JP2000001576A - Rubber composition for base isolation laminate - Google Patents

Rubber composition for base isolation laminate

Info

Publication number
JP2000001576A
JP2000001576A JP35596598A JP35596598A JP2000001576A JP 2000001576 A JP2000001576 A JP 2000001576A JP 35596598 A JP35596598 A JP 35596598A JP 35596598 A JP35596598 A JP 35596598A JP 2000001576 A JP2000001576 A JP 2000001576A
Authority
JP
Japan
Prior art keywords
rubber
rubber composition
modulus
ratio
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35596598A
Other languages
Japanese (ja)
Inventor
Atsushi Miyaji
淳 宮地
Atsushi Shimada
島田  淳
Hideyuki Oishi
英之 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP35596598A priority Critical patent/JP2000001576A/en
Publication of JP2000001576A publication Critical patent/JP2000001576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a rubber compsn. which has horizontal stiffness with a low bearing pressure dependence and shear modulus not decreasing even under a high bearing pressure by specifying the ratio of modulus to static shear modu lus at a specified percentage deformation in a repeated deformation test with an autograph. SOLUTION: This compsn. exhibits an elasticity ratio of modulus M100 to static shear modulus Gs at the third time in a repeated 100% tensile deformation test with an autograph of 1.4 or higher and a ratio of modulus M300 at the third time in a repeated 300% tensile deformation test to M100 of 3.6 or lower. The compsn. is prepd. by compounding 100 pts.wt. rubber component comprising natural rubber alone or a mixture thereof with an isoprene rubber with up to 15 pts.wt. polymer (e.g. a chloroprene rubber) having a solubility parameter different from that of natural rubber by at least 0.3 (MPa)1/2, 1-30 pts.wt. clay mainly comprising hydrated aluminum silicate, a filler (e.g. carbon black), a vulcanizing agent (e.g. sulfur), a vulcanization aid, a vulcanization accelerator, an antioxidant, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、免震積層体用ゴム
組成物に関し、詳しくは、水平方向の剛性(剪断弾性
率)の面圧依存性が低く、高面圧下でも剪断弾性率の低
下が少ない免震積層体のゴム層として好適な免震積層体
用ゴム組成物に関する。さらには上記水平剛性保持性能
に加えて線形性能にも優れる免震積層体用ゴム組成物に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber composition for a seismic isolation laminate, and more particularly, to a low rigidity in the horizontal direction (shear elastic modulus) with low surface pressure, and a decrease in shear elastic modulus even under a high surface pressure. The present invention relates to a rubber composition for a seismic isolation laminate which is suitable as a rubber layer of the seismic isolation laminate having a low content. Furthermore, the present invention relates to a rubber composition for a seismic isolation laminate having excellent linear rigidity in addition to the horizontal rigidity retaining performance.

【0002】[0002]

【従来の技術】近年、振動エネルギー吸収装置、特に免
震装置が急速に普及しつつあり、その一形態として、鋼
板とゴム層を交互に積層した免震積層体が挙げられる。
免震積層体は、建築物と基礎の間、主に基礎部分の柱の
基部に設置され、地震等の地動に共振する建築物の振動
周期を長周期に変え、建築物に入る地動を減少させる働
きをする。地震発生時の免震積層体上の構造物の振動周
期(固有周期)をより長周期化するために、最近の免震
積層体では、免震積層体の断面積を小さくしてコンパク
ト化し、より高面圧化する傾向にある。例えば、従来の
建築物に用いられてきた免震積層体では、面圧がせいぜ
い100kg/cm2 であったが、最近の免震積層体の
コンパクト化により、コンパクト化した免震積層体にか
かる面圧は、150kg/cm2 にも達するものもあ
る。さらに、地震発生時には、突発的に150kg/c
2 を越える高面圧がかかる場合もある。しかし、免震
積層体をこのような高面圧下で使用した場合、水平方向
への変形に対応したゴムの応力の発生は少なくなりゴム
の水平剛性(剪断弾性率)が低下するという現象が起こ
る。その結果、従来の免震積層体は、面圧によって特性
が変化し、安定した性能を発揮できなかった。そこで、
通常の面圧150kg/cm2 を超える高荷重(高面
圧)下でも通常面圧下と同等の剪断特性(水平剛性)を
維持できる免震積層体の構築が望まれている。
2. Description of the Related Art In recent years, vibration energy absorbing devices, especially seismic isolation devices, have been rapidly spreading. One form thereof is a seismic isolation laminate in which steel plates and rubber layers are alternately laminated.
The seismic isolation laminate is installed between the building and the foundation, mainly at the base of the pillar of the foundation, and changes the vibration cycle of the building that resonates with the ground motion such as an earthquake to a long cycle, reducing the ground motion entering the building Work to make it work. In order to prolong the vibration period (natural period) of the structures on the seismic isolation laminate at the time of the earthquake, recent seismic isolation laminates have been reduced in size by reducing the cross-sectional area of the seismic isolation laminate. The surface pressure tends to be higher. For example, in the case of a seismic isolation laminate used in a conventional building, the surface pressure was at most 100 kg / cm 2 . The surface pressure can reach as high as 150 kg / cm 2 . Furthermore, when an earthquake occurs, 150 kg / c suddenly
High surface pressure exceeding m 2 may be applied. However, when the seismic isolation laminate is used under such a high surface pressure, the occurrence of rubber stress corresponding to horizontal deformation is reduced and the horizontal rigidity (shear modulus) of rubber is reduced. . As a result, the characteristics of the conventional seismic isolation laminate changed due to surface pressure, and stable performance could not be exhibited. Therefore,
Construction of a seismic isolation laminate that can maintain the same shear characteristics (horizontal rigidity) as under normal surface pressure even under a high load (high surface pressure) exceeding normal surface pressure of 150 kg / cm 2 is desired.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、水平
剛性(剪断弾性率)の面圧依存性が低く、高面圧下でも
剪断弾性率が低下せず、各種の振動エネルギー吸収装
置、特に免震装置として好適な免震積層体のゴム層とし
て好適なゴム組成物を提供することである。さらに本発
明は、水平剛性の面圧依存性が小さいことに加えて、線
形限界歪みが大きく線形性能のよい免震積層体用ゴム組
成物を提供することも目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a vibration energy absorbing device which has low dependence of horizontal rigidity (shear elastic modulus) on surface pressure, does not decrease in shear elasticity even under high surface pressure. An object of the present invention is to provide a rubber composition suitable as a rubber layer of a seismic isolation laminate suitable as a seismic isolation device. It is a further object of the present invention to provide a rubber composition for a seismic isolation laminate having a large linear limit strain and a good linear performance in addition to a small dependence of horizontal rigidity on surface pressure.

【0004】[0004]

【課題を解決するための手段】発明者らは、かかる従来
の技術における問題を解消すべく鋭意研究した結果、免
震積層体のゴム層を形成するゴム組成物として、100
%モジュラスM100 と、静的剪断弾性率Gsの比で示さ
れる弾性比が1.4以上であるゴム組成物を使用するこ
とで、免震積層体の水平剛性の面圧依存性が低減できる
ことを見出し、さらにこの知見に基づいてかかる免震積
層体の特性を獲得しうるゴム組成物の配合を見出し、本
発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the problems in the prior art, and as a result, as a rubber composition for forming a rubber layer of a seismic isolation laminate, 100
% And modulus M 100, by using a rubber composition elasticity ratio represented by the ratio of the static shear modulus Gs is 1.4 or more, the surface pressure dependency of the horizontal stiffness of the seismic isolation laminate can be reduced Further, based on this finding, a compounding of a rubber composition capable of obtaining the characteristics of the seismic isolation laminate was found, and the present invention was completed.

