WO2023276575A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023276575A1
WO2023276575A1 PCT/JP2022/022888 JP2022022888W WO2023276575A1 WO 2023276575 A1 WO2023276575 A1 WO 2023276575A1 JP 2022022888 W JP2022022888 W JP 2022022888W WO 2023276575 A1 WO2023276575 A1 WO 2023276575A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium nitride
nitride layer
layer
insulating layer
semiconductor device
Prior art date
Application number
PCT/JP2022/022888
Other languages
English (en)
French (fr)
Inventor
拓海 金城
眞澄 西村
逸 青木
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to JP2023531739A priority Critical patent/JPWO2023276575A1/ja
Publication of WO2023276575A1 publication Critical patent/WO2023276575A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate

Definitions

  • An embodiment of the present invention relates to a semiconductor device using gallium nitride.
  • Gallium nitride is a direct bandgap semiconductor with a large bandgap. Taking advantage of this feature of gallium nitride, light-emitting diodes (LEDs) using gallium nitride have already been put to practical use. Gallium nitride is characterized by high electron saturation mobility and high withstand voltage. In recent years, utilizing the characteristics of gallium nitride, the development of transistors (semiconductor devices) for applications such as high-frequency power devices is underway.
  • gallium nitride layers used in light-emitting diodes or transistors are deposited on sapphire substrates at high temperatures of 800°C to 1000°C using MOCVD (Metal Organic Chemical Vapor Deposition) or HVPE (Hydride Vapor Phase Epitaxy). be done.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • HVPE Hydrophosphide Vapor Phase Epitaxy
  • micro LED display devices or mini LED display devices in which minute light-emitting diode chips are mounted in the pixels of a circuit board, have been developed.
  • Micro LED displays or mini LED displays have high efficiency, high brightness and high reliability.
  • Such a micro LED display device or mini LED display device is manufactured by transferring an LED chip to a backplane on which a transistor is formed using an oxide semiconductor or low-temperature polysilicon (for example, , see Patent Document 1).
  • Patent Document 2 a method of forming a transistor containing gallium nitride and a light-emitting diode on the same substrate has also been studied (see Patent Document 2, for example).
  • the method of manufacturing a micro LED display device by transferring LED chips has a high manufacturing cost, and it is difficult to manufacture a micro LED display device at a low cost. If a transistor using gallium nitride and a light emitting diode can be formed on a large substrate such as an amorphous glass substrate, the manufacturing cost can be reduced. However, as described above, since the gallium nitride layer is formed at a high temperature, it is difficult to directly form a transistor containing gallium nitride on an amorphous glass substrate.
  • one object of an embodiment of the present invention is to provide a semiconductor device using a gallium nitride layer.
  • a semiconductor device includes an amorphous glass substrate, an oriented insulating layer provided on the amorphous glass substrate and having crystal orientation, and an oriented insulating layer provided on the oriented insulating layer. a first conductivity type first gallium nitride layer in contact with the orientation insulating layer; a gate electrode facing the first gallium nitride layer; and a gate insulator between the first gallium nitride layer and the gate electrode. and a layer.
  • a semiconductor device includes an amorphous glass substrate, a gate electrode provided on the amorphous glass substrate, and a gate electrode provided on the gate electrode and having crystal orientation. It has a gate insulating layer and a first conductivity type first gallium nitride layer provided on the gate insulating layer and in contact with the gate insulating layer.
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a schematic diagram showing the configuration of a display device according to an embodiment of the present invention
  • FIG. 1 is a circuit diagram (pixel circuit) of a pixel of a display device according to an embodiment of the present invention
  • FIG. 1 is a cross-sectional view of a pixel of a display device according to an embodiment of the invention
  • the direction from the substrate to the gate electrode is called upward. Conversely, the direction from the gate electrode toward the substrate is called downward.
  • the terms "upper” and “lower” are used, but for example, the substrate and the gate electrode may be arranged in a reversed vertical relationship from that shown in the drawing.
  • the expression, for example, the gate electrode on the substrate merely describes the vertical relationship between the substrate and the gate electrode as described above, and other members are arranged between the substrate and the gate electrode.
  • the term “pixel electrode vertically above the transistor” means a positional relationship in which the transistor and the pixel electrode overlap in a plan view.
  • includes A, B or C
  • includes any one of A, B and C
  • includes one selected from the group consisting of A, B and C
  • does not exclude the case where ⁇ includes a plurality of combinations of A to C, unless otherwise specified.
  • these expressions do not exclude the case where ⁇ contains other elements.
  • FIG. 1 is a cross-sectional view showing the configuration of a semiconductor device according to one embodiment of the present invention.
  • the semiconductor device 10 includes a substrate 100, an orientation insulating layer 110, a first gallium nitride layer 120, a gate electrode 130, a gate insulating layer 140, a second gallium nitride layer 150 (151, 153), and electrodes. 160 (161, 163).
  • the substrate 100 is an amorphous substrate.
  • substrate 100 is an amorphous glass substrate.
  • the substrate 100 may be a resin substrate.
  • a flexible substrate such as a polyimide substrate, an acrylic substrate, a siloxane substrate, or a fluorine resin substrate is used.
  • the oriented insulating layer 110 is provided on the substrate 100 .
  • the oriented insulating layer 110 has crystal orientation (for example, c-axis orientation).
  • the surface of the oriented insulating layer 110 is a plane having 6-fold rotational symmetry.
  • the oriented insulating layer 110 has (0001) planes in a hexagonal close-packed structure or (111) planes in a face-centered cubic structure.
  • the oriented insulating layer 110 has the characteristics as described above, when a gallium nitride layer is grown on the oriented insulating layer 110, a gallium nitride layer having high crystallinity can be obtained.
  • a gallium nitride layer having high crystallinity can be obtained.
  • the oriented insulating layer 110 is c-axis oriented with respect to the substrate 100
  • a c-axis oriented gallium nitride layer is grown on the oriented insulating layer 110 .
  • the orientation insulating layer 110 described above is formed by sputtering, for example.
  • the orientation insulating layer 110 is not limited to the above configuration.
  • the method for forming the alignment insulating layer 110 may be another physical vapor deposition method (PVD method).
  • the alignment insulating layer 110 may be deposited by a vacuum deposition method or an electron beam deposition method.
  • a method for forming the alignment insulating layer 110 may be a chemical vapor deposition (CVD method).
  • CVD method a thermal CVD method, a plasma CVD method, a catalytic CVD method (Cat (Catalytic)-CVD method or hot wire CVD method, or the like is used.
  • a base insulating layer may be provided between the substrate 100 and the alignment insulating layer 110 .
