particularly limited, but it is preferably 5 parts by mass or more and preferably 25 parts by mass or less per 100 parts by mass of silica.
(Softener)
The softening agent is a component for further improving the workability of the highly attenuated composition, and examples of the softening agent include liquid rubber that exhibits a liquid state at room temperature (2 to 35 ° C.). Examples of the liquid rubber include one or more of liquid polyisoprene rubber, liquid nitrile rubber (liquid NBR), liquid styrene butadiene rubber (liquid SBR), and the like.

このうち液状ポリイソプレンゴムが好ましい。液状ポリイソプレンゴムとしては、例えば(株)クラレ製のクラプレン(登録商標)LIR−30(数平均分子量:28000)、LIR−50(数平均分子量:54000)等が挙げられる。
液状ポリイソプレンゴムの配合割合は、ジエン系ゴム100質量部あたり5質量部以上であるのが好ましく、50質量部以下であるのが好ましい。
Of these, liquid polyisoprene rubber is preferred. Examples of the liquid polyisoprene rubber include Kuraray (trademark) LIR-30 (number average molecular weight: 28000) and LIR-50 (number average molecular weight: 54000) manufactured by Kuraray Co., Ltd.
The blending ratio of the liquid polyisoprene rubber is preferably 5 parts by mass or more per 100 parts by mass of the diene rubber, and is preferably 50 parts by mass or less.

配合割合がこの範囲未満では、当該液状ポリイソプレンゴムを配合することによる、高減衰部材の剛性を低下させる効果が十分に得られないおそれがある。一方、液状ポリイソプレンゴムの配合割合が上記の範囲を超える場合には高減衰部材の減衰性能が低下するおそれがある。
また他の軟化剤としては、例えばクマロンインデン樹脂等が挙げられる。
When the blending ratio is less than this range, there is a possibility that the effect of reducing the rigidity of the high damping member by blending the liquid polyisoprene rubber cannot be sufficiently obtained. On the other hand, when the blending ratio of the liquid polyisoprene rubber exceeds the above range, the damping performance of the high damping member may be lowered.
Examples of other softening agents include coumarone indene resin.

クマロンインデン樹脂としては、主にクマロンとインデンの重合物からなり、平均分子量1000以下程度の比較的低分子量であって、軟化剤として機能しうる種々のクマロンインデン樹脂が挙げられる。
クマロンインデン樹脂としては、例えば日塗化学(株)製のニットレジン(登録商標)クマロンG−90〔平均分子量:770、軟化点:90℃、酸価:1.0KOHmg/g以下、水酸基価:25KOHmg/g、臭素価9g/100g〕、G−100N〔平均分子量:730、軟化点:100℃、酸価:1.0KOHmg/g以下、水酸基価:25KOHmg/g、臭素価11g/100g〕、V−120〔平均分子量:960、軟化点:120℃、酸価:1.0KOHmg/g以下、水酸基価:30KOHmg/g、臭素価6g/100g〕、V−120S〔平均分子量:950、軟化点:120℃、酸価:1.0KOHmg/g以下、水酸基価:30KOHmg/g、臭素価7g/100g〕等の1種または2種以上が挙げられる。
Examples of the coumarone indene resin include various coumarone indene resins that are mainly composed of a polymer of coumarone and indene, have a relatively low molecular weight of about 1000 or less in average molecular weight, and can function as a softening agent.
As the coumarone indene resin, for example, Knit Resin (registered trademark) Coumarone G-90 manufactured by Nikkiso Chemical Co., Ltd. [average molecular weight: 770, softening point: 90 ° C., acid value: 1.0 KOHmg / g or less, hydroxyl value] : 25 KOH mg / g, bromine number 9 g / 100 g], G-100N [average molecular weight: 730, softening point: 100 ° C., acid value: 1.0 KOH mg / g or less, hydroxyl value: 25 KOH mg / g, bromine number 11 g / 100 g] V-120 [average molecular weight: 960, softening point: 120 ° C., acid value: 1.0 KOH mg / g or less, hydroxyl value: 30 KOH mg / g, bromine value 6 g / 100 g], V-120S [average molecular weight: 950, softening Point: 120 ° C., acid value: 1.0 KOH mg / g or less, hydroxyl value: 30 KOH mg / g, bromine value 7 g / 100 g] and the like.

