JP5086386B2 - High damping composition - Google Patents

High damping composition Download PDF

Info

Publication number
JP5086386B2
JP5086386B2 JP2010086254A JP2010086254A JP5086386B2 JP 5086386 B2 JP5086386 B2 JP 5086386B2 JP 2010086254 A JP2010086254 A JP 2010086254A JP 2010086254 A JP2010086254 A JP 2010086254A JP 5086386 B2 JP5086386 B2 JP 5086386B2
Authority
JP
Japan
Prior art keywords
mass
parts
base polymer
damping
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010086254A
Other languages
Japanese (ja)
Other versions
JP2011116931A (en
Inventor
岳宏 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2010086254A priority Critical patent/JP5086386B2/en
Priority to KR1020100104493A priority patent/KR20110050362A/en
Priority to CN201010530372.7A priority patent/CN102050966B/en
Priority to TW099138161A priority patent/TWI454525B/en
Publication of JP2011116931A publication Critical patent/JP2011116931A/en
Application granted granted Critical
Publication of JP5086386B2 publication Critical patent/JP5086386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、振動エネルギーの伝達を緩和したり吸収したりする高減衰部材のもとになる高減衰組成物に関するものである。   The present invention relates to a highly damped composition that is a source of a highly damped member that relaxes or absorbs transmission of vibration energy.

例えばビルや橋梁等の建築物、産業機械、航空機、自動車、鉄道車両、コンピュータやその周辺機器類、家庭用電気機器類、さらには自動車用タイヤ等の幅広い分野において、振動エネルギーの伝達を緩和したり吸収したりする、すなわち免震、制震、制振、防振等をするために、ゴム等をベースポリマとして含む高減衰部材が用いられる。
前記高減衰部材は、振動が加えられた際のヒステリシスロスを大きくして前記振動のエネルギーを効率よく速やかに減衰する減衰性能を高めるため、前記エラストマにカーボンブラック、シリカ等の充填剤や、あるいはロジン、石油樹脂等の粘着性付与剤等を含有させた高減衰組成物によって形成されるのが一般的である(例えば特許文献1〜3等参照)。
For example, in a wide range of fields such as buildings and bridges, industrial machinery, aircraft, automobiles, railway vehicles, computers and peripheral equipment, household electrical equipment, and automobile tires, vibration energy transmission is alleviated. In order to absorb or absorb, that is, to perform seismic isolation, vibration control, vibration control, vibration isolation, etc., a high damping member containing rubber or the like as a base polymer is used.
The high damping member increases the hysteresis loss when vibration is applied and enhances the damping performance to attenuate the vibration energy efficiently and quickly, so that the elastomer is filled with a filler such as carbon black or silica, or Generally, it is formed of a highly attenuating composition containing a tackifier such as rosin or petroleum resin (see, for example, Patent Documents 1 to 3).

しかしこれら従来の高減衰組成物では、高減衰部材の減衰性能を十分に高めることはできない。高減衰部材の減衰性能を現状よりもさらに高めるためには、例えば充填剤等の含有割合をさらに増加させること等が考えられるが、多量の充填剤や粘着性付与剤を含有させた高減衰組成物は加工性が低下して、所望の立体形状を有する高減衰部材を製造するために前記高減衰組成物を混練したり前記立体形状に成形加工したりするのが容易でなくなるという問題がある。   However, these conventional high damping compositions cannot sufficiently enhance the damping performance of the high damping member. In order to further improve the damping performance of the high-damping member, it may be possible to further increase the content ratio of the filler, for example, but a high-damping composition containing a large amount of filler or tackifier There is a problem in that the workability is deteriorated, and it is not easy to knead or mold the high attenuation composition into the three-dimensional shape in order to produce a high attenuation member having a desired three-dimensional shape. .

特に工場レベルで高減衰部材を大量に生産する場合、前記加工性の低さは高減衰部材の生産性を低下させ、生産に要する消費エネルギーを増大させ、さらには生産コストを上昇させる原因となるため望ましくない。
そこで高減衰組成物に、減衰性付与剤としてヒンダードフェノール系化合物を含有させること、前記ヒンダードフェノール系化合物を、先に説明したシリカ等の充填剤や、あるいはロジン等の粘着性付与剤と併用することによって減衰性能を向上することが検討されている(例えば特許文献4〜7等参照)。
Especially when producing high-attenuation members in large quantities at the factory level, the low workability decreases the productivity of the high-attenuation members, increases the energy consumption required for production, and further increases the production cost. Therefore, it is not desirable.
Therefore, the hindered phenol compound is added to the highly attenuating composition as an attenuating agent, the hindered phenolic compound is filled with a filler such as silica described above, or a tackifier such as rosin. It has been studied to improve the attenuation performance by using it together (for example, see Patent Documents 4 to 7).

特開2003−2014号公報Japanese Patent Laid-Open No. 2003-2014 特開2007−63425号公報JP 2007-63425 A 特開平7−41603号公報JP 7-41603 A 特開2000−44813号公報JP 2000-44813 A 特開2009−138053号公報JP 2009-138053 A 特許第3661180号公報Japanese Patent No. 3661180 特許第3675216号公報Japanese Patent No. 3675216

しかし現状よりも減衰性能をさらに向上するために、前記ヒンダードフェノール系化合物の含有割合を増加させた場合には、前記ヒンダーフェノール系化合物が高減衰部材の表面にブルームしやすくなるという問題があった。
本発明の目的は、良好な加工性を維持しつつ、またブルーム等の問題を生じることなく、現状よりもさらに減衰性能に優れた高減衰部材を製造しうる高減衰組成物を提供することにある。
However, when the content ratio of the hindered phenolic compound is increased in order to further improve the damping performance, the hindered phenolic compound tends to bloom on the surface of the high attenuation member. It was.
An object of the present invention is to provide a highly attenuating composition capable of producing a highly attenuating member that is more excellent in attenuating performance than the current state while maintaining good processability and without causing problems such as bloom. is there.

本発明は、ベースポリマと、前記ベースポリマ100質量部あたり、100質量部以上、180質量部以下のシリカ、3質量部以上、50質量部以下のロジン誘導体、0.1質量部以上、10質量部以下の、イミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、および2−フェニル−4−メチルイミダゾールからなる群より選ばれた少なくとも1種のイミダゾール系化合物、および0.1質量部以上、20質量部以下のヒンダードフェノール系化合物とを含有していることを特徴とする高減衰組成物である。 The present invention relates to a base polymer, 100 parts by mass or more and 180 parts by mass or less of silica, 3 parts by mass or more and 50 parts by mass or less of a rosin derivative, 0.1 parts by mass or more and 10 parts by mass per 100 parts by mass of the base polymer. Parts of imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-methylimidazole, 2-undecylimidazole , 2-heptadecylimidazole, 2-phenylimidazole, and at least one imidazole compound selected from the group consisting of 2-phenyl-4-methylimidazole , and a hinder of 0.1 to 20 parts by mass A highly attenuating composition characterized by containing a dophenol compound is there.

本発明によれば、シリカ、ロジン誘導体、およびヒンダードフェノール系化合物に、さらに前記特定のイミダゾール系化合物を含有させることにより、前記シリカ、ロジン誘導体、およびヒンダードフェノール系化合物の含有割合を増加させることなく、したがって高減衰組成物の加工性を低下させたりブルーム等の問題を生じたりすることなしに、前記高減衰組成物を用いて形成される高減衰部材の減衰性能を現状よりもさらに向上することができる。 According to the present invention, by adding the specific imidazole compound to the silica, rosin derivative, and hindered phenol compound, the content ratio of the silica, rosin derivative, and hindered phenol compound is increased. Therefore, the damping performance of the high damping member formed using the high damping composition is further improved from the current level without degrading the workability of the high damping composition and causing problems such as bloom. can do.

また本発明によれば、前記シリカ、ロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物として、それぞれ種類が異なるものを、前記所定の含有割合の範囲内で含有量を調整して含有させることにより、高減衰部材の減衰性能設計の自由度を向上でき、減衰性能を高減衰部材の設計に織り込む際に有利である。
ベースポリマとしては、シリカ、ロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物を含有させることで高い減衰性能を発揮しうる種々のベースポリマがいずれも使用可能である。
According to the invention, the silica, the rosin derivative, the imidazole compound, and the hindered phenol compound, which are different in type, are contained by adjusting the content within the range of the predetermined content ratio. Thus, the degree of freedom in designing the damping performance of the high damping member can be improved, which is advantageous when incorporating the damping performance into the design of the high damping member.
As the base polymer, any of various base polymers that can exhibit high damping performance by including silica, rosin derivative, imidazole compound, and hindered phenol compound can be used.

ただし、特に減衰性能の温度依存性を小さくして、広い温度範囲で安定した減衰性能を発揮しうる高減衰部材を形成することを考慮すると、前記ベースポリマとしては、極性基を有しないため室温付近での剛性等の特性の温度依存性が小さい天然ゴム、イソプレンゴム、およびブタジエンゴムからなる群より選ばれた少なくとも1種が好ましい。
イミダゾール系化合物としては、分子中にイミダゾール環を有、シリカ、ロジン誘導体、およびヒンダードフェノール系化合物を含む高減衰組成物からなる高減衰部材の減衰性能を向上する機能を有する、前記特定のイミダゾール系化合物がいずれも使用可能である。ただし、高減衰部材の減衰性能をさらに向上することを考慮すると、イミダゾール系化合物としてはイミダゾールが好ましい。
However, considering the fact that the temperature dependence of the damping performance is reduced and a high damping member capable of exhibiting stable damping performance over a wide temperature range is taken into consideration, the base polymer does not have a polar group and therefore has room temperature. At least one selected from the group consisting of natural rubber, isoprene rubber, and butadiene rubber having a small temperature dependency of properties such as rigidity in the vicinity is preferable.
As the imidazole compound, it has a imidazole ring in the molecule, silica, rosin derivatives, and hindered having phenolic functionality compound to improve the damping performance of the high-damping member made of a high damping composition comprising, in the specific Any imidazole compound can be used. However, in consideration of further improving the damping performance of the high damping member, imidazole is preferable as the imidazole compound.

前記高減衰組成物は、さらに酢酸マグネシウム、およびアミン系老化防止剤を含有しているのが好ましい。前記両成分を含有させることにより、高減衰部材の減衰性能をさらに向上させることができる。
前記高減衰組成物は、前記各成分を適宜の順序で配合し、混練して調製することができる。ただしベースポリマに、先にロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物を加えて混練後にシリカを加えて混練する工程を経て本発明の高減衰組成物を調製するのが好ましい。
The highly attenuated composition preferably further contains magnesium acetate and an amine-based antiaging agent. By containing both the components, the damping performance of the high damping member can be further improved.
The high attenuation composition can be prepared by blending the components in an appropriate order and kneading. However, it is preferable to prepare the highly attenuated composition of the present invention through a step of adding a rosin derivative, an imidazole compound, and a hindered phenol compound to the base polymer and kneading after kneading.

