JP5568581B2 - High damping composition and viscoelastic damper - Google Patents

High damping composition and viscoelastic damper Download PDF

Info

Publication number
JP5568581B2
JP5568581B2 JP2012036316A JP2012036316A JP5568581B2 JP 5568581 B2 JP5568581 B2 JP 5568581B2 JP 2012036316 A JP2012036316 A JP 2012036316A JP 2012036316 A JP2012036316 A JP 2012036316A JP 5568581 B2 JP5568581 B2 JP 5568581B2
Authority
JP
Japan
Prior art keywords
mass
parts
calcium carbonate
silica
base polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012036316A
Other languages
Japanese (ja)
Other versions
JP2013170253A (en
Inventor
岳宏 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2012036316A priority Critical patent/JP5568581B2/en
Priority to KR1020120105666A priority patent/KR101810252B1/en
Priority to TW101136718A priority patent/TW201335277A/en
Priority to CN2012103799159A priority patent/CN103289137A/en
Publication of JP2013170253A publication Critical patent/JP2013170253A/en
Application granted granted Critical
Publication of JP5568581B2 publication Critical patent/JP5568581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、振動エネルギーの伝達を緩和したり吸収したりするための高減衰部材と、そのもとになる高減衰組成物と、前記高減衰組成物を形成材料として用いて形成された粘弾性体を備える、建築物の粘弾性ダンパに関するものである。   The present invention relates to a high-damping member for relaxing or absorbing the transmission of vibration energy, a high-damping composition as a basis thereof, and a viscoelasticity formed using the high-damping composition as a forming material. The present invention relates to a viscoelastic damper of a building including a body.

例えばビルや橋梁等の建築物、産業機械、航空機、自動車、鉄道車両、コンピュータやその周辺機器類、家庭用電気機器類、さらには自動車用タイヤ等の幅広い分野において高減衰部材が用いられる。前記高減衰部材を用いることで、振動エネルギーの伝達を緩和したり吸収したりする、すなわち免震、制震、制振、防振等をすることができる。
前記高減衰部材は、天然ゴム等をベースポリマとして含む高減衰組成物によって形成される。前記高減衰組成物には、振動が加えられた際のヒステリシスロスを大きくして前記振動のエネルギーを効率よく速やかに減衰する性能、すなわち減衰性能を高めるために、カーボンブラック、シリカ等の無機充てん剤、あるいはロジン、石油樹脂等の粘着性付与剤等を配合するのが一般的である(例えば特許文献1〜3等参照)。
For example, high-attenuation members are used in a wide range of fields such as buildings such as buildings and bridges, industrial machines, airplanes, automobiles, railway vehicles, computers and peripheral equipment, household electrical equipment, and automobile tires. By using the high damping member, transmission of vibration energy can be relaxed or absorbed, that is, seismic isolation, vibration control, vibration control, vibration isolation, etc. can be performed.
The high attenuation member is formed of a high attenuation composition containing natural rubber or the like as a base polymer. The high damping composition has an inorganic filling such as carbon black, silica, etc. in order to increase the hysteresis loss when vibration is applied and to attenuate the vibration energy efficiently and quickly, that is, to increase the damping performance. In general, a tackifier such as a rosin or a petroleum resin is blended (see, for example, Patent Documents 1 to 3).

しかし、これら従来の高減衰組成物では高減衰部材の減衰性能を十分に高めることはできない。高減衰部材の減衰性能を現状よりもさらに高めるためには、無機充てん剤や粘着性付与剤等の配合割合をさらに増加させること等が考えられる。
ところが、多量の無機充てん剤や粘着性付与剤を配合した高減衰組成物は粘度が上昇し、加工性が低下して、所望の立体形状を有する高減衰部材を製造するために前記高減衰組成物を混練したり、前記立体形状に成形加工したりするのが容易でないという問題がある。
However, these conventional high damping compositions cannot sufficiently enhance the damping performance of the high damping member. In order to further improve the damping performance of the high damping member, it is conceivable to further increase the blending ratio of an inorganic filler, a tackifier, or the like.
However, the high attenuation composition containing a large amount of an inorganic filler or a tackifier increases the viscosity, decreases the workability, and the high attenuation composition in order to produce a high attenuation member having a desired three-dimensional shape. There is a problem that it is not easy to knead an object or to mold it into the three-dimensional shape.

特に工場レベルで高減衰部材を量産する場合、前記加工性の低さは高減衰部材の生産性を大きく低下させ、生産に要するエネルギーを増大させ、さらには生産コストを高騰させる原因となるため望ましくない。
そこで、加工性を低下させずに減衰性能を向上するため、特許文献4では、シリカと、2以上の極性基を有する粘着性付与剤とを配合することが検討されている。
Particularly when mass-producing high-attenuation members at the factory level, the low workability is desirable because it greatly reduces the productivity of high-attenuation members, increases the energy required for production, and further increases production costs. Absent.
Therefore, in order to improve the damping performance without degrading workability, Patent Document 4 discusses blending silica and a tackifier having two or more polar groups.

しかし前記極性側鎖を有するもの等の、分子中に極性基を有するベースポリマは、一般にガラス転移温度Tgが室温(3〜35℃)付近に存在することから、前記ベースポリマを含む高減衰組成物を用いて形成した高減衰部材は、最も一般的な使用温度域である前記室温付近において、特に剛性等の特性の温度依存性が大きくなる傾向がある。
特許文献5では、極性側鎖を有しないベースポリマに、シリカと、2以上の極性基を有する粘着性付与剤等とを配合することが検討されている。かかる構成によれば、シリカを併用することで良好な減衰性能を維持しながら、ベースポリマとして極性基を有しないものを用いることで、室温付近での特性の温度依存性を小さくすることができる。
However, a base polymer having a polar group in the molecule, such as one having the polar side chain, generally has a glass transition temperature Tg near room temperature (3-35 ° C.). A high damping member formed using an object tends to have a large temperature dependency of characteristics such as rigidity in the vicinity of the room temperature, which is the most common operating temperature range.
In Patent Document 5, it is studied to add silica and a tackifier having two or more polar groups to a base polymer having no polar side chain. According to such a configuration, it is possible to reduce the temperature dependence of characteristics near room temperature by using a base polymer that does not have a polar group while maintaining good attenuation performance by using silica together. .

しかし、現状よりも減衰性能をさらに向上するために前記粘着性付与剤の配合割合を増加させた場合には、当該粘着性付与剤が高減衰部材の表面にブルームして、前記高減衰部材と金属等との接着不良などを生じることが懸念される。
また、混練時の粘着性が高くなりすぎて、加工性が低下する。
特許文献6では、粘着性付与剤として特定の軟化点を有するロジン誘導体を用いることで、さらに減衰性能を向上することが検討されている。
However, when the mixing ratio of the tackifier is increased in order to further improve the damping performance than the current situation, the tackifier blooms on the surface of the high attenuation member, and the high attenuation member There is concern about poor adhesion with metals and the like.
Moreover, the adhesiveness at the time of kneading | mixing becomes high too much, and workability falls.
Patent Document 6 discusses further improving the damping performance by using a rosin derivative having a specific softening point as a tackifier.

しかし、現状よりもさらに減衰性能を向上するためにロジン誘導体の配合割合を増加させた場合には、やはり混練時の粘着性が高くなりすぎて、加工性が低下する。   However, when the blending ratio of the rosin derivative is increased in order to further improve the damping performance as compared with the current situation, the adhesiveness at the time of kneading becomes too high and the workability is lowered.

特許第3523613号公報Japanese Patent No. 3523613 特開2007−63425号公報JP 2007-63425 A 特許第2796044号公報Japanese Patent No. 2796044 特許第3664211号公報Japanese Patent No. 3664211 特開2009−138053号公報JP 2009-138053 A 特開2010−189604号公報JP 2010-189604 A

本発明の目的は、減衰性能に優れた高減衰部材を形成できる上、加工性にも優れた高減衰組成物と、前記高減衰組成物を形成材料として用いて形成された粘弾性体を備える、建築物の粘弾性ダンパを提供することにある。   An object of the present invention is to provide a highly attenuating composition that is capable of forming a highly attenuating member that is excellent in damping performance and that is also excellent in workability, and a viscoelastic body that is formed using the highly attenuating composition as a forming material. It is to provide a viscoelastic damper for a building.

