JP5621183B2 - Rubber composition for seismic isolation structure - Google Patents

Rubber composition for seismic isolation structure Download PDF

Info

Publication number
JP5621183B2
JP5621183B2 JP2008120151A JP2008120151A JP5621183B2 JP 5621183 B2 JP5621183 B2 JP 5621183B2 JP 2008120151 A JP2008120151 A JP 2008120151A JP 2008120151 A JP2008120151 A JP 2008120151A JP 5621183 B2 JP5621183 B2 JP 5621183B2
Authority
JP
Japan
Prior art keywords
rubber
mass
isolation structure
seismic isolation
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008120151A
Other languages
Japanese (ja)
Other versions
JP2009269967A (en
Inventor
圭司 西村
圭司 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008120151A priority Critical patent/JP5621183B2/en
Publication of JP2009269967A publication Critical patent/JP2009269967A/en
Application granted granted Critical
Publication of JP5621183B2 publication Critical patent/JP5621183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal

Description

本発明は、高減衰性を有し、かつマリンズ効果の小さい免震構造体用のゴム組成物に関する。   The present invention relates to a rubber composition for a base-isolated structure having a high damping property and a small Mullins effect.

近年、地震対策として建造物に免震構造体を取り付けることが普及してきている。この免震構造体は、一般にゴム層と硬質板層とを交互に積層した構造とされ、そのゴム層には破壊物性に優れることから天然ゴムが一般に用いられている(例えば、下記特許文献1等)。   In recent years, attaching seismic isolation structures to buildings as a countermeasure against earthquakes has become widespread. This seismic isolation structure generally has a structure in which a rubber layer and a hard plate layer are alternately laminated, and natural rubber is generally used for the rubber layer because of its excellent fracture property (for example, Patent Document 1 below) etc).

しかしながら、加硫ゴムには、一般にマリンズ効果と呼ばれる繰り返し変形により弾性率が低下する現象が発生し、天然ゴムを用いた高減衰ゴムはそのマリンズ効果が大きく、免震構造体としての耐久性は必ずしも十分ではない。特に、大変形時に既にマリンズ効果による弾性率の低下(履歴依存性)が生じていることは、大地震を想定した場合にその影響は非常に大きい。   However, in vulcanized rubber, a phenomenon that the elastic modulus decreases due to repeated deformation, commonly called the Malins effect, the high damping rubber using natural rubber has a large Malins effect, and the durability as a seismic isolation structure is not Not always enough. In particular, the drop in elastic modulus (history dependence) due to the Mullins effect has already occurred during large deformations, which has a significant effect when a large earthquake is assumed.

このため、マリンズ効果が小さく良好な性能を確実に維持し得、信頼性の高い免震作用を確実に発揮することができる免震構造体用のゴム材料の開発が望まれる。   Therefore, it is desired to develop a rubber material for a seismic isolation structure that can reliably maintain good performance with a small Mullins effect and that can reliably exhibit a highly reliable seismic isolation function.

なお、本発明に関連する先行技術文献としては下記のものが挙げられる。
特開平2−32135号公報 特開平5−59219号公報 特開2002−340089号公報
In addition, the following are mentioned as prior art documents relevant to the present invention.
JP-A-2-32135 JP-A-5-59219 JP 2002-340089 A

本発明は、上記事情に鑑みなされたもので、繰り返し変形による弾性率の低下が小さく、所期の性能を長期に亘って確実に維持し得る免震構造体用ゴム組成物を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a rubber composition for a seismic isolation structure that is small in the decrease in elastic modulus due to repeated deformation and can reliably maintain the desired performance over a long period of time. Objective.

本発明者は、上記目的を達成するため鋭意検討を行った結果、免震構造体のゴム層を形成するゴム組成物を調製する場合に、ベースゴムとして天然ゴムに代えてシス形の含有量割合が90質量%以上の高シス−イソプレンゴムを用いることにより、繰り返し変形による弾性率の低下が小さく、所謂マリンズ効果の小さい免震構造体のゴム層を得ることができ、所期の性能を長期に亘って良好に維持することができる信頼性の高い免震構造体が得られることを見出し、本発明を完成したものである。   As a result of diligent studies to achieve the above object, the present inventor, when preparing a rubber composition for forming a rubber layer of a seismic isolation structure, a cis-form content instead of natural rubber as a base rubber By using a high cis-isoprene rubber with a proportion of 90% by mass or more, it is possible to obtain a rubber layer of a seismic isolation structure having a small decrease in elastic modulus due to repeated deformation and a small so-called Mullins effect. The present invention has been completed by finding that a highly reliable seismic isolation structure that can be maintained well over a long period of time can be obtained.