またベースポリマに、先にロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物とともにシリカの一部を加えて混練後にシリカの残部を加えて混練してもよい。
これによりロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物をベースポリマ中に十分に行き渡らせた状態でシリカと混練できるため、前記各成分をそれぞれより一層有効に機能させることができ、高減衰部材の減衰性能をさらに向上させることができる。
Further, a part of silica may be added to the base polymer together with the rosin derivative, the imidazole compound, and the hindered phenol compound in advance, and then the remainder of the silica may be added and kneaded.
As a result, rosin derivatives, imidazole compounds, and hindered phenol compounds can be kneaded with silica in a sufficiently dispersed state in the base polymer, allowing each of the above components to function more effectively and with high attenuation. The damping performance of the member can be further improved.

前記高減衰組成物を形成材料として用いて、高減衰部材としての建築物の制震用ダンパを形成する場合には、1つの建築物中に組み込む前記制震用ダンパの数量を減らすことができる。また温度依存性が小さいことから、例えば温度差の大きい建築物の外壁付近にも前記制震用ダンパを設置することができる。   When the building damping damper as a high damping member is formed using the high damping composition as a forming material, the number of the damping dampers incorporated in one building can be reduced. . In addition, since the temperature dependency is small, for example, the damping damper can be installed near the outer wall of a building having a large temperature difference.

本発明によれば、良好な加工性を維持しつつ、またブルーム等の問題を生じることなく、現状よりもさらに減衰性能に優れた高減衰部材を製造しうる高減衰組成物を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the high attenuation | damping composition which can manufacture the high attenuation | damping member which was further excellent in the attenuation | damping performance rather than the present condition can be provided, maintaining the favorable workability and without producing problems, such as a bloom.

本発明の実施例、比較例の高減衰組成物からなる高減衰部材の減衰性能を評価するために作製する高減衰部材のモデルとしての試験体を分解して示す分解斜視図である。It is a disassembled perspective view which decomposes | disassembles and shows the test body as a model of the high attenuation member produced in order to evaluate the attenuation performance of the high attenuation member which consists of the high attenuation composition of the Example of this invention, and a comparative example. 同図(a)(b)は、前記試験体を変位させて変位量と荷重との関係を求めるための試験機の概略を説明する図である。FIGS. 4A and 4B are diagrams for explaining the outline of a testing machine for displacing the test body and obtaining the relationship between the displacement and the load. 前記試験機を用いて試験体を変位させて求められる、変位量と加重との関係を示すヒステリシスループの一例を示すグラフである。It is a graph which shows an example of the hysteresis loop which shows the relationship between the displacement amount and a load calculated | required by displacing a test body using the said testing machine.

本発明の高減衰組成物は、ベースポリマと、前記ベースポリマ100質量部あたり、100質量部以上、180質量部以下のシリカ、3質量部以上、50質量部以下のロジン誘導体、0.1質量部以上、10質量部以下のイミダゾール系化合物、および0.1質量部以上、20質量部以下のヒンダードフェノール系化合物とを含有していることを特徴とするものである。   The highly attenuating composition of the present invention comprises a base polymer, 100 parts by mass or more and 180 parts by mass or less of silica, 3 parts by mass or more and 50 parts by mass or less of a rosin derivative, 0.1 parts by mass per 100 parts by mass of the base polymer. It is characterized by containing not less than 10 parts by mass and not more than 10 parts by mass of an imidazole compound, and not less than 0.1 parts by mass and not more than 20 parts by mass of a hindered phenol compound.

前記各成分のうちベースポリマとしては、シリカ、ロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物を含有させることで高い減衰性能を発揮しうる種々のベースポリマがいずれも使用可能であり、中でもゴムが好ましい。
前記ゴムとしては、例えば天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ノルボルネンゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、クロロプレンゴム、アクリロニトリルブタジエンゴム、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、多硫化ゴム等の1種または2種以上が挙げられる。
Among the above components, as the base polymer, various base polymers that can exhibit high attenuation performance by including silica, rosin derivatives, imidazole compounds, and hindered phenol compounds can be used. Rubber is preferred.
Examples of the rubber include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, norbornene rubber, ethylene propylene rubber, ethylene propylene diene rubber, butyl rubber, halogenated butyl rubber, chloroprene rubber, acrylonitrile butadiene rubber, epichlorohydrin rubber, chloro One type or two or more types such as sulfonated polyethylene and polysulfide rubber may be mentioned.

特に、減衰性能の温度依存性を小さくして広い温度範囲で安定した減衰性能を示す高減衰部材を提供することを考慮すると、前記の中でも天然ゴム、イソプレンゴム、およびブタジエンゴムからなる群より選ばれた少なくとも1種のゴムが好ましい。
ゴムは2種以上を併用してもよいが、高減衰組成物の組成を簡略化して前記高減衰組成物、ならびに高減衰部材の生産性を向上し、さらには生産コストを低減することを考慮すると、いずれか1種を単独で用いるのが好ましい。
In particular, considering the provision of a high damping member that exhibits stable damping performance over a wide temperature range by reducing the temperature dependence of damping performance, among these, selected from the group consisting of natural rubber, isoprene rubber, and butadiene rubber At least one kind of rubber is preferred.
Two or more types of rubber may be used in combination, but it is considered to improve the productivity of the high damping composition and the high damping member by simplifying the composition of the high damping composition and further reduce the production cost. Then, it is preferable to use any one of them alone.

シリカとしては、その製法によって分類される湿式法シリカ、乾式法シリカのいずれを用いてもよい。またシリカとしては、充填剤として機能して高減衰部材の減衰性能を向上する効果を向上することを考慮すると、BET比表面積が100〜400m/g、特に200〜250m/gであるものが好ましい。BET比表面積は、例えば柴田化学器械工業(株)製の迅速表面積測定装置SA−1000等を使用して、吸着気体として窒素ガスを用いる気相吸着法で測定した値でもって表すこととする。 As the silica, any of wet process silica and dry process silica classified by the production method may be used. Silica has a BET specific surface area of 100 to 400 m 2 / g, particularly 200 to 250 m 2 / g in consideration of improving the effect of improving the damping performance of the high damping member by functioning as a filler. Is preferred. The BET specific surface area is expressed by a value measured by a gas phase adsorption method using nitrogen gas as an adsorbed gas, for example, using a rapid surface area measuring device SA-1000 manufactured by Shibata Chemical Instruments Co., Ltd.

シリカの含有割合は、ベースポリマ100質量部あたり100質量部以上、180質量部以下である必要がある。含有割合が100質量部未満では、シリカを含有させることによる、高減衰部材の減衰性能を向上する効果が得られない。また180質量部を超える場合には高減衰組成物の加工性が低下して、所望の立体形状を有する高減衰部材を、特に工場レベルで大量に生産するのが難しくなる。また試作レベルで少数の高減衰部材を形成することは可能であるが、形成した高減衰部材は硬く、かつ変形し難いため、特に大変形時に破壊されやすいという問題も生じる。   The content ratio of silica needs to be 100 parts by mass or more and 180 parts by mass or less per 100 parts by mass of the base polymer. When the content ratio is less than 100 parts by mass, the effect of improving the attenuation performance of the high attenuation member by including silica cannot be obtained. On the other hand, when it exceeds 180 parts by mass, the workability of the high attenuation composition is lowered, and it becomes difficult to mass-produce high attenuation members having a desired three-dimensional shape, particularly at the factory level. Although a small number of high attenuation members can be formed at the trial production level, the formed high attenuation members are hard and difficult to be deformed, so that there is a problem that they are easily broken particularly during large deformation.

なおシリカの含有割合は、高減衰部材の減衰性能をより一層向上することを考慮すると、前記範囲内でも135質量部以上であるのが好ましい。
ロジン誘導体としては、例えばロジンと多価アルコール(グリセリン等)とのエステルやロジン変性マレイン酸樹脂等の、構成成分としてロジンを含む樹脂であって、粘着性付与剤として機能して高減衰部材の減衰性能を向上する効果を有する種々の誘導体が挙げられる。
In consideration of further improving the damping performance of the high damping member, the silica content is preferably 135 parts by mass or more even within the above range.
As the rosin derivative, for example, a resin containing rosin as a constituent, such as an ester of rosin and a polyhydric alcohol (such as glycerin) or a rosin-modified maleic acid resin, which functions as a tackifier and functions as a high attenuation member. Examples include various derivatives having an effect of improving the damping performance.

前記ロジン誘導体の軟化点は120℃以上であるのが好ましく、180℃以下、特に160℃以下であるのが好ましい。
軟化点が前記範囲未満では、高減衰部材の減衰性能を向上する効果が十分に得られないおそれがある。一方、前記範囲を超える場合には加工性が低下して、高減衰組成物を調製するために各成分を混練したり、高減衰部材を製造するために前記高減衰組成物を混練したり、あるいは任意の形状に成形加工したりするのが容易でなくなるおそれがある。
The softening point of the rosin derivative is preferably 120 ° C. or higher, preferably 180 ° C. or lower, particularly 160 ° C. or lower.
If the softening point is less than the above range, the effect of improving the damping performance of the high damping member may not be sufficiently obtained. On the other hand, when the above range is exceeded, workability is reduced, each component is kneaded to prepare a high attenuation composition, the high attenuation composition is kneaded to produce a high attenuation member, Alternatively, it may not be easy to mold into an arbitrary shape.

なお軟化点は、日本工業規格JIS K2207−1996「石油アスファルト」所載の軟化点試験方法(環球法)によって測定した値でもって表すこととする。
前記ロジン誘導体としては、例えば、いずれもハリマ化成(株)製の商品名ハリエスターシリーズのうちMSR−4(軟化点:127℃)、DS−130(軟化点:135℃)、AD−130(軟化点:135℃)、DS−816(軟化点:148℃)、DS−822(軟化点:172℃)、ハリマ化成(株)製の商品名ハリマックシリーズのうち145P(軟化点:138℃)、135GN(軟化点:139℃)、AS−5(軟化点:165℃)等の1種または2種以上が挙げられる。
The softening point is expressed by a value measured by a softening point test method (ring ball method) described in Japanese Industrial Standard JIS K2207-1996 “Petroleum Asphalt”.
Examples of the rosin derivative include MSR-4 (softening point: 127 ° C.), DS-130 (softening point: 135 ° C.), AD-130 (trade name) of the Harrier Star series manufactured by Harima Kasei Co., Ltd. Softening point: 135 ° C., DS-816 (softening point: 148 ° C.), DS-822 (softening point: 172 ° C.), 145P (softening point: 138 ° C.) of the product name Harimac series manufactured by Harima Kasei Co., Ltd. ), 135GN (softening point: 139 ° C.), AS-5 (softening point: 165 ° C.) and the like.