  • a silicon oxide layer, a silicon nitride layer, an aluminum oxide layer, an aluminum nitride layer, or a stack of these is used as the base insulating layer.
  • a stack of [silicon nitride layer/silicon oxide layer/silicon nitride layer] may be used as the base insulating layer.
  • the first gallium nitride layer 120 is in contact with the oriented insulating layer 110 from above.
  • the first gallium nitride layer 120 is formed by sputtering, for example. Crystal growth of the first gallium nitride layer 120 is controlled by the oriented insulating layer 110 .
  • the first gallium nitride layer 120 has crystallinity (or orientation) reflecting the crystallinity (or orientation) of the oriented insulating layer 110 .
  • the first gallium nitride layer 120 is c-axis oriented.
  • the first gallium nitride layer 120 is, for example, a p-type gallium nitride layer.
  • a gallium nitride layer doped with magnesium or selenium, for example, is used as the first gallium nitride layer 120 .
  • the gate electrode 130 is provided on the first gallium nitride layer 120 and faces the first gallium nitride layer 120 .
  • a gate insulating layer 140 is provided between the first gallium nitride layer 120 and the gate electrode 130 .
  • the gate insulating layer 140 is in contact with the first gallium nitride layer 120 and the gate electrode 130 respectively.
  • a common metal is used as the gate electrode 130 .
  • aluminum, titanium, platinum, nickel, tantalum, and alloys thereof are used in a single layer or multiple layers.
  • a metal oxide, a metal nitride, or an organic material is used as the gate insulating layer 140 .
  • the gate insulating layer 140 a silicon oxide layer, a silicon nitride layer, an aluminum oxide layer, an aluminum nitride layer, a gallium oxide layer, a titanium oxide layer, a titanium nitride layer, or a laminate thereof is used. If the semiconductor device 10 has a structure using a Schottky barrier at the interface between the first gallium nitride layer 120 and the gate electrode 130, the gate insulating layer 140 may be omitted.
  • the second gallium nitride layer 150 is in contact with the first gallium nitride layer 120 from above.
  • the second gallium nitride layer 150 includes a source-side second gallium nitride layer 151 provided on the source side of the semiconductor device 10 and a drain-side second gallium nitride layer 153 provided on the drain side of the semiconductor device 10 .
  • the source-side second gallium nitride layer 151 and the drain-side second gallium nitride layer 153 are separated, and the gate electrode 130 is provided between them.
  • the conductivity of the second gallium nitride layer 150 is higher than the conductivity of the first gallium nitride layer 120 . That is, the electrical resistivity of the second gallium nitride layer 150 is lower than the electrical resistivity of the first gallium nitride layer 120 .
  • the second gallium nitride layer 150 is formed by sputtering in the same manner as the first gallium nitride layer 120 . Crystal growth of the second gallium nitride layer 150 is controlled by the first gallium nitride layer 120 . As a result, the second gallium nitride layer 150 has crystallinity (or orientation) that reflects the crystallinity (or orientation) of the first gallium nitride layer 120 . As described above, when the first gallium nitride layer 120 is c-axis oriented, a c-axis oriented second gallium nitride layer 150 is obtained.
  • the second gallium nitride layer 150 is, for example, an n-type gallium nitride layer.
  • a gallium nitride layer doped with silicon or germanium, for example is used as the second gallium nitride layer 150 .
  • the first gallium nitride layer 120 has p-type conductivity and the second gallium nitride layer 150 has n-type conductivity in this embodiment, the present invention is not limited to this configuration.
  • the first gallium nitride layer 120 may have n-type conductivity
  • the second gallium nitride layer 150 may have p-type conductivity.
  • the first gallium nitride layer 120 may have the first conductivity type and the second gallium nitride layer 150 may have the second conductivity type.
  • the process gas used in the sputtering process remains in these gallium nitride layers.
  • these gallium nitride layers contain argon.
  • the argon can be detected, for example, by analytical methods such as secondary ion mass spectroscopy (SIMS) on these gallium nitride layers.
  • Electrode 160 is in contact with the second gallium nitride layer 150 from above.
  • Electrode 160 includes a source-side electrode 161 provided on the source side of semiconductor device 10 and a drain-side electrode 163 provided on the drain side of semiconductor device 10 .
  • the source-side electrode 161 is connected to the source-side second gallium nitride layer 151 .
  • the drain-side electrode 163 is connected to the drain-side second gallium nitride layer 153 .
  • a common metal is used as the electrode 160 .
  • aluminum, titanium, platinum, nickel, tantalum, and alloys thereof are used in a single layer or multiple layers.
  • a predetermined voltage ON voltage
  • carriers are generated in the first gallium nitride layer 120 near the interface between the first gallium nitride layer 120 and the gate insulating layer 140 (a channel is formed). is done).
  • a potential difference is applied between the source-side second gallium nitride layer 151 and the drain-side second gallium nitride layer 153, whereby the voltage from the source-side second gallium nitride layer 151 to the drain-side second gallium nitride layer 151 passes through the channel.
  • a current flows through the gallium nitride layer 153 .
  • An alignment insulating layer 110 is formed on a substrate 100, which is an amorphous glass substrate. As described above, the oriented insulating layer 110 is formed by sputtering, for example. A first gallium nitride layer 120 and a second gallium nitride layer 150 are formed on the alignment insulating layer 110 . These gallium nitride layers are formed by sputtering, for example. Formation of the oriented insulating layer 110, the first gallium nitride layer 120, and the second gallium nitride layer 150 is preferably performed in succession. For example, the formation of these layers may be carried out under vacuum in a sputtering apparatus equipped with multiple chambers for forming each layer.
  • the second gallium nitride layer 150 formed in the region where the gate electrode 130 and the gate insulating layer 140 are to be provided later is removed, exposing the first gallium nitride layer 120 in that region. .
  • a gate insulating layer 140 and a gate electrode 130 are then formed.
  • a gate insulating layer 140 and a gate electrode 130 are formed on each of the first gallium nitride layer 120 and the second gallium nitride layer 150 .
  • the gate insulating layer 140 and the gate electrode 130 are patterned, as shown in FIG.
  • An electrode 160 is then formed over the entire surface and patterned as shown in FIG.
  • the alignment insulating layer 110, the first gallium nitride layer 120, and the second gallium nitride layer 150 are continuously formed as described above, each of the first gallium nitride layer 120 and the second gallium nitride layer 150 , good crystallinity can be obtained.
  • the manufacturing method in which the electrode 160 is formed after the pattern of the gate insulating layer 140 and the gate electrode 130 is formed above, the manufacturing method is not limited to this.
  • the electrode 160 is formed immediately after forming the second gallium nitride layer 150, and the patterning of the gate insulating layer 140 and the gate electrode 130 is formed after the patterning of the electrode 160 and the patterning of the second gallium nitride layer 150 are performed.