従って、本発明は、ゴム成分としてシス形の含有割合が90〜99質量%のリチウム系イソプレンゴムを全ゴム成分の50質量%以上と、ブタジエンゴムとを含有し、かつフェノール樹脂とジシクロペンタジエン樹脂とを含有することを特徴とする免震構造体用ゴム組成物を提供する。 Accordingly, the present invention includes a lithium isoprene rubber having a cis-form content of 90 to 99% by mass as a rubber component, containing 50% by mass or more of all rubber components, butadiene rubber , and a phenol resin and dicyclopentadiene. A rubber composition for a base-isolated structure comprising a resin .

本発明のゴム組成物は、繰り返し変形による弾性率の低下が小さく、所期の性能を長期に亘って確実に維持することができ、このゴム組成物を用いて免震構造体のゴム層を形成することにより、信頼性の高い免震構造体が得られるものである。   The rubber composition of the present invention has a small decrease in elastic modulus due to repeated deformation, and can reliably maintain the desired performance over a long period of time. Using this rubber composition, the rubber layer of the seismic isolation structure can be formed. By forming, a highly reliable seismic isolation structure can be obtained.

以下、本発明につき更に詳しく説明する。
本発明のゴム組成物は、上述のように、ゴム成分として、高シス−イソプレンゴムを含有するものである。
Hereinafter, the present invention will be described in more detail.
As described above, the rubber composition of the present invention contains a high cis-isoprene rubber as a rubber component.

この高シス−イソプレンゴムとは、シス形の含有割合が90質量%以上のイソプレンゴムをいう。この場合、特にされるものではないが、シス形の含有割合は、90〜99質量%、91〜95質量%であることが好ましい。   This high cis-isoprene rubber refers to an isoprene rubber having a cis-form content of 90% by mass or more. In this case, although not particularly specified, the cis-form content is preferably 90 to 99 mass% and 91 to 95 mass%.

この高シス−イソプレンゴムとしては、リチウム触媒系イソプレンゴム(シス形含有割合:92質量%程度)やチーグラー触媒系イソプレンゴム(シス形含有割合:98質量%程度)が挙げられ、これらを単独又は混合して用いることができるが、特にリチウム触媒系イソプレンゴムがシス形含有割合がより好適であり、より効果的にマリンズ効果の低下を図ることができる。   Examples of the high cis-isoprene rubber include lithium catalyst-based isoprene rubber (cis-form content ratio: about 92% by mass) and Ziegler catalyst-based isoprene rubber (cis-form content ratio: about 98% by mass). The lithium catalyst-based isoprene rubber is particularly suitable for the cis-form content ratio, and the Malins effect can be more effectively reduced.

ここで、このような高シス−イソプレンゴムを用いることにより、マリンズ効果を低下させ得る理由は必ずしも明確ではないが、次の通り推察することができる。即ち、天然ゴムのマリンズ効果は伸張結晶性に起因するものであり、この伸張結晶性の存在により高歪領域で弾性率が立ち上がり、これがマリンズ効果を大きくしている。これに対し、イソプレンゴムは、天然ゴムに比べて伸張結晶性が少ないため弾性率の立ち上がりが起こらず、マリンズ効果が小さくなると推察される。特に、リチウム触媒系のイソプレンゴムは、上記のように、チーグラー触媒系イソプレンゴムよりも適度にシス形含有割合が低く、伸張結晶をより効果的に阻害し、マリンズ効果の低下に好ましいものと考えられる。   Here, the reason why the Malins effect can be reduced by using such a high cis-isoprene rubber is not necessarily clear, but can be presumed as follows. That is, the Malins effect of natural rubber is due to stretch crystallinity, and the presence of this stretch crystallinity raises the elastic modulus in a high strain region, which increases the Malins effect. On the other hand, since isoprene rubber has less stretched crystallinity than natural rubber, the rise in elastic modulus does not occur, and it is presumed that the Malins effect is reduced. In particular, lithium-catalyzed isoprene rubber, as described above, has a moderately lower cis-form content than Ziegler-catalyzed isoprene rubber, more effectively inhibits stretched crystals, and is considered preferable for reducing the Malins effect. It is done.