ロジン誘導体の含有割合は、ベースポリマ100質量部あたり3質量部以上、50質量部以下である必要がある。含有割合が3質量部未満では、ロジン誘導体を含有させることによる、高減衰部材の減衰性能を向上する効果が得られない。また50質量部を超える場合にはロジン誘導体による粘着性が増大して加工性が低下し、高減衰組成物を調製するために各成分を混練したり、高減衰部材を製造するために前記高減衰組成物を混練したり、あるいは任意の形状に成形加工したりできなくなる。   The content ratio of the rosin derivative needs to be 3 parts by mass or more and 50 parts by mass or less per 100 parts by mass of the base polymer. When the content ratio is less than 3 parts by mass, the effect of improving the damping performance of the high damping member by containing the rosin derivative cannot be obtained. On the other hand, when the amount exceeds 50 parts by mass, the adhesiveness due to the rosin derivative is increased and the processability is lowered, and the above components are used for kneading each component to prepare a highly attenuated composition or for producing a highly attenuated member. The damping composition cannot be kneaded or molded into an arbitrary shape.

なおロジン誘導体の含有割合は、高減衰部材の減衰性能をより一層向上することを考慮すると、前記範囲内でも10質量部以上であるのが好ましい。
イミダゾール系化合物としては、分子中にイミダゾール環を有、シリカ、ロジン誘導体、およびヒンダードフェノール系化合物を含む高減衰組成物からなる高減衰部材の減衰性能を向上する機能を有する、イミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチル−イミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、および2−フェニル−4−メチルイミダゾールからなる群より選ばれた少なくとも1種が挙げられる。
Note that the content ratio of the rosin derivative is preferably 10 parts by mass or more even within the above range in consideration of further improving the damping performance of the high damping member.
As the imidazole compound, have a imidazole ring in the molecule, a silica, rosin derivatives, and the ability to improve the damping performance of the high-damping member made of a high damping composition comprising a hindered phenol compounds, imidazole, 1 , 2-dimethylimidazole, 2-ethyl-4-methyl-imidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole , 2-phenylimidazole, and at least one selected from the group consisting of 2-phenyl-4-methylimidazole .

に高減衰部材の減衰性能を向上する効果の点でイミダゾール、2−メチルイミダゾール、1,2−ジメチルイミダゾールが好ましく、中でもイミダゾールが最も好ましい。 Imidazole in terms of the effect of improving the damping performance of the high damping member in particular, 2-methylimidazole, 1,2-dimethylimidazole is preferred, imidazole is the most preferable.

イミダゾール系化合物の含有割合は、ベースポリマ100質量部あたり0.1質量部以上、10質量部以下である必要がある。含有割合が0.1質量部未満では、高減衰部材の減衰性能を向上する効果が得られない。また10質量部を超える場合には焼けを生じやすくなって加工性が低下し、高減衰組成物を調製するために各成分を混練したり、高減衰部材を製造するために前記高減衰組成物を混練したり、あるいは任意の形状に成形加工したりできなくなる。   The content ratio of the imidazole compound needs to be 0.1 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the base polymer. When the content ratio is less than 0.1 parts by mass, the effect of improving the damping performance of the high damping member cannot be obtained. Further, when it exceeds 10 parts by mass, it is easy to cause burn and the workability is lowered. In order to prepare a highly damped composition, each component is kneaded, and in order to produce a highly damped member, the above highly damped composition is used. Cannot be kneaded or molded into an arbitrary shape.

なおイミダゾール系化合物の含有割合は、高減衰組成物の良好な加工性を維持しつつ、高減衰部材の減衰性能をより一層向上することを考慮すると、前記範囲内でも1質量部以上であるのが好ましく、5質量部以下であるのが好ましい。
ヒンダードフェノール系化合物としては、分子中の水酸基がシリカ表面の水酸基と相互作用することによって、前記シリカの、ベースポリマを始めとする有機系の各成分に対する親和性、相溶性を向上させて、高減衰部材の減衰性能をさらに向上させる働きをする種々のヒンダードフェノール系化合物がいずれも使用可能である。
Note that the content ratio of the imidazole compound is 1 part by mass or more even in the above range in consideration of further improving the damping performance of the high damping member while maintaining good processability of the high damping composition. Is preferably 5 parts by mass or less.
As the hindered phenolic compound, the hydroxyl group in the molecule interacts with the hydroxyl group on the silica surface, thereby improving the affinity and compatibility of the silica with each organic component including the base polymer, Any of various hindered phenol compounds that serve to further improve the damping performance of the high damping member can be used.

前記ヒンダードフェノール系化合物としては、前記水酸基を2つ以上有する種々のヒンダードフェノール系化合物、特にビスフェノール系防止剤、ポリフェノール系老化防止剤、チオビスフェノール系老化防止剤、ヒドロキノン系老化防止剤等の老化防止剤の1種または2種以上が好ましい。   Examples of the hindered phenol compound include various hindered phenol compounds having two or more hydroxyl groups, particularly bisphenol inhibitors, polyphenol antioxidants, thiobisphenol antioxidants, hydroquinone antioxidants, and the like. One type or two or more types of anti-aging agents are preferred.

前記のうちビスフェノール系老化防止剤としては、例えば1,1−ビス(3−ヒドロキシフェニル)シクロヘキサン、2,2′−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2′−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2,2′−メチレンビス[6−(1−メチルシクロヘキシル)]−p−クレゾール、4,4′−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、3,9−ビス[2−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニルプロピオニルオキシ)−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン、p−クレゾールとジシクロペンタジエンのブチル化反応生成物等の1種または2種以上が挙げられる。   Among them, examples of the bisphenol antioxidant include 1,1-bis (3-hydroxyphenyl) cyclohexane, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis ( 4-ethyl-6-tert-butylphenol), 2,2'-methylenebis [6- (1-methylcyclohexyl)]-p-cresol, 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 3,9-bis [2- (3-tert-butyl-4-hydroxy-5-methylphenylpropionyloxy) -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro (5,5 ) One or more of undecane, butylated reaction product of p-cresol and dicyclopentadiene, etc.

ポリフェノール系老化防止剤としては、例えばテトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]等が挙げられる。
チオビスフェノール系老化防止剤としては、例えば4,4−チオビス(3−メチル−6−tert−ブチルフェノール)、4,4′−ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4′−チオビス(6−tert−ブチル−o−クレゾール)等の1種または2種以上が挙げられる。
Examples of the polyphenol antioxidant include tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate].
Examples of the thiobisphenol antioxidant include 4,4-thiobis (3-methyl-6-tert-butylphenol), 4,4'-bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide. , 4,4′-thiobis (6-tert-butyl-o-cresol) and the like.

さらにヒドロキノン系老化防止剤としては、例えば2,5−ジ−tert−ブチルヒドロキノン、2,5−ジ−tert−ブチルアミルヒドロキノン等の1種または2種以上が挙げられる。
ヒンダードフェノール系化合物の含有割合は、ベースポリマ100質量部あたり0.1質量部以上、20質量部以下である必要がある。含有割合が0.1質量部未満では、高減衰部材の減衰性能を向上する効果が得られない。また20質量部を超える場合には、過剰のヒンダードフェノール系化合物が、先に説明したように高減衰部材の表面にブルームしやすくなるという問題がある。
Furthermore, examples of the hydroquinone antioxidant include one or more of 2,5-di-tert-butylhydroquinone and 2,5-di-tert-butylamylhydroquinone.
The content ratio of the hindered phenol compound needs to be 0.1 parts by mass or more and 20 parts by mass or less per 100 parts by mass of the base polymer. When the content ratio is less than 0.1 parts by mass, the effect of improving the damping performance of the high damping member cannot be obtained. Moreover, when it exceeds 20 mass parts, there exists a problem that it becomes easy to bloom on the surface of a high attenuation | damping member, when an excessive hindered phenolic compound was demonstrated previously.

なおヒンダードフェノール系化合物の含有割合は、高減衰部材の減衰性能をより一層向上することを考慮すると、前記範囲内でも1質量部以上であるのが好ましい。
本発明の高減衰組成物は、前記各成分に加えて、さらに酢酸マグネシウム、およびアミン系老化防止剤を含有してもよい。前記両成分を含有させることにより、高減衰部材の減衰性能をさらに向上させることができる。
In view of further improving the damping performance of the high damping member, the content of the hindered phenol compound is preferably 1 part by mass or more even within the above range.
The highly attenuating composition of the present invention may further contain magnesium acetate and an amine-based antiaging agent in addition to the above components. By containing both the components, the damping performance of the high damping member can be further improved.

前記のうち酢酸マグネシウムとしては、酢酸に酸化マグネシウムまたは炭酸マグネシウムを作用させた水溶液から得られる四水塩、および前記四水塩を加熱脱水して得られる無水塩のいずれを用いてもよく、特に製造に要する工程数が少なく安価な酢酸マグネシウム・四水塩が好ましい。
酢酸マグネシウムの含有割合は、前記四水塩の場合、ベースポリマ100質量部あたり0.1質量部以上、20質量部以下であるのが好ましい。含有割合が0.1質量部未満では、高減衰部材の減衰性能を向上する効果が得られないおそれがある。また20質量部を超える場合には、過剰の酢酸マグネシウムが高減衰部材の表面にブルームしやすくなる。
Among the above, as magnesium acetate, any of a tetrahydrate obtained from an aqueous solution obtained by allowing magnesium oxide or magnesium carbonate to act on acetic acid, and an anhydrous salt obtained by heating and dehydrating the tetrahydrate can be used. An inexpensive magnesium acetate tetrahydrate is preferred because the number of steps required for production is small.
In the case of the tetrahydrate, the magnesium acetate content is preferably 0.1 parts by mass or more and 20 parts by mass or less per 100 parts by mass of the base polymer. If the content ratio is less than 0.1 parts by mass, the effect of improving the damping performance of the high damping member may not be obtained. When the amount exceeds 20 parts by mass, excess magnesium acetate tends to bloom on the surface of the high attenuation member.

またアミン系老化防止剤としては、例えばN−フェニル−1−ナフチルアミン、オクチル化ジフェニル等のアルキル化ジフェニルアミン、4,4′−ビス(α,α−ジメチルベンジル)ジフェニルアミン、p−(p−トルエンスルホニルアミド)ジフェニルアミン、N,N′−ジ−2−ナフチル−p−フェニレンジアミン、N,N′−ジフェニル−p−フェニレンジアミン、N−フェニル−N′−イソプロピル−p−フェニレンジアミン、N−フェニル−N′−(1,3−ジメチルブチル)−p−フェニレンジアミン、N−フェニル−N′−(3−メタクリロイルオキシ−2−ヒドロキシプロピル)−p−フェニレンジアミン等の芳香族第二級アミン系老化防止剤の1種または2種以上が挙げられる。   Examples of amine aging inhibitors include alkylated diphenylamines such as N-phenyl-1-naphthylamine and octylated diphenyl, 4,4'-bis (α, α-dimethylbenzyl) diphenylamine, and p- (p-toluenesulfonyl). Amido) diphenylamine, N, N'-di-2-naphthyl-p-phenylenediamine, N, N'-diphenyl-p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine, N-phenyl- Aromatic secondary amine aging such as N '-(1,3-dimethylbutyl) -p-phenylenediamine, N-phenyl-N'-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine One type or two or more types of inhibitors may be mentioned.