クマロンインデン樹脂の配合割合は特に限定されないが、ジエン系ゴム100質量部あたり3質量部以上であるのが好ましく、20質量部以下であるのが好ましい。
(粘着性付与剤)
粘着性付与剤としては、例えば石油樹脂等が挙げられる。また石油樹脂としては、例えば丸善石油化学(株)製のマルカレッツ(登録商標)M890A〔ジシクロペンタジエン系石油樹脂、軟化点:105℃〕等が好ましい。
The blending ratio of the coumarone indene resin is not particularly limited, but it is preferably 3 parts by mass or more and preferably 20 parts by mass or less per 100 parts by mass of the diene rubber.
(Tackifier)
Examples of the tackifier include petroleum resins. As the petroleum resin, for example, Marcaretz (registered trademark) M890A [dicyclopentadiene-based petroleum resin, softening point: 105 ° C.] manufactured by Maruzen Petrochemical Co., Ltd. is preferable.

石油樹脂の配合割合は特に限定されないが、ジエン系ゴム100質量部あたり3質量部以上であるのが好ましく、30質量部以下であるのが好ましい。
(老化防止剤)
老化防止剤としては、例えばベンズイミダゾール系、キノン系、ポリフェノール系、アミン系等の各種老化防止剤の1種または2種以上が挙げられる。特にベンズイミダゾール系老化防止剤とキノン系老化防止剤を併用するのが好ましい。
The blending ratio of the petroleum resin is not particularly limited, but it is preferably 3 parts by mass or more and preferably 30 parts by mass or less per 100 parts by mass of the diene rubber.
(Anti-aging agent)
As an anti-aging agent, 1 type, or 2 or more types of various anti-aging agents, such as a benzimidazole type, a quinone type, a polyphenol type, and an amine type, are mentioned, for example. In particular, it is preferable to use a benzimidazole antioxidant and a quinone antioxidant together.

このうちベンズイミダゾール系老化防止剤としては、例えば大内新興化学工業(株)製のノクラック(登録商標)MB〔2−メルカプトベンズイミダゾール〕等が挙げられる。またキノン系老化防止剤としては、例えば丸石化学品(株)製のアンチゲンFR〔芳香族ケトン−アミン縮合物〕等が挙げられる。
両老化防止剤の配合割合は特に限定されないが、ベンズイミダゾール系老化防止剤は、ジエン系ゴム100質量部あたり0.5質量部以上であるのが好ましく、5質量部以下であるのが好ましい。またキノン系老化防止剤は、ジエン系ゴム100質量部あたり0.5質量部以上であるのが好ましく、5質量部以下であるのが好ましい。
Among them, examples of the benzimidazole-based anti-aging agent include NOCRACK (registered trademark) MB [2-mercaptobenzimidazole] manufactured by Ouchi Shinko Chemical Industry Co., Ltd. Examples of the quinone anti-aging agent include Antigen FR [aromatic ketone-amine condensate] manufactured by Cobblestone Chemical Co., Ltd.
The blending ratio of both anti-aging agents is not particularly limited, but the benzimidazole type anti-aging agent is preferably 0.5 parts by mass or more and preferably 5 parts by mass or less per 100 parts by mass of the diene rubber. The quinone anti-aging agent is preferably 0.5 parts by mass or more, preferably 5 parts by mass or less, per 100 parts by mass of the diene rubber.

本発明の高減衰組成物を用いて製造できる高減衰部材としては、例えばビル等の建築物の基礎に組み込まれる免震用の免震支承、建築物の構造中に組み込まれる制震(制振)用の制震ダンパ、吊橋や斜張橋等のケーブルの制振部材、産業機械や航空機、自動車、鉄道車両等の防振部材、コンピュータやその周辺機器類あるいは家庭用電気機器類等の防振部材、さらには自動車用タイヤのトレッド等が挙げられる。   Examples of the high-damping member that can be manufactured using the high-damping composition of the present invention include seismic isolation bearings incorporated into the foundations of buildings such as buildings, and vibration control (vibration damping) incorporated into the structure of buildings. ) Seismic dampers, cable damping members such as suspension bridges and cable-stayed bridges, anti-vibration members for industrial machines, aircraft, automobiles, railway vehicles, etc., computers, peripheral equipment, and household electrical equipment Examples thereof include a vibration member, and a tread of an automobile tire.