本発明のゴム組成物は、上記のように高シス−イソプレンゴムをベースゴムとするものであり、組成物中のゴム成分はこの高シス−イソプレンゴムと共に他のゴムを混合して用いてもよい。   The rubber composition of the present invention is based on high cis-isoprene rubber as described above, and the rubber component in the composition may be used by mixing other rubber together with this high cis-isoprene rubber. Good.

他のゴムとしては、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム、ブチルゴム(IIR)、ハロゲン化ブチルゴム、エチレン−プロピレンゴム(EPR,EPDM)、フッ素ゴム、シリコーンゴム、ウレタンゴム等が挙げられ、これらの1種又は2種以上を併用することができる。なお、これらの中では、加硫ゴムの力学的物性など観点から天然ゴム、ブタジエンゴムが特に好ましく用いられる。   Other rubbers include natural rubber (NR), styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber, butyl rubber (IIR), halogenated butyl rubber, ethylene-propylene rubber (EPR, EPDM), fluorine rubber, Examples thereof include silicone rubber and urethane rubber, and one or more of these can be used in combination. Of these, natural rubber and butadiene rubber are particularly preferably used from the viewpoint of mechanical properties of vulcanized rubber.

ゴム成分として高シス−イソプレンゴムと他のゴムとを混合して用いる場合、高シス−イソプレンゴムの割合は全ゴム成分の50質量%以上とされ、好ましくは60質量%以上とする。   When a high cis-isoprene rubber and another rubber are mixed and used as the rubber component, the proportion of the high cis-isoprene rubber is 50% by mass or more, preferably 60% by mass or more of the total rubber component.

本発明のゴム組成物には、特に制限されるものではないが、上記ゴム成分と共に合成樹脂を配合することができる。   Although it does not restrict | limit in particular in the rubber composition of this invention, a synthetic resin can be mix | blended with the said rubber component.

本発明のゴム組成物に配合される合成樹脂としては、例えばフェノール樹脂、ジシクロペンタジエン樹脂、キシレン樹脂、脂肪族系(C5系)石油樹脂、芳香族系(C9系)石油樹脂、脂環族系石油樹脂、C5系石油樹脂とC9系石油樹脂とを共重合させたもの、テルペン系樹脂、ケトン樹脂及びこれらの樹脂の変性物などが挙げられ、これらの1種又は2種以上を用いることができる。   Examples of the synthetic resin blended in the rubber composition of the present invention include phenol resin, dicyclopentadiene resin, xylene resin, aliphatic (C5) petroleum resin, aromatic (C9) petroleum resin, and alicyclic. -Based petroleum resins, those obtained by copolymerization of C5-based petroleum resins and C9-based petroleum resins, terpene-based resins, ketone resins, modified products of these resins, etc., and using one or more of these Can do.

これら合成樹脂の配合量は、配合する樹脂の種類などに応じて適宜選定され、特に制限されるものではないが、通常は上記全ゴム成分100質量部に対して、2〜60質量部、特に5〜40質量部とすることが好ましい。この場合、配合量が2質量部未満であると、これら合成樹脂による高減衰性能が十分に得られない場合があり、一方60質量部を超えると破断特性や未加硫ゴムの作業性が低下するなどの不都合を生じる場合がある。   The blending amount of these synthetic resins is appropriately selected according to the type of resin to be blended and is not particularly limited, but is usually 2 to 60 parts by weight, particularly 100 parts by weight of the total rubber component. It is preferable to set it as 5-40 mass parts. In this case, if the blending amount is less than 2 parts by mass, the high damping performance by these synthetic resins may not be sufficiently obtained. On the other hand, if it exceeds 60 parts by mass, the fracture characteristics and workability of the unvulcanized rubber are deteriorated. May cause inconvenience such as.