【0005】すなわち本発明は、オートグラフによる1
00%繰り返し変形引張試験での3回目のモジュラスM
100 と、静的剪断弾性率Gsの比で示される弾性比(M
100/Gs)が1.4以上である免震積層体用ゴム組成
物を提供する。前記ゴム組成物が、天然ゴム、および、
溶解度パラメーターが前記天然ゴムの溶解度パラメータ
ーと0.3(MPa)1/2 以上異なるポリマーを前記天
然ゴム100重量部に対し15重量部以下含有してなる
のが好ましい。
[0005] That is, the present invention is based on the autograph 1
Third Modulus M in 00% Cyclic Deformation Tensile Test
An elastic ratio (M) expressed as a ratio of 100 to the static shear modulus Gs
100 / Gs) is 1.4 or more. The rubber composition is a natural rubber, and,
It is preferable that a polymer having a solubility parameter different from that of the natural rubber by 0.3 (MPa) 1/2 or more is contained in an amount of 15 parts by weight or less based on 100 parts by weight of the natural rubber.

【0006】また本発明に係る免震積層体用ゴム組成物
は、上記弾性比(M100 /Gs)が1.4以上であるこ
とに加えて、オートグラフによる100%繰り返し変形
引張試験での3回目の伸び300%時のモジュラスM
300 と、上記モジュラスM100との応力比(M300 /M
100 )が3.6以下であることが望ましい。このように
弾性比が1.4以上であり、かつ応力比が3.6以下で
あるゴム組成物を含む免震積層体は、水平剛性の面圧依
存性が小さい上に、線形限界歪みが大きく、線形性能が
よい。上記弾性比1.4以上と、応力比3.6以下とを
満たすゴム組成物としては、具体的に組成物中のゴム成
分量を100重量%とするとき、イソプレンゴムを5〜
100重量%の量で含有するゴム組成物、あるいはゴム
成分100重量部に対して、クレーを1〜30重量部の
量で含有するゴム組成物などが挙げられる。
The rubber composition for a seismic isolation laminate according to the present invention has an elasticity ratio (M 100 / Gs) of 1.4 or more and has a 100% repetitive deformation tensile test by an autograph. Modulus M at third elongation 300%
300 and the stress ratio between the modulus M 100 (M 300 / M
100 ) is desirably 3.6 or less. As described above, the seismic isolation laminate including the rubber composition having the elastic ratio of 1.4 or more and the stress ratio of 3.6 or less has a small horizontal pressure-dependent surface pressure and a linear limit strain. Large, good linear performance. As the rubber composition that satisfies the above elastic ratio of 1.4 or more and the stress ratio of 3.6 or less, when the rubber component amount in the composition is 100% by weight, isoprene rubber is 5 to 5%.
A rubber composition containing 100% by weight or a rubber composition containing clay in an amount of 1 to 30 parts by weight based on 100 parts by weight of the rubber component is exemplified.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
本明細書において、モジュラス、静的剪断弾性率は、加
硫ゴム組成物について測定される値である。本発明は、
ゴム組成物の、オートグラフによる100%繰り返し変
形引張試験での3回目のモジュラス(M100 )と、静的
剪断弾性率(Gs)の比(M100 /Gs、なお、この比
を以下、弾性比と記す)を特定値以上とすることで、該
ゴム組成物を用いる免震積層体の水平剛性(剪断弾性
率)の面圧依存性を低減化できるという、新規な相関関
係を見出したものであり、このようなゴム組成物の水平
剛性に関する低面圧依存特性を、ゴム組成物の配合を特
定なものとすることで獲得したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present specification, the modulus and the static shear modulus are values measured for the vulcanized rubber composition. The present invention
The ratio (M 100 / Gs) of the third modulus (M 100 ) of the rubber composition in the 100% cyclic deformation tensile test by an autograph to the static shear modulus (Gs). (Hereinafter referred to as "ratio") to a specific value or more, it is possible to reduce the surface pressure dependence of the horizontal rigidity (shear modulus) of the seismic isolation laminate using the rubber composition. The low surface pressure dependence of the horizontal stiffness of the rubber composition is obtained by specifying the rubber composition in a specific manner.

【0008】免震積層体の面圧依存性は、免震積層体の
水平剛性保持率により表わすことができる。ここで水平
剛性保持率とは、異なる2つの面圧下において、その内
の小さな面圧下に対する大きな面圧下における水平剛性
の比である。例えば、高面圧下でも剪断弾性率が低下せ
ず、面圧依存性が小さいとは、水平剛性保持率が大き
い、より1に近い値をとるということである。図1に、
天然ゴムのモジュラス(引張応力)と剪断歪みを、それ
ぞれ縦軸と横軸にとった場合のモジュラスと剪断歪みと
の関係を示すS−Sカーブを概念図として示す。免震積
層体の水平剛性保持率が1に近づくということは、免震
積層体のゴム層を形成するゴム組成物が、引張変形によ
り破断に至るまで、より線型にちかい変形をするゴムで
あるということである。図1で言えば、モジュラスと剪
断歪みの関係を示すS−Sカーブが、より直線に近くな
り、例えば破線で示す曲線に近づくということである。
種々のゴム組成物の、オートグラフによる100%繰り
返し変形引張試験での3回目のモジュラス(M100
と、静的剪断弾性率Gsの比で示される弾性比(M100
/Gs)と、そのゴム組成物をゴム層とした免震積層体
の水平剛性保持率の関係をみてみると、以下に示す結果
が得られた。水平剛性保持率は、面圧300kg下での
水平剛性と150kg下での水平剛性の比をとった。 得られた結果より、弾性比と、水平剛性保持率が正に相
関し、弾性比が大きければ水平剛性保持率が大きく、即
ち面圧依存性が小さく、この比が小さければ水平剛性保
持率が小さく、即ち面圧依存性が大きいことが分かっ
た。つまり、弾性比が大きくなるに従って、免震積層体
の面圧依存性が改善されることがわかった。ゴムは一般
に変形が50%を越えたあたりから弾性率の増加が低下
する傾向にあるが、弾性比が大きくなるということは、
この低下が少なくなることを意味し、実際の免震積層体
において重要な変形領域である100%変形程度まで、
より線型に近い変形をするゴム組成物であるといえる。
この結果より、ゴム組成物の弾性比を大きくして、実際
の積層体の変形領域において、より線型に変形するよう
にすれば、このゴム組成物をゴム層に用いた免震積層体
の面圧依存性を低減化できることがわかった。逆に、ゴ
ム組成物の100%変形時のモジュラスがGsに対して
低いと、高面圧下での剪断弾性率が低下した状態とな
り、このゴム組成物を用いた免震積層体の面圧依存性が
大きくなる。
[0008] The surface pressure dependency of the seismic isolation laminate can be represented by the horizontal rigidity retention rate of the seismic isolation laminate. Here, the horizontal rigidity retention ratio is a ratio of the horizontal rigidity under a large surface pressure to a small surface pressure among two different surface pressures. For example, the fact that the shear modulus does not decrease even under a high surface pressure and the dependency on the surface pressure is small means that the horizontal rigidity retention ratio is large and a value closer to 1 is taken. In FIG.
FIG. 2 is a conceptual diagram showing an SS curve showing the relationship between the modulus and the shear strain when the modulus (tensile stress) and the shear strain of natural rubber are plotted on the vertical and horizontal axes, respectively. The fact that the horizontal rigidity retention rate of the seismic isolation laminate approaches 1 means that the rubber composition forming the rubber layer of the seismic isolation laminate deforms more linearly until it breaks due to tensile deformation. That's what it means. In FIG. 1, the SS curve indicating the relationship between the modulus and the shear strain is closer to a straight line, for example, closer to a curve indicated by a broken line.
Third modulus (M 100 ) of various rubber compositions in a 100% repeated deformation tensile test by an autograph
And the elastic ratio (M 100) represented by the ratio of the static shear modulus Gs
/ Gs) and the horizontal rigidity retention of the seismic isolation laminate having the rubber composition as a rubber layer, the following results were obtained. The horizontal stiffness retention rate was a ratio of horizontal stiffness under a surface pressure of 300 kg to horizontal stiffness under a 150 kg pressure. From the results obtained, the elasticity ratio and the horizontal stiffness retention ratio are positively correlated, and the higher the elasticity ratio, the greater the horizontal stiffness retention ratio, that is, the smaller the surface pressure dependency, and the lower the ratio, the lower the horizontal stiffness retention ratio. It was found to be small, that is, the surface pressure dependency was large. In other words, it was found that the surface pressure dependency of the seismic isolation laminate was improved as the elastic ratio increased. Rubber generally has a tendency to decrease in elastic modulus when the deformation exceeds 50%, but that the elastic ratio increases
This means that this decrease is reduced, and to the extent of 100% deformation, which is an important deformation area in the actual seismic isolation laminate,
It can be said that the rubber composition deforms closer to a linear shape.
From this result, if the elastic ratio of the rubber composition is increased and the rubber composition is deformed more linearly in the deformation region of the actual laminate, the surface of the seismic isolation laminate using this rubber composition for the rubber layer can be obtained. It was found that the pressure dependency can be reduced. Conversely, if the modulus of the rubber composition at the time of 100% deformation is lower than Gs, the shear modulus under a high surface pressure is reduced, and the surface pressure dependence of the seismic isolation laminate using this rubber composition is reduced. The nature increases.