本発明によればジエン系ゴム、EPM、硫黄架橋系の架橋成分その他、各種成分の種類とその組み合わせおよび配合割合を調整することにより、それぞれの用途に適した優れた減衰性能を有する高減衰部材を得ることができる。
〈制震ダンパ〉
特に本発明の高減衰組成物を形成材料として用いて、建築物の構造中に組み込まれる制震ダンパの粘弾性体を形成した場合には、当該粘弾性体が高い減衰性能を有するため、かかる粘弾性体を含む制震ダンパの減衰性能を向上して、その全体を小型化したり、1つの建築物に組み込む数を減らしたりしても、従来と同等またはそれ以上の制震性能を得ることができる。
According to the present invention, by adjusting the diene rubber, EPM, sulfur cross-linking component and other various component types, their combinations and blending ratios, the high-damping member having excellent damping performance suitable for each application Can be obtained.
<Seismic damper>
In particular, when the viscoelastic body of a vibration control damper incorporated in the structure of a building is formed using the high damping composition of the present invention as a forming material, the viscoelastic body has a high damping performance, so that Even if the damping performance of a damping damper including a viscoelastic body is improved and the whole is downsized or the number incorporated in one building is reduced, the damping performance equivalent to or higher than that of the conventional one can be obtained. Can do.

またジエン系ゴムは、先に説明したように粘弾性体の減衰性能や物性等の温度依存性を小さくできることから、例えば温度差の大きい建築物の外壁付近に制震ダンパを設置することもできる。
したがって本発明によれば、建築物等における、制震ダンパによる制震性能の設計の自由度を拡げることもできる。
In addition, since the diene rubber can reduce the temperature dependence of the damping performance and physical properties of the viscoelastic body as described above, for example, a damping damper can be installed near the outer wall of a building having a large temperature difference. .
Therefore, according to this invention, the freedom degree of the design of the damping performance by a damping damper in a building etc. can also be expanded.

〈免震支承〉
また本発明の高減衰組成物と形成材料として用いて、建築物の基礎に組み込まれる免震用の免震支承の粘弾性体を形成した場合には、やはり当該粘弾性体が高い減衰性能を有するため、かかる粘弾性体を含む免震支承の減衰性能を向上して、その全体を小型化したり、1つの建築物に組み込む数を減らしたりしても、従来と同等またはそれ以上の免震性能を得ることができる。
<Seismic isolation support>
In addition, when the viscoelastic body of a base isolation bearing for base isolation incorporated in the foundation of a building is formed using the high damping composition of the present invention and a forming material, the viscoelastic body also has a high damping performance. Therefore, even if the damping performance of a seismic isolation bearing including such a viscoelastic body is improved and the whole is downsized or the number incorporated in one building is reduced, the seismic isolation equivalent to or higher than the conventional one Performance can be obtained.

〈実施例1〉
(高減衰組成物の調製)
ジエン系ゴムとしての天然ゴム〔SMR(Standard Malaysian Rubber)−CV60〕100質量部に、EPM〔三井化学(株)製の三井EPT 0045、エチレン含量:51質量%〕15質量部と、下記表1に示す各成分とを配合し、密閉式混練機を用いて混練して高減衰組成物を調製した。なお表1中の質量部は、それぞれジエン系ゴムとしての天然ゴム100質量部あたりの質量部である。
<Example 1>
(Preparation of highly attenuated composition)
100 parts by mass of natural rubber (SMR (Standard Malaysian Rubber) -CV60) as a diene rubber, 15 parts by mass of EPM [Mitsui EPT 0045 manufactured by Mitsui Chemicals, Inc., ethylene content: 51% by mass], and the following Table 1 Were mixed with each other and kneaded using a closed kneader to prepare a highly attenuated composition. In addition, the mass part in Table 1 is a mass part per 100 mass parts of natural rubber as a diene rubber, respectively.