本発明は、ベースポリマに、当該ベースポリマ100質量部あたり100質量部以上、180質量部以下のシリカと、1質量部以上、30質量部以下の、最表面をシランカップリング剤で表面処理した改質炭酸カルシウムを配合したことを特徴とする高減衰組成物である。
炭酸カルシウムは、シリカ等と同様に高減衰部材の減衰性能を向上する無機充てん剤として機能して、前記高減衰部材の減衰性能を向上できる上、従来の粘着付与剤のように混練時の粘着性を高めたりしないため、高減衰組成物の加工性を向上することも期待されている。
In the present invention, the base polymer is surface-treated with a silane coupling agent on the outermost surface of 100 parts by mass or more and 180 parts by mass or less of silica and 1 part by mass or more and 30 parts by mass or less per 100 parts by mass of the base polymer . A highly attenuated composition comprising a modified calcium carbonate.
Calcium carbonate functions as an inorganic filler that improves the damping performance of the high damping member, like silica and the like, and can improve the damping performance of the high damping member. Therefore, it is expected to improve the processability of the highly attenuated composition.

しかし未処理の炭酸カルシウムや、あるいは前記未処理の炭酸カルシウムの表面をロジン酸や脂肪酸等で表面処理した表面処理炭酸カルシウムは、ベースポリマ等との相互作用があまり高くない。そのため、当該炭酸カルシウムを含む高減衰組成物は、混練直後のグリーン強度が低くなり、混練機から取り出す際に、例えば手で引っ張ってもすぐに切れてしまって、全量を混練機から取り出す作業に手間がかかるという問題を生じやすい。そのため、混練や混練後の成形加工は容易になるものの、加工性の改善効果は未だ十分ではない。   However, the untreated calcium carbonate or the surface-treated calcium carbonate obtained by surface-treating the surface of the untreated calcium carbonate with rosin acid or fatty acid does not have a high interaction with the base polymer. Therefore, the high-damping composition containing calcium carbonate has a low green strength immediately after kneading, and when it is taken out from the kneader, for example, it is immediately cut even when pulled by hand, and the entire amount is taken out from the kneader. It is easy to cause a problem that it takes time and effort. Therefore, although kneading and forming after kneading are easy, the effect of improving workability is not yet sufficient.

これに対し、炭酸カルシウムの最表面をシランカップリング剤で表面処理した改質炭酸カルシウムは、前記未処理の炭酸カルシウムや表面処理炭酸カルシウムに比べて、ベースポリマ等との相互作用に優れており、高減衰組成物の、混練直後のグリーン強度を高める働きをする。そのため前記高減衰組成物を混練機から取り出す際に、手で引っ張っても簡単に切れたりせず、全量を混練機から取り出す作業の手間を省いて、高減衰組成物の加工性をより一層向上することが可能となる。 On the other hand, the modified calcium carbonate obtained by surface-treating the outermost surface of calcium carbonate with a silane coupling agent is superior in interaction with a base polymer and the like compared to the untreated calcium carbonate and surface-treated calcium carbonate. The high-damping composition functions to increase the green strength immediately after kneading. Therefore, when taking out the high attenuation composition from the kneading machine, it is not easily cut even if it is pulled by hand, and the work of taking out the entire amount from the kneading machine is saved, thereby further improving the workability of the high attenuation composition. It becomes possible to do.

ただし、改質炭酸カルシウムの配合割合が前記範囲未満では、当該改質炭酸カルシウムを選択して配合することによるこれらの効果が得られない。一方、前記範囲を超える場合には、高減衰部材を繰り返し大変形させた際の耐久性が低下して、前記高減衰部材が破損したりするといった問題を生じる。
これに対し、改質炭酸カルシウムの配合割合を前記範囲内とすることで、高減衰組成物の良好な加工性を維持しながら、高減衰部材を繰り返し大変形させる際の耐久性を向上することができる。
However, when the blending ratio of the modified calcium carbonate is less than the above range, these effects cannot be obtained by selecting and blending the modified calcium carbonate. On the other hand, when the above range is exceeded, there is a problem that durability when the high attenuation member is repeatedly largely deformed is deteriorated and the high attenuation member is damaged.
On the other hand, by making the blending ratio of the modified calcium carbonate within the above range, the durability when repeatedly repeatedly deforming the high attenuation member is improved while maintaining good processability of the high attenuation composition. Can do.

また、シリカの配合割合が前記範囲未満では、高減衰部材に良好な減衰性能を付与することができない。一方、前記範囲を超える場合には、高減衰部材を繰り返し大変形させた際の耐久性が低下して、前記高減衰部材が破損したりするといった問題を生じる。
これに対し、シリカの配合割合を前記範囲内とすることで、高減衰部材にできるだけ良好な減衰性能を付与しながら、前記高減衰部材を繰り返し大変形させる際の耐久性を向上することができる。
Moreover, if the mixing ratio of silica is less than the above range, good damping performance cannot be imparted to the high damping member. On the other hand, when the above range is exceeded, there is a problem that durability when the high attenuation member is repeatedly largely deformed is deteriorated and the high attenuation member is damaged.
On the other hand, by setting the blending ratio of silica within the above range, it is possible to improve the durability when repeatedly deforming the high attenuation member repeatedly while giving the high attenuation member the best possible attenuation performance. .

発明の粘弾性ダンパは、前記本発明の高減衰組成物を形成材料として用いて形成された粘弾性体を備えることを特徴とする。かかる粘弾性ダンパは減衰性能に優れるため、小型化したり、1つの建築物に組み込む数を減らしたりすることができる。 The viscoelastic damper of the present invention includes a viscoelastic body formed using the high damping composition of the present invention as a forming material. Such viscoelastic dampers are excellent in damping performance, so that they can be downsized and the number incorporated in one building can be reduced.

本発明によれば、減衰性能に優れた高減衰部材を形成できる上、加工性にも優れた高減衰組成物と、前記高減衰組成物を形成材料として用いて形成された粘弾性体を備える、建築物の粘弾性ダンパを提供することができる。 According to the present invention, it is possible to form a highly-damping member having excellent damping performance, and to provide a highly-damping composition having excellent workability and a viscoelastic body formed using the high-damping composition as a forming material. , a viscoelastic dampers of the building can be provided and the child is.

本発明の実施例、比較例の高減衰組成物からなる高減衰部材の減衰性能を評価するために作製する、前記高減衰部材のモデルとしての試験体を分解して示す分解斜視図である。It is a disassembled perspective view which decomposes | disassembles and shows the test body as a model of the said high attenuation member produced in order to evaluate the attenuation performance of the high attenuation member which consists of the high attenuation composition of the Example of this invention, and a comparative example. 同図(a)(b)は、前記試験体を変位させて変位量と荷重との関係を求めるための試験機の概略を説明する図である。FIGS. 4A and 4B are diagrams for explaining the outline of a testing machine for displacing the test body and obtaining the relationship between the displacement and the load. 前記試験機を用いて試験体を変位させて求められる、変位量と荷重との関係を示すヒステリシスループの一例を示すグラフである。It is a graph which shows an example of the hysteresis loop which shows the relationship between the displacement amount and a load calculated | required by displacing a test body using the said testing machine.

〈高減衰組成物〉
本発明の高減衰組成物は、ベースポリマに、当該ベースポリマ100質量部あたり100質量部以上、180質量部以下のシリカと、1質量部以上、30質量部以下の改質炭酸カルシウムを配合したことを特徴とするものである。
(ベースポリマ)
ベースポリマとしては、高減衰部材のベースポリマとして機能しうる、従来公知の種々のポリマーがいずれも使用可能であるが、特にジエン系ゴムが好ましい。
<High damping composition>
In the highly attenuated composition of the present invention, 100 parts by mass or more and 180 parts by mass or less of silica and 1 part by mass or more and 30 parts by mass or less of modified calcium carbonate are blended with 100 parts by mass of the base polymer. It is characterized by this.
(Base polymer)
As the base polymer, any conventionally known various polymers that can function as the base polymer of the high damping member can be used, and diene rubber is particularly preferable.