【0009】特に、弾性比が1.4以上であるゴム組成
物で形成したゴム層を有する免震積層体では、水平剛性
保持率が、従来の天然ゴム主体のゴム層を用いた免震積
層体が示す水平剛性保持率(上記表の弾性比1.38、
水平剛性保持率0.37に相当)を大きく上回り非常に
好ましいが、弾性比が1.4未満では水平剛性保持率が
低く好ましくない。好ましくは、弾性比が1.4〜4.
0である。
In particular, in a seismic isolation laminate having a rubber layer formed of a rubber composition having an elasticity ratio of 1.4 or more, the horizontal rigidity retention rate of the seismic isolation laminate using a conventional natural rubber-based rubber layer is reduced. The horizontal rigidity retention rate of the body (elasticity ratio 1.38 in the above table,
(Equivalent to a horizontal rigidity retention of 0.37), which is very preferable. However, if the elasticity ratio is less than 1.4, the horizontal rigidity retention is low, which is not preferable. Preferably, the elasticity ratio is 1.4-4.
0.

【0010】本発明の免震積層体用ゴム組成物(以下、
本発明のゴム組成物と記す)としては、弾性比が1.4
以上となるゴム組成物であれば特に限定はないが、この
ようなゴム組成物に含有されるゴムとしては、加硫後の
ゴム物性のバランスに優れることから天然ゴムを用いる
ことが好ましい。しかし、本発明の目的を損なわない範
囲で、天然ゴムと共に、クロロプレンゴム(CR)、ア
クリロニトリル−ブタジエンゴム(NBR)、スチレン
・イソプレン・スチレンブロック共重合体(SIS)、
ブチルゴム(IIR)、ハロゲン化ブチルゴム(臭素
化、塩素化等)、エチレン−プロピレン−ジエンゴム
(EPDM)、エポキシ化天然ゴム、trans−ポリ
イソプレン、ノルボルネン開環重合体(ポリノルボルネ
ン)、スチレンブタジエンゴム(SBR)、ハイスチレ
ン樹脂、イソプレンゴム等のゴムを好適に用いることが
出来る。なお、天然ゴムに加え、これらのゴムを、1種
単独でも、2種以上を併用してもよい。
The rubber composition for a seismic isolation laminate of the present invention (hereinafter referred to as “the rubber composition”)
The rubber composition of the present invention) has an elasticity ratio of 1.4.
The rubber composition is not particularly limited as long as it is a rubber composition as described above, but it is preferable to use natural rubber as the rubber contained in such a rubber composition because of excellent balance of rubber properties after vulcanization. However, chloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), styrene / isoprene / styrene block copolymer (SIS), together with natural rubber, do not impair the object of the present invention.
Butyl rubber (IIR), halogenated butyl rubber (brominated, chlorinated, etc.), ethylene-propylene-diene rubber (EPDM), epoxidized natural rubber, trans-polyisoprene, norbornene ring-opening polymer (polynorbornene), styrene-butadiene rubber ( Rubber such as SBR), high styrene resin, and isoprene rubber can be suitably used. In addition to these natural rubbers, these rubbers may be used alone or in combination of two or more.

【0011】また、ゴム組成物には、溶解度パラメータ
ー(SP値)が天然ゴムのSP値と0.3(MPa)
1/2 以上異なるポリマーを配合するのがさらに好まし
い。また、上記ポリマーの配合量は、天然ゴム、もしく
はさらに天然ゴムと共に用いることの出来るゴム合計1
00重量部に対し、15重量部以下が好ましく、1〜1
0重量部がより好ましい。この範囲であれば、得られる
ゴム組成物の伸び等の他の物性を損なわずに弾性比が
1.4以上となるからである。
Further, the rubber composition has a solubility parameter (SP value) of 0.3 (MPa) which is equal to the SP value of natural rubber.
It is more preferable to mix polymers that differ by 1/2 or more. The compounding amount of the above polymer is natural rubber or a total of 1 rubber which can be used together with natural rubber.
15 parts by weight or less is preferable with respect to 00 parts by weight,
0 parts by weight is more preferred. Within this range, the elastic ratio becomes 1.4 or more without impairing other physical properties such as elongation of the obtained rubber composition.

