JP2011126992A - Highly damping composition - Google Patents

Highly damping composition Download PDF

Info

Publication number
JP2011126992A
JP2011126992A JP2009286460A JP2009286460A JP2011126992A JP 2011126992 A JP2011126992 A JP 2011126992A JP 2009286460 A JP2009286460 A JP 2009286460A JP 2009286460 A JP2009286460 A JP 2009286460A JP 2011126992 A JP2011126992 A JP 2011126992A
Authority
JP
Japan
Prior art keywords
mass
parts
damping
silica
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009286460A
Other languages
Japanese (ja)
Inventor
Maiko Murashima
麻衣子 村嶌
Yuichiro Matsutani
雄一朗 松谷
Tatehiko Hyodo
建彦 兵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2009286460A priority Critical patent/JP2011126992A/en
Publication of JP2011126992A publication Critical patent/JP2011126992A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly damping composition solving a problem of temperature dependency by the use of a base polymer having no polar group and forming a highly damping member having more excellent damping performance than that of an existing one while keeping good processability. <P>SOLUTION: The highly damping composition uses (1) natural rubber, (2) a non-oil-extended styrene-butadiene rubber and at least one kind selected from a group comprising butadiene rubber having Mooney viscosity of ≤50 ML(1+4)100°C as the base polymers in combination. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、振動エネルギーの伝達を緩和したり吸収したりする高減衰部材のもとになる高減衰組成物に関するものである。   The present invention relates to a highly damped composition that is a source of a highly damped member that relaxes or absorbs transmission of vibration energy.

例えばビルや橋梁等の建築物、産業機械、航空機、自動車、鉄道車両、コンピュータやその周辺機器類、家庭用電気機器類、さらには自動車用タイヤ等の幅広い分野において、振動エネルギーの伝達を緩和したり吸収したりする、すなわち免震、制震、制振、防振等をするために、ゴム等をベースポリマとして含む高減衰部材が用いられる。
前記高減衰部材は、振動が加えられた際のヒステリシスロスを大きくして減衰性能を高める、すなわち前記振動のエネルギーを効率よく速やかに減衰できるようにするために、前記ベースポリマを含み、損失正接tanδのピークが高減衰部材の使用温度域に入るように調整した高減衰組成物によって形成するのが一般的である。
For example, in a wide range of fields such as buildings and bridges, industrial machinery, aircraft, automobiles, railway vehicles, computers and peripheral equipment, household electrical equipment, and automobile tires, vibration energy transmission is alleviated. In order to absorb or absorb, that is, to perform seismic isolation, vibration control, vibration control, vibration isolation, etc., a high damping member containing rubber or the like as a base polymer is used.
The high damping member includes the base polymer in order to increase the hysteresis loss when vibration is applied to improve damping performance, i.e., to efficiently and quickly attenuate the energy of the vibration. In general, it is formed by a high attenuation composition adjusted so that the peak of tan δ falls within the operating temperature range of the high attenuation member.

すなわち、前記高減衰組成物を所定の立体形状に形成するとともに、ベースポリマがゴムである場合は加硫させることで高減衰組成物が形成される。
前記高減衰組成物としては、例えばベースポリマに、減衰性付与剤としてシリカを含有させたもの(特許文献1)や、あるいは極性側鎖を有するベースポリマに、2以上の極性基を有するヒンダードフェノール系減衰性付与剤等を含有させたもの(特許文献2)等が知られている。
That is, the high attenuation composition is formed into a predetermined three-dimensional shape, and when the base polymer is rubber, the high attenuation composition is formed by vulcanization.
Examples of the highly attenuating composition include a base polymer containing silica as an attenuating agent (Patent Document 1), or a base polymer having a polar side chain having two or more polar groups. A material containing a phenolic damping agent or the like (Patent Document 2) is known.

しかし、前記のうち特許文献2に記載された極性側鎖を有するもの等の、分子中に極性基を有するベースポリマは、一般にガラス転移温度Tgが室温(3〜35℃)付近に存在することから、前記ベースポリマを含む高減衰組成物を用いて形成した高減衰部材は、最も一般的な使用温度域である前記室温付近において、特に剛性等の特性の温度依存性が大きくなる傾向がある。そのため、かかる特性を織り込んだ上で高減衰部材をシステム設計するのが難しいという問題がある。   However, base polymers having polar groups in the molecule, such as those having polar side chains described in Patent Document 2 among the above, generally have a glass transition temperature Tg of around room temperature (3-35 ° C.). Therefore, the high attenuation member formed using the high attenuation composition containing the base polymer tends to increase the temperature dependency of characteristics such as rigidity in the vicinity of the room temperature which is the most general use temperature range. . For this reason, there is a problem that it is difficult to system design a high damping member while incorporating such characteristics.

一方、特許文献1の高減衰組成物において、ベースポリマとして極性基を有しないものを選択して用いれば前記温度依存の問題は解消できる。すなわち室温付近での、剛性等の特性の温度依存性を小さくして、広い温度範囲で安定した減衰性能を示す高減衰部材を形成できる。
しかし極性基を有しないベースポリマは、通常、単体では殆ど減衰性能を有しないため、例えば減衰性付与剤としてシリカを含有させて高減衰部材に高い減衰性能を付与するためには、前記シリカの含有割合を大幅に増加させなければならない。
On the other hand, in the highly attenuating composition of Patent Document 1, if the base polymer having no polar group is selected and used, the temperature-dependent problem can be solved. That is, it is possible to reduce the temperature dependence of characteristics such as rigidity near room temperature, and to form a high damping member that exhibits stable damping performance over a wide temperature range.
However, since a base polymer having no polar group usually has almost no damping performance as a simple substance, for example, in order to provide silica with high damping performance as a damping imparting agent, The content must be increased significantly.

そしてシリカの含有割合を増加させるほど高減衰組成物の加工性が低下して、所望の立体形状を有する高減衰部材を、特に工場レベルで量産するのが難しくなるという問題がある。また、実験室レベルで少数の高減衰部材を形成することは可能であるが、形成した高減衰部材は硬く、かつ変形し難いため、特に大変形時に破壊されやすいという問題もある。   And as the content ratio of silica is increased, the workability of the high attenuation composition is lowered, and there is a problem that it is difficult to mass-produce a high attenuation member having a desired three-dimensional shape, particularly at a factory level. In addition, it is possible to form a small number of high-attenuation members at the laboratory level. However, since the formed high-attenuation members are hard and difficult to deform, there is a problem that they are easily broken particularly during large deformation.

そこで極性基を有しないベースポリマに、シリカと、有機系の減衰性付与剤としての、2以上の水酸基を有するロジン誘導体、キシレン樹脂、および2以上の水酸基を有するフェノール系老化防止剤のうちの少なくとも1種とを含有させた高減衰組成物が提案された(特許文献3)。
前記高減衰組成物によれば、極性基を有しないベースポリマを用いることで温度依存性の問題を解消できる。またシリカと有機系の減衰性付与剤とを併用することで、前記シリカの含有割合を少なくして高減衰組成物の加工性を向上できる。しかもシリカと有機系の減衰性付与剤とを併用することで、高減衰部材に良好な減衰性能を付与することもできる。
Therefore, among the base polymer having no polar group, silica, a rosin derivative having two or more hydroxyl groups, an xylene resin, and a phenolic anti-aging agent having two or more hydroxyl groups as an organic damping agent. A highly attenuated composition containing at least one kind has been proposed (Patent Document 3).
According to the high attenuation composition, the temperature dependency problem can be solved by using the base polymer having no polar group. Further, by using silica and an organic damping agent in combination, it is possible to reduce the silica content and improve the processability of the high damping composition. In addition, it is possible to impart good damping performance to the high damping member by using both silica and an organic damping agent.