  • a substrate 100 such as an amorphous glass substrate is placed at a position facing the gallium nitride target in the vacuum chamber of the sputtering apparatus.
  • the composition ratio of gallium nitride in the gallium nitride target is preferably 0.7 or more and 2 or less in terms of the ratio of gallium to nitrogen.
  • Nitrogen gas is supplied to the vacuum chamber in addition to the sputtering gas (such as argon or krypton).
  • the composition ratio of gallium nitride in the gallium nitride target is preferably a ratio in which gallium is more than nitrogen.
  • nitrogen may be supplied by a nitrogen radical source.
  • the sputtering power supply can be either a DC power supply, an RF power supply, or a pulsed DC power supply.
  • the substrate 100 may be heated within the vacuum chamber.
  • the substrate 100 may be heated at 400°C or higher and lower than 600°C.
  • heat treatment can be applied to an amorphous glass substrate having low heat resistance.
  • This heating temperature is lower than that of metal organic chemical vapor deposition (MOCVD) or hydride chemical vapor deposition (HVPE).
  • a gallium nitride layer is formed by applying a voltage between the substrate 100 and the gallium nitride target at a predetermined pressure to generate plasma.
  • An aluminum gallium nitride layer can be deposited by using an aluminum gallium nitride target instead of a gallium nitride target.
  • FIG. 1 A semiconductor device 10A according to a second embodiment of the present invention will be described with reference to FIG.
  • the semiconductor device 10A is similar to the semiconductor device 10 according to the first embodiment.
  • the description of the configuration similar to that of the semiconductor device 10 of the first embodiment will be omitted, and mainly the differences from the semiconductor device 10 will be described.
  • FIG. 1 when describing a configuration similar to that of the first embodiment, FIG. 1 will be referred to, and the alphabet "A" will be added after the reference numerals shown in FIG.
  • the second gallium nitride layer 150A (151A, 153A) is in contact with the oriented insulating layer 110A from above the oriented insulating layer 110A.
  • the second gallium nitride layer 150A is separated into a source side second gallium nitride layer 151A and a drain side second gallium nitride layer 153A.
  • the first gallium nitride layer 120A is provided on the second gallium nitride layer 150A and on the orientation insulating layer 110A exposed from the second gallium nitride layer 150A.
  • the first gallium nitride layer 120A is in contact with the second gallium nitride layer 150A from above in the first region 121A.
  • the first gallium nitride layer 120A is in contact with the oriented insulating layer 110A from above in the second region 122A.
  • the first gallium nitride layer 120A is provided to fill the opening provided between the source-side second gallium nitride layer 151A and the drain-side second gallium nitride layer 153A.
  • the gate electrode 130A and the gate insulating layer 140A are provided in a region corresponding to the second region 122A. As shown in FIG. 2, in the D1 direction, the width W1 of the gate electrode 130A is greater than the distance W2 between the source-side second gallium nitride layer 151A and the drain-side second gallium nitride layer 153A. In other words, in the D1 direction, the distance W2 between the source electrode (source-side second gallium nitride layer 151A) and the drain electrode (drain-side second gallium nitride layer 153A) of the semiconductor device 10A is equal to the width W1 of the gate electrode 130A. less than
  • the configuration is not limited to this.
  • the upper surface of the first gallium nitride layer 120A may be recessed in a region corresponding to the second region 122A.
  • a second gallium nitride layer 150A is formed on the oriented insulating layer 110A, the second gallium nitride layer 150A in the second region 122A is removed, and the oriented insulating layer 110A in the second region 122A is exposed. be done.
  • a first gallium nitride layer 120A is formed on the exposed orientation insulating layer 110A and on the second gallium nitride layer 150A.
  • a gate insulating layer 140A and a gate electrode 130A are formed on the first gallium nitride layer 120A.
  • the gate insulating layer 140A, the gate electrode 130A, and the first gallium nitride layer 120A are patterned as shown in FIG. Finally, the pattern of electrode 160A is formed.
  • the first gallium nitride layer 120A, the gate insulating layer 140A, and the gate electrode 130A are formed continuously, contamination at the interface between the first gallium nitride layer 120A and the gate insulating layer 140A is reduced. and defects in the upper portion of the first gallium nitride layer 120A (region where the channel is formed) can be reduced. As a result, good electrical characteristics of the semiconductor device 10A can be obtained.
  • a semiconductor device 10B according to a third embodiment of the present invention will be described with reference to FIG.
  • the semiconductor device 10B is similar to the semiconductor device 10A according to the second embodiment.
  • the points that are different from the semiconductor device 10A will be described.
  • FIG. 1 when describing a configuration similar to that of the above embodiment, FIG. 1 will be referred to, and the alphabet "B" will be added after the reference numerals shown in FIG.
  • the width W1 of the gate electrode 130B is smaller than the width W2 of the second region 122B in the D1 direction.
  • a recess is formed in the upper surface of the first gallium nitride layer 120B in the second region 122B.
  • a gate insulating layer 140B and a gate electrode 130B are provided in the recess.
  • the position of the upper surface of the second gallium nitride layer 150B is the lower surface of the gate insulating layer 140B in the D2 direction. located above.
  • the same effect as the semiconductor device 10A according to the second embodiment can be obtained by the semiconductor device 10B according to the third embodiment.
  • a semiconductor device 10C according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the semiconductor device 10C is similar to the semiconductor device 10A according to the second embodiment.
  • the points that are different from the semiconductor device 10A will be described.
  • FIG. 1 when describing a configuration similar to that of the above embodiment, FIG. 1 will be referred to, and the alphabet "C" will be added after the reference numerals shown in FIG.
  • a first gallium nitride layer 120C and a gate insulating layer 140C are provided on the orientation insulating layer 110C.
  • the first gallium nitride layer 120C is in contact with the orientation insulating layer 110C.
  • a second gallium nitride layer 150C is provided on the orientation insulating layer 110C in a region where the first gallium nitride layer 120C is not provided.
  • the second gallium nitride layer 150C is in contact with the orientation insulating layer 110C.
  • the second gallium nitride layer 150C runs over the pattern edges of the first gallium nitride layer 120C and the gate insulating layer 140C, and is also provided on the gate insulating layer 140C. That is, part of the second gallium nitride layer 150C is in contact with the gate insulating layer 140C from above the gate insulating layer 140C.
  • the second gallium nitride layer 150C is in contact with the first gallium nitride layer 120C on the side wall of the first gallium nitride layer 120C.
  • a gate electrode 130C is provided on the gate insulating layer 140C in a region between the source-side second gallium nitride layer 151C and the drain-side second gallium nitride layer 153C.