前記アミン系老化防止剤は、酢酸マグネシウム量の1〜2倍量で、かつベースポリマ100質量部あたり20質量部以下の割合で含有させるのが好ましい。
含有割合が、酢酸マグネシウム量の1倍量未満では、ベースポリマがゴムである場合に高減衰組成物の加硫速度が遅くなって、高減衰部材の生産性が低下するおそれがある。また酢酸マグネシウム量の2倍量を超えるか、または20質量部を超える場合には、過剰のアミン系老化防止剤が高減衰部材の表面にブルームしやすくなるおそれがある。
本発明の高減衰組成物は、前記各成分に加えて、さらにシラン化合物を含有してもよい。前記シラン化合物としては、式(a):
The amine-based anti-aging agent is preferably contained in an amount of 1 to 2 times the amount of magnesium acetate and 20 parts by mass or less per 100 parts by mass of the base polymer.
If the content ratio is less than 1 times the amount of magnesium acetate, when the base polymer is rubber, the vulcanization rate of the high damping composition is slowed, and the productivity of the high damping member may be reduced. Moreover, when it exceeds 2 times the amount of magnesium acetate or exceeds 20 parts by mass, an excessive amine-based anti-aging agent may easily bloom on the surface of the high attenuation member.
The high attenuation composition of the present invention may further contain a silane compound in addition to the above components. Examples of the silane compound include the formula (a):

Figure 0005086386
Figure 0005086386

〔式中、R、R、R、およびRのうちの少なくとも一つはアルコキシ基を示す。ただしR、R、R、およびRが同時にアルコキシ基であることはなく、他派アルキル基またはアリール基を示す。〕
で表され、シランカップリング剤やシリル化剤等の、シリカの分散剤として機能しうる種々のシラン化合物が挙げられる。特にヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン等のアルコキシシランの1種または2種以上が好ましい。
[Wherein, at least one of R 1 , R 2 , R 3 , and R 4 represents an alkoxy group. However, R 1 , R 2 , R 3 , and R 4 are not simultaneously an alkoxy group, and represent a cross-linked alkyl group or an aryl group. ]
And various silane compounds that can function as a silica dispersant, such as a silane coupling agent and a silylating agent. In particular, one or more of alkoxysilanes such as hexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and diphenyldimethoxysilane are preferable.

シラン化合物の含有割合は、シリカ100質量部あたり5質量部以上、25質量部以下であるのが好ましい。
本発明の高減衰組成物は、さらに石油樹脂、クマロン樹脂等の、ロジン誘導体以外の他の粘着性付与剤を含有してもよい。前記他の粘着性付与剤の含有割合は、ロジン誘導体の含有割合や高減衰部材の減衰特性等に応じて適宜設定できる。
The content of the silane compound is preferably 5 parts by mass or more and 25 parts by mass or less per 100 parts by mass of silica.
The highly attenuated composition of the present invention may further contain other tackifiers other than rosin derivatives, such as petroleum resins and coumarone resins. The content ratio of the other tackifier can be appropriately set according to the content ratio of the rosin derivative, the attenuation characteristics of the high attenuation member, and the like.

ベースポリマがゴムである場合、本発明の高減衰組成物には加硫剤、加硫促進剤、加硫促進助剤等の添加剤を、それぞれ適宜の割合で含有させてもよい。また前記高減衰組成物には、ヒンダードフェノール系、アミン系以外の他の老化防止剤を適宜の割合で含有させてもよい。
さらに本発明の高減衰組成物には、例えばカーボンブラック、炭酸カルシウム等の充填剤や、液状ゴム、オイル等の軟化剤等を、それぞれ適宜の割合で含有させてもよい。
When the base polymer is rubber, the high damping composition of the present invention may contain additives such as a vulcanizing agent, a vulcanization accelerator, and a vulcanization accelerating aid in appropriate ratios. Moreover, you may contain the anti-aging agent other than a hindered phenol type and an amine type in the said high attenuation | damping composition in a suitable ratio.
Furthermore, the high attenuation composition of the present invention may contain, for example, fillers such as carbon black and calcium carbonate, softeners such as liquid rubber and oil, and the like in appropriate proportions.

本発明の高減衰組成物は、前記各成分を適宜の順序で配合し、任意の混練機を用いて混練して調製することができ、前記高減衰組成物を所望の形状に成形するとともに、ベースポリマがゴムである場合には加硫することによって、所定の減衰特性を有する高減衰部材を製造することができる。
例えばベースポリマをニーダー等の密閉式混練機を用いて1〜2分間程度素練りし、次いで素練りを続けながらシリカ、ロジン誘導体、イミダゾール系化合物、ヒンダードフェノール系化合物その他の各成分を一度に、あるいは数回に分けて投入したのちさらに混練して高減衰組成物を調製するのが一般的である。
The high attenuation composition of the present invention can be prepared by blending the respective components in an appropriate order and kneading using any kneader, and molding the high attenuation composition into a desired shape, When the base polymer is rubber, a high damping member having a predetermined damping characteristic can be manufactured by vulcanization.
For example, the base polymer is kneaded for about 1 to 2 minutes using a closed kneader or the like, and then the silica, rosin derivative, imidazole compound, hindered phenol compound and other components are mixed at once while continuing the kneading. Alternatively, it is common to prepare a highly damped composition by charging in several batches and then kneading.

ただしベースポリマに、先にロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物を加えて混練後にシリカと、その他の各成分とを加えて混練する工程を経て前記高減衰組成物を調製するのが好ましい。
例えばベースポリマを、密閉式混練機を用いて1〜2分間程度素練りし、次いで素練りを続けながらまずロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物を加えて混練し、次いでシリカその他の残りの成分を一度に、あるいは数回に分けて投入したのちさらに混練して高減衰組成物を調製する。
However, the high attenuation composition is prepared through a step of adding a rosin derivative, an imidazole compound, and a hindered phenol compound to the base polymer and kneading after adding the silica and other components. Is preferred.
For example, a base polymer is kneaded for about 1 to 2 minutes using a closed kneader, and then kneaded by first adding a rosin derivative, an imidazole compound, and a hindered phenol compound while continuing the kneading, and then silica and others The remaining components are added at once or several times, and then kneaded to prepare a highly attenuated composition.

これによりロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物をベースポリマ中に十分に行き渡らせた状態でシリカと混練できるため、前記各成分をそれぞれより一層有効に機能させることができ、高減衰部材の減衰性能をさらに向上させることができる。
またベースポリマにロジン誘導体等を加える際に、例えばベースポリマ100質量部あたり5〜10質量部程度の少量のシリカであれば、前記ロジン誘導体等とともにベースポリマに先に加えることができる。すなわちベースポリマに、先にロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物とともにシリカの一部を加えて混練後にシリカの残部を加えて混練してもよい。
As a result, rosin derivatives, imidazole compounds, and hindered phenol compounds can be kneaded with silica in a sufficiently dispersed state in the base polymer, allowing each of the above components to function more effectively and with high attenuation. The damping performance of the member can be further improved.
When adding a rosin derivative or the like to the base polymer, for example, if it is a small amount of silica of about 5 to 10 parts by mass per 100 parts by mass of the base polymer, it can be added to the base polymer together with the rosin derivative or the like. That is, a part of silica may be added to the base polymer together with the rosin derivative, the imidazole compound, and the hindered phenol compound first, and after kneading, the remainder of the silica may be added and kneaded.

またロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物を加えて混練した混練物を一旦、混練機から取り出し、次いで所定量の前記混練物を再び密閉式混練機等に投入したのちシリカその他の成分を加えて混練してもよい。
酢酸マグネシウム、およびアミン系老化防止剤を含む系では、前記両成分を、ロジン誘導体等とともにシリカより先にベースポリマに加えてもよいし、シリカ等とともにあとからベースポリマに加えてもよい。
Further, the kneaded material kneaded by adding the rosin derivative, imidazole compound, and hindered phenol compound is once taken out from the kneader, and then a predetermined amount of the kneaded material is again charged into the closed kneader and the like. You may add and knead | mix components.
In a system containing magnesium acetate and an amine anti-aging agent, both the components may be added to the base polymer before the silica together with the rosin derivative or the like, or may be added to the base polymer later together with the silica or the like.

本発明の高減衰組成物を用いて形成できる高減衰部材としては、例えばビル等の建造物の基礎に組み込まれる免震用のダンパ、建築物の構造中に組み込まれる制震(制振)用のダンパ、吊橋や斜張橋等のケーブルの制振部材、産業機械や航空機、自動車、鉄道車両等の防振部材、コンピュータやその周辺機器類、あるいは家庭用電気機器類等の防振部材、さらには自動車用タイヤのトレッド等が挙げられる。   As a high damping member that can be formed using the high damping composition of the present invention, for example, a damper for seismic isolation incorporated in the foundation of a building such as a building, or for vibration control (vibration suppression) incorporated in the structure of a building Dampers for cables, suspension members for cables such as suspension bridges and cable-stayed bridges, anti-vibration members for industrial machines, aircraft, automobiles, railway vehicles, etc., anti-vibration members for computers and peripheral equipment, or household electrical equipment, Furthermore, treads for automobile tires and the like can be mentioned.

本発明によれば、前記シリカ、ロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物の種類とその組み合わせおよび含有割合を前記範囲内で調整することにより、前記それぞれの用途に適した優れた減衰性能を有する高減衰部材を得ることができる。
特に本発明の高減衰組成物を用いて建築物の構造中に組み込まれる制震用ダンパを形成した場合には、前記制震用ダンパが振動の減衰性能に優れるため、1つの建築物中に組み込む制震用ダンパの数量を減らすことができる。また温度依存性が小さいことから、例えば温度差の大きい建築物の外壁付近にも前記制震用ダンパを設置することができる。
According to the present invention, by adjusting the types, combinations, and content ratios of the silica, rosin derivative, imidazole compound, and hindered phenol compound within the above ranges, excellent attenuation suitable for the respective applications. A highly attenuating member having performance can be obtained.
In particular, when a damping damper to be incorporated into a structure of a building is formed using the high damping composition of the present invention, the damping damper is excellent in vibration damping performance. The number of seismic dampers to be incorporated can be reduced. In addition, since the temperature dependency is small, for example, the damping damper can be installed near the outer wall of a building having a large temperature difference.