かかるジエン系ゴムは、ガラス転移温度が室温(2〜35℃)付近に存在しないため、最も一般的な使用温度域である前記室温付近での、高減衰部材の剛性等の温度依存性を小さくして、広い温度範囲で安定した特性を示す高減衰部材を形成できるという利点がある。
前記ジエン系ゴムとしては、例えば天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム等の1種または2種以上が挙げられる。特に材料の入手のしやすさ等を考慮すると、ジエン系ゴムとしては天然ゴムを用いるのが好ましい。
Since such a diene rubber does not have a glass transition temperature near room temperature (2 to 35 ° C.), temperature dependency such as rigidity of a high damping member near the room temperature, which is the most general use temperature range, is reduced. Thus, there is an advantage that a high attenuation member that exhibits stable characteristics over a wide temperature range can be formed.
Examples of the diene rubber include one or more of natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, and the like. Considering the availability of materials, etc., natural rubber is preferably used as the diene rubber.

(シリカ)
シリカとしては、その製法によって分類される湿式法シリカ、乾式法シリカのいずれを用いてもよい。またシリカとしては、高減衰部材の減衰性能を向上する効果をさらに向上することを考慮すると、BET比表面積が100〜400m/g、特に200〜250m/gであるものを用いるのが好ましい。BET比表面積は、例えば柴田化学器械工業(株)製の迅速表面積測定装置SA−1000等を使用して、吸着気体として窒素ガスを用いる気相吸着法で測定した値でもって表すこととする。
(silica)
As the silica, any of wet process silica and dry process silica classified by the production method may be used. In consideration of further improving the effect of improving the damping performance of the high damping member, it is preferable to use silica having a BET specific surface area of 100 to 400 m 2 / g, particularly 200 to 250 m 2 / g. . The BET specific surface area is expressed by a value measured by a gas phase adsorption method using nitrogen gas as an adsorbed gas, for example, using a rapid surface area measuring device SA-1000 manufactured by Shibata Chemical Instruments Co., Ltd.

前記シリカとしては、例えば東ソー・シリカ(株)製のNipSil(ニップシール)KQ等が挙げられる。
前記シリカの配合割合は、ベースポリマ100質量部あたり100質量部以上、180質量部以下に限定される。
シリカの配合割合が前記範囲未満では、高減衰部材に良好な減衰性能を付与することができない。一方、前記範囲を超える場合には、高減衰部材を繰り返し大変形させた際の耐久性が低下して、前記高減衰部材が破損したりするといった問題を生じる。
Examples of the silica include NipSil (nip seal) KQ manufactured by Tosoh Silica Co., Ltd.
The blending ratio of the silica is limited to 100 parts by mass or more and 180 parts by mass or less per 100 parts by mass of the base polymer.
When the blending ratio of silica is less than the above range, good damping performance cannot be imparted to the high damping member. On the other hand, when the above range is exceeded, there is a problem that durability when the high attenuation member is repeatedly largely deformed is deteriorated and the high attenuation member is damaged.

これに対し、シリカの配合割合を前記範囲内とすることで、高減衰部材にできるだけ良好な減衰性能を付与しながら、前記高減衰部材を繰り返し大変形させる際の耐久性を向上することができる。
(改質炭酸カルシウム)
改質炭酸カルシウムとしては、例えば合成炭酸カルシウム、重質炭酸カルシウム等の未処理の炭酸カルシウムや、あるいは前記未処理の炭酸カルシウムを例えば脂肪酸、4級アンモニウム塩、ロジン酸、リグニン酸、シリカヒドロゾル等の1種または2種以上で表面処理した表面処理炭酸カルシウム等の最表面を、さらにシランカップリング剤で改質した種々の改質炭酸カルシウムが、いずれも使用可能である。
On the other hand, by setting the blending ratio of silica within the above range, it is possible to improve the durability when repeatedly deforming the high attenuation member repeatedly while giving the high attenuation member the best possible attenuation performance. .
(Modified calcium carbonate)
Examples of the modified calcium carbonate include untreated calcium carbonate such as synthetic calcium carbonate and heavy calcium carbonate, or the untreated calcium carbonate such as fatty acid, quaternary ammonium salt, rosin acid, lignic acid, silica hydrosol. Any of various modified calcium carbonates obtained by further modifying the outermost surface of the surface-treated calcium carbonate or the like that has been surface-treated with one or more of the above by a silane coupling agent can be used.

前記改質炭酸カルシウムの一次粒子径は、高減衰部材にできるだけ良好な減衰性能を付与すること等を考慮すると5nm以上、特に15nm以上であるのが好ましく、100nm以下、特に90nm以下であるのが好ましい。
表面をシランカップリング剤で表面処理した前記の改質炭酸カルシウムは、ベースポリマ等との相互作用に特に優れており、少量の配合で、高減衰部材に良好な減衰性能を付与することができる。また、混練時の粘着性を高めたりしない上、高減衰組成物の、混練直後のグリーン強度を高める働きにも優れている。そのため、前記高減衰組成物を混練機から取り出す際に、手で引っ張っても簡単に切れたりしないようにして、全量を混練機から取り出す作業の手間を省くこともでき、高減衰組成物の加工性を、より一層向上することが可能となる。
The primary particle diameter of the modified calcium carbonate is preferably 5 nm or more, particularly preferably 15 nm or more, and is preferably 100 nm or less, particularly 90 nm or less in consideration of imparting as good damping performance as possible to the high attenuation member. preferable.
Wherein the modified carbon calcium surface-treated uppermost surface with a silane coupling agent is particularly excellent in the interaction with the base polymer or the like, with a small amount of formulation to impart good damping performance in high damping member Can do. In addition, the adhesiveness during kneading is not increased, and the high damping composition is also excellent in increasing the green strength immediately after kneading. Therefore, when taking out the high attenuation composition from the kneader, it can be easily cut even if it is pulled by hand, and the work of taking out the entire amount from the kneader can be saved. It is possible to further improve the performance.

前記改質炭酸カルシウムの具体例としては、例えば一次粒子径20nm程度の合成炭酸カルシウムの表面をシリカヒドロゾル、および脂肪酸類で表面処理したのち、さらにその最表面をシランカップリング剤で表面処理してなる、白石工業(株)製のACTIFORT(アクチフォート、登録商標)700等が挙げられる。
前記改質炭酸カルシウムの配合割合は、ベースポリマ100質量部あたり1質量部以上、30質量部以下である必要がある。
As a specific example of the modified calcium carbonate, for example, the surface of synthetic calcium carbonate having a primary particle diameter of about 20 nm is surface-treated with silica hydrosol and fatty acids, and then the outermost surface is surface-treated with a silane coupling agent. ACTIFORT (registered trademark) 700 manufactured by Shiraishi Kogyo Co., Ltd.
The blending ratio of the modified calcium carbonate needs to be 1 part by mass or more and 30 parts by mass or less per 100 parts by mass of the base polymer.

改質炭酸カルシウムの配合割合が前記範囲未満では、高減衰部材の減衰性能を向上させる効果が得られないだけでなく、混練時の高減衰組成物の粘着性を抑える効果も得られないため、例えば混練後の高減衰組成物を混練機から取り出すのに手間がかかるといった問題を生じる。一方、前記範囲を超える場合には、高減衰部材を繰り返し大変形させた際の耐久性が低下して、前記高減衰部材が破損したりするといった問題を生じる。   When the blending ratio of the modified calcium carbonate is less than the above range, not only the effect of improving the damping performance of the high damping member is not obtained, but also the effect of suppressing the adhesiveness of the high damping composition at the time of kneading cannot be obtained. For example, there is a problem that it takes time to take out the highly attenuated composition after kneading from the kneader. On the other hand, when the above range is exceeded, there is a problem that durability when the high attenuation member is repeatedly largely deformed is deteriorated and the high attenuation member is damaged.

これに対し、改質炭酸カルシウムの配合割合を前記範囲内とすることで、高減衰組成物の良好な加工性を維持しながら、高減衰部材を繰り返し大変形させる際の耐久性を向上することができる。
(その他の成分)
本発明の高減衰組成物には、前記シリカや改質炭酸カルシウム以外の他の無機充てん剤、あるいはジエン系ゴム等のベースポリマを架橋させるための架橋成分等を、適宜の割合で配合してもよい。
On the other hand, by making the blending ratio of the modified calcium carbonate within the above range, the durability when repeatedly repeatedly deforming the high attenuation member is improved while maintaining good processability of the high attenuation composition. Can do.
(Other ingredients)
In the high attenuation composition of the present invention, an inorganic filler other than the silica and modified calcium carbonate, or a crosslinking component for crosslinking a base polymer such as a diene rubber is blended at an appropriate ratio. Also good.