Figure 2015160903
Figure 2015160903

表中の各成分は下記のとおり。
シリカ:東ソー・シリカ(株)製のNipSil(ニップシール)KQ
シラン化合物:フェニルトリエトキシシラン、信越化学工業(株)製のKBE−103
カーボンブラック:三菱化学(株)製のダイアブラック(登録商標)G
ベンズイミダゾール系老化防止剤:2−メルカプトベンズイミダゾール、大内新興化学工業(株)製のノクラックMB
キノン系老化防止剤:丸石化学品(株)製のアンチゲンFR
酸化亜鉛2種:三井金属鉱業(株)製
ステアリン酸:日油(株)製の「つばき」
クマロン樹脂:軟化点90℃、日塗化学(株)製のエスクロン(登録商標)G-90
ジシクロペンタジエン系石油樹脂:軟化点105℃、丸善石油化学(株)製のマルカレッツ(登録商標)M890A
5%オイル処理粉末硫黄:加硫剤、鶴見化学工業(株)製
スルフェンアミド系加硫促進剤:N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学工業(株)製のノクセラー(登録商標)NS
チウラム系加硫促進剤:テトラブチルチウラムジスルフィド、大内新興化学工業(株)製のノクセラーTBT−N
〈実施例2、3〉
EPMの配合割合を、天然ゴム100質量部あたり10質量部(実施例2)、50質量部(実施例3)としたこと以外は実施例1と同様にして高減衰組成物を調製した。
Each component in the table is as follows.
Silica: NipSil (Nip Seal) KQ manufactured by Tosoh Silica Corporation
Silane compound: Phenyltriethoxysilane, KBE-103 manufactured by Shin-Etsu Chemical Co., Ltd.
Carbon Black: Dia Black (registered trademark) G manufactured by Mitsubishi Chemical Corporation
Benzimidazole anti-aging agent: 2-mercaptobenzimidazole, NOCRACK MB manufactured by Ouchi Shinsei Chemical Co., Ltd.
Quinone anti-aging agent: Antigen FR manufactured by Maruishi Chemical Co., Ltd.
Two types of zinc oxide: manufactured by Mitsui Mining & Smelting Co., Ltd. Stearic acid: "Tsubaki" manufactured by NOF Corporation
Coumarone resin: softening point 90 ° C., Nikko Chemical Co., Ltd. Escron (registered trademark) G-90
Dicyclopentadiene-based petroleum resin: softening point 105 ° C., Marukaretsu (registered trademark) M890A manufactured by Maruzen Petrochemical Co., Ltd.
5% oil-treated powder sulfur: vulcanizing agent, manufactured by Tsurumi Chemical Industry Co., Ltd. Sulfenamide vulcanization accelerator: N-tert-butyl-2-benzothiazolylsulfenamide, Ouchi Shinsei Chemical Industry Co., Ltd. Noxeller (registered trademark) NS
Thiuram-based vulcanization accelerator: Tetrabutylthiuram disulfide, Noxeller TBT-N manufactured by Ouchi Shinsei Chemical Co., Ltd.
<Examples 2 and 3>
A highly attenuated composition was prepared in the same manner as in Example 1 except that the blending ratio of EPM was 10 parts by mass (Example 2) and 50 parts by mass (Example 3) per 100 parts by mass of natural rubber.

〈比較例1〉
EPMを配合しなかったこと以外は実施例1と同様にして高減衰組成物を調製した。
〈比較例2〉
EPMの配合割合を、天然ゴム100質量部あたり60質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。
<Comparative example 1>
A highly attenuated composition was prepared in the same manner as in Example 1 except that EPM was not blended.
<Comparative example 2>
A highly attenuated composition was prepared in the same manner as in Example 1 except that the blending ratio of EPM was 60 parts by mass per 100 parts by mass of natural rubber.

〈減衰特性試験〉
(試験体の作製)
実施例、比較例で調製した高減衰組成物をシート状に押出成形したのち打ち抜いて、図1に示すように円板1(厚み5mm×直径25mm)を作製し、この円板1の表裏両面に、それぞれ加硫接着剤を介して厚み6mm×縦44mm×横44mmの矩形平板状の鋼板2を重ねて積層方向に加圧しながら150℃に加熱して円板1を形成する高減衰組成物を加硫させるとともに円板1を2枚の鋼板2と加硫接着させて、高減衰部材のモデルとしての減衰特性評価用の試験体3を作製した。
<Attenuation characteristic test>
(Preparation of test specimen)
The high attenuation compositions prepared in Examples and Comparative Examples were extruded into sheets and then punched to produce a disk 1 (thickness 5 mm × diameter 25 mm), as shown in FIG. Further, a highly attenuating composition in which a rectangular plate-shaped steel plate 2 having a thickness of 6 mm, a length of 44 mm, and a width of 44 mm is stacked on each other through a vulcanizing adhesive and heated to 150 ° C. while pressing in the laminating direction to form the disk 1. And the disc 1 was vulcanized and bonded to the two steel plates 2 to produce a specimen 3 for evaluating damping characteristics as a model of a high damping member.