以下の実施例、比較例における高減衰組成物の調製、および試験を、特記した以外は温度20±1℃、相対湿度55±1%の環境下で実施した。
〈実施例1〉
ベースポリマとしての天然ゴム〔SMR(Standard Malaysian Rubber)−CV60〕100質量部に、シリカ〔東ソー・シリカ(株)製のNipsil(ニップシール)KQ〕150質量部、ロジン誘導体〔ロジン変性マレイン酸樹脂、軟化点139℃、ハリマ化成(株)製のハリマック135GN〕10質量部、イミダゾール系化合物としての1,2−ジメチルイミダゾール〔四国化成工業(株)製の1,2DMZ〕2.5質量部、およびヒンダードフェノール系化合物としての4,4′−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)〔大内新興化学工業(株)製のノクラック(登録商標)NS−30〕2.5質量部と、下記表1に示す各成分とを配合し、密閉式混練機を用いて混練して高減衰組成物を調製した。
The preparation and testing of the high attenuation compositions in the following examples and comparative examples were carried out in an environment with a temperature of 20 ± 1 ° C. and a relative humidity of 55 ± 1%, unless otherwise specified.
<Example 1>
100 parts by mass of natural rubber (SMR (Standard Malaysian Rubber) -CV60) as a base polymer, 150 parts by mass of silica (Nippil (nip seal) KQ manufactured by Tosoh Silica Co., Ltd.), rosin derivative [rosin-modified maleic resin, Softening point of 139 ° C., Harima Chemical Co., Ltd., Harimac 135GN, 10 parts by mass, 1,2-dimethylimidazole as an imidazole compound [1,2 DMZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.], 2.5 parts by mass, and 2.54 parts by mass of 4,4'-butylidenebis (3-methyl-6-tert-butylphenol) [NOCRACK (registered trademark) NS-30 manufactured by Ouchi Shinsei Chemical Co., Ltd.] as a hindered phenol compound The components shown in Table 1 below were blended and kneaded using a closed kneader to obtain a highly attenuated composition. Prepared.

Figure 0005086386
Figure 0005086386

表1中の各成分は下記のとおり。
フェニルトリエトキシシラン:信越化学工業(株)製のKBE−103
ジシクロペンタジエン系石油樹脂:軟化点105℃、丸善石油化学(株)製のマルカレッツ(登録商標)M890A
クマロン樹脂:軟化点90℃、日塗化学(株)製のエスクロン(登録商標)G-90
ベンズイミダゾール系老化防止剤:2−メルカプトベンズイミダゾール、大内新興化学工業(株)製のノクラックMB
キノン系老化防止剤:丸石化学品(株)製のアンチゲンFR
5%オイル処理粉末硫黄:加硫剤、鶴見化学工業(株)製
スルフェンアミド系加硫促進剤:N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学工業(株)製のノクセラー(登録商標)NS
チウラム系加硫促進剤:大内新興化学工業(株)製のノクセラーTBT−N
酸化亜鉛2種:三井金属鉱業(株)製
ステアリン酸:日油(株)製の「つばき」
カーボンブラック:三菱化学(株)製のダイアブラック(登録商標)G
液状ポリイソプレンゴム:軟化剤、(株)クラレ製のLIR50
Each component in Table 1 is as follows.
Phenyltriethoxysilane: KBE-103 manufactured by Shin-Etsu Chemical Co., Ltd.
Dicyclopentadiene-based petroleum resin: softening point 105 ° C., Marukaretsu (registered trademark) M890A manufactured by Maruzen Petrochemical Co., Ltd.
Coumarone resin: softening point 90 ° C., Nikko Chemical Co., Ltd. Escron (registered trademark) G-90
Benzimidazole anti-aging agent: 2-mercaptobenzimidazole, NOCRACK MB manufactured by Ouchi Shinsei Chemical Co., Ltd.
Quinone anti-aging agent: Antigen FR manufactured by Maruishi Chemical Co., Ltd.
5% oil-treated powder sulfur: vulcanizing agent, manufactured by Tsurumi Chemical Industry Co., Ltd. Sulfenamide vulcanization accelerator: N-tert-butyl-2-benzothiazolylsulfenamide, Ouchi Shinsei Chemical Industry Co., Ltd. Noxeller (registered trademark) NS
Thiuram-based vulcanization accelerator: Noxeller TBT-N manufactured by Ouchi Shinsei Chemical Co., Ltd.
Two types of zinc oxide: manufactured by Mitsui Mining & Smelting Co., Ltd. Stearic acid: "Tsubaki" manufactured by NOF Corporation
Carbon Black: Dia Black (registered trademark) G manufactured by Mitsubishi Chemical Corporation
Liquid polyisoprene rubber: softener, LIR50 manufactured by Kuraray Co., Ltd.

混練の手順は、まずベースポリマとしての天然ゴムを、密閉式混練機を用いて1〜2分間程度素練りし、次いで素練りを続けながら前記天然ゴムを除く他の各成分を数回に分けて投入したのちさらに10〜40分間程度混練して高減衰組成物を得た。
〈実施例2〜4〉
ベースポリマとしての天然ゴム100質量部に対するシリカの含有割合を100質量部(実施例2)、135質量部(実施例3)、180質量部(実施例4)とし、かつシリカに対するフェニルトリエトキシシランの含有割合が実施例1と同じ(シリカ:フェニルトリエトキシシラン=150:25)となるように、前記ベースポリマ100質量部あたりのフェニルトリエトキシシランの含有割合を16.7質量部(実施例2)、22.5質量部(実施例3)、30質量部(実施例4)としたこと以外は実施例1と同様にして高減衰組成物を調製した。
The kneading procedure is as follows. First, natural rubber as a base polymer is masticated for about 1 to 2 minutes using a closed kneader, and then the other components other than the natural rubber are divided into several times while continuing mastication. And then kneaded for about 10 to 40 minutes to obtain a highly attenuated composition.
<Examples 2 to 4>
The content ratio of silica to 100 parts by mass of natural rubber as a base polymer is 100 parts by mass (Example 2), 135 parts by mass (Example 3), 180 parts by mass (Example 4), and phenyltriethoxysilane with respect to silica. The content ratio of phenyltriethoxysilane per 100 parts by mass of the base polymer is 16.7 parts by mass (Examples) so that the content ratio is the same as that of Example 1 (silica: phenyltriethoxysilane = 150: 25). 2) A highly attenuated composition was prepared in the same manner as in Example 1 except that 22.5 parts by mass (Example 3) and 30 parts by mass (Example 4).

〈比較例1〉
イミダゾール系化合物とヒンダードフェノール系化合物とをいずれも含有させなかったこと以外は実施例1と同様にして高減衰組成物を調製した。
〈比較例2、3〉
ベースポリマとしての天然ゴム100質量部に対するシリカの含有割合を80質量部(比較例2)、190質量部(比較例3)とし、かつシリカに対するフェニルトリエトキシシランの含有割合が実施例1と同じ(シリカ:フェニルトリエトキシシラン=150:25)となるように、前記ベースポリマ100質量部あたりのフェニルトリエトキシシランの含有割合を13.3質量部(比較例2)、31.7質量部(比較例3)としたこと以外は実施例1と同様にして高減衰組成物を調製した。
<Comparative example 1>
A highly attenuated composition was prepared in the same manner as in Example 1 except that neither the imidazole compound nor the hindered phenol compound was contained.
<Comparative Examples 2 and 3>
The content ratio of silica with respect to 100 parts by mass of natural rubber as a base polymer is 80 parts by mass (Comparative Example 2) and 190 parts by mass (Comparative Example 3), and the content ratio of phenyltriethoxysilane with respect to silica is the same as Example 1. (Silica: phenyltriethoxysilane = 150: 25) The content ratio of phenyltriethoxysilane per 100 parts by mass of the base polymer is 13.3 parts by mass (Comparative Example 2), 31.7 parts by mass ( A highly attenuating composition was prepared in the same manner as in Example 1 except that Comparative Example 3) was used.

〈減衰特性評価〉
(試験体の作製)
実施例、比較例で調製した高減衰組成物をシート状に押出成形したのち打ち抜いて、図1に示すように円板1(厚み5mm×直径25mm)を作製し、前記円板1の表裏両面に、それぞれ加硫接着剤を介して厚み6mm×縦44mm×横44mmの矩形平板状の鋼板2を重ねて積層方向に加圧しながら150℃に加熱して円板1を形成する高減衰組成物を加硫させるとともに、前記円板1を2枚の鋼板2と加硫接着させて、高減衰部材のモデルとしての減衰特性評価用の試験体3を作製した。
<Damping characteristic evaluation>
(Preparation of test specimen)
The high attenuation compositions prepared in Examples and Comparative Examples were extruded into a sheet shape and then punched to produce a disk 1 (thickness 5 mm × diameter 25 mm) as shown in FIG. Further, a highly attenuating composition in which a rectangular plate-shaped steel plate 2 having a thickness of 6 mm, a length of 44 mm, and a width of 44 mm is stacked on each other through a vulcanizing adhesive and heated to 150 ° C. while pressing in the laminating direction to form the disk 1. , And the disk 1 was vulcanized and bonded to the two steel plates 2 to produce a specimen 3 for evaluating damping characteristics as a model of a high damping member.

(変位試験)
図2(a)に示すように前記試験体3を2個用意し、前記2個の試験体3を、一方の鋼板2を介して1枚の中央固定治具4にボルトで固定するとともに、それぞれの試験体3の他方の鋼板2に、1枚ずつの左右固定治具5をボルトで固定した。そして中央固定治具4を、図示しない試験機の上側の固定アーム6に、ジョイント7を介してボルトで固定し、かつ2枚の左右固定治具5を、前記試験機の下側の可動盤8に、ジョイント9を介してボルトで固定した。
(Displacement test)
As shown in FIG. 2 (a), two test bodies 3 are prepared, and the two test bodies 3 are fixed to one central fixing jig 4 with bolts via one steel plate 2. One left and right fixing jig 5 was fixed to the other steel plate 2 of each test body 3 with bolts. The center fixing jig 4 is fixed to the upper fixing arm 6 of the testing machine (not shown) with a bolt via a joint 7, and the two left and right fixing jigs 5 are connected to the lower movable platen of the testing machine. 8 was fixed with bolts through a joint 9.

次にこの状態で、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向に押し上げるように変位させて、試験体3のうち円板1を、図2(b)に示すように前記試験体3の積層方向と直交方向に歪み変形させた状態とし、次いでこの状態から、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向と反対方向に引き下げるように変位させて、前記図2(a)に示す状態に戻す操作を1サイクルとして、前記試験体3のうち円板1を繰り返し歪み変形、すなわち振動させた際の、前記試験体3の積層方向と直交方向への円板1の変位量(mm)と荷重(N)との関係を示すヒステリシスループH(図3参照)を求めた。   Next, in this state, the movable platen 8 is displaced so as to be pushed up in the direction of the fixed arm 6 as indicated by the white arrow in the figure, and the disk 1 of the test body 3 is moved to the position shown in FIG. As shown in the figure, the test body 3 is strained and deformed in a direction orthogonal to the stacking direction, and from this state, the movable platen 8 is moved in a direction opposite to the direction of the fixed arm 6 as indicated by a white arrow in the figure. The operation of the test body 3 when the disk 1 of the test body 3 is repeatedly distorted or deformed, that is, vibrated, with the operation of displacing it down and returning to the state shown in FIG. A hysteresis loop H (see FIG. 3) indicating the relationship between the displacement (mm) of the disk 1 in the direction perpendicular to the stacking direction and the load (N) was obtained.