前記他の無機充てん剤としては、例えばカーボンブラック等が挙げられる。
前記カーボンブラックとしては、その製造方法等によって分類される種々のカーボンブラックのうち、充てん剤として機能しうるカーボンブラックの1種または2種以上が使用可能である。
カーボンブラックの配合割合は特に限定されないが、ベースポリマ100質量部あたり1質量部以上、5質量部以下であるのが好ましい。
Examples of the other inorganic fillers include carbon black.
As the carbon black, one or more of carbon blacks that can function as a filler among various carbon blacks classified according to the production method thereof can be used.
The mixing ratio of carbon black is not particularly limited, but is preferably 1 part by mass or more and 5 parts by mass or less per 100 parts by mass of the base polymer.

架橋成分としては、ベースポリマを架橋しうる種々の架橋成分が使用可能である。ベースポリマがジエン系ゴムである場合は、特に硫黄加硫系の架橋成分を用いるのが好ましい。前記硫黄加硫系の架橋成分としては、加硫剤、加硫促進剤、および加硫促進助剤を組み合わせたものが挙げられる。特に高減衰部材のゴム弾性が上昇して減衰性能が低下する問題を生じにくい加硫剤、加硫促進剤、加硫促進助剤を組み合わせるのが好ましい。   As the crosslinking component, various crosslinking components capable of crosslinking the base polymer can be used. When the base polymer is a diene rubber, it is particularly preferable to use a sulfur vulcanized crosslinking component. Examples of the sulfur-vulcanized crosslinking component include a combination of a vulcanizing agent, a vulcanization accelerator, and a vulcanization acceleration aid. In particular, it is preferable to combine a vulcanizing agent, a vulcanization accelerator, and a vulcanization acceleration aid that hardly cause the problem that the rubber elasticity of the high damping member increases and the damping performance decreases.

前記加硫剤としては、例えば硫黄や含硫黄有機化合物等が挙げられる。特に硫黄が好ましい。
加硫促進剤としては、例えばスルフェンアミド系加硫促進剤、チウラム系加硫促進剤等が挙げられる。加硫促進剤は、種類によって加硫促進のメカニズムが異なるため2種以上を併用するのが好ましい。
Examples of the vulcanizing agent include sulfur and sulfur-containing organic compounds. In particular, sulfur is preferable.
Examples of the vulcanization accelerator include a sulfenamide vulcanization accelerator and a thiuram vulcanization accelerator. It is preferable to use two or more vulcanization accelerators in combination because the vulcanization acceleration mechanism varies depending on the type.

このうちスルフェンアミド系加硫促進剤としては、例えば大内新興化学工業(株)製のノクセラー(登録商標)NS〔N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド〕等が挙げられる。またチウラム系加硫促進剤としては、例えば大内新興化学工業(株)製のノクセラーTBT〔テトラブチルチウラムジスルフィド〕等が挙げられる。
加硫促進助剤としては例えば亜鉛華、ステアリン酸等が挙げられる。通常は両者を加硫促進助剤として併用するのが好ましい。
Among them, examples of the sulfenamide-based vulcanization accelerator include Noxeller (registered trademark) NS [N-tert-butyl-2-benzothiazolylsulfenamide] manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. . Examples of the thiuram vulcanization accelerator include Noxeller TBT [tetrabutyl thiuram disulfide] manufactured by Ouchi Shinsei Chemical Co., Ltd.
Examples of the vulcanization acceleration aid include zinc white and stearic acid. Usually, it is preferable to use both as a vulcanization acceleration aid.

前記加硫剤、加硫促進剤、加硫促進助剤の配合割合は、高減衰部材の用途等によって異なる減衰性能や剛性等の特性に応じて適宜調整すればよい。
本発明の高減衰組成物には、さらに必要に応じてシラン化合物、軟化剤、粘着性付与剤、老化防止剤等の各種添加剤を、適宜の割合で配合してもよい。
このうちシラン化合物としては、式(a):
The blending ratio of the vulcanizing agent, the vulcanization accelerator, and the vulcanization accelerating agent may be appropriately adjusted according to the characteristics such as the damping performance and the rigidity that differ depending on the use of the high damping member.
In the high attenuation composition of the present invention, various additives such as a silane compound, a softening agent, a tackifier, and an anti-aging agent may be further blended at an appropriate ratio as necessary.
Among these, as the silane compound, the formula (a):

Figure 0005568581
Figure 0005568581

〔式中、R、R、R、およびRのうちの少なくとも1つはアルコキシ基を示す。ただしR、R、R、およびRが同時にアルコキシ基であることはなく、他はアルキル基またはアリール基を示す。〕
で表され、シランカップリング剤やシリル化剤等の、シリカの分散剤として機能しうる種々のシラン化合物が挙げられる。
[Wherein, at least one of R 1 , R 2 , R 3 , and R 4 represents an alkoxy group. However, R 1 , R 2 , R 3 , and R 4 are not simultaneously an alkoxy group, and the other represents an alkyl group or an aryl group. ]
And various silane compounds that can function as a silica dispersant, such as a silane coupling agent and a silylating agent.

特にヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン等のアルコキシシランが好ましい。
前記シラン化合物としては、例えば信越化学工業(株)製のKBE−103(フェニルトリエトキシシラン)等が挙げられる。
シラン化合物の配合割合は特に限定されないが、シリカ100質量部あたり5質量部以上であるのが好ましく、25質量部以下であるのが好ましい。
In particular, alkoxysilanes such as hexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and diphenyldimethoxysilane are preferred.
Examples of the silane compound include KBE-103 (phenyltriethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
The blending ratio of the silane compound is not particularly limited, but it is preferably 5 parts by mass or more and preferably 25 parts by mass or less per 100 parts by mass of silica.

軟化剤は、高減衰組成物の加工性をさらに向上するための成分であって、前記軟化剤としては、例えば室温(2〜35℃)で液状を呈する液状ゴムが挙げられる。前記液状ゴムとしては、例えば液状ポリイソプレンゴム、液状ニトリルゴム(液状NBR)、液状スチレンブタジエンゴム(液状SBR)等の1種または2種以上が挙げられる。
このうち液状ポリイソプレンゴムが好ましい。前記液状ポリイソプレンゴムとしては、例えば(株)クラレ製のクラプレン(登録商標)LIR−30(数平均分子量:28000)、LIR−50(数平均分子量:54000)等が挙げられる。
The softening agent is a component for further improving the workability of the highly attenuated composition, and examples of the softening agent include liquid rubber that exhibits a liquid state at room temperature (2 to 35 ° C.). Examples of the liquid rubber include one or more of liquid polyisoprene rubber, liquid nitrile rubber (liquid NBR), liquid styrene butadiene rubber (liquid SBR), and the like.
Of these, liquid polyisoprene rubber is preferred. Examples of the liquid polyisoprene rubber include Kuraray (trademark) LIR-30 (number average molecular weight: 28000), LIR-50 (number average molecular weight: 54000) manufactured by Kuraray Co., Ltd., and the like.

液状ポリイソプレンゴムの配合割合は、ベースポリマ100質量部あたり5質量部以上であるのが好ましく、50質量部以下であるのが好ましい。
配合割合が前記範囲未満では、当該液状ポリイソプレンゴムを配合することによる、高減衰部材の剛性を低下させる効果が十分に得られないおそれがある。一方、前記範囲を超える場合には高減衰部材の減衰性能が低下するおそれがある。
The blending ratio of the liquid polyisoprene rubber is preferably 5 parts by mass or more per 100 parts by mass of the base polymer, and is preferably 50 parts by mass or less.
If the blending ratio is less than the above range, the effect of lowering the rigidity of the high damping member by blending the liquid polyisoprene rubber may not be sufficiently obtained. On the other hand, if the above range is exceeded, the damping performance of the high damping member may be reduced.

