JP2010189604A - Highly damping composition - Google Patents

Highly damping composition Download PDF

Info

Publication number
JP2010189604A
JP2010189604A JP2009038012A JP2009038012A JP2010189604A JP 2010189604 A JP2010189604 A JP 2010189604A JP 2009038012 A JP2009038012 A JP 2009038012A JP 2009038012 A JP2009038012 A JP 2009038012A JP 2010189604 A JP2010189604 A JP 2010189604A
Authority
JP
Japan
Prior art keywords
mass
parts
softening point
composition
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009038012A
Other languages
Japanese (ja)
Other versions
JP5404090B2 (en
Inventor
Tatehiko Hyodo
建彦 兵頭
Yuichiro Matsutani
雄一朗 松谷
Katsuyuki Tanaka
克往 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2009038012A priority Critical patent/JP5404090B2/en
Publication of JP2010189604A publication Critical patent/JP2010189604A/en
Application granted granted Critical
Publication of JP5404090B2 publication Critical patent/JP5404090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly damping composition producing a highly damping member having damping performance improved from the present conditions while maintaining good processability. <P>SOLUTION: The highly damping composition is obtained by compounding 100 pts.mass of a base polymer with ≥100 pts.mass and ≤180 pts.mass of silica, and a rosin derivative having ≥120°C and ≤180°C softening point within the range of ≥5 pts.mass and ≤50 pts.mass. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、振動エネルギーの伝達を緩和したり吸収したりする部材のもとになる高減衰組成物に関するものである。   The present invention relates to a highly damped composition that is a source of a member that relaxes or absorbs transmission of vibration energy.

例えばビルや橋梁等の建築物、産業機械、航空機、自動車、鉄道車両、コンピュータやその周辺機器類、家庭用電気機器類、さらには自動車用タイヤ等の幅広い分野において振動エネルギーの伝達を緩和したり吸収したりする、すなわち免震、制振、防振等をするために、ゴム等のエラストマからなる高減衰部材が用いられる。
前記高減衰部材は、振動が加えられた際のヒステリシスロスを大きくして前記振動のエネルギーを効率よく速やかに減衰する減衰性能を高めるため、前記エラストマにカーボンブラック、シリカ等の充填剤やロジン、石油樹脂等の粘着性付与剤を配合した高減衰組成物によって形成されるのが一般的である(例えば特許文献1〜4等参照)。しかし、例えば前記特許文献1〜4等に記載された程度の充填剤や粘着性付与剤の配合量では、高減衰部材の減衰性能を十分に高めることはできない。
For example, the transmission of vibration energy can be eased in a wide range of fields such as buildings and bridges, industrial machinery, aircraft, automobiles, railway vehicles, computers and peripheral equipment, household electrical equipment, and automobile tires. In order to absorb, that is, to perform seismic isolation, vibration control, vibration isolation, etc., a high damping member made of an elastomer such as rubber is used.
The high damping member increases the hysteresis loss when vibration is applied and enhances the damping performance to quickly and efficiently attenuate the vibration energy, so that the elastomer is filled with a filler such as carbon black and silica, rosin, Generally, it is formed by a highly attenuated composition containing a tackifier such as petroleum resin (see, for example, Patent Documents 1 to 4). However, the damping performance of the high damping member cannot be sufficiently increased with the blending amount of the filler or tackifier described in, for example, the above-mentioned Patent Documents 1 to 4.

現状よりもさらに減衰性能を高めるために、例えばカーボンブラック等の充填剤の配合量を増加させることが考えられるが、その場合には高減衰組成物の加工性が低下して、高減衰部材を製造するために前記高減衰組成物を混練したり任意の形状に成形加工したりするのが容易でなくなるという問題がある。特に工場レベルで高減衰部材を大量生産する場合、前記加工性の低さは高減衰部材の生産性を低下させ、消費エネルギーを増大させ、さらには生産コストを上昇させる原因となるため望ましくない。   In order to further improve the damping performance than the current situation, it is conceivable to increase the blending amount of a filler such as carbon black. However, in this case, the workability of the high damping composition is lowered, and a high damping member is used. There is a problem in that it is not easy to knead or mold the high attenuation composition into an arbitrary shape for manufacturing. In particular, when mass-producing high-attenuation members at the factory level, the low workability is undesirable because it reduces the productivity of high-attenuation members, increases energy consumption, and further increases production costs.

特許第3593437号公報Japanese Patent No. 3593437 特開2003−3014号公報JP 2003-3014 A 特開2007−63425号公報JP 2007-63425 A 特開平7−41603号公報JP 7-41603 A

本発明の目的は、良好な加工性を維持しつつ、現状よりも減衰性能が向上した高減衰部材を製造できる高減衰組成物を提供することにある。   An object of the present invention is to provide a highly attenuating composition capable of producing a highly attenuating member having improved attenuating performance as compared with the current situation while maintaining good processability.

本発明は、ベースポリマー100質量部に、シリカを100質量部以上、180質量部以下、軟化点が120℃以上、180℃以下のロジン誘導体を5質量部以上、50質量部以下の範囲で配合してなることを特徴とする高減衰組成物である。
本発明によれば、粘着性付与剤として軟化点が120℃以上のロジン誘導体を配合することにより、充填剤として加工性低下の主原因であるカーボンブラックを配合することなく、またロジン誘導体や充填剤としてのシリカの配合量を従来と同等程度に維持して、高減衰組成物の加工性を良好に維持しながら、前記高減衰組成物を用いて形成される高減衰部材の減衰性能を現状よりも向上できる。
In the present invention, 100 parts by mass of the base polymer and 100 parts by mass or more and 180 parts by mass or less of silica, and a rosin derivative having a softening point of 120 ° C. or more and 180 ° C. or less in a range of 5 parts by mass or more and 50 parts by mass or less. It is a highly attenuating composition characterized by comprising.
According to the present invention, by adding a rosin derivative having a softening point of 120 ° C. or more as a tackifier, the rosin derivative or filler can be used without adding carbon black, which is a main cause of processability deterioration, as a filler. The damping performance of the high damping member formed using the high damping composition is maintained while maintaining the blending amount of the silica as a conventional agent at the same level as the conventional one, while maintaining good processability of the high damping composition. Can be improved.