【0012】図1に示すように、天然ゴムの低歪み時の
S−Sカーブの立ち上がりが、高歪み時に比べて小さい
のは、歪みが小さい時点では、天然ゴムの伸長が分子の
結合軸廻りの回転運動による分子の形態の変化に基づく
エントロピー弾性によるためで、ゴム分子の結合角やC
−Cの結合長が変化するエネルギー弾性によるものでは
ないため、歪みの量の増加に比べてモジュラスが大きく
ならないからと考えられている。ゴム分子にかかる歪み
が大きくなると、ゴムが伸びきり、あるいは、ゴム分子
が配向し、もしくは、伸長結晶化が起こってゴム分子の
回転運動が起こらなくなりゴムの伸長がエネルギー弾性
によるものとなるため歪みの量の増加に伴ってモジュラ
スが大きくなってS−Sカーブの傾きが急になる。上述
の、天然ゴムのSP値との差が大きいSP値を持つポリ
マーは、比較的大きな置換基を分子内に有し、極性が大
きい。これらのポリマーを天然ゴムにブレンドすると、
ポリマー内の比較的大きな置換基が、低歪み時での天然
ゴム分子の結合軸廻りの回転運動を抑えることができ、
ゴム組成物の伸長に対するエントロピー弾性、分子内の
結合距離の変化等によるエネルギー弾性の寄与を大きく
することができるため、ゴム組成物の弾性比を大きくす
ることができると考えられる。
As shown in FIG. 1, the rise of the SS curve at the time of low distortion of natural rubber is smaller than that at the time of high strain because at the time when the distortion is small, the natural rubber elongates around the bonding axis of the molecule. Is due to the entropy elasticity based on the change in the form of the molecule due to the rotational motion of the rubber molecule.
It is considered that the modulus does not increase as compared with the increase in the amount of strain, because it is not due to the energy elasticity in which the bond length of -C changes. If the strain applied to the rubber molecules increases, the rubber will be stretched completely, or the rubber molecules will be oriented, or elongation crystallization will occur, and the rotational motion of the rubber molecules will not occur. With an increase in the amount of, the modulus increases and the slope of the SS curve becomes steeper. The above-described polymer having an SP value having a large difference from the SP value of natural rubber has a relatively large substituent in the molecule and has a large polarity. When these polymers are blended with natural rubber,
Relatively large substituents in the polymer can suppress the rotational movement of the natural rubber molecule around the bonding axis at low strain,
It is considered that the entropy elasticity with respect to the elongation of the rubber composition and the contribution of energy elasticity due to a change in the bonding distance in the molecule can be increased, so that the elastic ratio of the rubber composition can be increased.

【0013】本発明者は、上記のように弾性比(M100
/Gs)が1.4以上であるとともに、300%伸び時
のモジュラスM300 と、前記モジュラスM100 との応力
比(M300 /M100 )が3.6以下であるゴム組成物を
含む免震積層体は、水平剛性の面圧依存性が小さく水平
剛性保持性能が優れるという特性に加えて、線形性能が
よいという知見も得ている。
The present inventor has proposed that the elastic ratio (M 100
/ Gs) is not less than 1.4 and a rubber composition having a stress ratio (M 300 / M 100 ) between the modulus M 300 at 300% elongation and the modulus M 100 is 3.6 or less. In addition to the characteristic that the horizontal rigidity is less dependent on the surface pressure and the horizontal rigidity retention performance is excellent, it has been found that the seismic laminate has good linear performance.

【0014】ここで免震ゴム積層体の線形性能がよいと
は、具体的にはゴム積層体の線形限界歪み値が大きく、
ゴムのハードニング傾向が極度に強くないものをいう。
ゴム積層体の線形限界歪みは、図2に示すような歪み−
応力関係線(S−Sカーブ)と、勾配Kh1 =1.2
(Kh)で示される直線との交点歪み値(%)として求
められる。Khは、ゴム積層体をせん断歪み±100%
で3回変形させた時の3回目の勾配である。図2に示す
S−Sカーブは、ゴム積層体を剪断歪み±100%で3
回変形させた後、一方向に荷重をかけたときの歪み−応
力関係線であり、直線は、応力値=0を通る±100%
歪み時の勾配Khに1.2倍をかけた勾配をもつ直線で
ある。
Here, that the seismic isolation rubber laminate has good linear performance means that the linear limit strain value of the rubber laminate is large.
It means that the hardening tendency of rubber is not extremely strong.
The linear limit strain of the rubber laminate is as shown in FIG.
Stress relationship line (SS curve) and slope Kh 1 = 1.2
It is obtained as a distortion value (%) at the intersection with the straight line indicated by (Kh). Kh is the shear strain of the rubber laminate ± 100%
This is the third gradient when deformed three times with. The SS curve shown in FIG. 2 shows that the rubber laminate had a shear strain of ± 100% and 3
This is a strain-stress relationship line when a load is applied in one direction after being repeatedly deformed, and the straight line is ± 100% passing through a stress value = 0.
This is a straight line having a gradient obtained by multiplying the gradient Kh at the time of distortion by 1.2 times.

【0015】ゴムのハードニングは、ゴムの一方向への
荷重(歪み)によりゴム分子が配向(あるいは伸びき
り、結晶化)することをいい、S−Sカーブの立ち上が
り、すなわちモジュラス(引張応力)の増加となって表
れる。これは前記図1でも説明したように、ゴム分子が
配向すると、ゴムの伸長はゴム分子の回転運動からエネ
ルギー弾性によるものとなり、ゴムの伸び量に対する弾
性エネルギー量が増大するためである。このときゴムの
ハードニング傾向が大きいとは、S−Sカーブが急激に
立ち上がるもの(図2中太破線)をいうが、本発明で
は、S−Sカーブの立ち上がりがりが緩やかで、ハード
ニング傾向が小さいもの(図2中実線)が線形性能に優
れ好ましい。
Hardening of rubber means that rubber molecules are oriented (or stretched and crystallized) by a load (strain) in one direction of rubber, and the rise of SS curve, that is, modulus (tensile stress). It appears as an increase. This is because, as described in FIG. 1, when the rubber molecules are oriented, the rubber elongates due to the energy elasticity due to the rotational movement of the rubber molecules, and the elastic energy amount with respect to the rubber elongation increases. At this time, the fact that the hardening tendency of the rubber is large means that the SS curve sharply rises (thick broken line in FIG. 2), but in the present invention, the rise of the SS curve is gradual and the hardening tendency is high. (Solid line in FIG. 2) is preferable because of its excellent linear performance.

【0016】上記のような免震ゴム積層体の線形限界歪
み(%)は、具体的に220%以上、好ましくは250
%以上であることが望ましい。本発明では、この線形限
界歪み値を直接測定することによって免震ゴム積層体の
線形性能を評価することも可能であるが、上記したよう
にゴム組成物の応力比によって評価してもよい。
The linear limit strain (%) of the seismic isolation rubber laminate as described above is specifically 220% or more, preferably 250%.
% Is desirable. In the present invention, it is possible to evaluate the linear performance of the seismic isolation rubber laminate by directly measuring the linear limit strain value, but it may be evaluated by the stress ratio of the rubber composition as described above.

【0017】すなわち本発明者は、免震積層体に用いら
れるゴム組成物について検討する中で、ゴム組成物のモ
ジュラスM300 と、モジュラスM100 との応力比(M
300 /M100 )が3.6以下であると、ハードニング傾
向が極端に起きず、線形限界歪みが大きく線形性能のよ
い免震積層体が得られることを見出した。ゴム組成物の
応力比が3.6以下とすれば、免震積層体の線形性能が
よい(線形限界歪みが大きい)という知見は、本発明者
によって見出されたものであり、この事実を弾性比と水
平剛性保持率との関係とともに下表に数例挙げて示す。
このうちの応力比と線形限界歪みとの関係をさらに図3
に示す。なおモジュラスM300 は、オートグラフによる
300%繰り返し変形引張試験での3回目の300%伸
び(剪断歪み)時の引張応力である。
That is, the present inventor studied the rubber composition used in the seismic isolation laminate, and found that the stress ratio (M M) between the modulus M 300 of the rubber composition and the modulus M 100 was
It was found that when the ratio ( 300 / M 100 ) is 3.6 or less, hardening tendency does not extremely occur, and a seismic isolation laminate having a large linear limit distortion and good linear performance can be obtained. The finding that when the stress ratio of the rubber composition is 3.6 or less, the linear performance of the seismic isolation laminate is good (the linear limit strain is large) was found by the present inventors. Several examples are shown in the following table together with the relationship between the elastic ratio and the horizontal rigidity retention.
FIG. 3 further shows the relationship between the stress ratio and the linear limit strain.
Shown in The modulus M 300 is the tensile stress at the time of the third 300% elongation (shear strain) in a 300% repeated deformation tensile test using an autograph.