本発明のゴム組成物には、ゴム成分と共に、上記合成樹脂の他にもゴム組成物に通常配合される公知の配合剤を配合することができる。例えば、カーボンブラック、シリカ、シランカップリング剤、加硫剤としての硫黄、加硫促進剤、加硫促進助剤、各種プロセスオイル、亜鉛華、ステアリン酸、各種軟化剤、ワックス、老化防止剤、石油炭化水素、ロジン、クレーや炭酸カルシウムなどの各種充填剤など、公知の配合剤を適量配合することができる。   In addition to the above-mentioned synthetic resin, a known compounding agent that is usually compounded in a rubber composition can be blended with the rubber composition of the present invention in addition to the above synthetic resin. For example, carbon black, silica, silane coupling agent, sulfur as a vulcanizing agent, vulcanization accelerator, vulcanization acceleration aid, various process oils, zinc white, stearic acid, various softening agents, wax, anti-aging agent, An appropriate amount of known compounding agents such as petroleum hydrocarbons, rosin, various fillers such as clay and calcium carbonate can be blended.

上記加硫促進剤としては、TMTD(テトラメチルジスルフィド)等のチウラム系、EZ(ジエチルジチオカルバミン酸亜鉛)等のジチオカルバミン酸塩類を使用することができる。   As said vulcanization accelerator, dithiocarbamates such as thiurams such as TMTD (tetramethyldisulfide) and EZ (zinc diethyldithiocarbamate) can be used.

また、これらと組み合わせて、有機過酸化物、キノンジオキシム、多官能性アクリルモノマー[例えば、トリメチロールエタントリアクリレート(TMETA)、トリメチロールプロパントリアクリレート(TMPTA)、ジペンタエリスリトールエーテルヘキサアクリレート(DPEHA)、ペンタエリスリトールテトラアクリレート(DPEHA)、ジメチロールプロパンジアクリレート(TMPTA)、ステアリルアクリレート(SA)等]、トリアジンチオールを用いることができる。   In addition, organic peroxides, quinone dioximes, polyfunctional acrylic monomers [for example, trimethylol ethane triacrylate (TMETA), trimethylol propane triacrylate (TMPTA), dipentaerythritol ether hexaacrylate (DPEHA) ), Pentaerythritol tetraacrylate (DPEHA), dimethylolpropane diacrylate (TMPTA), stearyl acrylate (SA), etc.], triazine thiol can be used.

硫黄系加硫剤及び加硫促進剤としては、粉末硫黄、高分散性硫黄、不溶性硫黄等で、一般にゴム用加硫剤として用いられている硫黄、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等のチウラム類、ペンタメチレンジチオカルバミン酸ピペリジン塩、ピペコリルジチオカルバミン酸ピペコリン塩、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、N−エチル−N−フェニルジチオカルバミン酸亜鉛、N−ペンタメチレンジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸ナトリウム、ジブチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸銅、ジメチルジチオカルバミン酸第二鉄、ジエチルジチオカルバミン酸テルル等のジチオカルバミン酸塩類、ブチルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜鉛、イソプロピルキサントゲン酸ナトリウム等のキサントゲン酸塩類、N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−t−ブチル−2−ベンゾチアゾールスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾールスルフェンアミド、N,N−ジイソプロピル−2−ベンゾチアゾールスルフェンアミド等のスルフェンアミド類、2−メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド等のチアゾール類等を挙げることができる。これらは2種以上を併用することもできる。使用量は、ゴム成分100質量部に対して0.5〜10質量部であることが好ましく、より好ましくは1〜6質量部である。   Sulfur-based vulcanizing agents and vulcanization accelerators include powder sulfur, highly dispersible sulfur, insoluble sulfur, etc., which are generally used as rubber vulcanizing agents, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutyl Thiurams such as thiuram disulfide, tetramethylthiuram monosulfide, dipentamethylene thiuram tetrasulfide, pentamethylenedithiocarbamic acid piperidine salt, pipecolyldithiocarbamic acid pipecoline salt, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate, Zinc N-ethyl-N-phenyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, zinc dibenzyldithiocarbamate, sodium dimethyldithiocarbamate, diet Dithiocarbamates such as sodium dithiocarbamate, sodium dibutyldithiocarbamate, copper dimethyldithiocarbamate, ferric dimethyldithiocarbamate, tellurium diethyldithiocarbamate, xanthates such as zinc butylxanthate, zinc isopropylxanthate, sodium isopropylxanthate N-cyclohexyl-2-benzothiazole sulfenamide, Nt-butyl-2-benzothiazole sulfenamide, N-oxydiethylene-2-benzothiazole sulfenamide, N, N-diisopropyl-2-benzothiazole Examples include sulfenamides such as sulfenamide, and thiazoles such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide.Two or more of these may be used in combination. The amount used is preferably 0.5 to 10 parts by mass, more preferably 1 to 6 parts by mass with respect to 100 parts by mass of the rubber component.