そのため本発明の高減衰組成物を用いて、例えば高減衰部材としての、ビル等の免震用のダンパを形成する場合には、個々のダンパの減衰性能を現状よりも高めることにより、1つのビルに要するダンパの個数を減らすことができる。
また本発明の高減衰組成物によれば、粘着性付与剤として配合するロジン誘導体として、軟化点が前記範囲内でも異なるものを選択して使用することにより、前記ロジン誘導体やシリカの配合量を前記範囲内で調整することと相まって、高減衰部材の減衰性能設計の自由度を向上でき、減衰性能を高減衰部材の設計に織り込む際に有利である。
Therefore, when using the high damping composition of the present invention to form a seismic isolation damper such as a building as a high damping member, for example, by increasing the damping performance of each individual damper, The number of dampers required for the building can be reduced.
Further, according to the highly attenuated composition of the present invention, as the rosin derivative to be blended as a tackifier, by selecting and using a different softening point within the above range, the blending amount of the rosin derivative or silica can be reduced. Combined with the adjustment within the above range, the degree of freedom in designing the damping performance of the high damping member can be improved, which is advantageous in incorporating the damping performance into the design of the high damping member.

ベースポリマーとしては、シリカおよびロジン誘導体の配合により高い減衰性能を発揮しうる種々のベースポリマーがいずれも使用可能である。ただし、特に減衰性能の温度依存性を小さくして、広い温度範囲で安定した減衰性能を示す高減衰部材を提供することを考慮すると、前記ベースポリマーとしては天然ゴム、イソプレンゴム、およびブタジエンゴムからなる群より選ばれた少なくとも1種のゴムが好ましい。   As the base polymer, any of various base polymers that can exhibit high damping performance by blending silica and a rosin derivative can be used. However, considering that the temperature dependence of the damping performance is particularly reduced and providing a high damping member that exhibits stable damping performance over a wide temperature range, the base polymer may be natural rubber, isoprene rubber, or butadiene rubber. At least one rubber selected from the group consisting of

本発明によれば、良好な加工性を維持しつつ、現状よりも減衰性能が向上した高減衰部材を製造できる高減衰組成物を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the high attenuation | damping composition which can manufacture the high attenuation | damping member which improved the attenuation | damping performance rather than the present condition can be provided, maintaining favorable workability.

本発明の実施例、比較例の高減衰組成物からなる高減衰部材の減衰性能を評価するために作製する高減衰部材のモデルとしての試験体を分解して示す分解斜視図である。It is a disassembled perspective view which decomposes | disassembles and shows the test body as a model of the high attenuation member produced in order to evaluate the attenuation performance of the high attenuation member which consists of the high attenuation composition of the Example of this invention, and a comparative example. 同図(a)(b)は、前記試験体を変位させて変位量と荷重との関係を求めるための試験機の概略を説明する図である。FIGS. 4A and 4B are diagrams for explaining the outline of a testing machine for displacing the test body and obtaining the relationship between the displacement and the load. 前記試験機を用いて試験体を変位させて求められる、変位量と荷重との関係を示すヒステリシスループの一例を示すグラフである。It is a graph which shows an example of the hysteresis loop which shows the relationship between the displacement amount and a load calculated | required by displacing a test body using the said testing machine.

本発明の高減衰組成物は、ベースポリマー100質量部に、シリカを100質量部以上、180質量部以下、軟化点が120℃以上、180℃以下のロジン誘導体を5質量部以上、50質量部以下の範囲で配合してなることを特徴とする。
ベースポリマーとしては、シリカおよびロジン誘導体の配合により、またゴムの場合はさらに加硫することにより高い減衰性能を発揮しうる種々のベースポリマーがいずれも使用可能であり、中でもゴムが好ましい。
In the high attenuation composition of the present invention, 100 parts by mass of the base polymer, 100 parts by mass or more and 180 parts by mass or less of silica, and 5 to 50 parts by mass of a rosin derivative having a softening point of 120 ° C. or more and 180 ° C. or less. It mix | blends in the following ranges, It is characterized by the above-mentioned.
As the base polymer, any of various base polymers that can exhibit high damping performance by blending silica and a rosin derivative, or by further vulcanizing in the case of rubber can be used, and rubber is particularly preferable.

前記ゴムとしては、例えば天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ノルボルネンゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、クロロプレンゴム、アクリロニトリルブタジエンゴム、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、多硫化ゴム等の1種または2種以上が挙げられる。   Examples of the rubber include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, norbornene rubber, ethylene propylene rubber, ethylene propylene diene rubber, butyl rubber, halogenated butyl rubber, chloroprene rubber, acrylonitrile butadiene rubber, epichlorohydrin rubber, chloro One type or two or more types such as sulfonated polyethylene and polysulfide rubber may be mentioned.

特に、減衰性能の温度依存性を小さくして広い温度範囲で安定した減衰性能を示す高減衰部材を提供することを考慮すると、前記の中でも天然ゴム、イソプレンゴム、およびブタジエンゴムからなる群より選ばれた少なくとも1種のゴムが好ましい。
シリカとしては、その製法によって分類される湿式法シリカ、乾式法シリカのいずれを用いてもよい。またシリカとしては、充填剤として機能して高減衰部材の減衰性能を向上する効果を向上することを考慮すると、BET比表面積が100〜400m2/g、特に200〜250m2/gであるものが好ましい。BET比表面積は、例えば柴田化学器械工業(株)製の迅速表面積測定装置SA−1000等を使用して、吸着気体として窒素ガスを用いる気相吸着法で測定した値でもって表すこととする。
In particular, considering the provision of a high damping member that exhibits stable damping performance over a wide temperature range by reducing the temperature dependence of damping performance, among these, selected from the group consisting of natural rubber, isoprene rubber, and butadiene rubber At least one kind of rubber is preferred.
As the silica, any of wet process silica and dry process silica classified by the production method may be used. Silica has a BET specific surface area of 100 to 400 m 2 / g, particularly 200 to 250 m 2 / g in consideration of improving the effect of improving the damping performance of the high damping member by functioning as a filler. Is preferred. The BET specific surface area is expressed by a value measured by a gas phase adsorption method using nitrogen gas as an adsorbed gas, for example, using a rapid surface area measuring device SA-1000 manufactured by Shibata Chemical Instruments Co., Ltd.

シリカの配合量は、ベースポリマー100質量部あたり100質量部以上、180質量部以下である必要がある。配合量が100質量部未満では、シリカを配合することによる、高減衰部材の減衰性能を向上する効果が得られず、180質量部を超える場合には高減衰組成物の加工性が低下して、高減衰部材を製造するために前記高減衰組成物を混練したり任意の形状に成形加工したりするのが容易でなくなってしまう。   The compounding quantity of a silica needs to be 100 mass parts or more and 180 mass parts or less per 100 mass parts of base polymers. When the blending amount is less than 100 parts by mass, the effect of improving the damping performance of the high damping member by blending silica cannot be obtained, and when it exceeds 180 parts by mass, the workability of the high damping composition is lowered. In addition, it is not easy to knead or mold the high attenuation composition into an arbitrary shape in order to produce a high attenuation member.