(変位試験)
図2(a)に示すように上記の試験体3を2個用意し、この2個の試験体3を、一方の鋼板2を介して1枚の中央固定治具4にボルトで固定するとともに、それぞれの試験体3の他方の鋼板2に、1枚ずつの左右固定治具5をボルトで固定した。そして中央固定治具4を、図示しない試験機の上側の固定アーム6に、ジョイント7を介してボルトで固定し、かつ2枚の左右固定治具5を、上記試験機の下側の可動盤8に、ジョイント9を介してボルトで固定した。
(Displacement test)
As shown in FIG. 2 (a), two test bodies 3 are prepared, and the two test bodies 3 are fixed to one central fixing jig 4 with bolts via one steel plate 2. The left and right fixing jigs 5 were fixed to the other steel plate 2 of each test body 3 with bolts. The center fixing jig 4 is fixed to the upper fixing arm 6 of the testing machine (not shown) with a bolt via a joint 7, and the two left and right fixing jigs 5 are moved to the lower movable plate of the testing machine. 8 was fixed with bolts through a joint 9.

次にこの状態で、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向に押し上げるように変位させて、円板1を図2(b)に示すように厚み方向と直交方向に歪み変形させた状態とし、次いでこの状態から、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向と反対方向に引き下げるように変位させて図2(a)に示す状態に戻す操作を1サイクルとして円板1を繰り返し歪み変形、すなわち振動させた際の、円板1の厚み方向の変位量(mm)と荷重(N)との関係を示すヒステリシスループH(図3参照)を求めた。   Next, in this state, the movable platen 8 is displaced so as to be pushed up in the direction of the fixed arm 6 as indicated by a white arrow in the drawing, and the disk 1 is moved in the thickness direction as shown in FIG. As shown in FIG. 2 (a), a state is obtained in which the strain is deformed in the orthogonal direction, and from this state, the movable platen 8 is displaced so as to be pulled down in the direction opposite to the direction of the fixed arm 6 as indicated by a white arrow. Hysteresis loop H indicating the relationship between the displacement (mm) in the thickness direction of the disk 1 and the load (N) when the disk 1 is repeatedly subjected to strain deformation, that is, when the operation of returning to the state shown in FIG. (See FIG. 3).

測定は、温度20℃の環境下、上記の操作を3サイクル実施して3回目の値を求めた。また最大変位量は、円板1を挟む2枚の鋼板2の、当該円板1の厚み方向と直交方向のずれ量が円板1の厚みの100%となるように設定した。
次いで、上記の測定により求めた図3に示すヒステリシスループHのうち最大変位点と最小変位点とを結ぶ、図中に太線の実線で示す直線Lの傾きKeq(N/mm)を求め、この傾きKeq(N/mm)と、円板1の厚みT(mm)と、円板1の断面積A(mm)とから、式(1):
In the measurement, the above operation was carried out for 3 cycles under an environment of a temperature of 20 ° C., and a third value was obtained. The maximum amount of displacement was set so that the deviation of the two steel plates 2 sandwiching the disc 1 in the direction perpendicular to the thickness direction of the disc 1 was 100% of the thickness of the disc 1.
Then, connecting the maximum displacement point and the minimum displacement point of the hysteresis loop H shown in FIG. 3 obtained by the above measurement, determine the slope Keq (N / mm) of the straight line L 1 shown by a thick solid line in the figure, From the inclination Keq (N / mm), the thickness T (mm) of the disc 1, and the cross-sectional area A (mm 2 ) of the disc 1, the formula (1):