カーボンブラックの例としては、標準品種であるSAF、ISAF、HAF、FEF、GPF、SRF(以上ゴム用ファーネス)、MTカーボンブラック(熱分解カーボン)を挙げることができる。配合量は、ゴム成分100質量部に対して、20〜70質量部であることが好ましく、25〜65質量部であることがより好ましい。カーボンブラックの他に、更にセバシン酸ジオクチル等の可塑剤を加えても良い。   Examples of carbon black include standard varieties such as SAF, ISAF, HAF, FEF, GPF, SRF (hereinafter, furnace for rubber), and MT carbon black (pyrolytic carbon). The compounding amount is preferably 20 to 70 parts by mass, and more preferably 25 to 65 parts by mass with respect to 100 parts by mass of the rubber component. In addition to carbon black, a plasticizer such as dioctyl sebacate may be added.

老化防止剤としては、例えばN−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン(6C)やN−フェニル−N’−イソプロピル−p−フェニレンジアミン(3C)、2,2,4−トリメチル−1,2−ジヒドロキノリン重合物(RD)などが挙げられる。これらは、ゴム成分100質量部に対して0.5〜5質量部程度を用いることができる。   Examples of the antioxidant include N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine (6C), N-phenyl-N′-isopropyl-p-phenylenediamine (3C), 2, Examples include 2,4-trimethyl-1,2-dihydroquinoline polymer (RD). These can use about 0.5-5 mass parts with respect to 100 mass parts of rubber components.

本発明のゴム組成物は、上記各成分を公知のバンバリーミキサー、ロール、ニーダ等の混練装置を使用して混練し、製造することができる。この場合、特に制限されるものではないが、通常は、まずゴム成分、樹脂成分、充填剤、オイルなどを混合して混練し、次いで加硫剤,促進剤を添加して更に混練する2段階の混練操作を行うことが好ましい。   The rubber composition of the present invention can be produced by kneading the above components using a kneading apparatus such as a known Banbury mixer, roll, kneader or the like. In this case, although not particularly limited, usually, the rubber component, the resin component, the filler, the oil and the like are first mixed and kneaded, and then the vulcanizing agent and the accelerator are added and further kneaded. It is preferable to perform the kneading operation.

以下、実施例,比較例を示し、本発明をより具体的に説明するが、本発明は下記実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not restrict | limited to the following Example.

[実施例1〜10及び比較例1〜4]
下記、表1〜3に示すAの各配合成分を混練し、次いでBの亜鉛華混合硫黄及び促進剤CZを配合して更に混練し、実施例1〜10及び比較例1〜4のゴム組成物を調製した。得られた各ゴム組成物を2mm厚保に圧延してゴムシートを製造し、下記物性を測定、評価した。結果を表1,2に示す。
[Examples 1 to 10 and Comparative Examples 1 to 4]
Each of the blending components A shown in Tables 1 to 3 below is kneaded, and then blended with B zinc white mixed sulfur and accelerator CZ and further kneaded, and rubber compositions of Examples 1 to 10 and Comparative Examples 1 to 4 A product was prepared. Each obtained rubber composition was rolled to a thickness of 2 mm to produce a rubber sheet, and the following physical properties were measured and evaluated. The results are shown in Tables 1 and 2.