また他の軟化剤としては、例えばクマロンインデン樹脂等が挙げられる。
前記クマロンインデン樹脂としては、主にクマロンとインデンの重合物からなり、平均分子量1000以下程度の比較的低分子量であって、軟化剤として機能しうる種々のクマロンインデン樹脂が挙げられる。
前記クマロンインデン樹脂としては、例えば日塗化学(株)製のニットレジン(登録商標)クマロンG−90〔平均分子量:770、軟化点:90℃、酸価:1.0KOHmg/g以下、水酸基価:25KOHmg/g、臭素価9g/100g〕、G−100N〔平均分子量:730、軟化点:100℃、酸価:1.0KOHmg/g以下、水酸基価:25KOHmg/g、臭素価11g/100g〕、V−120〔平均分子量:960、軟化点:120℃、酸価:1.0KOHmg/g以下、水酸基価:30KOHmg/g、臭素価6g/100g〕、V−120S〔平均分子量:950、軟化点:120℃、酸価:1.0KOHmg/g以下、水酸基価:30KOHmg/g、臭素価7g/100g〕等の1種または2種以上が挙げられる。
Examples of other softening agents include coumarone indene resin.
Examples of the coumarone indene resin include various coumarone indene resins which are mainly composed of a polymer of coumarone and indene and have a relatively low molecular weight of about 1000 or less in average molecular weight and can function as a softening agent.
As the coumarone indene resin, for example, Knit Resin (registered trademark) Coumarone G-90 manufactured by Nikko Chemical Co., Ltd. [average molecular weight: 770, softening point: 90 ° C., acid value: 1.0 KOH mg / g or less, hydroxyl group] Value: 25 KOH mg / g, bromine value 9 g / 100 g], G-100N [average molecular weight: 730, softening point: 100 ° C., acid value: 1.0 KOH mg / g or less, hydroxyl value: 25 KOH mg / g, bromine value 11 g / 100 g V-120 [average molecular weight: 960, softening point: 120 ° C., acid value: 1.0 KOH mg / g or less, hydroxyl value: 30 KOH mg / g, bromine value 6 g / 100 g], V-120S [average molecular weight: 950, Softening point: 120 ° C., acid value: 1.0 KOH mg / g or less, hydroxyl value: 30 KOH mg / g, bromine value 7 g / 100 g] and the like.

クマロンインデン樹脂の配合割合は特に限定されないが、ベースポリマ100質量部あたり5質量部以上であるのが好ましく、20質量部以下であるのが好ましい。
粘着性付与剤としては、例えば石油樹脂等が挙げられる。また石油樹脂としては、例えば丸善石油化学(株)製のマルカレッツ(登録商標)M890A〔ジシクロペンタジエン系石油樹脂、軟化点:105℃〕等が好ましい。
The blending ratio of the coumarone indene resin is not particularly limited, but it is preferably 5 parts by mass or more and preferably 20 parts by mass or less per 100 parts by mass of the base polymer.
Examples of the tackifier include petroleum resins. As the petroleum resin, for example, Marcaretz (registered trademark) M890A [dicyclopentadiene-based petroleum resin, softening point: 105 ° C.] manufactured by Maruzen Petrochemical Co., Ltd. is preferable.

前記石油樹脂の配合割合は特に限定されないが、ベースポリマ100質量部あたり3質量部以上であるのが好ましく、30質量部以下であるのが好ましい。
老化防止剤としては、例えばベンズイミダゾール系、キノン系、ポリフェノール系、アミン系等の各種老化防止剤の1種または2種以上が挙げられる。特にベンズイミダゾール系老化防止剤とキノン系老化防止剤を併用するのが好ましい。
The blending ratio of the petroleum resin is not particularly limited, but it is preferably 3 parts by mass or more and preferably 30 parts by mass or less per 100 parts by mass of the base polymer.
As an anti-aging agent, 1 type, or 2 or more types of various anti-aging agents, such as a benzimidazole type, a quinone type, a polyphenol type, and an amine type, are mentioned, for example. In particular, it is preferable to use a benzimidazole antioxidant and a quinone antioxidant together.

このうちベンズイミダゾール系老化防止剤としては、例えば大内新興化学工業(株)製のノクラック(登録商標)MB〔2−メルカプトベンズイミダゾール〕等が挙げられる。またキノン系老化防止剤としては、例えば丸石化学品(株)製のアンチゲンFR〔芳香族ケトン−アミン縮合物〕等が挙げられる。
両老化防止剤の配合割合は特に限定されないが、ベンズイミダゾール系老化防止剤は、ベースポリマ100質量部あたり0.5質量部以上であるのが好ましく、5質量部以下であるのが好ましい。またキノン系老化防止剤は、ベースポリマ100質量部あたり0.5質量部以上であるのが好ましく、5質量部以下であるのが好ましい。
Among them, examples of the benzimidazole-based anti-aging agent include NOCRACK (registered trademark) MB [2-mercaptobenzimidazole] manufactured by Ouchi Shinko Chemical Industry Co., Ltd. Examples of the quinone anti-aging agent include Antigen FR [aromatic ketone-amine condensate] manufactured by Cobblestone Chemical Co., Ltd.
The blending ratio of both anti-aging agents is not particularly limited, but the benzimidazole anti-aging agent is preferably 0.5 parts by mass or more and preferably 5 parts by mass or less per 100 parts by mass of the base polymer. The quinone anti-aging agent is preferably 0.5 parts by mass or more and preferably 5 parts by mass or less per 100 parts by mass of the base polymer.

本発明の高減衰組成物を用いて製造できる高減衰部材としては、例えばビル等の建築物の基礎に組み込まれる免震用ダンパ、建築物の構造中に組み込まれる制震(制振)用の粘弾性ダンパ、吊橋や斜張橋等のケーブルの制振部材、産業機械や航空機、自動車、鉄道車両等の防振部材、コンピュータやその周辺機器類、あるいは家庭用電気機器類等の防振部材、さらには自動車用タイヤのトレッド等が挙げられる。   The high damping member that can be manufactured using the high damping composition of the present invention includes, for example, a seismic isolation damper that is incorporated in the foundation of a building such as a building, and a vibration control (vibration suppression) that is incorporated in the structure of a building Viscoelastic dampers, vibration control members for cables such as suspension bridges and cable-stayed bridges, vibration control members for industrial machines, aircraft, automobiles, railway vehicles, etc., vibration control members for computers, peripheral equipment, and household electrical equipment Furthermore, treads for automobile tires and the like can be mentioned.

本発明によれば、前記ベースポリマ、シリカ、改質炭酸カルシウムその他、各種成分の種類とその組み合わせおよび配合割合を調整することにより、前記それぞれの用途に適した優れた減衰性能を有する高減衰部材を得ることができる。
〈粘弾性ダンパ〉
特に本発明の高減衰組成物を形成材料として用いて、高減衰部材としての建築物の粘弾性ダンパの粘弾性体を形成した場合には、当該粘弾性体が高い減衰性能を有するため、前記粘弾性体を含む粘弾性ダンパの減衰性能を向上して、その全体を小型化したり、1つの建築物に組み込む数を減らしたりしても、従来と同等またはそれ以上の制震性能を得ることができる。
According to the present invention, the base polymer, silica, modified calcium carbonate, and other various kinds of components, and combinations and blending ratios thereof are adjusted to provide a high damping member having excellent damping performance suitable for each application. Can be obtained.
<Viscoelastic damper>
In particular, when the viscoelastic body of a viscoelastic damper of a building as a high damping member is formed using the high damping composition of the present invention as a forming material, the viscoelastic body has high damping performance. Even if the damping performance of a viscoelastic damper including a viscoelastic body is improved and the whole is downsized or the number incorporated in one building is reduced, the vibration control performance equivalent to or higher than that of the conventional one can be obtained. Can do.

また、ベースポリマとしてジエン系ゴムを用いた場合には、前記粘弾性体の剛性等の温度依存性を小さくできることから、例えば温度差の大きい建築物の外壁付近にも前記粘弾性ダンパを接地することができ、粘弾性ダンパによる制震性能の設計の自由度を高めることもできる。   In addition, when diene rubber is used as the base polymer, the temperature dependence of the viscoelastic body such as rigidity can be reduced. For example, the viscoelastic damper is grounded near the outer wall of a building having a large temperature difference. It is also possible to increase the degree of freedom in designing the vibration control performance by the viscoelastic damper.