測定は、前記操作を3サイクル行って3回目の値を求めた。また最大変位量は、円板1を挟む2枚の鋼板2の、前記積層方向と直交方向のずれ量が、前記円板1の厚みの100%、または300%となるように設定した。
次いで、前記測定により求めた図3に示すヒステリシスループHのうち最大変位点と最小変位点とを結ぶ、図中に太線の実線で示す直線L1の傾きKeq(N/mm)を求め、前記傾きKeq(N/mm)と、円板1の厚みT(mm)と、円板1の断面積A(mm)とから、式(1):
For the measurement, the above operation was performed for 3 cycles to obtain the third value. The maximum amount of displacement was set so that the amount of deviation of the two steel plates 2 sandwiching the disc 1 in the direction perpendicular to the stacking direction was 100% or 300% of the thickness of the disc 1.
Next, an inclination Keq (N / mm) of a straight line L1 indicated by a bold solid line in the drawing connecting the maximum displacement point and the minimum displacement point in the hysteresis loop H shown in FIG. From Keq (N / mm), the thickness T (mm) of the disc 1, and the cross-sectional area A (mm 2 ) of the disc 1, the formula (1):

Figure 0005086386
Figure 0005086386

により等価せん断弾性率Geq(N/mm)を求めた。なお等価せん断弾性率Geq(N/mm)は、前記ずれ量が100%のときの等価せん断弾性率Geq100(N/mm)と、ずれ量が300%のときの等価せん断弾性率Geq300(N/mm)とを求めた。
また図3中に斜線を付して示した、ヒステリシスループHの全表面積で表される吸収エネルギー量ΔWと、同図中に網線を付して示した、前記直線L1と、グラフの横軸と、直線L1とヒステリシスループHとの交点から前記横軸におろした垂線L2とで囲まれた領域の表面積で表される弾性歪みエネルギーWとから、式(2):
The equivalent shear modulus Geq (N / mm 2 ) was determined by Note equivalent shear modulus Geq (N / mm 2), the shift amount is the equivalent shear modulus Geq100 (N / mm 2) when 100%, equivalent shear modulus when the deviation amount is 300% Geq300 ( N / mm 2 ).
Also, the absorbed energy amount ΔW represented by the total surface area of the hysteresis loop H shown with diagonal lines in FIG. 3, the straight line L1 shown with a mesh line in the figure, and the side of the graph From the axis and the elastic strain energy W expressed by the surface area of the region surrounded by the perpendicular L2 drawn from the intersection of the straight line L1 and the hysteresis loop H to the horizontal axis, the formula (2):

Figure 0005086386
Figure 0005086386

により等価減衰定数Heqを求めた。なお等価減衰定数Heqは、前記ずれ量が100%のときの等価減衰定数Heq100と、ずれ量が300%のときの等価減衰定数Heq300とを求めた。このうち等価減衰定数Heq100が大きいほど、試験体3は減衰性能に優れていると判定できる。実施例、比較例の場合は等価減衰定数Heqが0.38以上であるものを減衰性能良好、0.38未満であるものを減衰性能不良として評価した。 Thus, an equivalent damping constant Heq was obtained. For the equivalent attenuation constant Heq, an equivalent attenuation constant Heq100 when the deviation amount is 100% and an equivalent attenuation constant Heq300 when the deviation amount is 300% were obtained. Among these, it can be determined that the larger the equivalent attenuation constant Heq100 is, the better the specimen 3 is in the attenuation performance. In the case of Examples and Comparative Examples, the case where the equivalent attenuation constant Heq was 0.38 or more was evaluated as good attenuation performance, and the case where the equivalent attenuation constant Heq was less than 0.38 was evaluated as poor attenuation performance.

以上の結果を表2に示す。   The results are shown in Table 2.

Figure 0005086386
Figure 0005086386

表2の比較例1と実施例1〜4の結果を比較すると、イミダゾール系化合物もヒンダードフェノール系化合物も含有させなかった比較例1の高減衰組成物を用いて形成した高減衰部材は、等価減衰定数Heq100が0.38未満であって減衰性能が不十分であるのに対し、本発明の構成である実施例1〜4の高減衰組成物を用いて形成した高減衰部材は、いずれも前記等価減衰定数Heq100が0.38以上であって減衰性能に優れていることが判った。   When comparing the results of Comparative Example 1 in Table 2 and Examples 1 to 4, the high attenuation member formed using the high attenuation composition of Comparative Example 1 in which neither the imidazole compound nor the hindered phenol compound was contained, While the equivalent damping constant Heq100 is less than 0.38 and the damping performance is insufficient, the high damping member formed by using the high damping composition of Examples 1 to 4 which is the configuration of the present invention, It was also found that the equivalent attenuation constant Heq100 is 0.38 or more and the attenuation performance is excellent.

そしてこのことからベースポリマに、シリカ、ロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物をそれぞれ所定の含有割合で含有させることで、減衰性能に優れた高減衰部材を形成しうる高減衰組成物が得られることが確認された。
また、比較例2と実施例1〜4の結果を比較すると、シリカを、ベースポリマ100質量部あたり100質量部未満の範囲で含有させた比較例2の高減衰組成物を用いて形成した高減衰部材は、等価減衰定数Heq100が0.38未満であって減衰性能が不十分であることが判った。そしてこのことからシリカの含有割合は、ベースポリマ100質量部あたり100質量部以上である必要があることが確認された。
From this, the base polymer contains silica, rosin derivative, imidazole compound, and hindered phenol compound at a predetermined content ratio, so that a high damping composition that can form a high damping member with excellent damping performance. It was confirmed that a product was obtained.
Further, when the results of Comparative Example 2 and Examples 1 to 4 were compared, the high attenuation composition of Comparative Example 2 in which silica was contained in a range of less than 100 parts by mass per 100 parts by mass of the base polymer was formed. The damping member was found to have an equivalent damping constant Heq100 of less than 0.38 and insufficient damping performance. From this, it was confirmed that the content ratio of silica needs to be 100 parts by mass or more per 100 parts by mass of the base polymer.

また、比較例3と実施例1〜4の結果を比較すると、シリカを、ベースポリマ100質量部あたり180質量部を超えて含有させた比較例3の高減衰組成物を用いて形成した高減衰部材は、ずれ量が300%である大変形時に破壊されてしまうことが判った。そしてこのことからシリカの含有割合は、ベースポリマ100質量部あたり180質量部以下である必要があることが確認された。   Moreover, when the results of Comparative Example 3 and Examples 1 to 4 were compared, the high attenuation formed using the high attenuation composition of Comparative Example 3 in which silica was contained in an amount exceeding 180 parts by mass per 100 parts by mass of the base polymer. It was found that the member was destroyed at the time of large deformation with a deviation amount of 300%. From this, it was confirmed that the content ratio of silica needs to be 180 parts by mass or less per 100 parts by mass of the base polymer.

さらに実施例1〜4の結果を比較すると、シリカの含有割合は、前記範囲内でもベースポリマ100質量部あたり135質量部以上であるのが好ましいことが確認された。
〈実施例5〜8、比較例4〉
ベースポリマとしての天然ゴム100質量部に対するロジン誘導体の含有割合を2質量部(比較例4)、3質量部(実施例5)、20質量部(実施例6)、30質量部(実施例7)、50質量部(実施例8)としたこと以外は実施例1と同様にして高減衰組成物を調製した。
Furthermore, when the results of Examples 1 to 4 were compared, it was confirmed that the content ratio of silica was preferably 135 parts by mass or more per 100 parts by mass of the base polymer even within the above range.
<Examples 5 to 8, Comparative Example 4>
The content of the rosin derivative with respect to 100 parts by mass of the natural rubber as the base polymer is 2 parts by mass (Comparative Example 4), 3 parts by mass (Example 5), 20 parts by mass (Example 6), and 30 parts by mass (Example 7). ), 50 parts by mass (Example 8), a high attenuation composition was prepared in the same manner as in Example 1.

〈比較例5〉
ベースポリマとしての天然ゴム100質量部に対するロジン誘導体の含有割合を55質量部としたところ粘着性が強すぎて、各成分の混合物を混練して高減衰組成物を調製することができなかった。
そこで比較例5を除く各実施例、比較例の高減衰組成物について先に説明した各試験を行って特性を評価した。結果を、実施例1の結果と併せて表3に示す。
<Comparative Example 5>
When the content of the rosin derivative with respect to 100 parts by mass of the natural rubber as the base polymer was 55 parts by mass, the adhesiveness was too strong, and it was impossible to prepare a highly attenuated composition by kneading the mixture of each component.
Therefore, the tests described above were performed on the high attenuation compositions of the examples and comparative examples except for comparative example 5 to evaluate the characteristics. The results are shown in Table 3 together with the results of Example 1.

Figure 0005086386
Figure 0005086386

表3の比較例4と実施例1、5〜8の結果を比較すると、ロジン誘導体を、ベースポリマ100質量部あたり3質量部未満の範囲で含有させた比較例4の高減衰組成物を用いて形成した高減衰部材は、等価減衰定数Heq100が0.38未満であって減衰性能が不十分であることが判った。そしてこのことからロジン誘導体の含有割合は、ベースポリマ100質量部あたり3質量部以上である必要があることが確認された。   When the results of Comparative Example 4 in Table 3 and Examples 1 and 5 to 8 were compared, the highly attenuated composition of Comparative Example 4 in which the rosin derivative was contained in a range of less than 3 parts by mass per 100 parts by mass of the base polymer was used. It was found that the high damping member formed in this way has an equivalent damping constant Heq100 of less than 0.38 and insufficient damping performance. From this, it was confirmed that the content ratio of the rosin derivative needs to be 3 parts by mass or more per 100 parts by mass of the base polymer.

また比較例5と実施例1、5〜8の結果を比較すると、ロジン誘導体を、ベースポリマ100質量部あたり50質量部を超えて含有させた比較例5は、先に説明したように粘着性が高すぎて高減衰組成物を調製できなかった。そしてこのことから、ロジン誘導体の含有割合は、ベースポリマ100質量部あたり50質量部以下である必要があることが確認された。   Further, when the results of Comparative Example 5 and Examples 1 and 5 to 8 are compared, Comparative Example 5 in which the rosin derivative is contained in an amount exceeding 50 parts by mass per 100 parts by mass of the base polymer is adhesive as described above. Was too high to prepare a highly attenuated composition. And from this, it was confirmed that the content rate of a rosin derivative needs to be 50 mass parts or less per 100 mass parts of base polymers.

さらに実施例1、5〜8の結果を比較すると、ロジン誘導体の含有割合は、前記範囲内でもベースポリマ100質量部あたり10質量部以上であるのが好ましいことが確認された。
〈実施例9〜12、比較例6〉
ベースポリマとしての天然ゴム100質量部に対するイミダゾール系化合物の含有割合を0.05質量部(比較例6)、0.3質量部(実施例9)、1質量部(実施例10)、5質量部(実施例11)、10質量部(実施例12)としたこと以外は実施例1と同様にして高減衰組成物を調製した。
Furthermore, when the results of Examples 1 and 5 to 8 were compared, it was confirmed that the content of the rosin derivative was preferably 10 parts by mass or more per 100 parts by mass of the base polymer even within the above range.
<Examples 9 to 12, Comparative Example 6>
The content ratio of the imidazole compound to 100 parts by mass of the natural rubber as the base polymer is 0.05 parts by mass (Comparative Example 6), 0.3 parts by mass (Example 9), 1 part by mass (Example 10), and 5 parts by mass. A highly attenuating composition was prepared in the same manner as in Example 1 except that the amount was 10 parts by mass (Example 11) and 10 parts by mass (Example 12).