特開平7−41603号公報JP 7-41603 A 特開2000−44813号公報JP 2000-44813 A 特開2009−138053号公報JP 2009-138053 A

しかし、特許文献3に記載のようにシリカと有機系の減衰性付与剤とを併用することによる、減衰性能を向上する効果には限界がある。有機系の減衰性付与剤を2種以上併用することも検討されているがそれだけでは不十分であり、現状より減衰性能を向上するためには何らかの新たな対策を施す必要がある。
本発明の目的は、極性基を有しないベースポリマを用いることで温度依存性の問題を解消し、かつ良好な加工性を維持しながら、現状よりもさらに減衰性能に優れた高減衰部材を形成しうる高減衰組成物を提供することにある。
However, as described in Patent Document 3, there is a limit to the effect of improving attenuation performance by using silica and an organic attenuation imparting agent in combination. The use of two or more organic damping agents has also been studied, but that alone is not sufficient, and some new measures need to be taken to improve damping performance from the present situation.
The purpose of the present invention is to form a high-damping member that has better damping performance than the current one while eliminating the problem of temperature dependence by using a base polymer that does not have a polar group and maintaining good processability. It is to provide a highly attenuated composition.

本発明は、ベースポリマとして、
(1) 天然ゴムと、
(2) 非油展スチレンブタジエンゴム、およびムーニー粘度が50ML(1+4)100℃以下のブタジエンゴムからなる群より選ばれた少なくとも1種と、
を併用したことを特徴とする高減衰組成物である。
The present invention provides a base polymer
(1) natural rubber,
(2) at least one selected from the group consisting of a non-oil extended styrene butadiene rubber and a butadiene rubber having a Mooney viscosity of 50 ML (1 + 4) 100 ° C. or less;
Is a highly attenuated composition characterized in that

本発明によれば、前記のようにベースポリマとして、いずれも極性基を有しないジエン系ポリマである天然ゴムと、非油展スチレンブタジエンゴムおよび/またはブタジエンゴムとを選択して用いることにより、高減衰部材の特性の、室温付近での温度依存性を小さくして温度依存の問題を解消することができる。そのため広い温度範囲で安定した減衰性能を示す高減衰部材を形成できる。   According to the present invention, as described above, by using a natural rubber, which is a diene polymer that does not have a polar group, and a non-oil-extended styrene butadiene rubber and / or a butadiene rubber, as described above, It is possible to reduce the temperature dependency of the characteristics of the high damping member near room temperature and solve the temperature dependency problem. Therefore, it is possible to form a high damping member that exhibits stable damping performance over a wide temperature range.

また本発明によれば、前記併用により、後述する実施例、比較例の結果からも明らかなように高減衰部材の減衰性能を現状よりさらに向上することもできる。
すなわちベースポリマとして前記2種以上のゴムを併用することで、高減衰部材の大変形時に、種類の異なるゴムの分子間でずれを生じさせることができ、このずれによって新たな減衰効果を発現させることができる。そのためベースポリマが単体である場合に比べて高減衰部材の減衰性能を向上できる。
Further, according to the present invention, the combined use can further improve the damping performance of the high damping member from the present state as is apparent from the results of Examples and Comparative Examples described later.
That is, by using two or more kinds of rubbers together as the base polymer, it is possible to cause a deviation between different types of rubber molecules when the high damping member is deformed greatly, and this deviation causes a new damping effect. be able to. Therefore, the damping performance of the high damping member can be improved as compared with the case where the base polymer is a single body.

またベースポリマとして、いずれもジエン系ポリマである前記2種以上のゴムを選択して用いることで、それ以外の他のゴムを用いる場合に比べて、例えば高減衰組成物を所定の高減衰部材の立体形状に成形し、加硫するのと同時に取り付け用の金具等と加硫接着する際に、前記金具等への接着性を向上することもできる。
そのため前記金具等から剥離することなく変形できる高減衰部材の変形量をこれまでよりも大きくできる。このことも、高減衰部材の減衰性能を向上できる原因の一つとなる。
Further, as the base polymer, the two or more kinds of rubbers, both of which are diene polymers, are selected and used, so that, for example, a high-damping composition can be used as a predetermined high-damping member as compared with other rubbers. It is also possible to improve the adhesion to the metal fittings and the like when vulcanized and bonded to a fitting for mounting at the same time as the three-dimensional shape is formed and vulcanized.
Therefore, the amount of deformation of the high attenuation member that can be deformed without peeling from the metal fittings can be made larger than before. This is also one of the reasons that the damping performance of the high damping member can be improved.

しかも本発明によれば、前記のように減衰性能に優れる上、広い温度範囲で安定した減衰性能を示す高減衰部材を形成できるため、減衰性能付与剤としてシリカ等を含有させる場合にその含有割合を増加させる必要がなく、高減衰組成物の加工性を向上することもできる。
したがって本発明の高減衰組成物によれば、これらの現象の相乗効果によって、温度依存性の問題を解消し、かつ良好な加工性を維持しながら、現状よりもさらに減衰性能に優れた高減衰部材を形成することが可能となる。
Moreover, according to the present invention, as described above, the damping performance is excellent, and a high damping member that exhibits stable damping performance over a wide temperature range can be formed. The processability of the highly attenuated composition can be improved.
Therefore, according to the high attenuation composition of the present invention, the high attenuation which is more excellent in the attenuation performance than the current situation while eliminating the temperature dependency problem and maintaining good processability by the synergistic effect of these phenomena. A member can be formed.

そのため、例えば本発明の高減衰組成物を形成材料として用いて、高減衰部材としての建築物の制震用ダンパを形成する場合には、1つの建築物中に組み込む前記制震用ダンパの数量を減らすことができる。また温度依存性が小さいことから、例えば温度差の大きい建築物の外壁付近にも前記制震用ダンパを設置することができる。
前記天然ゴムの、ベースポリマの総量中に占める割合は40質量%以上であるのが好ましく、90質量%以下であるのが好ましい。極性基を有しないジエン系ポリマの中でも温度依存性が特に小さく、かつシリカ等の充填剤の高充填が可能な天然ゴムの含有割合が前記範囲内となるように、非油展スチレンブタジエンゴムおよび/またはブタジエンゴムを併用することで、先に説明したメカニズムにより、高減衰部材の減衰性能をさらに向上できる。
Therefore, for example, when forming the damping damper for a building as a high damping member using the high damping composition of the present invention as a forming material, the quantity of the damping damper incorporated in one building Can be reduced. In addition, since the temperature dependency is small, for example, the damping damper can be installed near the outer wall of a building having a large temperature difference.
The proportion of the natural rubber in the total amount of the base polymer is preferably 40% by mass or more, and preferably 90% by mass or less. Non-oil-extended styrene-butadiene rubber and diene-based polymer having no polar group are particularly low in temperature dependence, and the content ratio of natural rubber capable of high filling with a filler such as silica is within the above range. By using butadiene rubber together, the damping performance of the high damping member can be further improved by the mechanism described above.

本発明の高減衰組成物は、ベースポリマ100質量部あたり100質量部以上、180質量部以下のシリカをも含んでいるのが好ましい。前記シリカは、先に説明したように減衰性付与剤として機能するため、高減衰部材の減衰性能をさらに向上できる。
また本発明の高減衰組成物は、前記シリカ100質量部あたり10質量部以上、20質量部以下のシラン化合物をも含んでいるのが好ましい。シラン化合物は、前記シリカの、ベースポリマ等の有機系の成分に対する親和性、相溶性を向上するための分散剤として機能する。そのためシリカを、高減衰部材中で減衰性付与剤としてより一層良好に機能させて、前記高減衰部材の減衰性能をさらに向上できる。
The high attenuation composition of the present invention preferably also contains 100 parts by mass or more and 180 parts by mass or less of silica per 100 parts by mass of the base polymer. Since the silica functions as an attenuation imparting agent as described above, the attenuation performance of the high attenuation member can be further improved.
Moreover, it is preferable that the high attenuation | damping composition of this invention also contains 10 mass parts or more and 20 mass parts or less of silane compounds per 100 mass parts of said silica. The silane compound functions as a dispersant for improving the affinity and compatibility of the silica with organic components such as a base polymer. Therefore, silica can be made to function more satisfactorily as an attenuating agent in the high attenuation member, and the attenuation performance of the high attenuation member can be further improved.

本発明によれば、温度依存性の問題を解消し、かつ良好な加工性を維持しながら、現状よりもさらに減衰性能に優れた高減衰部材を形成しうる高減衰組成物を提供することができる。   According to the present invention, it is possible to provide a highly attenuating composition that can form a highly attenuating member that is more excellent in attenuating performance than the current state while eliminating the problem of temperature dependence and maintaining good workability. it can.