なおシリカの配合量は、高減衰組成物の良好な加工性を維持しつつ、より一層減衰性能が向上した高減衰部材を製造することを考慮すると、前記範囲内でも135質量部以上、180質量部以下であるのが好ましい。
ロジン誘導体としては、例えばロジンと多価アルコール(グリセリン等)とのエステルやロジン変性マレイン酸樹脂等の、構成成分としてロジンを含む樹脂であって、粘着性付与剤として機能して高減衰部材の減衰性能を向上する効果を有する種々の誘導体の中から、軟化点が120℃以上、180℃以下であるものが選択して用いられる。またロジン誘導体の配合量は、ベースポリマー100質量部あたり5質量部以上、50質量部以下である必要がある。
The amount of silica blended is 135 parts by mass or more and 180 parts by mass even within the above range in consideration of manufacturing a highly attenuating member having further improved attenuating performance while maintaining good processability of the highly attenuating composition. It is preferably less than or equal to parts.
As the rosin derivative, for example, a resin containing rosin as a constituent, such as an ester of rosin and a polyhydric alcohol (such as glycerin) or a rosin-modified maleic acid resin, which functions as a tackifier and functions as a high attenuation member Among various derivatives having an effect of improving the damping performance, those having a softening point of 120 ° C. or higher and 180 ° C. or lower are selected and used. Moreover, the compounding quantity of a rosin derivative needs to be 5 to 50 mass parts per 100 mass parts of base polymers.

軟化点が120℃未満であるロジン誘導体は、ベースポリマー100質量部あたり5質量部以上、50質量部以下の範囲の配合では、高減衰部材の減衰性能を向上する効果が得られない。また高減衰組成物の加工性が低下して、高減衰部材を製造するために前記高減衰組成物を混練したり任意の形状に成形加工したりするのが容易でなくなってしまう。
一方、軟化点が180℃を超えるロジン誘導体を、ベースポリマー100質量部あたり5質量部以上、50質量部以下の範囲で配合した場合には高減衰組成物の加工性が低下して、高減衰部材を製造するために前記高減衰組成物を混練したり任意の形状に成形加工したりするのが容易でなくなってしまう。
When the rosin derivative having a softening point of less than 120 ° C. is blended in the range of 5 parts by mass or more and 50 parts by mass or less per 100 parts by mass of the base polymer, the effect of improving the damping performance of the high damping member cannot be obtained. In addition, the workability of the high damping composition is lowered, and it becomes difficult to knead the high damping composition or form it into an arbitrary shape in order to produce a high damping member.
On the other hand, when a rosin derivative having a softening point exceeding 180 ° C. is blended in the range of 5 parts by mass or more and 50 parts by mass or less per 100 parts by mass of the base polymer, the workability of the highly attenuated composition is lowered, resulting in high attenuation. In order to manufacture a member, it becomes difficult to knead the high-damping composition or form it into an arbitrary shape.

前記ロジン誘導体の軟化点は、高減衰組成物の良好な加工性を維持しつつ、より一層減衰性能が向上した高減衰部材を製造することを考慮すると、前記範囲内でも120℃以上、160℃以下であるのが好ましい。
また軟化点が前記120℃以上、180℃以下の範囲内であるロジン誘導体の配合量が5質量部未満では、高減衰部材の減衰性能を向上する効果が得られない。また高減衰組成物の加工性が低下して、高減衰部材を製造するために前記高減衰組成物を混練したり任意の形状に成形加工したりするのが容易でなくなってしまう。
The softening point of the rosin derivative is 120 ° C. or higher and 160 ° C. even within the above range in consideration of manufacturing a high damping member with further improved damping performance while maintaining good processability of the high damping composition. It is preferable that:
If the blending amount of the rosin derivative having a softening point in the range of 120 ° C. or higher and 180 ° C. or lower is less than 5 parts by mass, the effect of improving the damping performance of the high damping member cannot be obtained. In addition, the workability of the high damping composition is lowered, and it becomes difficult to knead the high damping composition or form it into an arbitrary shape in order to produce a high damping member.

一方、前記配合量が50質量部を超える場合には高減衰組成物の加工性が低下して、高減衰部材を製造するために前記高減衰組成物を混練したり任意の形状に成形加工したりするのが容易でなくなってしまう。
なおロジン誘導体の配合量は、高減衰組成物の良好な加工性を維持しつつ、より一層減衰性能が向上した高減衰部材を製造することを考慮すると、前記範囲内でも10質量部以上、50質量部以下であるのが好ましい。
On the other hand, when the blending amount exceeds 50 parts by mass, the workability of the high damping composition is lowered, and the high damping composition is kneaded or molded into an arbitrary shape to produce a high damping member. It will not be easy to do.
In addition, the amount of the rosin derivative is 10 parts by mass or more, even within the above range, in consideration of manufacturing a high attenuation member having further improved attenuation performance while maintaining good processability of the high attenuation composition. It is preferably less than or equal to parts by mass.

なお軟化点は、日本工業規格JIS K2207−1996「石油アスファルト」所載の軟化点試験方法(環球法)によって測定した値でもって表すこととする。
軟化点が120℃以上、180℃以下の範囲内にあるロジン誘導体としては、例えば、いずれもハリマ化成(株)製の商品名ハリエスターシリーズのうちMSR−4(軟化点:127℃)、DS−130(軟化点:135℃)、AD−130(軟化点:135℃)、DS−816(軟化点:148℃)、DS−822(軟化点:172℃)、ハリマ化成(株)製の商品名ハリマックシリーズのうち145P(軟化点:138℃)、135GN(軟化点:139℃)、AS−5(軟化点:165℃)等の1種または2種以上が挙げられる。
The softening point is expressed by a value measured by a softening point test method (ring ball method) described in Japanese Industrial Standard JIS K2207-1996 “Petroleum Asphalt”.
Examples of rosin derivatives having a softening point in the range of 120 ° C. or higher and 180 ° C. or lower include, for example, MSR-4 (softening point: 127 ° C.), DS in the product name Harrier Star series manufactured by Harima Kasei Co., Ltd. -130 (softening point: 135 ° C), AD-130 (softening point: 135 ° C), DS-816 (softening point: 148 ° C), DS-822 (softening point: 172 ° C), manufactured by Harima Kasei Co., Ltd. One or more of 145P (softening point: 138 ° C.), 135GN (softening point: 139 ° C.), AS-5 (softening point: 165 ° C.), etc., are included in the product name Harimac series.