〈比較例7〉
ベースポリマとしての天然ゴム100質量部に対するイミダゾール系化合物の含有割合を13質量部としたところ、各成分の混合物の混練時に焼けが発生したため高減衰組成物の調製を断念した。
そこで比較例7を除く各実施例、比較例の高減衰組成物について先に説明した各試験を行って特性を評価した。結果を、実施例1の結果と併せて表4に示す。
<Comparative Example 7>
When the content ratio of the imidazole compound with respect to 100 parts by mass of the natural rubber as the base polymer was 13 parts by mass, since burning occurred during the kneading of the mixture of each component, the preparation of the high attenuation composition was abandoned.
Therefore, the tests described above were performed on the high-damping compositions of Examples and Comparative Examples except for Comparative Example 7 to evaluate the characteristics. The results are shown in Table 4 together with the results of Example 1.

Figure 0005086386
Figure 0005086386

表4の比較例6と実施例1、9〜12の結果を比較すると、イミダゾール系化合物を、ベースポリマ100質量部あたり0.1質量部未満の範囲で含有させた比較例6の高減衰組成物を用いて形成した高減衰部材は、等価減衰定数Heq100が0.38未満であって減衰性能が不十分であることが判った。そしてこのことからイミダゾール系化合物の含有割合は、ベースポリマ100質量部あたり0.1質量部以上である必要があることが確認された。   When the results of Comparative Example 6 in Table 4 and Examples 1 and 9 to 12 are compared, the high attenuation composition of Comparative Example 6 in which the imidazole compound is contained in a range of less than 0.1 parts by mass per 100 parts by mass of the base polymer. It has been found that the high damping member formed using a material has an equivalent damping constant Heq100 of less than 0.38 and insufficient damping performance. From this, it was confirmed that the content ratio of the imidazole compound needs to be 0.1 parts by mass or more per 100 parts by mass of the base polymer.

また比較例7と実施例1、9〜12の結果を比較すると、イミダゾール系化合物を、ベースポリマ100質量部あたり10質量部を超えて含有させようとした比較例7は、先に説明したように焼けを生じやすく高減衰組成物を調製できなかった。そしてこのことから、イミダゾール系化合物の含有割合は、ベースポリマ100質量部あたり10質量部以下である必要があることが確認された。   Moreover, when the results of Comparative Example 7 and Examples 1 and 9 to 12 were compared, Comparative Example 7 which attempted to contain an imidazole compound in excess of 10 parts by mass per 100 parts by mass of the base polymer was as described above. However, it was difficult to prepare a highly attenuated composition. And from this, it was confirmed that the content rate of an imidazole type compound needs to be 10 mass parts or less per 100 mass parts of base polymers.

さらに実施例1、5〜8の結果を比較すると、イミダゾール系化合物の含有割合は、前記範囲内でもベースポリマ100質量部あたり1質量部以上であるのが好ましく、5質量部以下であるのが好ましいことが確認された。
〈実施例13〜16、比較例8〉
ベースポリマとしての天然ゴム100質量部に対するヒンダードフェノール系化合物の含有割合を0.05質量部(比較例8)、0.3質量部(実施例13)、1質量部(実施例14)、10質量部(実施例15)、20質量部(実施例16)としたこと以外は実施例1と同様にして高減衰組成物を調製した。
Furthermore, when the results of Examples 1 and 5 to 8 are compared, the content ratio of the imidazole compound is preferably 1 part by mass or more per 100 parts by mass of the base polymer even within the above range, and is 5 parts by mass or less. It was confirmed that it was preferable.
<Examples 13 to 16, Comparative Example 8>
0.05 parts by mass (Comparative Example 8), 0.3 parts by mass (Example 13), 1 part by mass (Example 14) of hindered phenol compound content relative to 100 parts by mass of natural rubber as the base polymer, A highly attenuated composition was prepared in the same manner as in Example 1 except that the content was 10 parts by mass (Example 15) and 20 parts by mass (Example 16).

〈比較例9〉
ベースポリマとしての天然ゴム100質量部に対するヒンダードフェノール系化合物の含有割合を23質量部としたところ、高減衰部材の表面にブルームが発生した。
前記各実施例、比較例の高減衰組成物について先に説明した各試験を行って特性を評価した。結果を、実施例1の結果と併せて表5に示す。
<Comparative Example 9>
When the content ratio of the hindered phenol compound to 100 parts by mass of the natural rubber as the base polymer was 23 parts by mass, bloom was generated on the surface of the high attenuation member.
The tests described above were performed on the highly attenuated compositions of the respective Examples and Comparative Examples to evaluate the characteristics. The results are shown in Table 5 together with the results of Example 1.

Figure 0005086386
Figure 0005086386

表5の比較例8と実施例1、13〜16の結果を比較すると、ヒンダードフェノール系化合物を、ベースポリマ100質量部あたり0.1質量部未満の範囲で含有させた比較例8の高減衰組成物を用いて形成した高減衰部材は、等価減衰定数Heq100が0.38未満であって減衰性能が不十分であることが判った。そしてこのことからヒンダードフェノール系化合物の含有割合は、ベースポリマ100質量部あたり0.1質量部以上である必要があることが確認された。   When the results of Comparative Example 8 in Table 5 and Examples 1 and 13 to 16 are compared, the high value of Comparative Example 8 in which the hindered phenolic compound is contained in a range of less than 0.1 parts by mass per 100 parts by mass of the base polymer. It was found that the high damping member formed using the damping composition has an equivalent damping constant Heq100 of less than 0.38 and insufficient damping performance. And from this, it was confirmed that the content ratio of the hindered phenol compound needs to be 0.1 parts by mass or more per 100 parts by mass of the base polymer.

また比較例9と実施例1、13〜16の結果を比較すると、ヒンダードフェノール系化合物を、ベースポリマ100質量部あたり20質量部を超えて含有させた比較例9は、先に説明したようにブルームを生じた。そしてこのことから、ヒンダードフェノール系化合物の含有割合は、ベースポリマ100質量部あたり20質量部以下である必要があることが確認された。   Moreover, when the results of Comparative Example 9 and Examples 1 and 13 to 16 are compared, Comparative Example 9 in which the hindered phenol-based compound is contained in an amount exceeding 20 parts by mass per 100 parts by mass of the base polymer is as described above. Caused a bloom. And from this, it was confirmed that the content rate of a hindered phenol type compound needs to be 20 mass parts or less per 100 mass parts of base polymers.

〈実施例17〉
イミダゾール系化合物として、1,2−ジメチルイミダゾールに代えてイミダゾール〔日本合成化学工業(株)製〕を同量用いたこと以外は実施例1と同様にして高減衰組成物を調製した。
〈実施例18〉
さらに酢酸マグネシウム・四水塩〔キシダ化学(株)製〕2.5質量部、およびアミン系老化防止剤としてのN−フェニル−N′−(1,3−ジメチルブチル)−p−フェニレンジアミン〔大内新興化学工業(株)製のノクラック6C〕5質量部とを加えたこと以外は実施例1と同様にして高減衰組成物を調製した。
<Example 17>
A highly attenuated composition was prepared in the same manner as in Example 1 except that the same amount of imidazole (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was used as the imidazole compound instead of 1,2-dimethylimidazole.
<Example 18>
Further, 2.5 parts by mass of magnesium acetate tetrahydrate (manufactured by Kishida Chemical Co., Ltd.) and N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine as an amine-based anti-aging agent [ A highly attenuated composition was prepared in the same manner as in Example 1 except that 5 parts by mass of Nocrack 6C manufactured by Ouchi Shinsei Chemical Co., Ltd. was added.

〈実施例19〉
実施例1で用いたのと同じ各成分を同じ割合で用いて、下記の手順で高減衰組成物を調製した。
すなわちベースポリマとしての天然ゴムを、密閉式混練機を用いて1〜2分間程度素練りし、次いで素練りを続けながらロジン誘導体、イミダゾール系化合物、ヒンダードフェノール系化合物、およびシリカの一部(天然ゴム100質量部あたり10質量部)を投入してさらに1〜2分間程度混練した後、混練物を一旦機外へ取り出した。
<Example 19>
Using the same components as used in Example 1 in the same proportions, a highly attenuated composition was prepared by the following procedure.
That is, natural rubber as a base polymer is masticated for about 1 to 2 minutes using a closed kneader, and then rosin derivative, imidazole compound, hindered phenol compound, and a part of silica while continuing mastication ( 10 parts by mass per 100 parts by mass of natural rubber) was further kneaded for about 1 to 2 minutes, and the kneaded material was once taken out of the apparatus.

次に前記混練物の所定量を計量して再び密閉式混練機を用いて1〜2分間程度素練りし、次いで素練りを続けながらシリカの残部(天然ゴム100質量部あたり140質量部)と表1に示す各成分とを数回に分けて投入したのちさらに10〜40分間程度混練して高減衰組成物を得た。
前記各実施例の高減衰組成物について先に説明した各試験を行って特性を評価した。結果を、実施例1の結果と併せて表6に示す。
Next, a predetermined amount of the kneaded material is weighed and masticated again for about 1 to 2 minutes using a closed kneader, and then the remainder of silica (140 parts by mass per 100 parts by mass of natural rubber) while continuing mastication Each component shown in Table 1 was added in several batches and then kneaded for about 10 to 40 minutes to obtain a highly attenuated composition.
The tests described above were conducted for the highly attenuated compositions of the above Examples to evaluate the characteristics. The results are shown in Table 6 together with the results of Example 1.

Figure 0005086386
Figure 0005086386

表6の実施例1、17の結果より、イミダゾール系化合物としてイミダゾールを用いることにより、高減衰部材の減衰性能を向上できることが判った。また実施例1、18の結果より、高減衰組成物にさらに酢酸マグネシウム、およびアミン系老化防止剤を含有させることにより、高減衰部材の減衰性能を向上できることが判った。さらに実施例1、19の結果より、ベースポリマに先にロジン誘導体等を加えて混練した後にシリカ等を加えて混練することにより、高減衰部材の減衰性能を向上できることが判った。   From the results of Examples 1 and 17 in Table 6, it was found that the damping performance of the high damping member can be improved by using imidazole as the imidazole compound. From the results of Examples 1 and 18, it was found that the damping performance of the high damping member can be improved by further adding magnesium acetate and an amine-based anti-aging agent to the high damping composition. Furthermore, from the results of Examples 1 and 19, it was found that the damping performance of the high damping member can be improved by adding the rosin derivative or the like to the base polymer and kneading and then adding the silica and kneading.

〈実施例20〜23、比較例10〉
ベースポリマとしての天然ゴム100質量部に対するイミダゾールの含有割合を0.05質量部(比較例10)、0.3質量部(実施例20)、1質量部(実施例21)、5質量部(実施例22)、10質量部(実施例23)としたこと以外は実施例17と同様にして高減衰組成物を調製した。
<Examples 20 to 23, Comparative Example 10>
The content ratio of imidazole with respect to 100 parts by mass of natural rubber as a base polymer is 0.05 parts by mass (Comparative Example 10), 0.3 parts by mass (Example 20), 1 part by mass (Example 21), 5 parts by mass ( Example 22) A highly attenuating composition was prepared in the same manner as in Example 17 except that the amount was 10 parts by mass (Example 23).