本発明の実施例、比較例の高減衰組成物からなる高減衰部材の減衰性能を評価するために作製する、前記高減衰部材のモデルとしての試験体を分解して示す分解斜視図である。It is a disassembled perspective view which decomposes | disassembles and shows the test body as a model of the said high attenuation member produced in order to evaluate the attenuation performance of the high attenuation member which consists of the high attenuation composition of the Example of this invention, and a comparative example. 同図(a)(b)は、前記試験体を変位させて変位量と荷重との関係を求めるための試験機の概略を説明する図である。FIGS. 4A and 4B are diagrams for explaining the outline of a testing machine for displacing the test body and obtaining the relationship between the displacement and the load. 前記試験機を用いて試験体を変位させて求められる、変位量と荷重との関係を示すヒステリシスループの一例を示すグラフである。It is a graph which shows an example of the hysteresis loop which shows the relationship between the displacement amount and a load calculated | required by displacing a test body using the said testing machine.

本発明の高減衰組成物は、ベースポリマとして、
(1) 天然ゴムと、
(2) 非油展スチレンブタジエンゴム、およびムーニー粘度が50ML(1+4)100℃以下のブタジエンゴムからなる群より選ばれた少なくとも1種と、
を併用したことを特徴とするものである。
The high damping composition of the present invention is used as a base polymer,
(1) natural rubber,
(2) at least one selected from the group consisting of a non-oil extended styrene butadiene rubber and a butadiene rubber having a Mooney viscosity of 50 ML (1 + 4) 100 ° C. or less;
It is characterized by using together.

スチレンブタジエンゴム(SBR)としては、スチレンとブタジエンとを乳化重合法、溶液重合法等によって共重合させた種々の共重合体のうち、伸展油で伸展していない非油展SBRがいずれも使用可能である。
SBRが非油展のものに限定されるのは、油展SBRを天然ゴムと併用したとしても、先に説明した高減衰部材の減衰性能を向上する効果が得られないだけでなく、例えば大変形時に前記高減衰部材が破損したりしやすいためである。
As the styrene-butadiene rubber (SBR), non-oil-extended SBR that has not been extended with extension oil is used among various copolymers obtained by copolymerizing styrene and butadiene by emulsion polymerization, solution polymerization, etc. Is possible.
SBR is limited to non-oil-extended ones, even if oil-extended SBR is used in combination with natural rubber, not only the effect of improving the damping performance of the high-damping member described above is obtained, but also, for example, large This is because the high damping member is easily damaged during deformation.

乳化重合法による非油展SBRとしては、例えばJSR(株)製のJSR(登録商標)1500、JSR1502、JSR1507、JSR0202、JSR1503、日本ゼオン(株)製のNipol(登録商標)1500、Nipol 1502等が挙げられる。
また溶液重合法による非油展SBRとしては、例えばJSR(株)製のJSR SL552、JSR SL556、JSR SL574、日本ゼオン(株)製のNipol NS112、Nipol NS116等が挙げられる。
Non-oil-extended SBR by the emulsion polymerization method includes, for example, JSR (registered trademark) 1500, JSR1502, JSR1507, JSR0202, JSR1503 manufactured by JSR Corporation, Nipol (registered trademark) 1500, Nipol 1502 manufactured by Nippon Zeon Co., Ltd., etc. Is mentioned.
Examples of the non-oil-extended SBR by the solution polymerization method include JSR SL552, JSR SL556, JSR SL574 manufactured by JSR Corporation, Nipol NS112, Nipol NS116 manufactured by Nippon Zeon Corporation, and the like.

SBRは、前記例示のものを1種単独で用いてもよいし、2種以上を併用してもよい。
ブタジエンゴム(BR)としては、ポリブタジエン構造を有する種々の重合体のうち、ムーニー粘度が50ML(1+4)100℃以下であるものがいずれも使用可能である。
BRのムーニー粘度が50ML(1+4)100℃以下に限定されるのは、ムーニー粘度が前記範囲を超えるBRを天然ゴムと併用したとしても、先に説明した高減衰部材の減衰性能を向上する効果が得られないためである。なおBRのムーニー粘度は、前記範囲内でも25ML(1+4)100℃以上であるのが好ましい。
As the SBR, those exemplified above may be used singly or in combination of two or more.
As the butadiene rubber (BR), any of various polymers having a polybutadiene structure and having a Mooney viscosity of 50 ML (1 + 4) 100 ° C. or less can be used.
The reason why the Mooney viscosity of BR is limited to 50 ML (1 + 4) 100 ° C. or less is that, even when BR with Mooney viscosity exceeding the above range is used in combination with natural rubber, the effect of improving the damping performance of the high damping member described above is achieved. This is because cannot be obtained. The Mooney viscosity of BR is preferably 25 ML (1 + 4) 100 ° C. or higher even within the above range.

なおBRのムーニー粘度[ML(1+4)100℃]を、本発明では、日本工業規格JIS K6301−1:2001「未加硫ゴム−物理特性−第1部:ムーニー粘度計による粘度及びスコーチタイムの求め方」所載の測定方法によって測定した値でもって表すこととする。
前記ムーニー粘度の範囲を満足するBRとしては、例えば宇部興産(株)製のUBEPOL(登録商標)BR130B〔29ML(1+4)100℃〕、BR133P〔35ML(1+4)100℃〕、BR700〔37ML(1+4)100℃〕、BR230〔38ML(1+4)100℃〕、BR150B〔40ML(1+4)100℃〕、BR150〔43ML(1+4)100℃〕、BR150L〔43ML(1+4)100℃〕、日本ゼオン(株)製のNipol BR1220〔43ML(1+4)100℃〕、Nipol BR1220L〔29ML(1+4)100℃〕、JSR(株)製のJSR BR01〔45ML(1+4)100℃〕、JSR BR51〔38ML(1+4)100℃〕等の1種または2種以上が挙げられる。
Note that the Mooney viscosity [ML (1 + 4) 100 ° C.] of BR is determined according to the present invention in accordance with Japanese Industrial Standard JIS K6301-1: 2001 “Unvulcanized Rubber—Physical Properties—Part 1: Mooney Viscometer Viscosity and Scorch Time It shall be expressed as a value measured by the measuring method described in “How to obtain”.
Examples of BR satisfying the Mooney viscosity range include UBEPOL (registered trademark) BR130B [29 ML (1 + 4) 100 ° C.], BR133P [35 ML (1 + 4) 100 ° C.], BR700 [37 ML (1 + 4) manufactured by Ube Industries, Ltd. ) 100 ° C], BR230 [38ML (1 + 4) 100 ° C], BR150B [40ML (1 + 4) 100 ° C], BR150 [43ML (1 + 4) 100 ° C], BR150L [43ML (1 + 4) 100 ° C], Nippon Zeon Co., Ltd. Nipol BR1220 [43 ML (1 + 4) 100 ° C.], Nipol BR1220L [29 ML (1 + 4) 100 ° C.], JSR BR01 [45 ML (1 + 4) 100 ° C.], JSR BR51 [38 ML (1 + 4) 100 ° C. ] 1 type, or 2 or more types.

天然ゴムの、ベースポリマの総量中に占める割合は40質量%以上であるのが好ましく、90質量%以下であるのが好ましい。極性基を有しないジエン系ポリマの中でも温度依存性が特に小さく、かつシリカ等の充填剤の高充填が可能な天然ゴムの含有割合が前記範囲内となるように非油展SBRおよび/またはBRを併用することで、先に説明したメカニズムにより、高減衰部材の減衰性能をさらに向上できる。   The proportion of natural rubber in the total amount of the base polymer is preferably 40% by mass or more, and preferably 90% by mass or less. Non-oil-extended SBR and / or BR so that the content ratio of natural rubber that has a particularly low temperature dependency among diene polymers not having a polar group and can be highly filled with a filler such as silica is within the above range. By using together, the damping performance of the high damping member can be further improved by the mechanism described above.

なお高減衰部材の減衰性能をより一層向上することを考慮すると、前記天然ゴムの、ベースポリマの総量中に占める割合は、前記範囲内でも70質量%以下、特に50質量%以下であるのが好ましい。
前記本発明の高減衰組成物は、ベースポリマ100質量部あたり100質量部以上、180質量部以下のシリカを含んでいてもよい。
In consideration of further improving the damping performance of the high damping member, the ratio of the natural rubber to the total amount of the base polymer is 70% by mass or less, particularly 50% by mass or less even within the above range. preferable.
The high attenuation composition of the present invention may contain 100 parts by mass or more and 180 parts by mass or less of silica per 100 parts by mass of the base polymer.