Figure 2015160903
Figure 2015160903

により等価せん断弾性率Geq(N/mm)を求めた。そして比較例1における等価せん断弾性率Geq(N/mm)を100としたときの、各実施例の等価せん断弾性率Geq(N/mm)の相対値を求めた。
また図3中に斜線を付して示した、ヒステリシスループHの全表面積で表される吸収エネルギー量ΔWと、同図中に網線を付して示した、直線Lと、グラフの横軸と、直線LとヒステリシスループHとの交点から横軸におろした垂線Lとで囲まれた領域の表面積で表される弾性歪みエネルギーWとから、式(2):
The equivalent shear modulus Geq (N / mm 2 ) was determined by Then, the relative value of the equivalent shear elastic modulus Geq (N / mm 2 ) of each example when the equivalent shear elastic modulus Geq (N / mm 2 ) in Comparative Example 1 was set to 100 was obtained.
Also, the absorbed energy amount ΔW represented by the total surface area of the hysteresis loop H shown with diagonal lines in FIG. 3, the straight line L 1 shown with a mesh line in FIG. From the axis and the elastic strain energy W represented by the surface area of the region surrounded by the perpendicular L 2 drawn from the intersection of the straight line L 1 and the hysteresis loop H to the horizontal axis, the formula (2):

Figure 2015160903
Figure 2015160903

により等価減衰定数Heqを求めた。等価減衰定数Heqが大きいほど、試験体3は減衰性能に優れていると判定できる。そこで比較例1における等価減衰定数Heqを100としたときの、各実施例の等価減衰定数Heqの相対値を求め、かかる相対値が102未満のものを不良、102以上のものを良好、105以上のものを特に良好と評価した。
(大変形後の弾性率測定)
上記の測定をして一定時間静置後に同じずれ量100%での等価せん断弾性率Geq(N/mm)を求め、その直後にずれ量300%の大変形を3サイクル繰り返したのち、再びずれ量100%での等価せん断弾性率Geq′(N/mm)を求めた。そして式(3):
Thus, an equivalent damping constant Heq was obtained. It can be determined that the greater the equivalent damping constant Heq is, the better the specimen 3 is in damping performance. Accordingly, when the equivalent attenuation constant Heq in Comparative Example 1 is set to 100, the relative value of the equivalent attenuation constant Heq in each example is obtained, and those having a relative value less than 102 are poor, those having 102 or more are good, and those having 105 or more are good. Were evaluated as particularly good.
(Measurement of elastic modulus after large deformation)
After the above measurement, after standing for a certain period of time, the equivalent shear elastic modulus Geq (N / mm 2 ) at the same deviation amount of 100% was determined. Immediately thereafter, a large deformation with a deviation amount of 300% was repeated three cycles, and then again. The equivalent shear modulus Geq ′ (N / mm 2 ) at a deviation amount of 100% was determined. And equation (3):

Figure 2015160903
Figure 2015160903

により大変形後の弾性率の保持率(%)を求めた。保持率が大きいほど、試験体3は大変形が加えられたあとの弾性率の低下が小さいと判定できる。そこで比較例1における保持率を100としたときの、各実施例の保持率の相対値を求め、かかる相対値が102未満のものを不良、102以上のものを良好、105以上のものを特に良好と評価した。
以上の結果を表2に示す。
Thus, the retention rate (%) of the elastic modulus after large deformation was obtained. It can be determined that the lower the elastic modulus after the large deformation is applied, the smaller the retention rate is. Therefore, when the retention rate in Comparative Example 1 is set to 100, the relative value of the retention rate of each example is obtained, and when the relative value is less than 102, the relative value is poor, the 102 or higher is good, and the 105 or higher is particularly Evaluated as good.
The results are shown in Table 2.

Figure 2015160903
Figure 2015160903

表2の実施例1〜3、比較例1の結果より、ジエン系ゴムとしての天然ゴムにEPMを加え、硫黄架橋系の架橋成分によってジエン系ゴムのみを選択的に架橋させることにより、高い減衰性能を有する上、大変形が加えられたあとの弾性率の低下ができるだけ小さい高減衰部材を形成できることが判った。
ただし実施例1〜3、比較例2の結果より、かかる効果を得るためには、EPMの配合割合を天然ゴム100質量部あたり50質量部以下とする必要があることが判った。
From the results of Examples 1 to 3 and Comparative Example 1 in Table 2, EPM is added to natural rubber as a diene rubber, and only the diene rubber is selectively crosslinked by a sulfur crosslinking system crosslinking component. It has been found that it is possible to form a high-damping member that has performance and that has as little decrease in elastic modulus as possible after large deformation.
However, from the results of Examples 1 to 3 and Comparative Example 2, it was found that the blending ratio of EPM needs to be 50 parts by mass or less per 100 parts by mass of natural rubber in order to obtain such an effect.