  • a first gallium nitride layer 120C and a gate insulating layer 140C are continuously formed on the orientation insulating layer 110C. After that, the first gallium nitride layer 120C and the gate insulating layer 140C are collectively patterned. Subsequently, a second gallium nitride layer 150C is formed on the orientation insulating layer 110C and the gate insulating layer 140C and patterned as shown in FIG. This patterning exposes the gate insulating layer 140C between the source-side second gallium nitride layer 151C and the drain-side second gallium nitride layer 153C. A gate electrode 130C is formed on the exposed gate insulating layer 140C. Finally, the pattern of electrode 160C is formed.
  • the orientation insulating layer 110C, the first gallium nitride layer 120C, and the gate insulating layer 140C are continuously formed.
  • good crystallinity of the first gallium nitride layer 120C can be obtained, contamination at the interface between the first gallium nitride layer 120C and the gate insulating layer 140C can be reduced, and the first gallium nitride layer 120C can be Defects in the upper portion (the region where the channel is formed) can be reduced.
  • sidewalls 123C of the first gallium nitride layer 120C may be tapered.
  • the tapered sidewall 123C facilitates contact between the first gallium nitride layer 120C and the second gallium nitride layer 150C.
  • problems such as poor conduction between the first gallium nitride layer 120C and the second gallium nitride layer 150C can be avoided.
  • FIG. 5 illustrates a configuration in which the taper angle of the side wall 123C of the first gallium nitride layer 120C and the taper angle of the side wall of the gate insulating layer 140C are the same angle
  • the configuration is not limited to this.
  • the taper angle of the sidewalls of the gate insulating layer 140C may be smaller or larger than the taper angle of the sidewalls 123C.
  • the pattern edge of the gate insulating layer 140C may recede to expose the top surface of the first gallium nitride layer 120C.
  • a semiconductor device 10D according to the fifth embodiment of the present invention will be described with reference to FIG.
  • the semiconductor device 10D is similar to the semiconductor device 10A according to the second embodiment.
  • the points that are different from the semiconductor device 10A will be described.
  • FIG. 1 when describing a configuration similar to that of the above-described embodiment, FIG. 1 will be referred to, and the alphabet "D" will be added after the reference numerals shown in FIG.
  • the gate electrode 130D is provided on the orientation insulating layer 110D.
  • the orientation insulating layer 110D is provided between the substrate 100D and the gate electrode 130D.
  • a gate insulating layer 140D is provided on the gate electrode 130D.
  • the gate electrode 130D and the gate insulation layer 140D are in contact with the orientation insulation layer 110D.
  • the gate insulating layer 140D is patterned so that a portion of the orientation insulating layer 110D is exposed from the gate insulating layer 140D.
  • the second gallium nitride layer 150D is in contact with the oriented insulating layer 110D from above the exposed oriented insulating layer 110D.
  • the first gallium nitride layer 120D is provided on the gate insulating layer 140D and the second gallium nitride layer 150D.
  • the second gallium nitride layer 150D is in contact with the first gallium nitride layer 120D from below.
  • the gate electrode 130D and the gate insulating layer 140D have crystal orientation (for example, c-axis orientation). Specifically, the surfaces of the gate electrode 130D and the gate insulating layer 140D have 6-fold rotational symmetry.
  • the gate electrode 130D and the gate insulating layer 140D have (0001) planes in a hexagonal close-packed structure or (111) planes in a face-centered cubic structure.
  • titanium or aluminum is used as the gate electrode 130D.
  • the configuration is not limited to this.
  • the height of the gate insulating layer 140D may be greater than the height of the second gallium nitride layer 150D in the D2 direction.
  • part of the gate insulating layer 140D may be provided on the second gallium nitride layer 150D.
  • the height of the gate insulating layer 140D may be smaller than the height of the second gallium nitride layer 150D in the D2 direction.
  • part of the second gallium nitride layer 150D may be provided on the gate insulating layer 140D.
  • the second gallium nitride layer 150D is provided on the orientation insulating layer 110D, good crystallinity can be obtained for the second gallium nitride layer 150.
  • the gate electrode 130D and the gate insulating layer 140D having crystal orientation are provided on the oriented insulating layer 110D, and the first gallium nitride layer 120D is provided on the gate insulating layer 140D. Good crystallinity can be obtained for the single gallium nitride layer 120D.
  • a gate electrode 130D is formed on the oriented insulating layer 110D and patterned as shown in FIG.
  • a gate insulating layer 140D is formed on the patterned gate electrode 130D and patterned as shown in FIG.
  • a second gallium nitride layer 150D is then formed and patterned as shown in FIG.
  • a first gallium nitride layer 120D is formed and patterned on the gate insulating layer 140D and the second gallium nitride layer 150D.
  • the pattern of electrode 160D is formed.
  • the manufacturing method in which the second gallium nitride layer 150D is formed after the gate electrode 130D and the gate insulating layer 140D are formed has been exemplified.
  • a manufacturing method in which the gate insulating layer 140D is formed may be used.
  • FIG. 1 A semiconductor device 10E according to the sixth embodiment of the present invention will be described with reference to FIG.
  • the semiconductor device 10E is similar to the semiconductor device 10D according to the fifth embodiment.
  • FIG. 1 the configurations of the semiconductor device 10E, mainly the points that are different from the semiconductor device 10D will be described.
  • FIG. 1 when describing a configuration similar to that of the above-described embodiment, FIG. 1 will be referred to, and the alphabet "E" will be added after the reference numerals shown in FIG.
  • the orientation insulating layer 110E is provided between the substrate 100E and the second gallium nitride layer 150E, and is in contact with the second gallium nitride layer 150E.
  • the second gallium nitride layer 150E is in contact with the first gallium nitride layer 120E from below the first gallium nitride layer 120E.
  • the gate electrode 130E has the same crystal orientation as the gate electrode 130D of the fifth embodiment.
  • the alignment insulating layer 110E is not provided in the region where the gate electrode 130E and the gate insulating layer 140E are provided, and the gate electrode 130E is in contact with the substrate 100E. .
  • the gate insulating layer 140E provided on the gate electrode 130E is in contact with the substrate 100E, and the second gallium nitride layer 150E provided on the orientation insulating layer 110E is in contact with the substrate 100E.
  • FIG. 7 exemplifies the configuration in which the second gallium nitride layer 150E covers the pattern edge of the oriented insulating layer 110E
  • the configuration is not limited to this.
  • the pattern end may exist near the boundary between the gate insulating layer 140E and the second gallium nitride layer 150E, and may be covered with the gate insulating layer 140E.
  • a crystalline oriented conductive layer formed of the same layer as the gate electrode 130E may be provided.