前記シリカとしては、その製法によって分類される湿式法シリカ、乾式法シリカのいずれを用いてもよい。
またシリカは、減衰性付与剤として良好に機能して高減衰部材の減衰性能を向上する効果をさらに良好に発揮させることを考慮すると、そのBET比表面積が100m/g以上、特に200m/g以上であるのが好ましく、400m/g以下、特に250m/g以下であるのが好ましい。BET比表面積は、例えば柴田化学機械工業(株)製の迅速表面積測定装置SA−1000等を使用し、吸着気体として窒素ガスを用いる気相吸着法によって測定した値でもって表すこととする。
As the silica, any one of wet process silica and dry process silica classified by the production method may be used.
The silica, considering that to better achieving the good functioning effect of improving the damping performance of the high damping member as damping-imparting agent, the BET specific surface area of 100 m 2 / g or more, particularly 200 meters 2 / g or more, preferably 400 m 2 / g or less, particularly preferably 250 m 2 / g or less. The BET specific surface area is represented by a value measured by a gas phase adsorption method using, for example, a rapid surface area measuring device SA-1000 manufactured by Shibata Chemical Machinery Co., Ltd. and using nitrogen gas as an adsorbed gas.

前記シリカとしては、例えば東ソー・シリカ(株)製のNipsil(登録商標)KQ等が挙げられる。
シリカの含有割合は、ベースポリマ100質量部あたり100質量部以上、特に125質量部以上であるのが好ましく、180質量部以下、特に145質量部以下であるのが好ましい。
Examples of the silica include Nipsil (registered trademark) KQ manufactured by Tosoh Silica Corporation.
The content of silica is preferably 100 parts by mass or more, particularly 125 parts by mass or more, and preferably 180 parts by mass or less, particularly 145 parts by mass or less, per 100 parts by mass of the base polymer.

含有割合が前記範囲未満では、前記シリカを減衰性付与剤として含有させたことによる、高減衰部材の減衰性能を向上する効果が十分に得られないおそれがある。
また前記範囲を超える場合には、先に説明したように高減衰組成物の加工性が低下して、所望の立体形状を有する高減衰部材を、特に工場レベルで量産するのが容易でなくなるおそれがある。また実験室レベルで少数の高減衰部材を形成することは可能であるが、形成した高減衰部材は硬く、かつ変形し難いため、特に大変形時に破壊されやすくなるおそれもある。
If the content ratio is less than the above range, the effect of improving the attenuation performance of the high attenuation member due to the inclusion of the silica as an attenuation imparting agent may not be sufficiently obtained.
If the above range is exceeded, the processability of the high-attenuating composition is lowered as described above, and it is not easy to mass-produce a high-attenuating member having a desired three-dimensional shape, particularly at the factory level. There is. In addition, a small number of high attenuation members can be formed at the laboratory level, but the formed high attenuation members are hard and difficult to deform.

本発明の高減衰組成物は、さらにシラン化合物を含有してもよい。シラン化合物は、シリカの、ベースポリマ等の有機系の成分に対する親和性、相溶性を向上するための分散剤として機能するため、前記シラン化合物を含有させることで、シリカを、高減衰部材中で減衰性付与剤としてより一層良好に機能させて、前記高減衰部材の減衰性能をさらに向上できる。   The highly attenuating composition of the present invention may further contain a silane compound. Since the silane compound functions as a dispersant for improving the affinity and compatibility of silica with organic components such as a base polymer, the silica is contained in the high attenuation member by containing the silane compound. The damping performance of the high damping member can be further improved by further functioning as a damping property imparting agent.

前記シラン化合物としては、式(a):   Examples of the silane compound include the formula (a):

Figure 2011126992
Figure 2011126992

〔式中、R、R、R、およびRのうちの少なくとも1つはアルコキシ基を示す。ただしR、R、R、およびRが同時にアルコキシ基であることはなく、他派アルキル基またはアリール基を示す。〕
で表され、シランカップリング剤やシリル化剤等の、シリカの分散剤として機能しうる種々のシラン化合物が挙げられる。特にヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、およびジフェニルジメトキシシラン等のアルコキシシランの1種または2種以上が好ましい。
[Wherein, at least one of R 1 , R 2 , R 3 , and R 4 represents an alkoxy group. However, R 1 , R 2 , R 3 , and R 4 are not simultaneously an alkoxy group, and represent a cross-linked alkyl group or an aryl group. ]
And various silane compounds that can function as a silica dispersant, such as a silane coupling agent and a silylating agent. In particular, one or more of alkoxysilanes such as hexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and diphenyldimethoxysilane are preferable.

シラン化合物の含有割合は、シリカ100質量部あたり10質量部以上、20質量部以下であるのが好ましい。
含有割合が前記範囲未満では、シラン化合物を含有させることによる、シリカを、高減衰部材中で減衰性付与剤としてより一層良好に機能させて、前記高減衰部材の減衰性能を向上する効果が十分に得られないおそれがある。
The content of the silane compound is preferably 10 parts by mass or more and 20 parts by mass or less per 100 parts by mass of silica.
If the content ratio is less than the above range, the effect of improving the damping performance of the high attenuation member by sufficiently allowing silica to function as an attenuation imparting agent in the high attenuation member by including the silane compound is sufficient. May not be obtained.

また含有割合が前記範囲を超えてもそれ以上の効果が得られないだけでなく、加硫成形時に発泡等を生じるおそれもある。
本発明の高減衰組成物には、軟化剤を含有させてもよい。軟化剤としてはオイル、可塑剤、および液状ゴム等が挙げられ、特に液状ゴムが好ましい。前記液状ゴムとしては、例えば液状イソプレンゴム、液状スチレン−イソプレンゴム等が挙げられる。前記液状ゴムの含有割合は、高減衰部材の減衰特性に応じて適宜設定すればよい。
Moreover, even if the content ratio exceeds the above range, not only the effect is not obtained, but also foaming or the like may occur during vulcanization molding.
The high attenuation composition of the present invention may contain a softening agent. Examples of the softening agent include oils, plasticizers, and liquid rubber. Liquid rubber is particularly preferable. Examples of the liquid rubber include liquid isoprene rubber and liquid styrene-isoprene rubber. What is necessary is just to set suitably the content rate of the said liquid rubber according to the attenuation | damping characteristic of a high attenuation | damping member.

本発明の高減衰組成物には、さらに石油樹脂、クマロン樹脂等の、シリカ以外の他の減衰性付与剤を含有させてもよい。前記他の減衰性付与剤の含有割合は、高減衰部材の減衰特性に応じて適宜設定すればよい。
また本発明の高減衰組成物には加硫剤、加硫促進剤、加硫促進助剤、老化防止剤等の、ジエン系ベースポリマを加硫させるための添加剤を適宜の割合で含有させてもよい。
The highly attenuating composition of the present invention may further contain an attenuating agent other than silica, such as petroleum resin and coumarone resin. What is necessary is just to set suitably the content rate of the said other attenuation | damping property imparting agent according to the attenuation | damping characteristic of a high attenuation | damping member.
Further, the high damping composition of the present invention contains additives for vulcanizing diene base polymers such as vulcanizing agents, vulcanization accelerators, vulcanization accelerating aids and anti-aging agents in appropriate proportions. May be.