さらに実施例1〜3の結果より、上記の効果をさらに向上するためには、EPMの配合割合を天然ゴム100質量部あたり10質量部以上、特に15質量部以上とするのが好ましいことが判った。   Further, from the results of Examples 1 to 3, it was found that in order to further improve the above effect, it is preferable that the blending ratio of EPM is 10 parts by mass or more, particularly 15 parts by mass or more per 100 parts by mass of natural rubber. It was.

H ヒステリシスループ
直線
垂線
W エネルギー
ΔW 吸収エネルギー量
1 円板
2 鋼板
3 試験体
4 中央固定治具
5 左右固定治具
6 固定アーム
7 ジョイント
8 可動盤
9 ジョイント
H Hysteresis loop L 1 straight line L 2 perpendicular line W energy ΔW absorbed energy amount 1 disc 2 steel plate 3 specimen 4 center fixture 5 left fixture 6 fixture arm 7 joint 8 movable platen 9 joint

Claims (5)

硫黄架橋性を有するジエン系ゴム、前記ジエン系ゴム100質量部あたり50質量部以下の硫黄架橋性を有しないエチレンプロピレン二元共重合ゴム、および架橋成分として硫黄架橋系の架橋成分のみを含む高減衰組成物。   A diene rubber having sulfur crosslinkability, an ethylene propylene binary copolymer rubber having no sulfur crosslinkability of not more than 50 parts by mass per 100 parts by mass of the diene rubber, and a high content containing only a sulfur crosslinkable crosslinking component as a crosslinking component Attenuating composition. 前記エチレンプロピレン二元共重合ゴムの配合割合は、前記ジエン系ゴム100質量部あたり15質量部以上である請求項1に記載の高減衰組成物。   The high attenuation composition according to claim 1, wherein a blending ratio of the ethylene-propylene binary copolymer rubber is 15 parts by mass or more per 100 parts by mass of the diene rubber. 前記ジエン系ゴムは天然ゴム、およびイソプレンゴムからなる群より選ばれた少なくとも1種である請求項1または2に記載の高減衰組成物。   The high-damping composition according to claim 1 or 2, wherein the diene rubber is at least one selected from the group consisting of natural rubber and isoprene rubber. 前記請求項1ないし3のいずれか1項に記載の高減衰組成物からなる粘弾性体を備える制震ダンパ。   A seismic damper comprising a viscoelastic body made of the high damping composition according to any one of claims 1 to 3. 前記請求項1ないし3のいずれか1項に記載の高減衰組成物からなる粘弾性体を備える免震支承。   A base-isolated bearing comprising a viscoelastic body made of the high damping composition according to any one of claims 1 to 3.
JP2014037027A 2014-02-27 2014-02-27 High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing Pending JP2015160903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014037027A JP2015160903A (en) 2014-02-27 2014-02-27 High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037027A JP2015160903A (en) 2014-02-27 2014-02-27 High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing

Publications (1)

Publication Number Publication Date
JP2015160903A true JP2015160903A (en) 2015-09-07

Family

ID=54184238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037027A Pending JP2015160903A (en) 2014-02-27 2014-02-27 High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing

Country Status (1)

Country Link
JP (1) JP2015160903A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106995537A (en) * 2017-05-10 2017-08-01 国网河南唐河县供电公司 A kind of generator rubber beam and preparation method thereof
US11059264B2 (en) 2018-03-19 2021-07-13 Avery Dennison Corporation Multilayer constrained-layer damping
US11701863B2 (en) 2018-05-17 2023-07-18 Avery Dennison Corporation Partial coverage multilayer damping laminate
US11713406B2 (en) 2016-09-20 2023-08-01 Avery Dennison Corporation Multilayer tape