〈実施例1〉
(高減衰組成物の調製)
ベースポリマとしての天然ゴム〔SMR(Standard Malaysian Rubber)−CV60〕100質量部に、シリカ〔東ソー・シリカ(株)製のNipSil(ニップシール)KQ〕135質量部、および改質炭酸カルシウム〔前出の、白石工業(株)製のACTIFORT(アクチフォート、登録商標)700、一次粒子径20nm程度の合成炭酸カルシウムの表面をシリカヒドロゾル、および脂肪酸類で表面処理したのち、さらにその最表面をシランカップリング剤で表面処理したもの〕1質量部と、下記表1に示す各成分とを配合し、密閉式混練機を用いて混練して高減衰組成物を調製した。なお表1中の質量部は、それぞれベースポリマとしての天然ゴム100質量部あたりの質量部である。
<Example 1>
(Preparation of highly attenuated composition)
100 parts by mass of natural rubber (SMR (Standard Malaysian Rubber) -CV60) as a base polymer, 135 parts by mass of silica (NipSil (nip seal) KQ made by Tosoh Silica Co., Ltd.), and modified calcium carbonate [see above ACTIFORT (registered trademark) 700 manufactured by Shiraishi Kogyo Co., Ltd., surface of synthetic calcium carbonate having a primary particle size of about 20 nm is treated with silica hydrosol and fatty acids, and the outermost surface is further treated with a silane cup. The surface treated with a ring agent] 1 part by mass and each component shown in Table 1 below were blended and kneaded using a closed kneader to prepare a highly attenuated composition. In addition, the mass part in Table 1 is a mass part per 100 mass parts of natural rubber as a base polymer, respectively.

Figure 0005568581
Figure 0005568581

表中の各成分は下記のとおり。
シラン化合物:フェニルトリエトキシシラン、信越化学工業(株)製のKBE−103
液状ポリイソプレンゴム:(株)クラレ製のLIR−50、数平均分子量:54000
カーボンブラック:三菱化学(株)製のダイアブラック(登録商標)G
ベンズイミダゾール系老化防止剤:2−メルカプトベンズイミダゾール、大内新興化学工業(株)製のノクラックMB
キノン系老化防止剤:丸石化学品(株)製のアンチゲンFR
酸化亜鉛2種:三井金属鉱業(株)製
ステアリン酸:日油(株)製の「つばき」
ジシクロペンタジエン系石油樹脂:軟化点105℃、丸善石油化学(株)製のマルカレッツ(登録商標)M890A
クマロン樹脂:軟化点90℃、日塗化学(株)製のエスクロン(登録商標)G-90
5%オイル処理粉末硫黄:加硫剤、鶴見化学工業(株)製
スルフェンアミド系加硫促進剤:N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学工業(株)製のノクセラー(登録商標)NS
チウラム系加硫促進剤:テトラブチルチウラムジスルフィド、大内新興化学工業(株)製のノクセラーTBT−N
〈比較例1〉
改質炭酸カルシウムを配合しなかったこと以外は実施例1と同様にして高減衰組成物を調製した。
Each component in the table is as follows.
Silane compound: Phenyltriethoxysilane, KBE-103 manufactured by Shin-Etsu Chemical Co., Ltd.
Liquid polyisoprene rubber: LIR-50 manufactured by Kuraray Co., Ltd., number average molecular weight: 54000
Carbon Black: Dia Black (registered trademark) G manufactured by Mitsubishi Chemical Corporation
Benzimidazole anti-aging agent: 2-mercaptobenzimidazole, NOCRACK MB manufactured by Ouchi Shinsei Chemical Co., Ltd.
Quinone anti-aging agent: Antigen FR manufactured by Maruishi Chemical Co., Ltd.
Two types of zinc oxide: manufactured by Mitsui Mining & Smelting Co., Ltd. Stearic acid: "Tsubaki" manufactured by NOF Corporation
Dicyclopentadiene-based petroleum resin: softening point 105 ° C., Marukaretsu (registered trademark) M890A manufactured by Maruzen Petrochemical Co., Ltd.
Coumarone resin: softening point 90 ° C., Nikko Chemical Co., Ltd. Escron (registered trademark) G-90
5% oil-treated powder sulfur: vulcanizing agent, manufactured by Tsurumi Chemical Industry Co., Ltd. Sulfenamide vulcanization accelerator: N-tert-butyl-2-benzothiazolylsulfenamide, Ouchi Shinsei Chemical Industry Co., Ltd. Noxeller (registered trademark) NS
Thiuram-based vulcanization accelerator: Tetrabutylthiuram disulfide, Noxeller TBT-N manufactured by Ouchi Shinsei Chemical Co., Ltd.
<Comparative example 1>
A highly attenuated composition was prepared in the same manner as in Example 1 except that the modified calcium carbonate was not blended.

〈実施例2、3、比較例2、3〉
改質炭酸カルシウムの配合割合を、ベースポリマとしての天然ゴム100質量部あたり0.5質量部(比較例2)、15質量部(実施例2)、30質量部(実施例3)、および35質量部(比較例3)としたこと以外は実施例1と同様にして高減衰組成物を調製した。
<Examples 2 and 3, Comparative Examples 2 and 3>
The blending ratio of the modified calcium carbonate is 0.5 parts by mass (Comparative Example 2), 15 parts by mass (Example 2), 30 parts by mass (Example 3), and 35 parts per 100 parts by mass of the natural rubber as the base polymer. A highly attenuating composition was prepared in the same manner as in Example 1 except that it was changed to part by mass (Comparative Example 3).

〈比較例4〉
改質炭酸カルシウムに代えて、合成炭酸カルシウムの表面を脂肪酸で表面処理した表面処理炭酸カルシウム〔白石工業(株)製の白艶華(登録商標)CC、一次粒子径50nm〕15質量部を配合したこと以外は実施例1と同様にして高減衰組成物を調製した。
〈減衰特性試験〉
(試験体の作製)
実施例、比較例で調製した高減衰組成物をシート状に押出成形したのち打ち抜いて、図1に示すように円板1(厚み5mm×直径25mm)を作製し、前記円板1の表裏両面に、それぞれ加硫接着剤を介して厚み6mm×縦44mm×横44mmの矩形平板状の鋼板2を重ねて積層方向に加圧しながら150℃に加熱して円板1を形成する高減衰組成物を加硫させるとともに、前記円板1を2枚の鋼板2と加硫接着させて、高減衰部材のモデルとしての減衰特性評価用の試験体3を作製した。
<Comparative example 4>
In place of the modified calcium carbonate, 15 parts by mass of surface-treated calcium carbonate [Shiraishi Hana (registered trademark) CC, primary particle size 50 nm, manufactured by Shiroishi Kogyo Co., Ltd.], which is a surface treatment of synthetic calcium carbonate with a fatty acid, was added. A highly attenuated composition was prepared in the same manner as in Example 1 except that.
<Attenuation characteristic test>
(Preparation of test specimen)
The high attenuation compositions prepared in Examples and Comparative Examples were extruded into a sheet shape and then punched to produce a disk 1 (thickness 5 mm × diameter 25 mm) as shown in FIG. Further, a highly attenuating composition in which a rectangular plate-shaped steel plate 2 having a thickness of 6 mm, a length of 44 mm, and a width of 44 mm is stacked on each other through a vulcanizing adhesive and heated to 150 ° C. while pressing in the laminating direction to form the disk 1. , And the disk 1 was vulcanized and bonded to the two steel plates 2 to produce a specimen 3 for evaluating damping characteristics as a model of a high damping member.

(変位試験)
図2(a)に示すように前記試験体3を2個用意し、前記2個の試験体3を、一方の鋼板2を介して1枚の中央固定治具4にボルトで固定するとともに、それぞれの試験体3の他方の鋼板2に、1枚ずつの左右固定治具5をボルトで固定した。そして中央固定治具4を、図示しない試験機の上側の固定アーム6に、ジョイント7を介してボルトで固定し、かつ2枚の左右固定治具5を、前記試験機の下側の可動盤8に、ジョイント9を介してボルトで固定した。
(Displacement test)
As shown in FIG. 2 (a), two test bodies 3 are prepared, and the two test bodies 3 are fixed to one central fixing jig 4 with bolts via one steel plate 2. One left and right fixing jig 5 was fixed to the other steel plate 2 of each test body 3 with bolts. The center fixing jig 4 is fixed to the upper fixing arm 6 of the testing machine (not shown) with a bolt via a joint 7, and the two left and right fixing jigs 5 are connected to the lower movable platen of the testing machine. 8 was fixed with bolts through a joint 9.