さらに本発明の高減衰組成物には、カーボンブラック、炭酸カルシウム等の充填剤を適宜の割合で含有させてもよい。
本発明の高減衰組成物は、前記各成分を任意の混練機を用いて混練して得られ、前記高減衰組成物を所定の立体形状に成形するとともに加硫することで、所定の減衰特性を有する高減衰部材を形成できる。
Further, the high attenuation composition of the present invention may contain a filler such as carbon black and calcium carbonate in an appropriate ratio.
The high attenuation composition of the present invention is obtained by kneading the above components using an arbitrary kneading machine, and molding the high attenuation composition into a predetermined three-dimensional shape and vulcanizing it to achieve predetermined attenuation characteristics. A high damping member having

本発明の高減衰組成物を用いて形成できる高減衰部材としては、例えばビル等の建造物の基礎に組み込まれる免震用ダンパ、建築物の構造中に組み込まれる制震(制振)用ダンパ、吊橋や斜張橋等のケーブルの制振部材、産業機械や航空機、自動車、鉄道車両等の防振部材、コンピュータやその周辺機器類、あるいは家庭用電気機器類等の防振部材、さらには自動車用タイヤのトレッド等が挙げられる。   As the high damping member that can be formed using the high damping composition of the present invention, for example, a seismic isolation damper that is incorporated into the foundation of a building such as a building, and a damping damper that is incorporated into the structure of a building. Damping members for cables such as suspension bridges and cable-stayed bridges, anti-vibration members for industrial machines, aircraft, automobiles, railway vehicles, etc., anti-vibration members for computers and their peripheral devices, household electric appliances, etc. Examples include treads for automobile tires.

本発明によれば、ジエン系ベースポリマの種類および含有割合、前記ジエン系ベースポリマに対する液状コポリマ、シリカ、シラン化合物、その他添加剤の種類および含有割合等を適宜調整することにより、前記それぞれの用途に適した優れた減衰性能を有する高減衰部材を得ることができる。
特に本発明の高減衰組成物を用いて建築物の構造中に組み込まれる制震用ダンパを形成した場合には、前記制震用ダンパが減衰性能に優れるため、1つの建築物中に組み込む制震用ダンパの数量を減らすことができる。また温度依存性が小さいことから、例えば温度差の大きい建築物の外壁付近にも前記制震用ダンパを設置することができる。
According to the present invention, by appropriately adjusting the type and content ratio of the diene base polymer, the type and content ratio of the liquid copolymer, silica, silane compound, and other additives with respect to the diene base polymer, the respective uses It is possible to obtain a high damping member having excellent damping performance suitable for the above.
In particular, when the damping damper incorporated in the structure of a building is formed using the high damping composition of the present invention, the damping damper is excellent in damping performance, so that the damping damper incorporated in one building is used. The quantity of seismic dampers can be reduced. In addition, since the temperature dependency is small, for example, the damping damper can be installed near the outer wall of a building having a large temperature difference.

以下の実施例、比較例における高減衰組成物の調製、および試験を、特記した以外は温度20±1℃、相対湿度55±1℃の環境下で実施した。
〈実施例1〉
ベースポリマとしての天然ゴム〔SMR(Standard Malaysian Rubber)−CV60〕50質量部、および非油展SBR〔前出のJSR(株)製のJSR1502、結合スチレン:23.5%、ムーニー粘度:52ML(1+4)100℃、分子量:45万〕50質量部に、液状イソプレンゴム〔前出の(株)クラレ製のクラプレンLIR−50〕35質量部、シリカ〔前出の東ソー・シリカ(株)製のNipsil KQ〕135質量部、およびシラン化合物としてのフェニルトリエトキシシラン〔信越化学工業(株)製のKBE−103〕23質量部と、下記表1に示す各成分とを配合し、密閉式混練機を用いて混練して高減衰組成物を調製した。シリカ100質量部あたりのフェニルトリエトキシシランの含有割合は17質量部であった。
The preparation and testing of the high attenuation compositions in the following examples and comparative examples were carried out in an environment with a temperature of 20 ± 1 ° C. and a relative humidity of 55 ± 1 ° C. unless otherwise specified.
<Example 1>
Natural rubber [SMR (Standard Malaysian Rubber) -CV60] 50 parts by mass as a base polymer, and non-oil-extended SBR [JSR1502 made by JSR Corporation, the above-mentioned, styrene: 23.5%, Mooney viscosity: 52ML ( 1 + 4) 100 ° C., molecular weight: 450,000] 50 parts by mass, liquid isoprene rubber [Claprene LIR-50 made by Kuraray Co., Ltd.] 35 parts by mass, silica [made by Tosoh Silica Co., Ltd. Nipsil KQ] 135 parts by mass, phenyl triethoxysilane (KBE-103 manufactured by Shin-Etsu Chemical Co., Ltd.) 23 parts by mass as a silane compound, and the components shown in Table 1 below were blended, and a closed kneader Was used for kneading to prepare a highly attenuated composition. The content ratio of phenyltriethoxysilane per 100 parts by mass of silica was 17 parts by mass.

Figure 2011126992
Figure 2011126992

表1中の各成分は下記のとおり。
ジシクロペンタジエン系石油樹脂:軟化点105℃、丸善石油化学(株)製のマルカレッツ(登録商標)M−890A
クマロン樹脂:軟化点90℃、日塗化学(株)製のエスクロン(登録商標)G−90
ベンズイミダゾール系老化防止剤:2-メルカプトベンズイミダゾール、大内新興化学(株)製のノクラックMB
キノン系老化防止剤:丸石化学品(株)製のアンチゲンFR
5%オイル処理粉末硫黄:加硫剤、鶴見化学工業(株)製
スルフェンアミド系加硫促進剤:N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学(株)製のノクセラー(登録商標)NS
チウラム系加硫促進剤:大内新興化学(株)製のノクセラーTBT-N
酸化亜鉛2種:加硫促進助剤、三井金属鉱業(株)製
ステアリン酸:加硫促進助剤、日油(株)製の「つばき」
カーボンブラック:充填剤、三菱化学(株)製のダイアブラック(登録商標)G
〈実施例2〉
非油展SBRとして、同量のJSR0202〔JSR(株)製、結合スチレン:46%、ムーニー粘度:45ML(1+4)100℃、分子量:45万〕を用いたこと以外は実施例1と同様にして高減衰組成物を調製した。
Each component in Table 1 is as follows.
Dicyclopentadiene-based petroleum resin: softening point 105 ° C., Marukaretsu (registered trademark) M-890A manufactured by Maruzen Petrochemical Co., Ltd.
Coumarone resin: softening point 90 ° C., Nikko Chemical Co., Ltd. Escron (registered trademark) G-90
Benzimidazole anti-aging agent: 2-mercaptobenzimidazole, NOCRACK MB manufactured by Ouchi Shinsei Chemical Co., Ltd.
Quinone anti-aging agent: Antigen FR manufactured by Maruishi Chemical Co., Ltd.
5% oil-treated powder sulfur: vulcanizing agent, manufactured by Tsurumi Chemical Industry Co., Ltd. Sulfenamide vulcanization accelerator: N-tert-butyl-2-benzothiazolylsulfenamide, manufactured by Ouchi Shinsei Chemical Co., Ltd. Noxeller (registered trademark) NS
Thiuram-based vulcanization accelerator: Noxeller TBT-N manufactured by Ouchi Shinsei Chemical Co., Ltd.
2 types of zinc oxide: Vulcanization accelerating agent, manufactured by Mitsui Mining & Smelting Co., Ltd. Stearic acid: Vulcanization accelerating agent, "Tsubaki" manufactured by NOF Corporation
Carbon Black: Filler, Dia Black (registered trademark) G manufactured by Mitsubishi Chemical Corporation
<Example 2>
As non-oil-extended SBR, the same amount of JSR0202 [manufactured by JSR Corporation, bound styrene: 46%, Mooney viscosity: 45 ML (1 + 4) 100 ° C., molecular weight: 450,000] was used in the same manner as in Example 1. A highly attenuated composition was prepared.

〈比較例1〉
非油展SBRに代えて、同量の油展SBR〔JSR(株)製のJSR6529、結合スチレン:31.1%、ムーニー粘度:52ML(1+4)100℃、分子量:100万、伸展油量:44%〕を用いたこと以外は実施例1と同様にして高減衰組成物を調製した。
〈比較例2〉
非油展SBRに代えて、同量の油展SBR〔JSR(株)製のJSR0372、結合スチレン:38.8%、ムーニー粘度:52ML(1+4)100℃、分子量:70万〜80万、伸展油量:20%〕を用いたこと以外は実施例1と同様にして高減衰組成物を調製した。
<Comparative example 1>
Instead of non-oil-extended SBR, the same amount of oil-extended SBR [JSR6529 manufactured by JSR Corporation, bound styrene: 31.1%, Mooney viscosity: 52 ML (1 + 4) 100 ° C., molecular weight: 1 million, extended oil amount: 44%] was used in the same manner as in Example 1 to prepare a highly attenuated composition.
<Comparative example 2>
Instead of non-oil-extended SBR, the same amount of oil-extended SBR [JSR0372 manufactured by JSR Corporation, bound styrene: 38.8%, Mooney viscosity: 52 ML (1 + 4) 100 ° C., molecular weight: 700,000 to 800,000, extension A high damping composition was prepared in the same manner as in Example 1 except that the oil amount was 20%.