(1)硬さ(Hd)
JIS K 6301に準拠して、硬さを求めた。
(2)破断伸び(Eb)
JIS K 6301に準拠して、破断伸びを求めた。
(3)引張強度(Tb)
JIS K 6301に準拠して、引張強度を求めた。
(4)100%モジュラス(Md100)
JIS K 6301に準拠して求めた。
(5)200%モジュラス(Md200)
JIS K 6301に準拠して求めた。
(6)300%モジュラス(Md300)
JIS K 6301に準拠して求めた。
(1) Hardness (Hd)
The hardness was determined according to JIS K 6301.
(2) Elongation at break (Eb)
The elongation at break was determined according to JIS K 6301.
(3) Tensile strength (Tb)
The tensile strength was determined according to JIS K 6301.
(4) 100% modulus (Md100)
It calculated | required based on JISK6301.
(5) 200% modulus (Md200)
It calculated | required based on JISK6301.
(6) 300% modulus (Md300)
It calculated | required based on JISK6301.

(7)剪断弾性係数(G)、等価減衰定数(Heq)及びマリンズ効果(G1st/G3rd)
[剪断弾性係数の測定サンプルの作製]
ゴムシートを25mm×25mmの方形状に打ち抜いた1枚の方形状ゴムシートを作製し、これを25mm×60mm×厚み2.3mmの2枚の鉄板で挟んだ。すなわち、図1(A)に示すように.接着剤を塗布した2枚の鉄板22の間に、方形状ゴムシート20を、断面クランク状となるように挟んだ。このように、鉄板22とこれに接するゴムシート20の面とを接着した状態で加硫を行い鉄板22とゴムシート20面との接着をした。これにより図1(B)に示す形状のサンプルを得た。
[剪断弾性係数の測定]
サンプルを、バネ剛性、損失エネルギー測定装置(鷺宮製作所製、型式:EFH−26−8−10)に配置した。上述の2枚の鉄板22(図1(B)参照)に対し、ゴムシート20に対して外側および内側方向に、周波数0.2Hzで50%→100%→200%→300%と剪断率を変えて剪断力を付与した。同剪断率では各3回剪断力を付与した。
そして、各剪断率において、測定値(3回)を平均し、G及びHeqを算出した。なお、「G」は、剪断弾性係数(等価バネ剛性と称されることもある)を意味し、「Heq」は等価減衰定数であり、ヒステリシスロスの大きさの指標とされる。更に、同じ剪断率での1回目の剪断弾性率(G1st)と3回目の剪断弾性率(G3rd)との比(G1st/G3rd)によりマリンズ効果を算出した。
(7) Shear elastic modulus (G), equivalent damping constant (Heq) and Mullins effect (G1st / G3rd)
[Preparation of shear elastic modulus measurement sample]
One rectangular rubber sheet was produced by punching the rubber sheet into a 25 mm × 25 mm square, and this was sandwiched between two iron plates of 25 mm × 60 mm × 2.3 mm in thickness. That is, as shown in FIG. A rectangular rubber sheet 20 was sandwiched between two iron plates 22 coated with an adhesive so as to have a cross-sectional crank shape. In this way, vulcanization was performed in a state where the iron plate 22 and the surface of the rubber sheet 20 in contact with the iron plate 22 were bonded, and the iron plate 22 and the rubber sheet 20 surface were bonded. As a result, a sample having the shape shown in FIG.
[Measurement of shear modulus]
The sample was placed in a spring stiffness / loss energy measuring device (manufactured by Kakimiya Seisakusho, model: EFH-26-8-10). The shear rate of 50% → 100% → 200% → 300% at a frequency of 0.2 Hz in the outer and inner directions with respect to the rubber sheet 20 with respect to the two iron plates 22 described above (see FIG. 1B). The shear force was applied by changing. At the same shear rate, a shear force was applied three times.
And in each shear rate, the measured value (3 times) was averaged and G and Heq were computed. “G” means a shear elastic modulus (sometimes referred to as equivalent spring stiffness), and “Heq” is an equivalent damping constant, which is an index of the magnitude of hysteresis loss. Further, the Malins effect was calculated from the ratio (G1st / G3rd) of the first shear modulus (G1st) and the third shear modulus (G3rd) at the same shear rate.