本発明の高減衰組成物には、前記各成分に加えて、さらに石油樹脂、クマロン樹脂等の、ロジン誘導体以外の他の粘着性付与剤を配合してもよい。前記他の粘着性付与剤の配合量は、高減衰部材の減衰特性に応じて適宜設定すればよい。
またベースポリマーがゴムである場合、高減衰組成物には加硫剤、加硫促進剤、加硫促進助剤、老化防止剤等の添加剤を適宜の割合で配合してもよい。
In addition to the above components, the high attenuation composition of the present invention may further contain other tackifiers such as petroleum resins and coumarone resins other than rosin derivatives. What is necessary is just to set the compounding quantity of the said other tackifying agent suitably according to the attenuation | damping characteristic of a high attenuation | damping member.
When the base polymer is rubber, additives such as a vulcanizing agent, a vulcanization accelerator, a vulcanization acceleration aid, and an anti-aging agent may be added to the high attenuation composition at an appropriate ratio.

本発明の高減衰組成物は、前記各成分を任意の混練機を用いて混練して得られ、所定の形状に成形後、ベースポリマーがゴムである場合には加硫することで、所定の減衰特性を有する高減衰部材を形成できる。
本発明の高減衰組成物を用いて形成できる高減衰部材としては、例えばビル等の建造物の基礎に組み込まれる免震用のダンパ、吊橋や斜張橋等のケーブルの制振部材、産業機械や航空機、自動車、鉄道車両等の防振部材、コンピュータやその周辺機器類、あるいは家庭用電気機器類等の防振部材、さらには自動車用タイヤのトレッド等が挙げられる。本発明によれば、ベースポリマーに配合するシリカの配合量、およびロジン誘導体の軟化点、前記ロジン誘導体の配合量を前記範囲内で調整したり、ベースポリマーやシリカの種類を選択したりすることにより、前記それぞれの用途に適した優れた減衰性能を有する高減衰部材を得ることができる。
The highly attenuating composition of the present invention is obtained by kneading the above components using an arbitrary kneading machine, and after molding into a predetermined shape, vulcanizing when the base polymer is rubber, A high damping member having damping characteristics can be formed.
Examples of the high-damping member that can be formed using the high-damping composition of the present invention include seismic isolation dampers incorporated in the foundation of buildings such as buildings, cable damping members such as suspension bridges and cable-stayed bridges, and industrial machinery. And anti-vibration members such as aircraft, automobiles and railway vehicles, anti-vibration members such as computers and peripheral devices, or household electric appliances, and treads for automobile tires. According to the present invention, the amount of silica to be blended in the base polymer, the softening point of the rosin derivative, the amount of the rosin derivative is adjusted within the above range, or the type of the base polymer or silica is selected. Thus, a high attenuation member having excellent attenuation performance suitable for each application can be obtained.

〈実施例1〉
ベースポリマーとしての天然ゴム〔SMR(Standard Malaysian Rubber)−CV60〕100質量部に、充填剤としてのシリカ〔東ソー・シリカ(株)製のNipsil(ニップシール)KQ〕100質量部、ロジン誘導体〔ロジン変性マレイン酸樹脂、軟化点139℃、ハリマ化成(株)製のハリマック135GN〕20質量部と、下記の各成分とを配合し、密閉式混練機を用いて混練して高減衰組成物を調製した。
<Example 1>
100 parts by weight of natural rubber (SMR (Standard Malaysian Rubber) -CV60) as a base polymer, 100 parts by weight of silica (Nipsil (nip seal) KQ manufactured by Tosoh Silica Co., Ltd.), a rosin derivative (rosin modified) Maleic acid resin, softening point 139 ° C., Harima Chemical Co., Ltd. Harimac 135GN] 20 parts by mass and the following components were blended and kneaded using a closed kneader to prepare a highly attenuated composition. .

樹脂:ジシクロペンタジエン系石油樹脂〔軟化点105℃、丸善石油化学(株)製のマルカレッツ(登録商標)M−890A〕25質量部
樹脂:クマロン樹脂〔軟化点90℃、日塗化学(株)製のエスクロン(登録商標)G−90〕10質量部
老化防止剤:ベンズイミダゾール系老化防止剤〔2-メルカプトベンズイミダゾール、大内新興化学(株)製のノクラック(登録商標)MB〕2質量部
老化防止剤:キノン系老化防止剤〔丸石化学品(株)製のアンチゲンFR〕2質量部
加硫剤:5%オイル処理粉末硫黄〔鶴見化学工業(株)製〕1.58質量部
加硫促進剤:スルフェンアミド系加硫促進剤〔N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学(株)製のノクセラー(登録商標)NS〕1質量部
加硫促進剤:チウラム系加硫促進剤〔大内新興化学(株)製のノクセラーTBT-N〕0.7質量部
加硫促進助剤:酸化亜鉛2種〔三井金属鉱業(株)製〕4質量部
加硫促進助剤:ステアリン酸〔日油(株)製の「つばき」〕1質量部
〈実施例2〜4、比較例1〜4〉
天然ゴム100質量部に対するシリカの配合量を20質量部(比較例1)、40質量部(比較例2)、80質量部(比較例3)、135質量部(実施例2)、150質量部(実施例3)、180質量部(実施例4)、および225質量部(比較例4)としたこと以外は実施例1と同様にして高減衰組成物を調製した。
Resin: Dicyclopentadiene-based petroleum resin [softening point 105 ° C., Marukaretsu (registered trademark) M-890A manufactured by Maruzen Petrochemical Co., Ltd.] 25 parts by mass Resin: Coumarone resin [softening point 90 ° C., Nikko Chemical Co., Ltd. Manufactured by Escron (registered trademark) G-90] 10 parts by weight Anti-aging agent: benzimidazole-based anti-aging agent [2-mercaptobenzimidazole, NOCRACK (registered trademark) MB manufactured by Ouchi Shinsei Chemical Co., Ltd.] 2 parts by weight Anti-aging agent: quinone-based anti-aging agent [Antigen FR manufactured by Maruishi Chemical Co., Ltd.] 2 parts by mass Vulcanizing agent: 5% oil-treated powder sulfur [manufactured by Tsurumi Chemical Co., Ltd.] 1.58 parts by mass Accelerator: sulfenamide-based vulcanization accelerator [N-tert-butyl-2-benzothiazolylsulfenamide, Noxeller (registered trademark) NS manufactured by Ouchi Shinsei Chemical Co., Ltd.] 1 part by weight Vulcanization accelerator : Thiuram vulcanization accelerator [ Noxeller TBT-N manufactured by Ouchi Shinsei Chemical Co., Ltd. 0.7 parts by mass Vulcanization accelerating aid: 2 types of zinc oxide [Mitsui Metal Mining Co., Ltd.] 4 parts by mass Vulcanization accelerating aid: stearic acid [ "Tsubaki" manufactured by NOF Corporation] 1 part by weight <Examples 2 to 4, Comparative Examples 1 to 4>
20 parts by mass (Comparative Example 1), 40 parts by mass (Comparative Example 2), 80 parts by mass (Comparative Example 3), 135 parts by mass (Example 2), 150 parts by mass with respect to 100 parts by mass of natural rubber A highly attenuating composition was prepared in the same manner as in Example 1 except that (Example 3), 180 parts by mass (Example 4), and 225 parts by mass (Comparative Example 4) were used.