【0018】 表中、水平剛性保持率* は、面圧250kg 下と150kg 下とでの各水平剛性の比[0018] In the table, the horizontal stiffness retention ratio * is the ratio of each horizontal stiffness under a surface pressure of 250 kg and 150 kg.

【0019】本発明では、上記のような知見に基づいて
ゴム組成物の弾性比が1.4以上であるとともに、応力
比が3.6以下であることが望ましく、このようなゴム
組成物からは水平剛性保持率がよい上に、線形性能もよ
い免震積層体が得られる。ゴム組成物の弾性比は前記し
たように1.4以上好ましくは1.4〜4.0であると
ともに、応力比は3.6以下好ましくは3.3〜3.5
であることが望ましい。
In the present invention, based on the above findings, the rubber composition preferably has an elastic ratio of 1.4 or more and a stress ratio of 3.6 or less. A seismic isolation laminate having good horizontal rigidity retention and good linear performance can be obtained. As described above, the elastic ratio of the rubber composition is 1.4 or more, preferably 1.4 to 4.0, and the stress ratio is 3.6 or less, preferably 3.3 to 3.5.
It is desirable that

【0020】具体的にこのような弾性比と応力比とを満
たすゴム組成物としては、ゴム組成物中のゴム成分量を
100重量%とするとき、上記に例示したゴムのうちで
もイソプレンゴムを5〜100重量%好ましくは1〜5
0重量%の量で含有するゴム組成物が挙げられる。イソ
プレンゴムは、汎用イソプレンゴムでよく、特に限定さ
れない。たとえばシス1,4-結合のポリイソプレン含量が
約92重量%以上のイソプレンゴムであれば、リチウム
触媒系で製造されたものであっても、チーグラー触媒系
で製造されたものであってもよい。イソプレンゴム以外
のゴム成分は、通常天然ゴムであればよい。
Specifically, as the rubber composition satisfying such an elastic ratio and a stress ratio, when the rubber component amount in the rubber composition is 100% by weight, isoprene rubber among the rubbers exemplified above is used. 5 to 100% by weight, preferably 1 to 5
Rubber compositions containing 0% by weight. The isoprene rubber may be a general-purpose isoprene rubber, and is not particularly limited. For example, an isoprene rubber having a cis 1,4-bonded polyisoprene content of about 92% by weight or more may be manufactured using a lithium catalyst system or manufactured using a Ziegler catalyst system. . The rubber component other than the isoprene rubber may be any natural rubber.

【0021】また上記弾性比と応力比とを満たすゴム組
成物として、ゴム成分100重量部に対してクレーを1
〜30重量部好ましくは5〜15重量部の量で含有する
ものも挙げられる。このクレーは、含水ケイ酸アルミニ
ウムを主成分とするものであればよく、ソフトクレーと
して汎用されている粒子径の比較的大きいクレーであれ
ばよい。たとえばカオリン質クレー、パイロフィライト
質クレー、セリサイト質クレーなどを用いることができ
る。このクレーを含むゴム組成物のゴム成分は、上記に
例示したゴムのうちでも天然ゴムであることが望まし
い。
As a rubber composition that satisfies the above elastic ratio and stress ratio, one clay is added to 100 parts by weight of the rubber component.
And 30 to 30 parts by weight, preferably 5 to 15 parts by weight. The clay may be a clay mainly composed of hydrated aluminum silicate, and may be a clay having a relatively large particle size, which is widely used as a soft clay. For example, kaolin clay, pyrophyllite clay, sericite clay and the like can be used. The rubber component of the rubber composition containing the clay is preferably a natural rubber among the rubbers exemplified above.

【0022】上記のような本発明のゴム組成物には、上
記成分に加え、本発明の目的を損なわない範囲で、充填
剤、加硫剤、加硫助剤、加硫促進剤、老化防止剤、可塑
剤、加工助剤、軟化剤、顔料等を含有することができ
る。充填剤としては、カーボンブラック、炭酸カルシウ
ム、タルク、ハードクレー、ソフトクレー等が挙げられ
る。加硫剤としては、硫黄、塩化硫黄、亜鉛華や、TM
TD等の有機含硫黄化合物、ジクミルペルオキシド等の
有機過酸化物等が挙げられる。加硫促進剤としては、N
−シクロヘキシル−2−ベンゾチアゾールスルフェンア
ミド(CBS)等のスルフェンアミド類、メルカプトベ
ンゾチアゾール等のチアゾール類、テトラメチルチウラ
ムモノスルフィド等のチウラム等が挙げられる。老化防
止剤としては、TMDQ等のケトン・アミン縮合物、D
NPD等のアミン類、スチレン化フェノール等のモノフ
ェノール類等が挙げられる。可塑剤としては、DBP、
DOP等のフタール酸誘導体、DBS等のセバシン酸誘
導体、といったモノエステル類があげられる。軟化剤と
しては、アロマオイル等が挙げられる。
In the rubber composition of the present invention as described above, in addition to the above-mentioned components, a filler, a vulcanizing agent, a vulcanization aid, a vulcanization accelerator, an antiaging agent, as long as the object of the present invention is not impaired. Agents, plasticizers, processing aids, softeners, pigments and the like. Examples of the filler include carbon black, calcium carbonate, talc, hard clay, and soft clay. As the vulcanizing agent, sulfur, sulfur chloride, zinc white, TM
Organic sulfur-containing compounds such as TD; organic peroxides such as dicumyl peroxide; As the vulcanization accelerator, N
Sulfenamides such as -cyclohexyl-2-benzothiazolesulfenamide (CBS), thiazoles such as mercaptobenzothiazole, and thiuram such as tetramethylthiuram monosulfide. Examples of anti-aging agents include ketone / amine condensates such as TMDQ,
Examples include amines such as NPD and monophenols such as styrenated phenol. DBP,
Monoesters such as phthalic acid derivatives such as DOP and sebacic acid derivatives such as DBS. Examples of the softener include aroma oil and the like.

【0023】本発明のゴム組成物の製造方法としては、
特に限定はなく従来公知の方法、例えば、加硫剤、加硫
促進剤以外の各成分を、先ずバンバリーミキサー等で混
練し、ついで、混練ロール機等にて硫黄等の加硫剤、加
硫促進剤を混練する方法を例示することができる。得ら
れたゴム組成物を、加熱加硫することにより加硫ゴムシ
ートとすることができる。このとき、加硫剤の量、加硫
温度と加熱時間による加硫の程度を、得られるゴム組成
物の弾性比が1.4以上となるよう、天然ゴムとのSP
値の差が大きいポリマーの配合量とともに調整する。
The method for producing the rubber composition of the present invention includes:
There is no particular limitation, and a conventionally known method, for example, each component other than the vulcanizing agent and the vulcanization accelerator is first kneaded with a Banbury mixer or the like, and then, a vulcanizing agent such as sulfur and a vulcanizing agent are mixed with a kneading roll machine or the like. A method of kneading the accelerator can be exemplified. The resulting rubber composition can be cured by heating to form a vulcanized rubber sheet. At this time, the amount of the vulcanizing agent, the degree of vulcanization according to the vulcanizing temperature and the heating time were adjusted so that the elastic ratio of the obtained rubber composition was 1.4 or more.
Adjust with the amount of polymer with a large difference in value.