  • FIG. 1 A semiconductor device 10F according to the seventh embodiment of the present invention will be described with reference to FIG.
  • the semiconductor device 10F is similar to the semiconductor device 10E according to the seventh embodiment.
  • FIG. 1 the reference numerals shown in FIG. 1 will be followed by the letter "F".
  • a second gallium nitride layer 150F and an electrode 160F are provided on the first gallium nitride layer 120F.
  • the second gallium nitride layer 150F is in contact with the first gallium nitride layer 120F.
  • a first gallium nitride layer 120F covers the orientation insulating layer 110F and the gate insulating layer 140F.
  • the orientation insulating layer 110F is in contact with the first gallium nitride layer 120F between the first gallium nitride layer 120F and the substrate 100F in a region overlapping with the second gallium nitride layer 150F in plan view.
  • FIG. 8 illustrates a configuration in which the width W1 of the gate electrode 130F in the D1 direction is greater than the distance W2 between the source-side second gallium nitride layer 151F and the drain-side second gallium nitride layer 153F.
  • the width W1 of the gate electrode 130F may be smaller than the distance W2 between the source-side second gallium nitride layer 151F and the drain-side second gallium nitride layer 153F. It may be connected continuously with the gallium layer 153F.
  • the contact area between these layers can be increased.
  • current crowding in the junction region of these layers can be suppressed.
  • FIG. 1 A semiconductor device 10G according to the eighth embodiment of the present invention will be described with reference to FIG.
  • the semiconductor device 10G is similar to the semiconductor device 10F according to the eighth embodiment.
  • FIG. 1 the configurations of the semiconductor device 10G, mainly the points that are different from the semiconductor device 10F will be described.
  • FIG. 1 when describing a configuration similar to that of the above-described embodiment, FIG. 1 will be referred to, and the alphabet "G" will be added after the reference numerals shown in FIG.
  • the oriented insulating layer 110G covers the gate electrode 130G.
  • a first gallium nitride layer 120G is provided on the oriented insulating layer 110G. That is, in this embodiment, the orientation insulating layer 110G functions as a gate insulating layer.
  • the orientation insulating layer 110G functioning as a gate insulating layer and the first gallium nitride layer 120G are in contact with each other.
  • the first gallium nitride layer 120G and the second gallium nitride layer 150G are in contact.
  • the gate electrode 130G may be embedded in the substrate 100G. That is, a recess is formed in the substrate 100G, and the gate electrode 130G is embedded in the recess.
  • the top surface of the substrate 100G and the top surface of the gate electrode 130G are aligned in the D2 direction, but the top surfaces of both may not be aligned in the D2 direction.
  • a planarizing layer 165G may be provided between the substrate 100G and the oriented insulating layer 110G.
  • the positions of the upper surface of the substrate 100G and the upper surface of the gate electrode 130G in the D2 direction do not match, it is possible to provide the surface on which the oriented insulating layer 110G is formed (the upper surface of the planarizing layer 165G). can. Therefore, good orientation of the orientation insulating layer 110G can be obtained.
  • FIG. 1 A semiconductor device 10H according to the ninth embodiment of the present invention will be described with reference to FIG.
  • the semiconductor device 10H is similar to the semiconductor device 10G according to the ninth embodiment.
  • FIG. 1 the figures that are different from the semiconductor device 10G will be described.
  • FIG. 1 when describing a configuration similar to that of the above-described embodiment, FIG. 1 will be referred to, and the alphabet "H" will be added after the reference numerals shown in FIG.
  • the second gallium nitride layer 150H is adjacent to the first gallium nitride layer 120H in the horizontal direction (D1 direction).
  • each of the first gallium nitride layer 120H and the second gallium nitride layer 150H is in contact with the oriented insulating layer 110H.
  • the second gallium nitride layer 150H is in contact with the first gallium nitride layer 120H on the sidewalls of the first gallium nitride layer 120H.
  • the gate electrode 130H When a predetermined voltage is supplied to the gate electrode 130H, carriers are generated (a channel is formed) in the first gallium nitride layer 120H near the interface between the first gallium nitride layer 120H and the orientation insulating layer 110H. That is, the second gallium nitride layer 150H is in contact with the first gallium nitride layer 120H near the region (124H) where carriers are formed in the first gallium nitride layer 120H.
  • the second gallium nitride layer 150H is in contact with the first gallium nitride layer 120H in the region where carriers are formed (region where the channel is formed). It is possible to reduce the resistance of the current path to the channel formed in the .
  • FIG. 12 exemplifies a configuration in which the top surface of the first gallium nitride layer 120H and the top surface of the second gallium nitride layer 150H are aligned in the D2 direction, but the configuration is not limited to this.
  • the configuration shown in FIG. 13 can be obtained by first forming the second gallium nitride layer 150H, patterning it, and then forming the first gallium nitride layer 120H.
  • the structure shown in FIG. 14 can be obtained by first forming and patterning the first gallium nitride layer 120H and then forming the second gallium nitride layer 150H. In either configuration, the resistance of the current path from the electrode 160H to the channel formed in the first gallium nitride layer 120H can be reduced as in the configuration of FIG.
  • FIG. 15 is a schematic diagram showing the configuration of a display device according to an embodiment of the invention.
  • FIG. 16 is a circuit diagram (pixel circuit) of a pixel of a display device according to an embodiment of the invention.
  • FIG. 17 is a cross-sectional view of a pixel of a display device according to an embodiment of the invention.
  • FIG. 15 is a schematic diagram showing the configuration of a display device 20J according to one embodiment of the invention.
  • the display device 20J has a display section 1020J, a drive circuit section 1030J, and a terminal section 1040J on a substrate 100J.
  • the drive circuit section 1030J is provided around the display section 1020J and controls the display section 1020J.
  • the drive circuit section 1030J includes, for example, a scan drive circuit.
  • the terminal section 1040J is provided at the end of the substrate 100J and supplies signals and power from the outside to the display device 20J.
  • the terminal portion 1040J includes, for example, a terminal 1041J. Terminal 1041J is connected to flexible printed circuit board 1050J.
  • a driver IC 1060J is provided on the flexible printed circuit board 1050J.
  • the display unit 1020J can display an image or video, and includes a plurality of pixels 1021J arranged in a matrix.
  • the arrangement of the plurality of pixels 1021J is not limited to matrix.
  • the plurality of pixels 1021J may be arranged in a zigzag pattern, for example.
  • FIG. 16 is a circuit diagram (pixel circuit) of a pixel 1021J of the display device 20J according to one embodiment of the invention.
  • Pixel 1021J includes a first transistor 200J-1, a second transistor 200J-2, a light emitting diode 300J, and a capacitive element 400J.