前記各実施例、比較例について下記の各試験を行ない、その特性を評価した。
〈減衰特性評価〉
(試験体の作製)
実施例、比較例で調製した高減衰組成物をシート状に押出成形したのち打抜いて、図1に示すように厚み5mm×直径25mmの円板1を作製し、前記円板1の表裏両面に、それぞれ加硫接着剤を介して厚み6mm×縦44mm×横44mmの矩形平板状の鋼板2を重ねて積層方向に加圧しながら150℃に加熱して円板1を構成する高減衰組成物を加硫させると共に、前記円板1を2枚の鋼板2と加硫接着させて、高減衰部材のモデルとしての減衰特性評価用の試験体3を作製した。
The following tests were carried out for the examples and comparative examples, and the characteristics were evaluated.
<Damping characteristic evaluation>
(Preparation of test specimen)
The highly attenuated compositions prepared in Examples and Comparative Examples were extruded into a sheet and then punched to produce a disk 1 having a thickness of 5 mm and a diameter of 25 mm as shown in FIG. Further, a highly attenuating composition for forming the disk 1 by superposing a rectangular plate-shaped steel plate 2 of thickness 6 mm × length 44 mm × width 44 mm, respectively, through a vulcanizing adhesive and heating to 150 ° C. while pressing in the laminating direction. , And the disk 1 was vulcanized and bonded to the two steel plates 2 to produce a specimen 3 for evaluating damping characteristics as a model of a high damping member.

(変位試験)
図2(a)に示すように前記試験体3を2個用意し、前記2個の試験体3を、一方の鋼板2を介して1枚の中央固定治具4にボルトで固定すると共に、それぞれの試験体3の他方の鋼板2に、1枚ずつの左右固定治具5をボルトで固定した。そして中央固定治具4を、図示しない試験機の上側の固定アーム6に、ジョイント7を介してボルトで固定し、かつ2枚の左右固定治具5を、前記試験機の下側の可動盤8に、ジョイント9を介してボルトで固定した。
(Displacement test)
As shown in FIG. 2 (a), two test bodies 3 are prepared, and the two test bodies 3 are fixed to one central fixing jig 4 with bolts via one steel plate 2, One left and right fixing jig 5 was fixed to the other steel plate 2 of each test body 3 with bolts. The center fixing jig 4 is fixed to the upper fixing arm 6 of the testing machine (not shown) with a bolt via a joint 7, and the two left and right fixing jigs 5 are connected to the lower movable platen of the testing machine. 8 was fixed with bolts through a joint 9.

次にこの状態で、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向に押し上げるように変位させて、図(b)に示すように試験体3のうち円板1を、試験体3の積層方向と直交方向に歪み変形させた状態とし、次いでこの状態から、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向と反対方向に引き下げるように変位させて図(a)に示す状態に戻す操作を1サイクルとして、前記試験体3の円板1を繰り返し歪み変形、すなわち振動させた際の、前記変位量(mm)と荷重(N)との関係を示すヒステリシスループH(図3参照)を求めた。   Next, in this state, the movable platen 8 is displaced so as to be pushed up in the direction of the fixed arm 6 as indicated by the white arrow in the drawing, and the disc 1 of the test body 3 is shown in FIG. Is deformed in a direction orthogonal to the stacking direction of the test body 3, and from this state, the movable platen 8 is pulled down in the direction opposite to the direction of the fixed arm 6 as indicated by a white arrow in the figure. The amount of displacement (mm) and load (N) when the disk 1 of the test body 3 is repeatedly strain-deformed, ie, vibrated, with the operation of returning to the state shown in FIG. Hysteresis loop H (see FIG. 3) showing the relationship between

測定は、前記操作を3サイクル行って3回目の値を求めた。また最大変位量は、円板1を挟む2枚の鋼板2の、積層方向と直交方向のずれ量が、前記円板1の厚みの1%となるように設定した。
次いで、前記測定により求めた図3に示すヒステリシスループHのうち最大変位点と最小変位点とを結ぶ、図中に太線の実線で示す直線L1の傾きKeq(N/mm)を求め、前記傾きKeq(N/mm)と、円板1の厚みT(mm)と、円板1の断面積A(mm2)とから、式(1):
For the measurement, the above operation was performed for 3 cycles to obtain the third value. The maximum amount of displacement was set so that the amount of deviation of the two steel plates 2 sandwiching the disc 1 in the direction perpendicular to the stacking direction was 1% of the thickness of the disc 1.
Next, a slope Keq (N / mm) of a straight line L 1 indicated by a bold solid line in the figure connecting the maximum displacement point and the minimum displacement point in the hysteresis loop H shown in FIG. From the inclination Keq (N / mm), the thickness T (mm) of the disc 1, and the cross-sectional area A (mm 2 ) of the disc 1, the formula (1):

Figure 2010189604
により等価せん断弾性率Geq(N/mm2)を求めた。
また図3中に斜線で示した、ヒステリシスループHの全表面積で表される吸収エネルギー量ΔWと、同図中に網線で示した、前記直線L1と、グラフの横軸と、直線L1とヒステリシスループHとの交点から前記横軸におろした垂線L2とで囲まれた領域の表面積で表される弾性歪みエネルギーWとから、式(2):
Figure 2010189604
The equivalent shear modulus Geq (N / mm 2 ) was determined by
Further, the absorbed energy amount ΔW represented by the total surface area of the hysteresis loop H, indicated by diagonal lines in FIG. 3, the straight line L 1 , the horizontal axis of the graph, and the straight line L 1 indicated by the mesh line in FIG. From the elastic strain energy W represented by the surface area of the region surrounded by the perpendicular line L2 taken from the intersection of the hysteresis loop H and the horizontal axis, the formula (2):

Figure 2010189604
により等価減衰定数Heqを求めた。等価減衰定数Heqが大きいほど、試験体3は減衰性能に優れていると判定できる。実施例、比較例の場合は等価減衰定数Heqが0.35以上であるものを減衰性能良好、0.35未満であるものを減衰性能不足として評価した。
Figure 2010189604
Thus, an equivalent damping constant Heq was obtained. It can be determined that the greater the equivalent damping constant Heq is, the better the specimen 3 is in damping performance. In the case of the example and the comparative example, the case where the equivalent attenuation constant Heq was 0.35 or more was evaluated as good attenuation performance, and the case where the equivalent attenuation constant Heq was less than 0.35 was evaluated as insufficient attenuation performance.