【0024】本発明のゴム組成物が用いられる免震積層
体とは、ゴム層と硬質板とを交互に積層した積層体であ
って、橋梁の支承やビルの基礎免震等に用いられる構造
体である。硬質板には鉄板、鋼板等が用いられ、ゴム層
には、上述のゴム組成物が好適に用いられる。このよう
な免震積層体の製造方法の一例について説明する。鋼板
は、予め機械的処理、化学的処理、機械的加工等による
表面処理をしてもよく、さらに表面を脱脂し、接着剤を
塗布する。この際、プライマーを塗布してもよい。一
方、未加硫状態のゴム組成物を所定の厚さに圧延し、所
定の形状に打ち抜いて、ゴムシートとする。鋼板に塗布
した接着剤が乾燥した後、ゴムシートを積層し、つい
で、鋼板とゴムシートを一体として加熱加硫して、免震
積層体を得る。
The seismic isolation laminate in which the rubber composition of the present invention is used is a laminate in which rubber layers and hard plates are alternately laminated, and is a structure used for a bridge support, a building base seismic isolation, and the like. Body. An iron plate, a steel plate or the like is used for the hard plate, and the above-mentioned rubber composition is suitably used for the rubber layer. An example of a method for manufacturing such a seismic isolation laminate will be described. The steel sheet may be subjected to a surface treatment such as a mechanical treatment, a chemical treatment, or a mechanical treatment in advance, and the surface is degreased and an adhesive is applied. At this time, a primer may be applied. On the other hand, the rubber composition in an unvulcanized state is rolled to a predetermined thickness and punched into a predetermined shape to obtain a rubber sheet. After the adhesive applied to the steel sheet is dried, a rubber sheet is laminated, and then the steel sheet and the rubber sheet are integrally heated and vulcanized to obtain a seismic isolation laminate.

【0025】本発明のゴム組成物は、以上の構成を取
り、弾性比が1.4以上なので、本発明のゴム組成物を
ゴム層に用いる免震積層体の水平剛性保持率を大きくす
ることができ、従って、該免震積層体の水平剛性の面圧
依存性を低減化できる。また、特定範囲のSP値を持つ
ポリマーを特定量含有する本発明のゴム組成物は、弾性
比が1.4以上となり、このゴム組成物よりなるゴム層
を有する免震積層体の水平剛性の面圧依存性を低減化で
きる。さらに上記ゴム組成物の応力比が3.6以下であ
ると、免震積層体は線形性能にも優れる。従って、本発
明のゴム組成物は、建築物の基礎等に設置される各種の
振動エネルギー吸収装置、特に免震積層体のゴム層とし
て好適に用いることができる。さらに、150kgf/
cm2 以上の高面圧下に用いる免震積層体のゴム層とし
て使用するのが好ましい。
Since the rubber composition of the present invention has the above-mentioned constitution and has an elasticity ratio of 1.4 or more, it is necessary to increase the horizontal rigidity retention of a seismic isolation laminate using the rubber composition of the present invention for a rubber layer. Therefore, the dependency of the horizontal rigidity of the seismic isolation laminate on the surface pressure can be reduced. Further, the rubber composition of the present invention containing a specific amount of a polymer having a SP value in a specific range has an elasticity ratio of 1.4 or more, and has a horizontal rigidity of a seismic isolation laminate having a rubber layer made of the rubber composition. The surface pressure dependency can be reduced. Furthermore, when the stress ratio of the rubber composition is 3.6 or less, the seismic isolation laminate has excellent linear performance. Therefore, the rubber composition of the present invention can be suitably used as various types of vibration energy absorbing devices installed on the foundation of a building or the like, particularly as a rubber layer of a seismic isolation laminate. In addition, 150kgf /
It is preferably used as a rubber layer of a seismic isolation laminate used under a high surface pressure of 2 cm 2 or more.

【0026】[0026]

【実施例】以下、本発明を実施例により具体的に説明す
る。 (実施例1〜12)下記表1に示す組成のゴムとポリマ
ーに、ゴムとポリマーの合計100重量部に対し、カー
ボンブラック(GPF)25重量部、亜鉛華3重量部、
ステアリン酸2重量部、老化防止剤(6C:N−(1,
3ジメチルブチル)−N’−フェニル−P−フェニレン
ジアミン)2重量部、アロマオイル15重量部を配合し
て混練し、硫黄1.1重量部、加硫促進剤(CBS)
1.2重量部を配合してゴム組成物を調製し、150℃
で30分間、プレス加硫を行い加硫ゴムを得た。得られ
た加硫ゴムについて、それぞれ引張り試験を行い、破断
強度TB 、破断伸びEB 、静的剪断弾性率Gs、モジュ
ラスM100 を測定し、弾性比を求めた。結果を表1に示
す。
The present invention will be described below in more detail with reference to examples. (Examples 1 to 12) 25 parts by weight of carbon black (GPF), 3 parts by weight of zinc white, and 100 parts by weight of rubber and polymer in the rubber and polymer having the composition shown in Table 1 below.
2 parts by weight of stearic acid, an antioxidant (6C: N- (1,
3 dimethylbutyl) -N'-phenyl-P-phenylenediamine) 2 parts by weight and 15 parts by weight of aroma oil are blended and kneaded, 1.1 parts by weight of sulfur, vulcanization accelerator (CBS)
A rubber composition was prepared by mixing 1.2 parts by weight,
For 30 minutes to obtain a vulcanized rubber. Each of the obtained vulcanized rubbers was subjected to a tensile test, and the breaking strength T B , the breaking elongation E B , the static shear modulus Gs, and the modulus M 100 were measured, and the elastic ratio was determined. Table 1 shows the results.

【0027】(比較例1)天然ゴム100重量部に対
し、カーボンブラック(GPF)25重量部、亜鉛華3
重量部、ステアリン酸2重量部、老化防止剤(6C)2
重量部、アロマオイル15重量部を配合して混練し、硫
黄1.1重量部、CBS1.2重量部を配合してゴム組
成物を調製し、実施例と同様にして加硫ゴムを得た。得
られた加硫ゴムについて、実施例と同様に引張り試験を
行い、破断強度TB、破断伸びEB 、静的剪断弾性率G
s、モジュラスM100 を測定し、弾性比を求めた。結果
を表1に示す。
Comparative Example 1 Carbon black (GPF) 25 parts by weight, zinc white 3
Parts by weight, stearic acid 2 parts by weight, antioxidant (6C) 2
Parts by weight and 15 parts by weight of aroma oil were blended and kneaded, and 1.1 parts by weight of sulfur and 1.2 parts by weight of CBS were blended to prepare a rubber composition, and a vulcanized rubber was obtained in the same manner as in the Examples. . The obtained vulcanized rubber was subjected to a tensile test in the same manner as in the example, and the breaking strength T B , the breaking elongation E B , and the static shear modulus G were measured.
s, the modulus M 100 was measured to determine the elasticity ratio. Table 1 shows the results.