なお、各表中の配合成分の詳細は、下記の通りである。
NR:RSS#4
BR:旭化成(株)「旭化成ジエンNF35R」
高トランス形IR:(株)クラレ「高トランスIR」
チーグラー系IR:JSR(株)「JSR IR2200」(シス形割合98質量%)
リチウム系IR:クレイトンポリマージャパン(株)「IR307」(シス形割合92質量%)
カーボン:旭カーボン(株)「旭#80−N」
フェノール樹脂:住友ベークライト(株)「スミライトレジン217」
ジシクロペンタジエン樹脂:日本ゼオン(株)「クイントン1325」
キシレン樹脂:フドー(株)「L5」
芳香族系石油樹脂:新日本石油(株)「E−130」
アロマオイル:出光興産(株)「ダイアナプロセスオイルAH−58」
亜鉛華混合硫黄:鶴見化学工業(株)「Z硫黄」
促進剤CZ:大内新興化学工業(株)「ノクセラーCZ」
In addition, the detail of the mixing | blending component in each table | surface is as follows.
NR: RSS # 4
BR: Asahi Kasei Corporation “Asahi Kasei Diene NF35R”
High Transform IR: Kuraray Co., Ltd. “High Transform IR”
Ziegler IR: JSR Corporation “JSR IR2200” (cis-form ratio 98% by mass)
Lithium IR: Kraton Polymer Japan Co., Ltd. “IR307” (cis-form ratio 92% by mass)
Carbon: Asahi Carbon Co., Ltd. “Asahi # 80-N”
Phenol resin: Sumitomo Bakelite Co., Ltd. “Sumilite Resin 217”
Dicyclopentadiene resin: Nippon Zeon Co., Ltd. “Quinton 1325”
Xylene resin: Fudou "L5"
Aromatic petroleum resin: Nippon Oil Corporation “E-130”
Aroma oil: Idemitsu Kosan Co., Ltd. “Diana Process Oil AH-58”
Zinc flower mixed sulfur: Tsurumi Chemical Co., Ltd. “Z Sulfur”
Accelerator CZ: Ouchi Shinsei Chemical Co., Ltd. “Noxeller CZ”

Figure 0005621183
Figure 0005621183

Figure 0005621183
Figure 0005621183

Figure 0005621183
Figure 0005621183

表1〜3の結果から、実施例のゴム組成物からなるゴムシートは、比較例よりもマリンズ効果が小さく、実用上優れていることがわかった。また、作業性も良好であった。   From the results of Tables 1 to 3, it was found that the rubber sheet made of the rubber composition of the example had a smaller Mullins effect than the comparative example and was practically superior. The workability was also good.

実施例で作製したサンプルを示す概略斜視図である。It is a schematic perspective view which shows the sample produced in the Example.

符号の説明Explanation of symbols

20 ゴムシート
22 鉄板
20 Rubber sheet 22 Iron plate

Claims (2)

ゴム成分としてシス形の含有割合が90〜99質量%のリチウム系イソプレンゴムを全ゴム成分の50質量%以上と、ブタジエンゴムとを含有し、かつフェノール樹脂とジシクロペンタジエン樹脂とを含有することを特徴とする免震構造体用ゴム組成物。 As a rubber component, a lithium isoprene rubber having a cis-type content ratio of 90 to 99% by mass contains 50% by mass or more of the total rubber component, butadiene rubber , and a phenol resin and a dicyclopentadiene resin. A rubber composition for a seismic isolation structure. 上記フェノール樹脂とジシクロペンタジエン樹脂との配合量が、全ゴム成分100質量部に対して2〜60質量部である請求項1記載の免震構造体用ゴム組成物。 Amount of the phenolic resin and dicyclopentadiene resins, claim 1 Symbol mounting base isolation structure for a rubber composition 2 to 60 parts by weight per 100 parts by weight total rubber component.
JP2008120151A 2008-05-02 2008-05-02 Rubber composition for seismic isolation structure Active JP5621183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120151A JP5621183B2 (en) 2008-05-02 2008-05-02 Rubber composition for seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120151A JP5621183B2 (en) 2008-05-02 2008-05-02 Rubber composition for seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2009269967A JP2009269967A (en) 2009-11-19
JP5621183B2 true JP5621183B2 (en) 2014-11-05