〈比較例11〉
ベースポリマとしての天然ゴム100質量部に対するイミダゾールの含有割合を13質量部としたところ、各成分の混合物の混練時に焼けが発生したため高減衰組成物の調製を断念した。
そこで比較例11を除く各実施例、比較例の高減衰組成物について先に説明した各試験を行って特性を評価した。結果を、実施例17の結果と併せて表7に示す。
<Comparative Example 11>
When the content ratio of imidazole relative to 100 parts by mass of natural rubber as a base polymer was 13 parts by mass, since the burning occurred during the kneading of the mixture of each component, the preparation of the high attenuation composition was abandoned.
Therefore, the tests described above were performed on the high attenuation compositions of Examples and Comparative Examples except for Comparative Example 11, and the characteristics were evaluated. The results are shown in Table 7 together with the results of Example 17.

Figure 0005086386
Figure 0005086386

表7の比較例10と実施例17、20〜23の結果を先の表4の結果と比較すると、全体的に等価減衰定数Heq100が向上しているものの、イミダゾールを、ベースポリマ100質量部あたり0.1質量部未満の範囲で含有させた比較例10の高減衰組成物を用いて形成した高減衰部材は、前記含有割合を0.1質量部以上とした実施例17、20〜23に比べて前記透過減衰定数Heq100が低く減衰性能が不十分であることが判った。そしてこのことからイミダゾールの含有割合は、ベースポリマ100質量部あたり0.1質量部以上である必要があることが確認された。   When the results of Comparative Example 10 and Tables 17 and 20 to 23 in Table 7 are compared with the results in Table 4 above, the equivalent damping constant Heq100 is improved as a whole, but imidazole is added to 100 parts by mass of the base polymer. The high attenuation member formed using the high attenuation composition of Comparative Example 10 contained in a range of less than 0.1 parts by mass is based on Examples 17, 20 to 23 in which the content ratio is 0.1 parts by mass or more. In comparison, it was found that the transmission attenuation constant Heq100 is low and the attenuation performance is insufficient. And from this, it was confirmed that the content ratio of imidazole needs to be 0.1 parts by mass or more per 100 parts by mass of the base polymer.

また比較例11と実施例17、20〜23の結果を比較すると、イミダゾールを、ベースポリマ100質量部あたり10質量部を超えて含有させようとした比較例11は、先に説明したようにやけを生じやすく高減衰組成物を調製できなかった。そしてこのことから、イミダゾールの含有割合は、ベースポリマ100質量部あたり10質量部以下である必要があることが確認された。   Further, when the results of Comparative Example 11 and Examples 17, 20 to 23 are compared, Comparative Example 11 which attempts to contain imidazole in excess of 10 parts by mass per 100 parts by mass of the base polymer is as described above. A highly attenuated composition could not be prepared. And from this, it was confirmed that the content ratio of imidazole needs to be 10 parts by mass or less per 100 parts by mass of the base polymer.

Claims (7)

ベースポリマと、前記ベースポリマ100質量部あたり、100質量部以上、180質量部以下のシリカ、3質量部以上、50質量部以下のロジン誘導体、0.1質量部以上、10質量部以下の、イミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、および2−フェニル−4−メチルイミダゾールからなる群より選ばれた少なくとも1種のイミダゾール系化合物、および0.1質量部以上、20質量部以下のヒンダードフェノール系化合物とを含有していることを特徴とする高減衰組成物。 100 parts by mass or more, 100 parts by mass or less of silica, 3 parts by mass or more, 50 parts by mass or less of rosin derivative, 0.1 parts by mass or more and 10 parts by mass or less per 100 parts by mass of the base polymer . Imidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-methylimidazole, 2-undecylimidazole, 2-hepta At least one imidazole compound selected from the group consisting of decylimidazole, 2-phenylimidazole, and 2-phenyl-4-methylimidazole , and a hindered phenol compound of 0.1 to 20 parts by mass And a high attenuation composition characterized by comprising: 前記ベースポリマは、天然ゴム、イソプレンゴム、およびブタジエンゴムからなる群より選ばれた少なくとも1種である請求項1に記載の高減衰組成物。   The high-damping composition according to claim 1, wherein the base polymer is at least one selected from the group consisting of natural rubber, isoprene rubber, and butadiene rubber. 前記イミダゾール系化合物はイミダゾールである請求項1または2に記載の高減衰組成物。   The highly attenuated composition according to claim 1 or 2, wherein the imidazole compound is imidazole. さらに酢酸マグネシウム、およびアミン系老化防止剤を含有している請求項1ないし3のいずれか1項に記載の高減衰組成物。   The highly attenuating composition according to any one of claims 1 to 3, further comprising magnesium acetate and an amine-based antioxidant. ベースポリマに、先にロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物を加えて混練後にシリカを加えて混練する工程を経て調製されている請求項1ないし4のいずれか1項に記載の高減衰組成物。   The rosin derivative, the imidazole compound, and the hindered phenol compound are first added to the base polymer, and after kneading, the silica is added and kneaded, and is prepared according to any one of claims 1 to 4. High damping composition. ベースポリマに、先にロジン誘導体、イミダゾール系化合物、およびヒンダードフェノール系化合物とともにシリカの一部を加えて混練後にシリカの残部を加えて混練する請求項5記載の高減衰組成物。   The high attenuation composition according to claim 5, wherein a part of silica is added to the base polymer together with the rosin derivative, the imidazole compound, and the hindered phenol compound, and the remainder of the silica is added and kneaded. 建築物の制震用ダンパの形成材料として用いる請求項1ないし6のいずれか1項に記載の高減衰組成物。   The high-damping composition according to any one of claims 1 to 6, which is used as a material for forming a damping damper for a building.
JP2010086254A 2009-11-06 2010-04-02 High damping composition Active JP5086386B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010086254A JP5086386B2 (en) 2009-11-06 2010-04-02 High damping composition
KR1020100104493A KR20110050362A (en) 2009-11-06 2010-10-26 High damping composition
CN201010530372.7A CN102050966B (en) 2009-11-06 2010-10-28 High-damping composition
TW099138161A TWI454525B (en) 2009-11-06 2010-11-05 High decay composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009255446 2009-11-06
JP2009255446 2009-11-06
JP2010086254A JP5086386B2 (en) 2009-11-06 2010-04-02 High damping composition

Publications (2)

Publication Number Publication Date
JP2011116931A JP2011116931A (en) 2011-06-16
JP5086386B2 true JP5086386B2 (en) 2012-11-28

Family

ID=44282630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086254A Active JP5086386B2 (en) 2009-11-06 2010-04-02 High damping composition

Country Status (3)

Country Link
JP (1) JP5086386B2 (en)
KR (1) KR20110050362A (en)
TW (1) TWI454525B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160010300A (en) 2014-07-18 2016-01-27 스미토모 고무 고교 가부시키가이샤 Viscoelastic damper and method of manufacturing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330460B2 (en) * 2011-07-04 2013-10-30 住友ゴム工業株式会社 High damping composition
JP5404716B2 (en) * 2011-08-23 2014-02-05 住友ゴム工業株式会社 High damping composition
JP2013053251A (en) * 2011-09-05 2013-03-21 Sumitomo Rubber Ind Ltd Highly damping composition
JP5523428B2 (en) * 2011-09-06 2014-06-18 住友ゴム工業株式会社 High damping composition
JP5848943B2 (en) * 2011-10-18 2016-01-27 株式会社ブリヂストン Rubber composition and tire using the same
JP5579152B2 (en) * 2011-11-01 2014-08-27 住友ゴム工業株式会社 High damping composition
JP5648014B2 (en) * 2012-04-09 2015-01-07 住友ゴム工業株式会社 High damping composition and viscoelastic damper
JP2014109023A (en) * 2012-12-04 2014-06-12 Sumitomo Rubber Ind Ltd High-damping composition and viscoelastic damper
JP6195338B2 (en) * 2013-02-21 2017-09-13 住友ゴム工業株式会社 High damping composition and viscoelastic damper
JP6219205B2 (en) * 2014-03-17 2017-10-25 東洋ゴム工業株式会社 Method for producing rubber composition
JP6261131B2 (en) * 2014-07-04 2018-01-17 住友ゴム工業株式会社 High damping composition, seismic damper and seismic isolation bearing
JP6504696B2 (en) * 2015-02-05 2019-04-24 住友ゴム工業株式会社 High damping composition and visco-elastic damper
JP6862892B2 (en) * 2017-02-15 2021-04-21 横浜ゴム株式会社 Rubber composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263999A (en) * 2004-03-18 2005-09-29 Toyo Tire & Rubber Co Ltd Manufacturing process of rubber composition
JP4268923B2 (en) * 2004-10-26 2009-05-27 住友ゴム工業株式会社 Rubber composition for tire tread and pneumatic tire comprising the same
JP5021968B2 (en) * 2006-07-14 2012-09-12 東洋ゴム工業株式会社 Rubber composition and method for producing the same
JP5478820B2 (en) * 2007-12-04 2014-04-23 住友ゴム工業株式会社 Anti-vibration rubber
JP5289356B2 (en) * 2009-08-27 2013-09-11 住友ゴム工業株式会社 High damping composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160010300A (en) 2014-07-18 2016-01-27 스미토모 고무 고교 가부시키가이샤 Viscoelastic damper and method of manufacturing the same

Also Published As

Publication number Publication date
TWI454525B (en) 2014-10-01
KR20110050362A (en) 2011-05-13
JP2011116931A (en) 2011-06-16
TW201116580A (en) 2011-05-16

Similar Documents

Publication Publication Date Title
JP5086386B2 (en) High damping composition
JP5289356B2 (en) High damping composition
TWI546342B (en) Highly damping composition and viscoelastic damper
TWI662080B (en) High-attenuation composition, shock-absorbing damper and shock-free support
JP5330460B2 (en) High damping composition
JP5404716B2 (en) High damping composition
JP2011126992A (en) Highly damping composition
JP5404090B2 (en) High damping composition
KR101780829B1 (en) High damping composition
JP2012219150A (en) Highly damping composition
JP2013053251A (en) Highly damping composition
JP2011132481A (en) High damping composition
KR101680905B1 (en) Highly damping composition
JP5568581B2 (en) High damping composition and viscoelastic damper
JP2016141800A (en) High attenuation composition and viscoelastic damper
JP2014118516A (en) High-damping composition and vibration control damper
JP2014224180A (en) Highly damping composition and viscoelastic damper
JP5738113B2 (en) High damping composition
JP5523428B2 (en) High damping composition
JP2014077036A (en) Highly damping composition and vibration control damper
JP2013043912A (en) High damping composition and manufacturing method for the same
JP6327749B2 (en) Viscoelastic damper and manufacturing method thereof
KR101930543B1 (en) High damping composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5086386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250