  • the first transistor 200J-1 functions as a selection transistor. That is, the conductive state of the first transistor 200J-1 is controlled by the scanning line 1110J.
  • the gate, source, and drain of the first transistor 200J-1 are electrically connected to the scan line 1110J, the signal line 1120J, and the gate of the second transistor 200J-2, respectively.
  • the second transistor 200J-2 functions as a drive transistor. That is, the second transistor 200J-2 controls the light emission brightness of the light emitting diode 300J.
  • the gate, source, and drain of the second transistor 200J-2 are electrically connected to the drain of the first transistor 200J-1, the drive power line 1140J, and the anode (p-type electrode) of the light emitting diode 300J, respectively. It is
  • One of the capacitive electrodes of the capacitive element 400J is electrically connected to the gate of the second transistor 200J-2 and the drain of the first transistor 200J-1.
  • the other capacitive electrode of the capacitive element 400J is electrically connected to the driving power supply line 1140J.
  • the anode of the light emitting diode 300J is connected to the drain of the second transistor 200J-2.
  • a cathode (n-type electrode) of the light emitting diode 300J is connected to the reference power supply line 1160J.
  • FIG. 17 is a cross-sectional view of the pixel 1021J cut along line A1-A2 shown in FIG.
  • the display device 20J includes a substrate 100J, a base layer 105J, an alignment insulating layer 110J, a transistor 200J, a light emitting diode 300J, a light shielding wall 500J, a light shielding layer 600J, an interlayer film 170J, a conductive layer 180J, and a transparent conductive layer. Includes layer 190J.
  • the base layer 105J, the alignment insulating layer 110J, the transistor 200J, the light emitting diode 300J, the light blocking wall 500J, the interlayer film 170J, the conductive layer 180J, and the transparent conductive layer 190J are provided on the first surface 101J side of the substrate 100J.
  • the light shielding layer 600J is provided on the side of the second surface 102J opposite to the first surface 101J of the substrate 100J.
  • the substrate 100J is a support substrate for the transistor 200J and the light emitting diode 300J.
  • As the substrate 100J an amorphous glass substrate or the like can be used as described above.
  • the underlying layer 105J is provided on the substrate 100J.
  • the underlayer 105J can prevent diffusion of impurities from the substrate 100J or impurities from the outside (for example, moisture or sodium).
  • a silicon nitride layer or a stack of a silicon oxide layer and a silicon nitride layer may be used.
  • the oriented insulating layer 110J is provided on the underlying layer 105J.
  • the crystallinity of the first gallium nitride layer 120J of the transistor 200J formed on the alignment insulating layer 110J can be improved.
  • the crystallinity of the gallium nitride layer 310J of the light emitting diode 300J can be improved.
  • the first gallium nitride layer 120J and the gallium nitride layer 310J are formed in the same layer and have similar film thickness and physical properties.
  • the oriented insulating layer 110J contains a nitrogen compound (eg, titanium nitride or aluminum nitride)
  • the underlying layer 105J may not be provided. Since nitrogen contained in the nitrogen compound has a high electronegativity, impurities contained in the substrate 100J can be trapped.
  • the transistor 200J includes a first gallium nitride layer 120J, a gate electrode 130J, a gate insulating layer 140J, a source electrode 250J, and a drain electrode 260J.
  • the source electrode 250J corresponds to, for example, the source-side second gallium nitride layer 151 and the source-side electrode 161 in FIG.
  • the drain electrode 260J corresponds to, for example, the drain-side second gallium nitride layer 153 and the drain-side electrode 163 in FIG.
  • the first gallium nitride layer 120J is provided on the oriented insulating layer 110J. As described above, since the first gallium nitride layer 120J is in contact with the oriented insulating layer 110J, the crystalline growth of the first gallium nitride layer 120J is controlled by the oriented insulating layer 110J. As a result, the first gallium nitride layer 120J is c-axis oriented with respect to the substrate 100J.
  • the transistor 200J is a so-called MOS transistor, but may be a HEMT (High Electron Mobility Transistor).
  • the light emitting diode 300J is provided on the alignment insulating layer 110J.
  • the light emitting diode 300J includes a gallium nitride layer 310J, an n-type semiconductor layer 320J, a light emitting layer 330J, a p-type semiconductor layer 340J, an n-type electrode 350J, and a p-type electrode 360J.
  • the gallium nitride layer 310J is provided on the oriented insulating layer 110J.
  • a gallium nitride layer for example, is used as the gallium nitride layer 310J. Since the gallium nitride layer 310J is in contact with the oriented insulating layer 110J, the crystalline growth of the gallium nitride layer 310J is controlled by the oriented insulating layer 110J. As a result, the gallium nitride layer 310J is c-axis oriented with respect to the substrate 100J.
  • the n-type semiconductor layer 320J is provided on the gallium nitride layer 310J.
  • a silicon-doped gallium nitride layer, for example, is used as the n-type semiconductor layer 320J.
  • the light emitting layer 330J is provided on the n-type semiconductor layer 320J.
  • As the light emitting layer 330J for example, a layer in which an indium gallium nitride layer and a gallium nitride layer are alternately laminated is used.
  • the p-type semiconductor layer 340J is provided on the light emitting layer 330J.
  • a magnesium-doped gallium nitride layer for example, is used as the p-type semiconductor layer 340J.
  • the n-type electrode 350J and the p-type electrode 360J are provided on the n-type semiconductor layer 320J and the p-type semiconductor layer 340J, respectively.
  • a metal such as indium is used as the n-type electrode 350J, for example.
  • a metal such as palladium or gold is used as the p-type electrode 360J, for example.
  • the light emitting diode 300J is a so-called micro LED or mini LED, but is not limited to these.
  • Micro LEDs are LEDs with a side size of 100 ⁇ m or less.
  • Mini-LEDs are LEDs with dimensions greater than 100 ⁇ m on a side.
  • a protective layer may be provided to cover the transistor 200J or the light emitting diode 300J, if necessary. Silicon nitride or a stack of silicon oxide and silicon nitride layers may be used as the protective layer.
  • the light shielding wall 500J is provided between the transistor 200J and the light emitting diode 300J.
  • the light shielding wall 500J can block the light emitted from the light emitting diode 300J and prevent the transistor 200J from being irradiated with the light.
  • carbon-added acrylic resin resin black
  • resin black carbon-added acrylic resin
  • the light shielding layer 600J is provided on the second surface 102J of the substrate 100J.
  • the light shielding layer 600J can block external light and prevent the transistor 200J from being irradiated with light.
  • an acrylic resin (resin black) to which carbon is added may be used.
  • the interlayer film 170J is provided so as to cover the transistor 200J, the light emitting diode 300J, and the light shielding wall 500J.