Family

ID=41436825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120151A Active JP5621183B2 (en) 2008-05-02 2008-05-02 Rubber composition for seismic isolation structure

Country Status (1)

Country Link
JP (1) JP5621183B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364351B2 (en) * 2008-11-19 2013-12-11 東洋ゴム工業株式会社 Rubber composition for high damping rubber and high damping rubber
JP5648014B2 (en) * 2012-04-09 2015-01-07 住友ゴム工業株式会社 High damping composition and viscoelastic damper
JP5992838B2 (en) * 2013-01-09 2016-09-14 東洋ゴム工業株式会社 Rubber composition for anti-vibration rubber
JP7264617B2 (en) * 2018-10-29 2023-04-25 ニッタ化工品株式会社 rubber composition

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179665A (en) * 1993-12-24 1995-07-18 Showa Electric Wire & Cable Co Ltd Vibration-damping material
JPH116542A (en) * 1997-06-18 1999-01-12 Sumitomo Rubber Ind Ltd Base isolation supporting structure
JP2000001576A (en) * 1998-04-15 2000-01-07 Yokohama Rubber Co Ltd:The Rubber composition for base isolation laminate
JP4101363B2 (en) * 1998-07-22 2008-06-18 横浜ゴム株式会社 Rubber laminate using rubber composition for high damping laminate
JP2000081067A (en) * 1998-09-07 2000-03-21 Showa Electric Wire & Cable Co Ltd Base isolation rubber device
JP3675216B2 (en) * 1999-03-30 2005-07-27 東海ゴム工業株式会社 High damping material composition
JP3645469B2 (en) * 2000-06-02 2005-05-11 横浜ゴム株式会社 Rubber composition for laminates with improved fracture characteristics
JP4595171B2 (en) * 2000-07-04 2010-12-08 横浜ゴム株式会社 Rubber composition for high damping bearing
JP2004307594A (en) * 2003-04-03 2004-11-04 Toyo Tire & Rubber Co Ltd Highly attenuating rubber composition and quake-free structure using the same
JP2005344087A (en) * 2004-06-07 2005-12-15 Toyo Tire & Rubber Co Ltd High-damping rubber composition and earthquake-proof structure using the same
JP2006045325A (en) * 2004-08-03 2006-02-16 Toyo Tire & Rubber Co Ltd Highly attenuating rubber composition and quake-free structure using the same
JP5043310B2 (en) * 2005-05-13 2012-10-10 東京ファブリック工業株式会社 Low repulsion rubber composition and seismic isolation structure using the same

Also Published As

Publication number Publication date
JP2009269967A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5130195B2 (en) High damping rubber composition
JP4847978B2 (en) High damping rubber composition and damping member
JP5621183B2 (en) Rubber composition for seismic isolation structure
JP4938269B2 (en) High damping rubber composition and method for producing the same
JP2010260933A (en) Rubber composition for seismic isolation structure
JP5234891B2 (en) Rubber composition
JP2011168740A (en) Rubber composition, rubber composition for high damping laminate, and rubber composition for tire
JP5313224B2 (en) Seismic isolation / damping device
JP5574616B2 (en) Rubber composition for laminated rubber of seismic isolation structure
JP5130198B2 (en) High damping rubber composition
JP5221025B2 (en) Seismic isolation structure
JP4938287B2 (en) Rubber composition
JP3753493B2 (en) Rubber composition for high damping rubber bearing
JP4595171B2 (en) Rubber composition for high damping bearing
JP2008285577A (en) Rubber composition
JP2009007422A (en) Rubber composition and tire
JP5038608B2 (en) High damping rubber composition
US10752756B2 (en) Anti-vibration rubber composition and anti vibration rubber
JP5545165B2 (en) Rubber composition for seismic isolation structure
JP2007063327A (en) Highly damping rubber composition
JP2007063426A (en) Highly damping rubber composition
JP2007045998A (en) Highly damping rubber composition
JPH10219033A (en) Rubber composition for high-attenuation support
JP5545193B2 (en) Rubber composition for seismic isolation structure
JP2006045325A (en) Highly attenuating rubber composition and quake-free structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250