〈従来例1〉
非油展SBRを配合せず、天然ゴムの量を100質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。
〈実施例3〉
天然ゴムの量を90質量部、非油展SBRの量を10質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。
<Conventional example 1>
A highly attenuated composition was prepared in the same manner as in Example 1 except that the non-oil-extended SBR was not blended and the amount of natural rubber was 100 parts by mass.
<Example 3>
A highly attenuated composition was prepared in the same manner as in Example 1 except that the amount of natural rubber was 90 parts by mass and the amount of non-oil-extended SBR was 10 parts by mass.

〈実施例4〉
天然ゴムの量を70質量部、非油展SBRの量を30質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。
〈実施例5〉
天然ゴムの量を40質量部、非油展SBRの量を60質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。
<Example 4>
A highly attenuated composition was prepared in the same manner as in Example 1 except that the amount of natural rubber was 70 parts by mass and the amount of non-oil-extended SBR was 30 parts by mass.
<Example 5>
A highly attenuated composition was prepared in the same manner as in Example 1 except that the amount of natural rubber was 40 parts by mass and the amount of non-oil-extended SBR was 60 parts by mass.

〈実施例6〉
シリカの量を100質量部、フェニルトリエトキシシランの量を17質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。シリカ100質量部あたりのフェニルトリエトキシシランの含有割合は17質量部であった。
〈実施例7〉
シリカの量を180質量部、フェニルトリエトキシシランの量を30.7質量部としたこと以外は実施例1と同様にして高減衰組成物を調製した。シリカ100質量部あたりのフェニルトリエトキシシランの含有割合は17質量部であった。
<Example 6>
A highly attenuated composition was prepared in the same manner as in Example 1 except that the amount of silica was 100 parts by mass and the amount of phenyltriethoxysilane was 17 parts by mass. The content ratio of phenyltriethoxysilane per 100 parts by mass of silica was 17 parts by mass.
<Example 7>
A highly attenuated composition was prepared in the same manner as in Example 1 except that the amount of silica was 180 parts by mass and the amount of phenyltriethoxysilane was 30.7 parts by mass. The content ratio of phenyltriethoxysilane per 100 parts by mass of silica was 17 parts by mass.

〈減衰特性評価〉
(試験体の作製)
実施例、比較例、従来例で調製した高減衰組成物をシート状に押出成形したのち打ち抜いて、図1に示すように円板1(厚み5mm×直径25mm)を作製し、前記円板1の表裏両面に、それぞれ加硫接着剤を介して厚み6mm×縦44mm×横44mmの矩形平板状の鋼板2を重ねて積層方向に加圧しながら150℃に加熱して円板1を形成する高減衰組成物を加硫させるとともに、前記円板1を2枚の鋼板2と加硫接着させて、高減衰部材のモデルとしての減衰特性評価用の試験体3を作製した。
<Damping characteristic evaluation>
(Preparation of test specimen)
The high attenuation compositions prepared in Examples, Comparative Examples, and Conventional Examples are extruded into a sheet shape and then punched to produce a disk 1 (thickness 5 mm × diameter 25 mm) as shown in FIG. The disk 1 is formed by superimposing a rectangular plate-shaped steel plate 2 of thickness 6 mm × length 44 mm × width 44 mm on both the front and back surfaces of the steel sheet and heating to 150 ° C. while pressing in the laminating direction. While the damping composition was vulcanized, the disk 1 was vulcanized and bonded to the two steel plates 2 to produce a specimen 3 for evaluating damping characteristics as a model of a high damping member.

(変位試験)
図2(a)に示すように前記試験体3を2個用意し、前記2個の試験体3を、それぞれ一方の鋼板2を介して1枚の中央固定治具4に固定するとともに、両試験体3の他方の鋼板2に、1枚ずつの左右固定治具5を固定した。そして中央固定治具4を試験機の上側に配設された固定アーム6にジョイント7を介して固定し、かつ2枚の左右固定治具5を、それぞれ前記試験機の下側に配設された可動盤8にジョイント9を介して固定した。それぞれの固定には、図示しないボルトを用いた。
(Displacement test)
As shown in FIG. 2 (a), two test specimens 3 are prepared, and the two test specimens 3 are fixed to one central fixing jig 4 via one steel plate 2, respectively. One left and right fixing jig 5 was fixed to the other steel plate 2 of the test body 3. Then, the central fixing jig 4 is fixed to a fixing arm 6 arranged on the upper side of the testing machine via a joint 7, and two left and right fixing jigs 5 are arranged on the lower side of the testing machine. The movable platen 8 was fixed via a joint 9. A bolt (not shown) was used for each fixation.

次に前記状態(初期状態)から、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向に押し上げるように変位させて、試験体3のうち円板1を、図2(b)に示すように前記試験体3の積層方向と直交方向に歪み変形させた変形状態とし、次いでこの変形状態から、可動盤8を図中に白抜きの矢印で示すように固定アーム6の方向と反対方向に引き下げるように変位させて、前記図2(a)に示す初期状態に戻す操作を1サイクルとして、3サイクル繰り返し行うことで円板1を繰り返し歪み変形、すなわち振動させた。   Next, from the above state (initial state), the movable platen 8 is displaced so as to be pushed up in the direction of the fixed arm 6 as indicated by the white arrow in the drawing, and the disc 1 of the test body 3 is moved to the position shown in FIG. As shown in (b), a deformed state in which the specimen 3 is strained and deformed in a direction orthogonal to the stacking direction is obtained, and then from this deformed state, the movable platen 8 is fixed arm 6 as indicated by a white arrow in the figure. The disc 1 was repeatedly deformed, that is, oscillated by repeating the operation for 3 cycles by displacing it so as to be pulled down in the direction opposite to the direction and returning it to the initial state shown in FIG.

そして3サイクル目の歪み変形をさせた際の、試験体3の積層方向と直交方向への円板1の変位量(mm)と荷重(N)との関係を示す、図3に示すヒステリシスループを求めた。
最大変位量は、円板1を挟む2枚の鋼板2の、前記積層方向と直交方向のずれ量が、前記円板1の厚みの200%となるように設定した。
The hysteresis loop shown in FIG. 3 shows the relationship between the displacement (mm) and the load (N) of the disc 1 in the direction orthogonal to the stacking direction of the test body 3 when the strain deformation of the third cycle is performed. Asked.
The maximum amount of displacement was set such that the amount of deviation of the two steel plates 2 sandwiching the disc 1 in the direction perpendicular to the stacking direction was 200% of the thickness of the disc 1.

次いで、前記測定によって求めた図3のヒステリシスループHのうち最大変位点と最小変位点とを結ぶ、図中に太線の実線で示す直線Lを求めるとともに前記直線Lの傾きKeq(N/mm)を求め、前記傾きKeqと、円板1の厚みT(mm)と、前記円板1の、前記積層方向と直交方向の断面積A(mm)とから、式(i): Then, connecting the maximum displacement point and the minimum displacement point of the hysteresis loop H in FIG. 3 as determined by the measurement, said lines L 1 slope Keq with obtaining the straight line L 1 shown by a thick solid line in FIG. (N / mm), and from the inclination Keq, the thickness T (mm) of the disc 1, and the cross-sectional area A (mm 2 ) of the disc 1 in the direction orthogonal to the stacking direction, the formula (i):

Figure 2011126992
Figure 2011126992

により等価せん断弾性率Geq(N/mm)を求めた。
また、ヒステリシスループHとの交点からグラフの横軸に垂線Lをおろした。そして図3中に斜線を付して示した、ヒステリシスループHの全表面積で表される吸収エネルギー量ΔWと、同図中に網線を付して示した、前記直線Lと垂線Lとグラフの横軸とで囲まれた直角三角形の領域の表面積で表される弾性歪みエネルギーWとから、式(ii):
The equivalent shear modulus Geq (N / mm 2 ) was determined by
Further, it grated perpendicular L 2 from the intersection of the hysteresis loop H to the horizontal axis of the graph. Then, the absorbed energy amount ΔW represented by the total surface area of the hysteresis loop H shown with diagonal lines in FIG. 3 and the straight line L 1 and the perpendicular line L 2 shown with halftone lines in FIG. And the elastic strain energy W expressed by the surface area of the right triangle region surrounded by the horizontal axis of the graph, the formula (ii):