  • the interlayer film 170J can planarize unevenness formed by the transistor 200J, the light emitting diode 300J, and the light shielding wall 500J.
  • an organic insulating film such as an acrylic resin film or a polyimide resin film is used.
  • the interlayer film 170J may be a single layer or a laminate.
  • the interlayer film 170J may include not only an organic insulating layer but also an inorganic insulating layer such as a silicon oxide layer or a silicon nitride layer.
  • the conductive layer 180J and the transparent conductive layer 190J are provided on the interlayer film 170J.
  • Conductive layer 180J is electrically connected to gate electrode 130J through an opening provided in interlayer film 170J.
  • the transparent conductive layer 190J electrically connects the drain electrode 260J and the p-type electrode 360J through an opening provided in the interlayer film 170J.
  • Light emitted from the light emitting layer 330J of the light emitting diode 300J is transmitted through the transparent conductive layer 190J and emitted to the outside.
  • a laminate of aluminum and titanium eg, Ti/Al/Ti
  • the transparent conductive layer 190J for example, a transparent conductive layer such as an indium tin oxide (ITO) film or an indium zinc oxide (IZO) film can be used.

Abstract

窒化ガリウム層を用いた半導体装置(10)を提供することができる半導体装置は、非晶質ガラス基板(100)と、前記非晶質ガラス基板の上に設けられ、結晶の配向性を有する配向絶縁層(110)と、前記配向絶縁層の上に設けられ、前記配向絶縁層と接する第1の導電型の第1窒化ガリウム層(120)と、前記第1窒化ガリウム層と対向するゲート電極(130)と、前記第1窒化ガリウム層と前記ゲート電極との間のゲート絶縁層(140)と、を有する。前記配向絶縁層は、6回回転対称を持つ面を有してもよい。

Description

半導体装置
 本発明の一実施形態は、窒化ガリウムが用いられた半導体装置に関する。
 窒化ガリウム(GaN)は、バンドギャップの大きい直接遷移半導体である。この窒化ガリウムの特徴を利用し、窒化ガリウムを用いた発光ダイオード(LED)が既に実用化されている。窒化ガリウムは、電子飽和移動度及び耐圧が高いという特徴を有する。近年では、この窒化ガリウムの特徴を利用し、高周波パワーデバイス等の用途でトランジスタ(半導体装置)の開発が進められている。一般的に、発光ダイオード又はトランジスタに用いられる窒化ガリウム層は、サファイア基板上に、MOCVD(Metal Organic Chemical Vapor Deposition)又はHVPE(Hydride Vapor Phase Epitaxy)を用いて800℃~1000℃という高温で成膜される。
 さらに、近年、次世代表示装置として、回路基板の画素内に微小な発光ダイオードチップを実装した、いわゆるマイクロLED表示装置又はミニLED表示装置の開発が進められている。マイクロLED表示装置又はミニLED表示装置は、高効率、高輝度、及び高信頼性を有する。このようなマイクロLED表示装置又はミニLED表示装置は、酸化物半導体又は低温ポリシリコンなどが用いられたトランジスタが形成されたバックプレーンに対して、LEDチップが転写されることによって製造される(例えば、特許文献1参照)。他方、同一基板上に窒化ガリウムを含むトランジスタと発光ダイオードとを形成する方法も検討されている(例えば、特許文献2参照)。
米国特許第8791474号明細書 米国特許出願公開第2020/0075664号明細書
 LEDチップの転写によるマイクロLED表示装置の製造方法は、製造コストが高く、安価にマイクロLED表示装置を製造することが難しい。非晶質ガラス基板のような大面積基板上に、窒化ガリウムが用いられたトランジスタを発光ダイオードと一緒に形成することができれば、製造コストを下げることができる。しかしながら、上述のように、窒化ガリウム層は高温で成膜されるため、非晶質ガラス基板上に窒化ガリウムを含むトランジスタを直接形成することは難しい。
 本発明の一実施形態は、上記問題に鑑み、窒化ガリウム層が用いられた半導体装置を提供することを目的の一つとする。
 本発明の一実施形態に係る半導体装置は、非晶質ガラス基板と、前記非晶質ガラス基板の上に設けられ、結晶の配向性を有する配向絶縁層と、前記配向絶縁層の上に設けられ、前記配向絶縁層と接する第1の導電型の第1窒化ガリウム層と、前記第1窒化ガリウム層と対向するゲート電極と、前記第1窒化ガリウム層と前記ゲート電極との間のゲート絶縁層と、を有する。
 本発明の一実施形態に係る半導体装置は、非晶質ガラス基板と、前記非晶質ガラス基板の上に設けられたゲート電極と、前記ゲート電極の上に設けられ、結晶の配向性を有するゲート絶縁層と、前記ゲート絶縁層の上に設けられ、前記ゲート絶縁層と接する第1の導電型の第1窒化ガリウム層と、を有する。
本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る半導体装置の構成を示す断面図である。 本発明の一実施形態に係る表示装置の構成を示す概略図である。 本発明の一実施形態に係る表示装置の画素の回路図(画素回路)である。 本発明の一実施形態に係る表示装置の画素の断面図である。
 以下に、本発明の各実施の形態について、図面を参照しつつ説明する。以下の開示はあくまで一例にすぎない。当業者が、発明の主旨を保ちつつ、実施形態の構成を適宜変更することによって容易に想到し得る構成は、当然に本発明の範囲に含有される。図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合がある。しかし、図示された形状はあくまで一例であって、本発明の解釈を限定するものではない。本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号の後にアルファベットを付して、詳細な説明を適宜省略することがある。