〈加工性評価〉
所定の成分を混練して前記実施例、比較例の高減衰組成物を調整する際、ならびに前記高減衰組成物を押出成形して、試験体3の円板1のもとになるシートを作製する際に、作業が困難であったかどうかを判定し、作業が困難でなかった場合を加工性良好(○)、困難であった場合を加工性不良(×)として評価した。
<Processability evaluation>
When a predetermined component is kneaded to prepare the high-attenuation compositions of Examples and Comparative Examples, and the high-attenuation composition is extruded to produce a sheet that is the basis of the disk 1 of the test body 3 In this case, it was determined whether or not the work was difficult, and the case where the work was not difficult was evaluated as good workability (◯), and the case where the work was difficult was evaluated as poor workability (×).

以上の結果を表1に示す。   The results are shown in Table 1.

Figure 2010189604
表1の比較例1〜4の結果より、ベースポリマーとしての天然ゴム100質量部に対するシリカの配合量が100質量部未満では、高減衰部材の減衰性能が不十分であり、180質量部を超える場合には加工性が低下することが判った。
Figure 2010189604
From the results of Comparative Examples 1 to 4 in Table 1, when the compounding amount of silica is less than 100 parts by mass with respect to 100 parts by mass of natural rubber as the base polymer, the damping performance of the high attenuation member is insufficient and exceeds 180 parts by mass. In some cases, it was found that the workability deteriorates.

これに対し、実施例1〜4の結果より、ベースポリマーとしての天然ゴム100質量部に対するシリカの配合量を100質量部以上、180質量部以下の範囲内とすれば、良好な加工性を維持しつつ、現状よりも減衰性能を向上できることが確認された。
〈実施例5〜7、比較例5、6〉
天然ゴム100質量部に対するハリマック135GNの配合量を4質量部(比較例5)、10質量部(実施例5)、30質量部(実施例6)、50質量部(実施例7)、および55質量部(比較例6)としたこと以外は実施例2と同様にして高減衰組成物を調製した。
On the other hand, from the results of Examples 1 to 4, when the blending amount of silica is 100 parts by mass or more and 180 parts by mass or less with respect to 100 parts by mass of natural rubber as a base polymer, good processability is maintained. However, it was confirmed that the attenuation performance could be improved compared to the current situation.
<Examples 5 to 7, Comparative Examples 5 and 6>
4 parts by mass (Comparative Example 5), 10 parts by mass (Example 5), 30 parts by mass (Example 6), 50 parts by mass (Example 7), and 55 parts by mass of Harimac 135GN with respect to 100 parts by mass of natural rubber A highly attenuating composition was prepared in the same manner as in Example 2 except that it was changed to part by mass (Comparative Example 6).

〈比較例7、8〉
ロジン誘導体に代えて、同量のキシレン樹脂(比較例7)、アスファルト(比較例8)を配合したこと以外は実施例2と同様にして高減衰組成物を調製した。
前記各実施例、比較例について先の各試験を行ない、その特性を評価した。結果を、実施例2の結果と併せて表2に示す。
<Comparative Examples 7 and 8>
A highly attenuated composition was prepared in the same manner as in Example 2 except that the same amount of xylene resin (Comparative Example 7) and asphalt (Comparative Example 8) were blended in place of the rosin derivative.
Each of the above-mentioned examples and comparative examples was subjected to the previous tests, and their characteristics were evaluated. The results are shown in Table 2 together with the results of Example 2.

Figure 2010189604
表2の比較例5、6の結果より、ベースポリマーとしての天然ゴム100質量部に対するロジン誘導体の配合量が5質量部未満では、高減衰部材の減衰性能が不十分で、しかも加工性が低下し、50質量部を超える場合には加工性が低下することが判った。
Figure 2010189604
From the results of Comparative Examples 5 and 6 in Table 2, when the blending amount of the rosin derivative with respect to 100 parts by mass of the natural rubber as the base polymer is less than 5 parts by mass, the damping performance of the high damping member is insufficient and the processability is lowered. And when it exceeded 50 mass parts, it turned out that workability falls.

また比較例7、8の結果より、ロジン誘導体に代えてキシレン樹脂を配合した場合には加工性が低下し、アスファルトを配合した場合には高減衰部材の減衰性能が不十分で、しかも加工性が低下することが判った。
これに対し、実施例2、5〜7の結果より、キシレン樹脂やアスファルトに代えてロジン誘導体を配合すると共に、ベースポリマーとしての天然ゴム100質量部に対する前記ロジン誘導体の配合量を5質量部以上、50質量部以下の範囲内とすれば、良好な加工性を維持しつつ、現状よりも減衰性能を向上できることが確認された。
Further, from the results of Comparative Examples 7 and 8, when the xylene resin was blended instead of the rosin derivative, the workability deteriorated, and when the asphalt was blended, the damping performance of the high damping member was insufficient, and the workability Was found to be reduced.
On the other hand, from the results of Examples 2 and 5-7, the rosin derivative was blended in place of xylene resin and asphalt, and the blending amount of the rosin derivative with respect to 100 parts by mass of the natural rubber as the base polymer was 5 parts by mass or more. It was confirmed that the damping performance can be improved as compared with the current situation while maintaining good workability when the content is within the range of 50 parts by mass or less.

〈比較例9〉
ハリマック135GNに代えて、軟化点71℃のロジン誘導体〔ロジン変性グリセリンエステル、軟化点71℃、ハリマ化成(株)製のハリエスターS〕を同量配合したこと以外は実施例2と同様にして高減衰組成物を調製した。
〈比較例10〉
ハリマック135GNに代えて、軟化点90℃のロジン誘導体〔ロジンエステル樹脂、軟化点90℃、ハリマ化成(株)製のハリエスターK−90〕を同量配合したこと以外は実施例2と同様にして高減衰組成物を調製した。
<Comparative Example 9>
Instead of Harimac 135GN, a rosin derivative having a softening point of 71 ° C. (rosin-modified glycerin ester, softening point 71 ° C., Harrier Star S manufactured by Harima Chemical Co., Ltd.) was mixed in the same manner as in Example 2. A highly attenuated composition was prepared.
<Comparative Example 10>
Instead of Harimac 135GN, the same amount of rosin derivative (rosin ester resin, softening point 90 ° C., Harrier Star K-90 manufactured by Harima Chemical Co., Ltd.) having a softening point of 90 ° C. was blended in the same manner as in Example 2. A highly attenuated composition was prepared.