次にこの状態で、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向に押し上げるように変位させて、試験体3のうち円板1を、図2(b)に示すように前記試験体3の積層方向と直交方向に歪み変形させた状態とし、次いでこの状態から、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向と反対方向に引き下げるように変位させて、前記図2(a)に示す状態に戻す操作を1サイクルとして、前記試験体3のうち円板1を繰り返し歪み変形、すなわち振動させた際の、前記試験体3の積層方向と直交方向への円板1の変位量(mm)と荷重(N)との関係を示すヒステリシスループH(図3参照)を求めた。   Next, in this state, the movable platen 8 is displaced so as to be pushed up in the direction of the fixed arm 6 as indicated by the white arrow in the figure, and the disk 1 of the test body 3 is moved to the position shown in FIG. As shown in the figure, the test body 3 is strained and deformed in a direction orthogonal to the stacking direction, and from this state, the movable platen 8 is moved in a direction opposite to the direction of the fixed arm 6 as indicated by a white arrow in the figure. The operation of the test body 3 when the disk 1 of the test body 3 is repeatedly distorted or deformed, that is, vibrated, with the operation of displacing it down and returning to the state shown in FIG. A hysteresis loop H (see FIG. 3) indicating the relationship between the displacement (mm) of the disk 1 in the direction perpendicular to the stacking direction and the load (N) was obtained.

測定は、温度20℃の環境下、前記操作を3サイクル実施して3回目の値を求めた。また最大変位量は、円板1を挟む2枚の鋼板2の、前記積層方向と直交方向のずれ量が、前記円板1の厚みの100%となるように設定した。
次いで、前記測定により求めた図3に示すヒステリシスループHのうち最大変位点と最小変位点とを結ぶ、図中に太線の実線で示す直線Lの傾きKeq(N/mm)を求め、前記傾きKeq(N/mm)と、円板1の厚みT(mm)と、円板1の断面積A(mm)とから、式(1):
The measurement was carried out for 3 cycles under the environment of a temperature of 20 ° C. to obtain the third value. The maximum amount of displacement was set so that the amount of deviation of the two steel plates 2 sandwiching the disc 1 in the direction perpendicular to the stacking direction was 100% of the thickness of the disc 1.
Then, connecting the maximum displacement point and the minimum displacement point of the hysteresis loop H shown in FIG. 3 obtained by the measurement, determine the slope Keq (N / mm) of the straight line L 1 shown by a thick solid line in the figure, the From the inclination Keq (N / mm), the thickness T (mm) of the disc 1, and the cross-sectional area A (mm 2 ) of the disc 1, the formula (1):

Figure 0005568581
Figure 0005568581

により等価せん断弾性率Geq(N/mm)を求めた。そして比較例1における等価せん断弾性率Geq(N/mm)を100としたときの、各実施例、比較例の等価せん断弾性率Geq(N/mm)の相対値を求めた。
また図3中に斜線を付して示した、ヒステリシスループHの全表面積で表される吸収エネルギー量ΔWと、同図中に網線を付して示した、前記直線Lと、グラフの横軸と、直線LとヒステリシスループHとの交点から前記横軸におろした垂線Lとで囲まれた領域の表面積で表される弾性歪みエネルギーWとから、式(2):
The equivalent shear modulus Geq (N / mm 2 ) was determined by Then, relative values of the equivalent shear elastic modulus Geq (N / mm 2 ) of each of the examples and the comparative example were obtained when the equivalent shear elastic modulus Geq (N / mm 2 ) in Comparative Example 1 was set to 100.
Also, the absorbed energy amount ΔW represented by the total surface area of the hysteresis loop H shown with diagonal lines in FIG. 3, the straight line L 1 shown with a mesh line in the figure, and the horizontal axis, and a straight line L 1 and the hysteresis loop H elastic strain energy W represented by the surface area of the region surrounded by the perpendicular L 2 grated on the horizontal axis from the intersection of the formula (2):

Figure 0005568581
Figure 0005568581

により等価減衰定数Heqを求めた。等価減衰定数Heqが大きいほど、試験体3は減衰性能に優れていると判定できる。そこで比較例1における等価減衰定数Heqを100としたときの、各実施例、比較例の等価減衰定数Heqの相対値を求めた。
(大変形時の耐久性評価)
最大変位量を、円板1を挟む2枚の鋼板2の、前記積層方向と直交方向のずれ量が、前記円板1の厚みの300%となるように設定したこと以外は前記変位試験と同様にして、温度20℃の環境下で変位を繰り返した際の、円板1の状態を観察した。
Thus, an equivalent damping constant Heq was obtained. It can be determined that the greater the equivalent damping constant Heq is, the better the specimen 3 is in damping performance. Accordingly, the relative values of the equivalent attenuation constants Heq of each of the examples and the comparative examples were obtained when the equivalent attenuation constant Heq in the comparative example 1 was set to 100.
(Durability evaluation during large deformation)
Except that the maximum displacement amount was set so that the deviation amount of the two steel plates 2 sandwiching the disc 1 in the direction perpendicular to the stacking direction was 300% of the thickness of the disc 1; Similarly, the state of the disk 1 was observed when the displacement was repeated in an environment at a temperature of 20 ° C.

そして、サイクル数が10サイクル以内で円板1が大きく変形して元の形状に戻らなくなったり、破損したりしたものを大変形時の耐久性不良(×)、10サイクルまでに前記変形や破損を生じなかったものを耐久性良好(○)と評価した。
〈加工性評価〉
実施例、比較例の高減衰組成物を調製するために、各成分を混練機に投入して混練したのち、混練機から取り出すのに手間がかかったか否かを、比較例1を基準として評価した。
And, when the number of cycles is within 10 cycles, the disk 1 is largely deformed so that it does not return to its original shape or is damaged. Those that did not give rise to good durability (◯).
<Processability evaluation>
In order to prepare the highly attenuated compositions of Examples and Comparative Examples, each component was put into a kneader and kneaded, and then it was evaluated based on Comparative Example 1 whether it took time to take out the components from the kneader. did.

すなわち混練後に、比較例1と同等またはそれ以上に取り出すのに手間がかかったものを加工性不良(×)、粘着性が低く、比較例1よりも容易に取り出すことができたものを加工性良好(○)として評価した。
以上の結果を表2に示す。
That is, after kneading, it took a lot of time to take out as much as or more than that of Comparative Example 1, poor workability (x), low adhesiveness, and easy to take out than Comparative Example 1. Evaluated as good (◯).
The results are shown in Table 2.

Figure 0005568581
Figure 0005568581

表2の、実施例1〜3、比較例1、4の結果より、表面処理炭酸カルシウムに代えて、改質炭酸カルシウムをシリカと併用することにより、高減衰組成物の混練直後のグリーン強度を高めて混練機からの取り出しを容易にして、加工性をより一層向上できるとともに、高減衰部材の減衰性能を向上できることが判った。
ただし実施例1〜3、比較例2の結果より、前記効果を得るためには、前記改質炭酸カルシウムの配合割合は、ベースポリマとしての天然ゴム100質量部あたり1質量部以上である必要があることが判った。
From the results of Examples 1 to 3 and Comparative Examples 1 and 4 in Table 2, the green strength immediately after kneading of the highly attenuated composition was obtained by using modified calcium carbonate in combination with silica instead of surface-treated calcium carbonate. It has been found that it can be easily taken out from the kneader to further improve the workability, and the damping performance of the high damping member can be improved.
However, from the results of Examples 1 to 3 and Comparative Example 2, in order to obtain the above effect, the blending ratio of the modified calcium carbonate needs to be 1 part by mass or more per 100 parts by mass of natural rubber as a base polymer. It turns out that there is.