【0028】(比較例2)天然ゴム100重量部に対
し、カーボンブラック(GPF)5重量部、亜鉛華3重
量部、ステアリン酸2重量部、老化防止剤(6C)2重
量部、アロマオイル4重量部を配合して混練し、硫黄
1.6重量部、CBS1.0重量部を配合してゴム組成
物を調製し、実施例と同様にして加硫ゴムを得た。得ら
れた加硫ゴムについて、実施例と同様に引張り試験を行
い、破断強度TB、破断伸びEB 、静的剪断弾性率G
s、モジュラスM100 を測定し、弾性比を求めた。結果
を表1に示す。
Comparative Example 2 100 parts by weight of natural rubber, 5 parts by weight of carbon black (GPF), 3 parts by weight of zinc white, 2 parts by weight of stearic acid, 2 parts by weight of antioxidant (6C), and aroma oil 4 Parts by weight and kneaded, 1.6 parts by weight of sulfur and 1.0 part by weight of CBS were blended to prepare a rubber composition, and a vulcanized rubber was obtained in the same manner as in the Examples. The obtained vulcanized rubber was subjected to a tensile test in the same manner as in the example, and the breaking strength T B , the breaking elongation E B , and the static shear modulus G were measured.
s, the modulus M 100 was measured to determine the elasticity ratio. Table 1 shows the results.

【0029】(1)引張り試験 JIS K 6251に準拠して、破断強度(TB
〔kgf/cm2 〕、破断伸び(EB )〔%〕を測定し
た。 (2)静的剪断弾性率(Gs)〔kgf/cm2 〕 JIS K 6254に準拠して測定した。 (3)弾性比(M100 /Gs) オートグラフにより100%繰り返し変形引張試験での
3回目のモジュラスM 100 〔kgf/cm2 〕を測定し
た。このM100 値と、上記で測定された静的剪断弾性率
(Gs)の値とから弾性比(M100 /Gs)比を求め
た。
(1) Tensile test According to JIS K6251, breaking strength (TB)
[Kgf / cmTwo], Elongation at break (EB) Measure [%]
Was. (2) Static shear modulus (Gs) [kgf / cmTwo] It measured according to JISK6254. (3) Elasticity ratio (M100/ Gs) Autograph in 100% repeated deformation tensile test
Third modulus M 100[Kgf / cmTwo]
Was. This M100Value and the static shear modulus measured above
(Gs) and the elasticity ratio (M100/ Gs) ratio
Was.

【0030】[0030]

【表1】 [Table 1]

【0031】<表中の各成分の溶解度パラメータ> 天然ゴム:溶解度パラメータSP=17.0(MPa)
1/2 SBR :SP=17.5(MPa)1/2 CR :SP=19.2(MPa)1/2 NBR :SP=20.2(MPa)1/2 EPDM:SP=16.4(MPa)1/2
<Solubility Parameter of Each Component in Table> Natural Rubber: Solubility Parameter SP = 17.0 (MPa)
1/2 SBR: SP = 17.5 (MPa) 1/2 CR: SP = 19.2 (MPa) 1/2 NBR: SP = 20.2 (MPa) 1/2 EPDM: SP = 16.4 (MPa) MPa) 1/2

【0032】(実施例13〜16)ゴム成分中のイソプ
レン量を表2に示す量にした以外は、実施例1と同様に
して加硫ゴムを得た。得られた加硫ゴムについて、引張
り試験を行い、破断強度TB 、破断伸びEB、静的剪断
弾性率Gs、モジュラスM100 およびモジュラスM300
を測定し、弾性比および応力比を求めた。結果を表2に
示す。 (4)モジュラスM300 オートグラフによる300%繰り返し変形引張試験での
3回目の300%伸び時のモジュラスM300 〔kgf/
cm2 〕を測定した。 (5)応力比(M300 /M100 ) 上記モジュラスM300 の値と、前記モジュラスM100
値から応力比(M300/M100 )を求めた。
Examples 13 to 16 Vulcanized rubbers were obtained in the same manner as in Example 1 except that the amount of isoprene in the rubber component was changed to the amount shown in Table 2. A tensile test was performed on the obtained vulcanized rubber, and the breaking strength T B , breaking elongation E B , static shear modulus Gs, modulus M 100 and modulus M 300 were measured.
Was measured, and the elastic ratio and the stress ratio were determined. Table 2 shows the results. (4) Modulus M 300 at the time of the third 300% elongation in a 300% cyclic deformation tensile test using an autograph of modulus M 300 [kgf /
cm 2 ] was measured. (5) was determined and the value of the stress ratio (M 300 / M 100) the modulus M 300, stress ratio from the value of the modulus M 100 a (M 300 / M 100).

【0033】(比較例3)実施例16において、ゴム成
分としてイソプレンゴムに代えて天然ゴムを用いた以外
は、実施例16と同様に行った。結果を表2に示す。
(Comparative Example 3) The procedure of Example 16 was repeated, except that natural rubber was used instead of isoprene rubber as the rubber component. Table 2 shows the results.

【0034】[0034]

【表2】 [Table 2]

【0035】(実施例17〜19)表3に示すゴム組成
物を用いた以外は、実施例1と同様にして加硫ゴムを得
た。得られた加硫ゴムについて、引張り試験を行い、破
断強度TB 、破断伸びEB、静的剪断弾性率Gs、モジ
ュラスM100 およびモジュラスM300 を測定し、弾性比
および応力比を求めた。結果を表3に示す。クレーは含
水ケイ酸アルミニウムを主成分とするものを用いた。
Examples 17 to 19 Vulcanized rubbers were obtained in the same manner as in Example 1 except that the rubber compositions shown in Table 3 were used. The obtained vulcanized rubber was subjected to a tensile test, and the breaking strength T B , breaking elongation E B , static shear modulus Gs, modulus M 100 and modulus M 300 were measured, and the elastic ratio and stress ratio were determined. Table 3 shows the results. The clay used was mainly composed of hydrous aluminum silicate.

【0036】(比較例4)実施例17において、クレー
を添加しなかった以外は、実施例17と同様に行った。
結果を表3に示す。
(Comparative Example 4) The procedure of Example 17 was repeated, except that no clay was added.
Table 3 shows the results.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【発明の効果】本発明のゴム組成物は、所定の弾性比を
有することにより、本発明のゴム組成物をゴム層とする
免震積層体の水平剛性の面圧依存性を低くすることがで
きる。さらにゴム組成物の応力比を特定値とすることに
より、線形性能のよい免震積層体を得ることができる。
従って、本発明のゴム組成物は、防振装置、除振装置、
免震装置等の振動エネルギーの吸収を目的とする免震積
層体用のゴム組成物として好適に用いることができる。
The rubber composition of the present invention has a predetermined elasticity ratio, so that the horizontal rigidity of a seismic isolation laminate having the rubber composition of the present invention as a rubber layer can be made less dependent on surface pressure. it can. Furthermore, by setting the stress ratio of the rubber composition to a specific value, a seismic isolation laminate having good linear performance can be obtained.
Therefore, the rubber composition of the present invention is a vibration isolator, a vibration isolator,
It can be suitably used as a rubber composition for a seismic isolation laminate for the purpose of absorbing vibration energy of a seismic isolation device or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 天然ゴムのモジュラスと剪断歪みの相関を示
すグラフである。
FIG. 1 is a graph showing a correlation between modulus of natural rubber and shear strain.

【図2】 ゴム積層体の線形限界歪みを求めるための歪
み−応力関係線(S−Sカーブ)を示す。
FIG. 2 shows a strain-stress relationship line (SS curve) for obtaining a linear limit strain of the rubber laminate.