〈比較例11〉
ハリマック135GNに代えて、軟化点101℃のロジン誘導体〔ロジン変性マレイン酸樹脂、軟化点101℃、ハリマ化成(株)製のハリマックR−100〕を同量配合したこと以外は実施例2と同様にして高減衰組成物を調製した。
〈比較例12〉
ハリマック135GNに代えて、軟化点102℃のロジン誘導体〔ロジンエステル、軟化点102℃、ハリマ化成(株)製のハリエスターSP−100〕を同量配合したこと以外は実施例2と同様にして高減衰組成物を調製した。
<Comparative Example 11>
Example 2 except that the same amount of rosin derivative (rosin-modified maleic acid resin, softening point 101 ° C., Harima Chemical Co., Ltd. Harimac R-100) having a softening point of 101 ° C. was used instead of Harimac 135GN. A highly attenuated composition was prepared as follows.
<Comparative example 12>
Instead of Harimac 135GN, a rosin derivative having a softening point of 102 ° C. (rosin ester, softening point of 102 ° C., Harrier Chemical Co., Ltd. Harrier Star SP-100) was blended in the same amount as in Example 2. A highly attenuated composition was prepared.

〈実施例8〉
ハリマック135GNに代えて、軟化点127℃のロジン誘導体〔ロジン変性特殊合成樹脂、軟化点127℃、ハリマ化成(株)製のハリエスターMSR−4〕を同量配合したこと以外は実施例2と同様にして高減衰組成物を調製した。
〈実施例9〉
ハリマック135GNに代えて、軟化点135℃のロジン誘導体〔ロジン変性特殊合成樹脂、軟化点135℃、ハリマ化成(株)製のハリエスターDS−130〕を同量配合したこと以外は実施例2と同様にして高減衰組成物を調製した。
<Example 8>
Example 2 except that the same amount of a rosin derivative having a softening point of 127 ° C. (rosin-modified special synthetic resin, softening point of 127 ° C., Harrier Star MSR-4 manufactured by Harima Chemical Co., Ltd.) was used instead of Harimac 135GN. Similarly, a highly attenuated composition was prepared.
<Example 9>
Example 2 except that the same amount of a rosin derivative having a softening point of 135 ° C. (rosin-modified special synthetic resin, softening point of 135 ° C., Harrier Star DS-130 manufactured by Harima Chemical Co., Ltd.) was used instead of Harimac 135GN. Similarly, a highly attenuated composition was prepared.

〈実施例10〉
ハリマック135GNに代えて、軟化点148℃のロジン誘導体〔ロジンエステル、軟化点148℃、ハリマ化成(株)製のハリエスターDS−816〕を同量配合したこと以外は実施例1と同様にして高減衰組成物を調製した。
〈実施例14〉
ハリマック135GNに代えて、軟化点172℃のロジン誘導体〔ロジンエステル、軟化点172℃、ハリマ化成(株)製のハリエスターDS−822〕を同量配合したこと以外は実施例1と同様にして高減衰組成物を調製した。
<Example 10>
Instead of Harimac 135GN, a rosin derivative having a softening point of 148 ° C. (rosin ester, softening point of 148 ° C., Harrier Chemicals Co., Ltd. Harrier Star DS-816) was used in the same manner as in Example 1, except that the same amount was blended. A highly attenuated composition was prepared.
<Example 14>
Instead of Harimac 135GN, a rosin derivative having a softening point of 172 ° C. (rosin ester, softening point of 172 ° C., Haristar Kasei Co., Ltd. Harrier Star DS-822) was used in the same manner as in Example 1 except that it was blended in the same amount. A highly attenuated composition was prepared.

〈比較例13〉
ハリマック135GNに代えて、軟化点183℃のロジン誘導体〔ロジン変性特殊合成樹脂、軟化点183℃、ハリマ化成(株)製のハリエスターKT−2〕を同量配合したこと以外は実施例1と同様にして高減衰組成物を調製した。
前記各実施例、比較例について先の各試験を行ない、その特性を評価した。結果を、実施例2の結果と併せて表3、表4に示す。
<Comparative Example 13>
Example 1 except that the same amount of a rosin derivative having a softening point of 183 ° C. (rosin-modified special synthetic resin, softening point of 183 ° C., Harrier Star KT-2 manufactured by Harima Chemical Co., Ltd.) was used instead of Harimac 135GN. Similarly, a highly attenuated composition was prepared.
Each of the above-mentioned examples and comparative examples was subjected to the previous tests, and their characteristics were evaluated. The results are shown in Tables 3 and 4 together with the results of Example 2.

Figure 2010189604
Figure 2010189604

Figure 2010189604
表3の比較例9〜12の結果より、ロジン誘導体として軟化点が120℃未満であるものを用いた場合には、高減衰部材の減衰性能が不十分になったり、加工性が低下したりすることが判った。
Figure 2010189604
From the results of Comparative Examples 9 to 12 in Table 3, when a rosin derivative having a softening point of less than 120 ° C. is used, the damping performance of the high damping member becomes insufficient, or the workability decreases. I found out that

また比較例13の結果より、ロジン誘導体として軟化点が180℃を超えるものを用いた場合には加工性が低下することが判った。
これに対し、実施例2、9〜11の結果より、ロジン誘導体として軟化点が120℃以上、180℃以下であるものを用いれば、良好な加工性を維持しつつ、現状よりも減衰性能を向上できることが確認された。
Further, from the results of Comparative Example 13, it was found that when a rosin derivative having a softening point exceeding 180 ° C. was used, the workability was lowered.
On the other hand, from the results of Examples 2 and 9 to 11, if a rosin derivative having a softening point of 120 ° C. or higher and 180 ° C. or lower is used, the damping performance is better than the current state while maintaining good processability. It was confirmed that it could be improved.

1 円板
2 鋼板
3 試験体
4 中央固定治具
5 左右固定治具
6 固定アーム
7 ジョイント
8 可動盤
9 ジョイント
DESCRIPTION OF SYMBOLS 1 Disc 2 Steel plate 3 Test body 4 Center fixing jig 5 Left and right fixing jig 6 Fixed arm 7 Joint 8 Movable platen 9 Joint

Claims (2)

ベースポリマー100質量部に、シリカを100質量部以上、180質量部以下、軟化点が120℃以上、180℃以下のロジン誘導体を5質量部以上、50質量部以下の範囲で配合してなることを特徴とする高減衰組成物。   100 parts by mass of the base polymer and 100 parts by mass or more and 180 parts by mass or less of silica, and a rosin derivative having a softening point of 120 ° C. or more and 180 ° C. or less in a range of 5 parts by mass or more and 50 parts by mass or less. A highly attenuated composition characterized by ベースポリマーが天然ゴム、イソプレンゴム、およびブタジエンゴムからなる群より選ばれた少なくとも1種のゴムである請求項1記載の高減衰組成物。   2. The high damping composition according to claim 1, wherein the base polymer is at least one rubber selected from the group consisting of natural rubber, isoprene rubber, and butadiene rubber.
JP2009038012A 2009-02-20 2009-02-20 High damping composition Active JP5404090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038012A JP5404090B2 (en) 2009-02-20 2009-02-20 High damping composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038012A JP5404090B2 (en) 2009-02-20 2009-02-20 High damping composition