Figure 2011126992
Figure 2011126992

により等価減衰定数Heqを求めた。
前記等価減衰定数Heqが大きいほど、試験体3は減衰性能に優れていると判定できる。今回の実施例、比較例、従来例では、前記等価減衰定数Heqが0.35以上であったものを減衰性能良好(○)、0.35未満であったものを減衰性能不良(×)と判定した。結果を表2、表3に示す。
Thus, an equivalent damping constant Heq was obtained.
It can be determined that the greater the equivalent attenuation constant Heq, the better the specimen 3 is in attenuation performance. In the present example, comparative example, and conventional example, when the equivalent attenuation constant Heq is 0.35 or more, the attenuation performance is good (◯), and when the equivalent attenuation constant Heq is less than 0.35, the attenuation performance is poor (×). Judged. The results are shown in Tables 2 and 3.

Figure 2011126992
Figure 2011126992

Figure 2011126992
Figure 2011126992

表2、表3の実施例1〜7、比較例1、2、および従来例1を比較すると、天然ゴムと、非油展SBRとを併用した実施例1〜7の高減衰組成物を用いることで、従来に比べて減衰特性に優れた高減衰部材を形成できることが判った。
また表2の実施例1と表3の実施例3〜5を比較すると、天然ゴムの、ベースポリマの総量中に占める割合は40質量%以上、90質量%以下であるのが好ましいことが判った。
When Examples 1 to 7 in Table 2 and Table 3, Comparative Examples 1 and 2, and Conventional Example 1 are compared, the highly attenuated compositions of Examples 1 to 7 using natural rubber and non-oil-extended SBR are used. Thus, it was found that a high attenuation member having excellent attenuation characteristics as compared with the conventional case can be formed.
Moreover, when Example 1 of Table 2 and Examples 3-5 of Table 3 are compared, it turns out that it is preferable that the ratio for which natural rubber accounts to the total amount of a base polymer is 40 to 90 mass%. It was.

さらに表2の実施例1と表3の実施例6、7を比較すると、シリカの含有割合は、ベースポリマ100質量部あたり100質量部以上、180質量部以下であるのが好ましいことが判った。
〈実施例8〉
ベースポリマとしての天然ゴム〔前出のSMR(Standard Malaysian Rubber)−CV60〕70質量部、およびBR〔前出の宇部興産(株)製のUBEPOL BR130B、ムーニー粘度:29ML(1+4)100℃、分子量41万〕30質量部に、液状イソプレンゴム〔前出の(株)クラレ製のクラプレンLIR−50〕35質量部、シリカ〔前出の東ソー・シリカ(株)製のNipsil KQ〕135質量部、およびシラン化合物としてのフェニルトリエトキシシラン〔前出の信越化学工業(株)製のKBE−103〕23質量部と、前記表1に示す各成分とを配合し、密閉式混練機を用いて混練して高減衰組成物を調製した。シリカ100質量部あたりのフェニルトリエトキシシランの含有割合は17質量部であった。
Furthermore, when Example 1 of Table 2 and Examples 6 and 7 of Table 3 were compared, it was found that the silica content was preferably 100 parts by mass or more and 180 parts by mass or less per 100 parts by mass of the base polymer. .
<Example 8>
70 parts by mass of natural rubber (the above-mentioned SMR (Standard Malaysian Rubber) -CV60) as a base polymer, and BR (UBEPOL BR130B manufactured by Ube Industries, Ltd., Mooney viscosity: 29 ML (1 + 4) 100 ° C., molecular weight 410,000] 30 parts by mass, liquid isoprene rubber [Claprene LIR-50 made by Kuraray Co., Ltd.] 35 parts by mass, silica [Nippil KQ made by Tosoh Silica Co., Ltd.] 135 parts by mass, And 23 parts by mass of phenyltriethoxysilane (KBE-103 manufactured by Shin-Etsu Chemical Co., Ltd.) as described above and each component shown in Table 1 above, and kneading using a closed kneader. Thus, a highly attenuated composition was prepared. The content ratio of phenyltriethoxysilane per 100 parts by mass of silica was 17 parts by mass.

〈実施例9〉
BRとして、同量のUBEPOL BR150B〔宇部興産(株)製、ムーニー粘度:40ML(1+4)100℃、分子量50万〕を用いたこと以外は実施例8と同様にして高減衰組成物を調製した。
〈実施例10〉
BRとして、同量のUBEPOL BR150L〔宇部興産(株)製、ムーニー粘度:43ML(1+4)100℃、分子量52万〕を用いたこと以外は実施例8と同様にして高減衰組成物を調製した。
<Example 9>
A highly attenuated composition was prepared in the same manner as in Example 8 except that the same amount of UBEPOL BR150B (manufactured by Ube Industries, Mooney viscosity: 40 ML (1 + 4) 100 ° C., molecular weight 500,000) was used as BR. .
<Example 10>
A highly attenuated composition was prepared in the same manner as in Example 8 except that the same amount of UBEPOL BR150L (manufactured by Ube Industries, Ltd., Mooney viscosity: 43 ML (1 + 4) 100 ° C., molecular weight 520,000) was used as BR. .

〈比較例3〉
BRとして、同量のUBEPOL BR360L〔宇部興産(株)製、ムーニー粘度:51ML(1+4)100℃、分子量57万〕を用いたこと以外は実施例8と同様にして高減衰組成物を調製した。
〈実施例11〉
天然ゴムの量を90質量部、BRの量を10質量部としたこと以外は実施例8と同様にして高減衰組成物を調製した。
<Comparative Example 3>
A highly attenuating composition was prepared in the same manner as in Example 8 except that the same amount of UBEPOL BR360L (manufactured by Ube Industries, Mooney viscosity: 51 ML (1 + 4) 100 ° C., molecular weight 570,000) was used as BR. .
<Example 11>
A highly attenuated composition was prepared in the same manner as in Example 8 except that the amount of natural rubber was 90 parts by mass and the amount of BR was 10 parts by mass.

〈実施例12〉
天然ゴムの量を50質量部、BRの量を50質量部としたこと以外は実施例8と同様にして高減衰組成物を調製した。
〈実施例13〉
天然ゴムの量を40質量部、BRの量を60質量部としたこと以外は実施例8と同様にして高減衰組成物を調製した。
<Example 12>
A highly attenuated composition was prepared in the same manner as in Example 8 except that the amount of natural rubber was 50 parts by mass and the amount of BR was 50 parts by mass.
<Example 13>
A highly attenuated composition was prepared in the same manner as in Example 8 except that the amount of natural rubber was 40 parts by mass and the amount of BR was 60 parts by mass.

前記実施例、比較例について先の減衰特性評価を行った。結果を表4、表5に示す。   The previous attenuation characteristics were evaluated for the examples and comparative examples. The results are shown in Tables 4 and 5.

Figure 2011126992
Figure 2011126992

Figure 2011126992
Figure 2011126992

表4、表5の実施例8〜11、比較例3を比較すると、天然ゴムと、ムーニー粘度が50ML(1+4)100℃以下であるBRとを併用した実施例8〜11の高減衰組成物を用いることで、従来に比べて減衰特性に優れた高減衰部材を形成できることが判った。
また表4の実施例8と表5の実施例11〜13を比較すると、天然ゴムの、ベースポリマの総量中に占める割合は40質量%以上、90質量%以下であるのが好ましいことが判った。
When Examples 8 to 11 and Comparative Example 3 in Tables 4 and 5 are compared, the highly attenuated compositions of Examples 8 to 11 using natural rubber and BR having a Mooney viscosity of 50 ML (1 + 4) 100 ° C. or less. It was found that a high attenuation member having excellent attenuation characteristics can be formed by using.
Moreover, when Example 8 of Table 4 and Examples 11-13 of Table 5 are compared, it turns out that it is preferable that the ratio for which natural rubber occupies in the total amount of a base polymer is 40 to 90 mass%. It was.