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224383A (en) * 1986-03-26 1987-10-02 株式会社ブリヂストン Grip
JPH02167351A (en) * 1988-12-21 1990-06-27 Tokai Rubber Ind Ltd Diene-based rubber excellent in ozone resistance
JPH10231383A (en) * 1997-02-19 1998-09-02 Fujikura Ltd Rubber composition for earthquake-proof laminated rubber
JP2001193775A (en) * 1999-11-01 2001-07-17 Tokai Rubber Ind Ltd Vibration-proof rubber and its manufacturing method
JP2004269839A (en) * 2003-03-10 2004-09-30 Hiroshima Kasei Ltd High damping rubber composition for support
US6858675B1 (en) * 1999-11-01 2005-02-22 Tokai Rubber Industries, Ltd. Vibration damping rubber member and process of producing the same
JP2006052282A (en) * 2004-08-11 2006-02-23 Dow Corning Toray Co Ltd Rubber composition for vibration-proof or quake-isolation, method for producing the composition, rubber product for vibration-proof or quake-isolation and method for molding the product
JP2010260933A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Rubber composition for seismic isolation structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224383A (en) * 1986-03-26 1987-10-02 株式会社ブリヂストン Grip
JPH02167351A (en) * 1988-12-21 1990-06-27 Tokai Rubber Ind Ltd Diene-based rubber excellent in ozone resistance
JPH10231383A (en) * 1997-02-19 1998-09-02 Fujikura Ltd Rubber composition for earthquake-proof laminated rubber
JP2001193775A (en) * 1999-11-01 2001-07-17 Tokai Rubber Ind Ltd Vibration-proof rubber and its manufacturing method
US6858675B1 (en) * 1999-11-01 2005-02-22 Tokai Rubber Industries, Ltd. Vibration damping rubber member and process of producing the same
JP2004269839A (en) * 2003-03-10 2004-09-30 Hiroshima Kasei Ltd High damping rubber composition for support
JP2006052282A (en) * 2004-08-11 2006-02-23 Dow Corning Toray Co Ltd Rubber composition for vibration-proof or quake-isolation, method for producing the composition, rubber product for vibration-proof or quake-isolation and method for molding the product
JP2010260933A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Rubber composition for seismic isolation structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11713406B2 (en) 2016-09-20 2023-08-01 Avery Dennison Corporation Multilayer tape
CN106995537A (en) * 2017-05-10 2017-08-01 国网河南唐河县供电公司 A kind of generator rubber beam and preparation method thereof
US11059264B2 (en) 2018-03-19 2021-07-13 Avery Dennison Corporation Multilayer constrained-layer damping
US11701863B2 (en) 2018-05-17 2023-07-18 Avery Dennison Corporation Partial coverage multilayer damping laminate

Similar Documents

Publication Publication Date Title
JP6261131B2 (en) High damping composition, seismic damper and seismic isolation bearing
JP5648014B2 (en) High damping composition and viscoelastic damper
JP5404716B2 (en) High damping composition
JP2014109023A (en) High-damping composition and viscoelastic damper
JP2011126992A (en) Highly damping composition
JP2017082171A (en) High attenuation rubber composition and viscoelastic damper
JP6195338B2 (en) High damping composition and viscoelastic damper
JP6575807B2 (en) High damping composition, viscoelastic damper and viscoelastic bearing
JP2015160903A (en) High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing
KR101780829B1 (en) High damping composition
JP2012219150A (en) Highly damping composition
JP6504696B2 (en) High damping composition and visco-elastic damper
JP5568581B2 (en) High damping composition and viscoelastic damper
JP2013053251A (en) Highly damping composition
JP2016056279A (en) High-damping composition and viscoelastic damper
JP2014224180A (en) Highly damping composition and viscoelastic damper
JP2019031607A (en) High attenuation rubber composition and viscoelastic damper
JP5738113B2 (en) High damping composition
JP5950358B2 (en) High damping composition and viscoelastic damper
JP2014118516A (en) High-damping composition and vibration control damper
JP2017210532A (en) High attenuation rubber composition and viscoelastic damper
JP5523428B2 (en) High damping composition
JP2013043912A (en) High damping composition and manufacturing method for the same
JP5579152B2 (en) High damping composition
JP2020169233A (en) High damping rubber composition and viscoelastic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180405