また実施例1〜3、比較例3の結果より、高減衰部材の大変形時の耐久性を向上するためには、前記改質炭酸カルシウムの配合割合は、ベースポリマとしての天然ゴム100質量部あたり30質量部以下である必要があることが判った。
〈実施例4〜6、比較例5、6〉
シリカの配合割合を、ベースポリマとしての天然ゴム100質量部あたり80質量部(比較例5)、100質量部(実施例4)、150質量部(実施例5)、180質量部(実施例6)、および190質量部(比較例6)としたこと以外は実施例2と同様にして高減衰組成物を調製した。
Further, from the results of Examples 1 to 3 and Comparative Example 3, in order to improve the durability at the time of large deformation of the high damping member, the blending ratio of the modified calcium carbonate is 100 parts by mass of natural rubber as a base polymer. It was found that it was necessary to be 30 parts by mass or less.
<Examples 4 to 6, Comparative Examples 5 and 6>
The mixing ratio of silica is 80 parts by mass (Comparative Example 5), 100 parts by mass (Example 4), 150 parts by mass (Example 5), 180 parts by mass (Example 6) per 100 parts by mass of natural rubber as a base polymer. ) And 190 parts by mass (Comparative Example 6), a highly attenuated composition was prepared in the same manner as in Example 2.

前記各実施例、比較例の高減衰組成物について、前記の各試験を実施して、その特性を評価した。結果を、実施例2の結果と併せて表3に示す。   With respect to the high attenuation compositions of each of the examples and comparative examples, the above tests were performed to evaluate the characteristics. The results are shown in Table 3 together with the results of Example 2.

Figure 0005568581
Figure 0005568581

表3の実施例2、4〜6、比較例5の結果より、高減衰部材に良好な減衰性能を付与するためには、シリカの配合割合は、ベースポリマとしての天然ゴム100質量部あたり100質量部以上である必要があることが判った。
また実施例2、4〜6、比較例6の結果より、高減衰部材を繰り返し大変形させた際の耐久性が低下して、前記高減衰部材が破損したりするのを防止するためには、シリカの配合割合は、ベースポリマとしての天然ゴム100質量部あたり180質量部以下である必要があることが判った。
From the results of Examples 2, 4 to 6 and Comparative Example 5 in Table 3, in order to give good damping performance to the high damping member, the blending ratio of silica is 100 per 100 parts by mass of natural rubber as the base polymer. It was found that it was necessary to be at least part by mass.
In addition, from the results of Examples 2, 4 to 6, and Comparative Example 6, in order to prevent the durability when the high attenuation member is repeatedly largely deformed, and the high attenuation member is damaged. It has been found that the blending ratio of silica needs to be 180 parts by mass or less per 100 parts by mass of natural rubber as a base polymer.

1 円板
2 鋼板
3 試験体
4 中央固定治具
5 左右固定治具
6 固定アーム
7 ジョイント
8 可動盤
9 ジョイント
H ヒステリシスループ
直線
垂線
Keq 傾き
W エネルギー
ΔW 吸収エネルギー量
DESCRIPTION OF SYMBOLS 1 Disc 2 Steel plate 3 Specimen 4 Center fixing jig 5 Left and right fixing jig 6 Fixed arm 7 Joint 8 Movable platen 9 Joint H Hysteresis loop L 1 straight line L 2 perpendicular line Keq inclination W energy ΔW absorbed energy amount

Claims (2)

ベースポリマに、当該ベースポリマ100質量部あたり100質量部以上、180質量部以下のシリカと、1質量部以上、30質量部以下の、最表面をシランカップリング剤で表面処理した改質炭酸カルシウムを配合したことを特徴とする高減衰組成物。 Modified calcium carbonate having a surface polymer treated with a silane coupling agent on the outermost surface of 100 parts by weight or more and 180 parts by weight or less of silica and 1 part by weight or more and 30 parts by weight or less per 100 parts by weight of the base polymer A highly attenuated composition characterized by comprising: 請求項1に記載の高減衰組成物を形成材料として用いて形成された粘弾性体を備えることを特徴とする建築物の粘弾性ダンパ。 A viscoelastic damper for a building, comprising a viscoelastic body formed using the high damping composition according to claim 1 as a forming material.
JP2012036316A 2012-02-22 2012-02-22 High damping composition and viscoelastic damper Active JP5568581B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012036316A JP5568581B2 (en) 2012-02-22 2012-02-22 High damping composition and viscoelastic damper
KR1020120105666A KR101810252B1 (en) 2012-02-22 2012-09-24 High damping composition and viscoelastic damper
TW101136718A TW201335277A (en) 2012-02-22 2012-10-04 High damping composition and viscoelasticity damper
CN2012103799159A CN103289137A (en) 2012-02-22 2012-10-09 High damping composition and viscoelastic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012036316A JP5568581B2 (en) 2012-02-22 2012-02-22 High damping composition and viscoelastic damper

Publications (2)

Publication Number Publication Date
JP2013170253A JP2013170253A (en) 2013-09-02
JP5568581B2 true JP5568581B2 (en) 2014-08-06

Family

ID=49090706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036316A Active JP5568581B2 (en) 2012-02-22 2012-02-22 High damping composition and viscoelastic damper

Country Status (4)

Country Link
JP (1) JP5568581B2 (en)
KR (1) KR101810252B1 (en)
CN (1) CN103289137A (en)
TW (1) TW201335277A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261131B2 (en) * 2014-07-04 2018-01-17 住友ゴム工業株式会社 High damping composition, seismic damper and seismic isolation bearing
DK3670622T3 (en) 2016-09-20 2022-07-04 Avery Dennison Corp Multilayer tape
US11059264B2 (en) 2018-03-19 2021-07-13 Avery Dennison Corporation Multilayer constrained-layer damping
ES2960026T3 (en) 2018-05-17 2024-02-29 Avery Dennison Corp Partial Coverage Multi-Layer Shock Absorbing Laminate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839642B2 (en) * 1990-05-15 1998-12-16 住友ゴム工業株式会社 High damping rubber composition
JPH10279753A (en) * 1997-03-31 1998-10-20 Mitsuboshi Belting Ltd Impact and vibration-absorbing gel material
JP3785541B2 (en) * 2003-07-30 2006-06-14 株式会社白石中央研究所 Modified calcium carbonate-containing rubber composition
JP4982081B2 (en) * 2004-12-21 2012-07-25 東海ゴム工業株式会社 High damping elastomer composition and vibration control damper obtained thereby
JP2006265400A (en) * 2005-03-24 2006-10-05 Yokohama Rubber Co Ltd:The Method of manufacturing rubber composition and pneumatic tire using the same
JP2008179663A (en) * 2007-01-23 2008-08-07 Nippon Zeon Co Ltd Cross-linkable nitrile rubber composition and cross-linked rubber product
JP4847978B2 (en) * 2007-07-05 2011-12-28 住友ゴム工業株式会社 High damping rubber composition and damping member
CN102304214B (en) * 2011-07-19 2013-03-13 奥斯汀新材料(张家港)有限公司 Method for preparing micropore polyurethane vibration reduction buffering block for automobile

Also Published As

Publication number Publication date
KR101810252B1 (en) 2017-12-18
KR20130096623A (en) 2013-08-30
TW201335277A (en) 2013-09-01
CN103289137A (en) 2013-09-11
JP2013170253A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
JP5404716B2 (en) High damping composition
JP6261131B2 (en) High damping composition, seismic damper and seismic isolation bearing
TWI546342B (en) Highly damping composition and viscoelastic damper
JP2014109023A (en) High-damping composition and viscoelastic damper
KR101805206B1 (en) High damping composition
JP2011126992A (en) Highly damping composition
JP6195338B2 (en) High damping composition and viscoelastic damper
JP5568581B2 (en) High damping composition and viscoelastic damper
JP2017082171A (en) High attenuation rubber composition and viscoelastic damper
JP2012219150A (en) Highly damping composition
JP2010189604A (en) Highly damping composition
JP2015160903A (en) High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing
KR101780829B1 (en) High damping composition
JP6575807B2 (en) High damping composition, viscoelastic damper and viscoelastic bearing
KR101680905B1 (en) Highly damping composition
JP2011132481A (en) High damping composition
JP2013053251A (en) Highly damping composition
JP5738113B2 (en) High damping composition
JP2014224180A (en) Highly damping composition and viscoelastic damper
JP2019031607A (en) High attenuation rubber composition and viscoelastic damper
JP2014118516A (en) High-damping composition and vibration control damper
JP5950358B2 (en) High damping composition and viscoelastic damper
JP2017210532A (en) High attenuation rubber composition and viscoelastic damper
JP5523428B2 (en) High damping composition
JP2013043912A (en) High damping composition and manufacturing method for the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R150 Certificate of patent or registration of utility model

Ref document number: 5568581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250