【図3】 免震ゴム積層体の応力比−線形限界歪み相関
図を示す。
FIG. 3 shows a stress ratio-linear limit strain correlation diagram of the seismic isolation rubber laminate.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】オートグラフによる100%繰り返し変形
引張試験での3回目のモジュラスM 100 と、静的剪断弾
性率Gsとの比(M100 /Gs)が1.4以上である免
震積層体用ゴム組成物。
1. 100% repeated deformation by autograph
Third Modulus M in Tensile Test 100And the static shear bullet
Ratio to the Gs (M100/ Gs) is 1.4 or more
Rubber composition for earthquake laminate.
【請求項2】前記ゴム組成物が、天然ゴムと、溶解度パ
ラメーターが天然ゴムの溶解度パラメーターと0.3
(MPa)1/2 以上異なるポリマーを、前記天然ゴム1
00重量部に対し15重量部以下含有してなる請求項1
に記載の免震積層体用ゴム組成物。
2. The rubber composition according to claim 1, wherein the rubber composition has a solubility parameter of 0.3 to the solubility parameter of the natural rubber.
The (MPa) 1/2 or more different polymers, wherein the natural rubber 1
2. The composition according to claim 1, wherein the content is 15 parts by weight or less based on 00 parts by weight.
The rubber composition for a seismic isolation laminate according to the above.
【請求項3】前記比(M100 /Gs)が1.4以上であ
ることに加えて、 オートグラフによる300%繰り返し変形引張試験での
3回目の伸び300%時のモジュラスM300 と、前記モ
ジュラスM100 との比(M300 /M100 )が3.6以下
である請求項1に記載の免震積層体用ゴム組成物。
3. In addition to the ratio (M 100 / Gs) being not less than 1.4, a modulus M 300 at the time of a third elongation of 300% in a 300% cyclic deformation tensile test by an autograph; seismic isolation laminate-body rubber composition according to claim 1 ratio of the modulus M 100 (M 300 / M 100 ) is 3.6 or less.
【請求項4】ゴム組成物中のゴム成分量を100重量%
とするとき、イソプレンゴムを5〜100重量%の量で
含有する請求項3に記載の免震積層体用ゴム組成物。
4. The rubber component content in the rubber composition is 100% by weight.
The rubber composition for a seismic isolation laminate according to claim 3, wherein the rubber composition contains isoprene rubber in an amount of 5 to 100% by weight.
【請求項5】ゴム成分100重量部に対して、クレーを
1〜30重量部の量で含有する請求項3に記載の免震積
層体用ゴム組成物。
5. The rubber composition for a seismic isolation laminate according to claim 3, wherein the clay is contained in an amount of 1 to 30 parts by weight based on 100 parts by weight of the rubber component.
JP35596598A 1998-04-15 1998-12-15 Rubber composition for base isolation laminate Pending JP2000001576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35596598A JP2000001576A (en) 1998-04-15 1998-12-15 Rubber composition for base isolation laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10459498 1998-04-15
JP10-104594 1998-04-15
JP35596598A JP2000001576A (en) 1998-04-15 1998-12-15 Rubber composition for base isolation laminate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007266255A Division JP4737171B2 (en) 1998-04-15 2007-10-12 Method for evaluating and preparing rubber composition for rubber-isolated laminate

Publications (1)

Publication Number Publication Date
JP2000001576A true JP2000001576A (en) 2000-01-07

Family

ID=26445035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35596598A Pending JP2000001576A (en) 1998-04-15 1998-12-15 Rubber composition for base isolation laminate

Country Status (1)

Country Link
JP (1) JP2000001576A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020546A (en) * 2000-07-04 2002-01-23 Yokohama Rubber Co Ltd:The High damping rubber composition for bearing
JP2009269967A (en) * 2008-05-02 2009-11-19 Bridgestone Corp Rubber composition for seismic isolation structure
JP2013091688A (en) * 2011-10-24 2013-05-16 Toyo Tire & Rubber Co Ltd Rubber composition for vibration-proof rubber
CN103699721A (en) * 2013-12-09 2014-04-02 中国农业大学 Multi-parameter optimized evaluation method for optimum vibration isolation effect of rubber damping pad
JP2015229746A (en) * 2014-06-06 2015-12-21 株式会社ブリヂストン Vibrationproof rubber composition and vibrationproof rubber
JP2015229747A (en) * 2014-06-06 2015-12-21 株式会社ブリヂストン Vibrationproof rubber composition and vibrationproof rubber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020546A (en) * 2000-07-04 2002-01-23 Yokohama Rubber Co Ltd:The High damping rubber composition for bearing
JP4595171B2 (en) * 2000-07-04 2010-12-08 横浜ゴム株式会社 Rubber composition for high damping bearing
JP2009269967A (en) * 2008-05-02 2009-11-19 Bridgestone Corp Rubber composition for seismic isolation structure
JP2013091688A (en) * 2011-10-24 2013-05-16 Toyo Tire & Rubber Co Ltd Rubber composition for vibration-proof rubber
CN103699721A (en) * 2013-12-09 2014-04-02 中国农业大学 Multi-parameter optimized evaluation method for optimum vibration isolation effect of rubber damping pad
JP2015229746A (en) * 2014-06-06 2015-12-21 株式会社ブリヂストン Vibrationproof rubber composition and vibrationproof rubber
JP2015229747A (en) * 2014-06-06 2015-12-21 株式会社ブリヂストン Vibrationproof rubber composition and vibrationproof rubber

Similar Documents

Publication Publication Date Title
KR101829557B1 (en) Improved natural rubber compositions
WO2011114990A1 (en) Rubber composition, cross-linked rubber composition and high-performance damping laminate
JP2016017092A (en) High attenuation composition, vibration control damper and aseismic base isolation bearing
JP2000001576A (en) Rubber composition for base isolation laminate
JP4737171B2 (en) Method for evaluating and preparing rubber composition for rubber-isolated laminate
JP4595171B2 (en) Rubber composition for high damping bearing
JP2015160903A (en) High attenuation composition, earthquake-proof damper, and aseismic base isolation bearing
EP0937746B1 (en) Chloroprene rubber vulcanisate
JP5714828B2 (en) Rubber composition for high damping bearing and high damping bearing
JP4030412B2 (en) Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition
JP3753493B2 (en) Rubber composition for high damping rubber bearing
JP2010121033A (en) Rubber composition for high damping laminate, and high damping laminate
JP4010680B2 (en) Brace damper
JP5043310B2 (en) Low repulsion rubber composition and seismic isolation structure using the same
JP2009149856A (en) Rubber composition for high-damping laminate, and high-damping laminate
JP3645469B2 (en) Rubber composition for laminates with improved fracture characteristics
JPH10219033A (en) Rubber composition for high-attenuation support
JPH11303916A (en) Rubber laminate
JP3887895B2 (en) Chloroprene rubber composition excellent in heat aging resistance and compression set
JP3754530B2 (en) Rubber composition for seismic isolation laminate
JP7488640B2 (en) Rubber composition for seismic isolation structure and seismic isolation structure
JP2004027080A (en) Rubber composition for anti-seismic laminate
JPH11263879A (en) Rubber composition for high-damping laminate
JP2006045325A (en) Highly attenuating rubber composition and quake-free structure using the same
JPH1192597A (en) Rubber composition for highly damping laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115