1 円板
2 鋼板
3 試験体
4 中央固定治具
5 左右固定治具
6 固定アーム
7 ジョイント
8 可動盤
9 ジョイント
DESCRIPTION OF SYMBOLS 1 Disc 2 Steel plate 3 Test body 4 Center fixing jig 5 Left and right fixing jig 6 Fixed arm 7 Joint 8 Movable platen 9 Joint

Claims (5)

ベースポリマとして、
(1) 天然ゴムと、
(2) 非油展スチレンブタジエンゴム、およびムーニー粘度が50ML(1+4)100℃以下のブタジエンゴムからなる群より選ばれた少なくとも1種と、
を併用したことを特徴とする高減衰組成物。
As a base polymer,
(1) natural rubber,
(2) at least one selected from the group consisting of a non-oil extended styrene butadiene rubber and a butadiene rubber having a Mooney viscosity of 50 ML (1 + 4) 100 ° C. or less;
A high-damping composition characterized by being used in combination.
前記天然ゴムの、ベースポリマの総量中に占める割合は40質量%以上、90質量%以下である請求項1に記載の高減衰組成物。   The high damping composition according to claim 1, wherein a ratio of the natural rubber in the total amount of the base polymer is 40% by mass or more and 90% by mass or less. 前記ベースポリマ100質量部あたり100質量部以上、180質量部以下のシリカをも含んでいる請求項1または2に記載の高減衰組成物。   The high attenuation composition according to claim 1 or 2, further comprising 100 parts by mass or more and 180 parts by mass or less of silica per 100 parts by mass of the base polymer. 前記シリカ100質量部あたり10質量部以上、20質量部以下のシラン化合物をも含んでいる請求項3に記載の高減衰組成物。   The high attenuation | damping composition of Claim 3 which also contains 10 mass parts or more and 20 mass parts or less of silane compounds per 100 mass parts of said silica. 建築物の制震用ダンパの形成材料として用いる請求項1ないし4のいずれか1項に記載の高減衰組成物。   The high-damping composition according to any one of claims 1 to 4, which is used as a material for forming a damping damper for a building.
JP2009286460A 2009-12-17 2009-12-17 Highly damping composition Pending JP2011126992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286460A JP2011126992A (en) 2009-12-17 2009-12-17 Highly damping composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286460A JP2011126992A (en) 2009-12-17 2009-12-17 Highly damping composition

Publications (1)

Publication Number Publication Date
JP2011126992A true JP2011126992A (en) 2011-06-30

Family

ID=44289941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286460A Pending JP2011126992A (en) 2009-12-17 2009-12-17 Highly damping composition

Country Status (1)

Country Link
JP (1) JP2011126992A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067767A (en) * 2011-09-06 2013-04-18 Sumitomo Rubber Ind Ltd High damping composition
JP2013095864A (en) * 2011-11-01 2013-05-20 Sumitomo Rubber Ind Ltd High-damping composition
JP2013221815A (en) * 2012-04-16 2013-10-28 Sumitomo Rubber Ind Ltd Method for evaluating dynamic viscoelasticity of cross-linked rubber
CN104693518A (en) * 2013-12-06 2015-06-10 住友橡胶工业株式会社 High damping composition and viscoelastic damper
JP2015129251A (en) * 2013-12-06 2015-07-16 住友ゴム工業株式会社 High attenuation composition and viscoelastic damper
KR101780829B1 (en) * 2011-09-06 2017-09-21 스미토모 고무 고교 가부시키가이샤 High damping composition
WO2017209263A1 (en) * 2016-06-01 2017-12-07 株式会社ブリヂストン Rubber composition and tire
US20210206944A1 (en) * 2018-09-26 2021-07-08 Sumitomo Riko Company Limited Anti-vibration rubber composition and anti-vibration rubber member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139634A (en) * 1987-11-27 1989-06-01 Japan Synthetic Rubber Co Ltd Rubber composition for vibration and sound-proofing and sound insulating material
JPH0741603A (en) * 1993-07-30 1995-02-10 Sumitomo Rubber Ind Ltd High-damping rubber composition blended with silica
JP2006052105A (en) * 2004-08-11 2006-02-23 Dow Corning Toray Co Ltd Silica treated with silane coupling agent, its preparation method, rubber composition for vibration proof and earthquake isolation, its production method, rubber product for vibration proof or earthquake isolation and its forming method
JP2007126649A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139634A (en) * 1987-11-27 1989-06-01 Japan Synthetic Rubber Co Ltd Rubber composition for vibration and sound-proofing and sound insulating material
JPH0741603A (en) * 1993-07-30 1995-02-10 Sumitomo Rubber Ind Ltd High-damping rubber composition blended with silica
JP2006052105A (en) * 2004-08-11 2006-02-23 Dow Corning Toray Co Ltd Silica treated with silane coupling agent, its preparation method, rubber composition for vibration proof and earthquake isolation, its production method, rubber product for vibration proof or earthquake isolation and its forming method
JP2007126649A (en) * 2005-10-05 2007-05-24 Ube Ind Ltd Vibration-proof rubber composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067767A (en) * 2011-09-06 2013-04-18 Sumitomo Rubber Ind Ltd High damping composition
KR101780829B1 (en) * 2011-09-06 2017-09-21 스미토모 고무 고교 가부시키가이샤 High damping composition
JP2013095864A (en) * 2011-11-01 2013-05-20 Sumitomo Rubber Ind Ltd High-damping composition
JP2013221815A (en) * 2012-04-16 2013-10-28 Sumitomo Rubber Ind Ltd Method for evaluating dynamic viscoelasticity of cross-linked rubber
CN104693518A (en) * 2013-12-06 2015-06-10 住友橡胶工业株式会社 High damping composition and viscoelastic damper
JP2015129251A (en) * 2013-12-06 2015-07-16 住友ゴム工業株式会社 High attenuation composition and viscoelastic damper
WO2017209263A1 (en) * 2016-06-01 2017-12-07 株式会社ブリヂストン Rubber composition and tire
CN109196037A (en) * 2016-06-01 2019-01-11 株式会社普利司通 Rubber composition and tire
JPWO2017209263A1 (en) * 2016-06-01 2019-03-28 株式会社ブリヂストン Rubber composition and tire
US20200181368A1 (en) * 2016-06-01 2020-06-11 Bridgestone Corporation Rubber composition and tire
JP7000318B2 (en) 2016-06-01 2022-01-19 株式会社ブリヂストン Rubber composition and tires
US20210206944A1 (en) * 2018-09-26 2021-07-08 Sumitomo Riko Company Limited Anti-vibration rubber composition and anti-vibration rubber member
US11965077B2 (en) * 2018-09-26 2024-04-23 Sumitomo Riko Company Limited Anti-vibration rubber composition and anti-vibration rubber member

Similar Documents

Publication Publication Date Title
JP5289356B2 (en) High damping composition
TWI454525B (en) High decay composition
TWI546342B (en) Highly damping composition and viscoelastic damper
JP2011126992A (en) Highly damping composition
JP6261131B2 (en) High damping composition, seismic damper and seismic isolation bearing
JP5404716B2 (en) High damping composition
JP5330460B2 (en) High damping composition
JP2014109023A (en) High-damping composition and viscoelastic damper
JP2017222824A (en) High damping rubber composition and viscoelastic damper
JP2017082171A (en) High attenuation rubber composition and viscoelastic damper
KR101780829B1 (en) High damping composition
JP6504696B2 (en) High damping composition and visco-elastic damper
JP2011132481A (en) High damping composition
JP2014162810A (en) High attenuation composition and viscoelastic damper
JP2013053251A (en) Highly damping composition
JP5568581B2 (en) High damping composition and viscoelastic damper
JP2015160903A (en) High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing
KR101680905B1 (en) Highly damping composition
JP2014224180A (en) Highly damping composition and viscoelastic damper
JP2019031607A (en) High attenuation rubber composition and viscoelastic damper
JP5738113B2 (en) High damping composition
JP2017210532A (en) High attenuation rubber composition and viscoelastic damper
JP5523428B2 (en) High damping composition
JP2015129251A (en) High attenuation composition and viscoelastic damper
JP2013043912A (en) High damping composition and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140206