Publications (2)

Publication Number Publication Date
JP2010189604A true JP2010189604A (en) 2010-09-02
JP5404090B2 JP5404090B2 (en) 2014-01-29

Family

ID=42815971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038012A Active JP5404090B2 (en) 2009-02-20 2009-02-20 High damping composition

Country Status (1)

Country Link
JP (1) JP5404090B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731875A (en) * 2011-04-06 2012-10-17 住友橡胶工业株式会社 High-damping composition
KR20130114554A (en) * 2012-04-09 2013-10-17 스미토모 고무 고교 가부시키가이샤 High damping composition and viscoelastic damper
CN103524800A (en) * 2013-09-30 2014-01-22 芜湖航天特种电缆厂 Bending resistant sheath material for wires and cables, and preparation method thereof
WO2015079703A1 (en) * 2013-11-27 2015-06-04 株式会社ブリヂストン Rubber composition and tire
KR20160010300A (en) 2014-07-18 2016-01-27 스미토모 고무 고교 가부시키가이샤 Viscoelastic damper and method of manufacturing the same
JP2016216615A (en) * 2015-05-21 2016-12-22 株式会社ブリヂストン Puncture sealant
JP2019184334A (en) * 2018-04-05 2019-10-24 株式会社鷺宮製作所 Test fixing jig for seismic isolation damper and test equipment using test fixing jig for seismic isolation damper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741603A (en) * 1993-07-30 1995-02-10 Sumitomo Rubber Ind Ltd High-damping rubber composition blended with silica
JPH1081787A (en) * 1996-07-10 1998-03-31 Sumitomo Rubber Ind Ltd Vibration-damping member
JP2003003014A (en) * 2001-06-22 2003-01-08 Nitta Ind Corp High damping rubber composition
JP2007063425A (en) * 2005-08-31 2007-03-15 Bridgestone Corp Highly damping rubber composition and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741603A (en) * 1993-07-30 1995-02-10 Sumitomo Rubber Ind Ltd High-damping rubber composition blended with silica
JPH1081787A (en) * 1996-07-10 1998-03-31 Sumitomo Rubber Ind Ltd Vibration-damping member
JP2003003014A (en) * 2001-06-22 2003-01-08 Nitta Ind Corp High damping rubber composition
JP2007063425A (en) * 2005-08-31 2007-03-15 Bridgestone Corp Highly damping rubber composition and method for producing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731875A (en) * 2011-04-06 2012-10-17 住友橡胶工业株式会社 High-damping composition
JP2012219150A (en) * 2011-04-06 2012-11-12 Sumitomo Rubber Ind Ltd Highly damping composition
KR20130114554A (en) * 2012-04-09 2013-10-17 스미토모 고무 고교 가부시키가이샤 High damping composition and viscoelastic damper
JP2013216781A (en) * 2012-04-09 2013-10-24 Sumitomo Rubber Ind Ltd Highly damping composition, and viscoelastic damper
KR101937490B1 (en) * 2012-04-09 2019-01-10 스미토모 고무 고교 가부시키가이샤 High damping composition and viscoelastic damper
CN103524800A (en) * 2013-09-30 2014-01-22 芜湖航天特种电缆厂 Bending resistant sheath material for wires and cables, and preparation method thereof
JP2016027176A (en) * 2013-11-27 2016-02-18 株式会社ブリヂストン Rubber composition and tire
JP5837727B2 (en) * 2013-11-27 2015-12-24 株式会社ブリヂストン Rubber composition and tire
JP2016094600A (en) * 2013-11-27 2016-05-26 株式会社ブリヂストン Rubber composition and tire
JP2017088900A (en) * 2013-11-27 2017-05-25 株式会社ブリヂストン Rubber composition and tire
JP2017088901A (en) * 2013-11-27 2017-05-25 株式会社ブリヂストン Rubber composition and tire
JP2017088899A (en) * 2013-11-27 2017-05-25 株式会社ブリヂストン Rubber composition and tire
RU2644167C2 (en) * 2013-11-27 2018-02-08 Бриджстоун Корпорейшн Rubber composition and tyre
WO2015079703A1 (en) * 2013-11-27 2015-06-04 株式会社ブリヂストン Rubber composition and tire
US10696823B2 (en) 2013-11-27 2020-06-30 Bridgestone Corporation Rubber composition and tire
KR20160010300A (en) 2014-07-18 2016-01-27 스미토모 고무 고교 가부시키가이샤 Viscoelastic damper and method of manufacturing the same
JP2016216615A (en) * 2015-05-21 2016-12-22 株式会社ブリヂストン Puncture sealant
JP2019184334A (en) * 2018-04-05 2019-10-24 株式会社鷺宮製作所 Test fixing jig for seismic isolation damper and test equipment using test fixing jig for seismic isolation damper
JP7042145B2 (en) 2018-04-05 2022-03-25 株式会社鷺宮製作所 Test equipment using a seismic isolation damper test fixing jig and a seismic isolation damper test fixing jig

Also Published As

Publication number Publication date
JP5404090B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5086386B2 (en) High damping composition
JP5289356B2 (en) High damping composition
JP5404090B2 (en) High damping composition
TWI546342B (en) Highly damping composition and viscoelastic damper
JP6261131B2 (en) High damping composition, seismic damper and seismic isolation bearing
KR101805205B1 (en) High damping composition
JP5330460B2 (en) High damping composition
JP2011126992A (en) Highly damping composition
JP6195338B2 (en) High damping composition and viscoelastic damper
KR101780829B1 (en) High damping composition
JP6575807B2 (en) High damping composition, viscoelastic damper and viscoelastic bearing
JP2012219150A (en) Highly damping composition
JP2011132481A (en) High damping composition
JP5568581B2 (en) High damping composition and viscoelastic damper
JP2013053251A (en) Highly damping composition
KR101680905B1 (en) Highly damping composition
JP2015160903A (en) High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing
JP2014224180A (en) Highly damping composition and viscoelastic damper
JP5738113B2 (en) High damping composition
JP2014118516A (en) High-damping composition and vibration control damper
JP5523428B2 (en) High damping composition
JP2014077036A (en) Highly damping composition and vibration control damper
JP2013043912A (en) High damping composition and manufacturing method for the same
KR101930543B1 (en) High damping composition
JP2011256279A (en) Highly damping composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250