 本発明の各実施の形態において、基板からゲート電極に向かう方向を上又は上方という。逆に、ゲート電極から基板に向かう方向を下又は下方という。このように、説明の便宜上、上方又は下方という語句を用いて説明するが、例えば、基板とゲート電極との上下関係が図示と逆になるように配置されてもよい。以下の説明で、例えば基板上のゲート電極という表現は、上記のように基板とゲート電極との上下関係を説明しているに過ぎず、基板とゲート電極との間に他の部材が配置されていてもよい。上方又は下方は、複数の層が積層された構造における積層順を意味するものであり、トランジスタの上方の画素電極と表現する場合、平面視でトランジスタと画素電極とが重ならない位置関係であってもよい。一方、トランジスタの鉛直上方の画素電極と表現する場合は、平面視でトランジスタと画素電極とが重なる位置関係を意味する。
 本明細書において「αはA、B又はCを含む」、「αはA,B及びCのいずれかを含む」、「αはA,B及びCからなる群から選択される一つを含む」、といった表現は、特に明示が無い限り、αがA~Cの複数の組み合わせを含む場合を排除しない。さらに、これらの表現は、αが他の要素を含む場合も排除しない。
 以下の各実施形態は、技術的な矛盾を生じない限り、互いに組み合わせることができる。
[1.第1実施形態]
[1-1.半導体装置10の構成]
 図1を参照して、本発明の第1実施形態に係る半導体装置10について説明する。図1は、本発明の一実施形態に係る半導体装置の構成を示す断面図である。図1に示すように、半導体装置10は、基板100、配向絶縁層110、第1窒化ガリウム層120、ゲート電極130、ゲート絶縁層140、第2窒化ガリウム層150(151、153)、及び電極160(161、163)を有する。
 基板100は、非晶質基板である。例えば、基板100は、非晶質ガラス基板である。ただし、基板100は、樹脂基板であってもよい。樹脂基板として、ポリイミド基板、アクリル基板、シロキサン基板、又はフッ素樹脂基板などの可撓性を有する基板が用いられる。
 配向絶縁層110は、基板100の上に設けられている。配向絶縁層110は、結晶の配向性(例えば、c軸配向性)を有する。具体的には、配向絶縁層110の表面が6回回転対称を持つ面である。例えば、配向絶縁層110は、六方最密構造における(0001)面、又は、面心立方構造における(111)面を有する。配向絶縁層110として、例えば、窒化アルミニウム、酸化ガリウム、又は酸化チタンが用いられる。配向絶縁層110が上記のような特徴を有していることで、配向絶縁層110の上に窒化ガリウム層を成長させた場合に、高い結晶性を有する窒化ガリウム層が得られる。例えば、配向絶縁層110が基板100に対してc軸配向している場合、配向絶縁層110の上にc軸配向した窒化ガリウム層が成長する。上記の配向絶縁層110は、例えば、スパッタリング方によって成膜される。
 ただし、配向絶縁層110は、上記の構成に限定されない。例えば、配向絶縁層110の成膜方法は、その他の物理蒸着法(Physical Vapor Deposition:PVD法)であってもよい。例えば、配向絶縁層110は、真空蒸着法、又は電子ビーム蒸着法によって成膜されてもよい。配向絶縁層110の成膜方法は、化学蒸着法(Chemical Vapor Deposition:CVD法)であってもよい。CVD法として、熱CVD法、プラズマCVD法、触媒CVD法(Cat(Catalytic)-CVD法又はホットワイヤCVD法)などが用いられる。基板100と配向絶縁層110との間に下地絶縁層が設けられてもよい。下地絶縁層として、酸化シリコン層、窒化シリコン層、酸化アルミニウム層、窒化アルミニウム層、及びこれらを積層したものが用いられる。例えば、下地絶縁層として、[窒化シリコン層/酸化シリコン層/窒化シリコン層]の積層が用いられてもよい。
 第1窒化ガリウム層120は、配向絶縁層110の上方から配向絶縁層110に接している。第1窒化ガリウム層120は、例えば、スパッタリング法によって形成される。第1窒化ガリウム層120の結晶成長は、配向絶縁層110によって制御される。その結果、第1窒化ガリウム層120は、配向絶縁層110の結晶性(又は配向)を反映した結晶性(又は配向)を有する。上記のように、配向絶縁層110がc軸配向している場合、c軸配向した第1窒化ガリウム層120が得られる。
 第1窒化ガリウム層120は、例えばp型の窒化ガリウム層である。この場合、第1窒化ガリウム層120として、例えば、マグネシウム又はセレンがドーピングされた窒化ガリウム層が用いられる。
 ゲート電極130は、第1窒化ガリウム層120の上に設けられており、第1窒化ガリウム層120と対向する。第1窒化ガリウム層120とゲート電極130との間にゲート絶縁層140が設けられている。ゲート絶縁層140は第1窒化ガリウム層120及びゲート電極130のそれぞれに接している。ゲート電極130として、一般的な金属が用いられる。例えば、ゲート電極130として、アルミニウム、チタン、プラチナ、ニッケル、タンタル、及びこれらの合金が単層又は積層で用いられる。ゲート絶縁層140として、金属酸化物、金属窒化物、又は有機材料が用いられる。例えば、ゲート絶縁層140として、酸化シリコン層、窒化シリコン層、酸化アルミニウム層、窒化アルミニウム層、酸化ガリウム、酸化チタン、窒化チタン及びこれらを積層したものが用いられる。半導体装置10が第1窒化ガリウム層120とゲート電極130との界面におけるショットキー障壁を用いる構成である場合、ゲート絶縁層140が省略されてもよい。
 第2窒化ガリウム層150は、第1窒化ガリウム層120の上方から第1窒化ガリウム層120と接している。第2窒化ガリウム層150は、半導体装置10のソース側に設けられたソース側第2窒化ガリウム層151と、半導体装置10のドレイン側に設けられたドレイン側第2窒化ガリウム層153とを含む。ソース側第2窒化ガリウム層151とドレイン側第2窒化ガリウム層153とは分離されており、これらの間にゲート電極130が設けられている。第2窒化ガリウム層150の導電性は第1窒化ガリウム層120の導電性より高い。つまり、第2窒化ガリウム層150の電気抵抗率は第1窒化ガリウム層120の電気抵抗率より低い。
 第2窒化ガリウム層150は、第1窒化ガリウム層120と同様にスパッタリング法によって形成される。第2窒化ガリウム層150の結晶成長は、第1窒化ガリウム層120によって制御される。その結果、第2窒化ガリウム層150は、第1窒化ガリウム層120の結晶性(又は配向)を反映した結晶性(又は配向)を有する。上記のように、第1窒化ガリウム層120がc軸配向している場合、c軸配向した第2窒化ガリウム層150が得られる。
 第2窒化ガリウム層150は、例えばn型の窒化ガリウム層である。この場合、第2窒化ガリウム層150として、例えば、シリコン又はゲルマニウムがドーピングされた窒化ガリウム層が用いられる。本実施形態では、第1窒化ガリウム層120がp型の導電型を有し、第2窒化ガリウム層150がn型の導電型を有する構成を例示したが、この構成に限定されない。第1窒化ガリウム層120がn型の導電型を有し、第2窒化ガリウム層150がp型の導電型を有していてもよい。上記の2つの構成を含む表現として、第1窒化ガリウム層120が第1の導電型を有し、第2窒化ガリウム層150が第2の導電型を有する、という場合がある。
 第1窒化ガリウム層120及び第2窒化ガリウム層150はスパッタリング法によって形成されるため、これらの窒化ガリウム層の中にはスパッタリング工程に用いられたプロセスガスが残存する。例えば、第1窒化ガリウム層120及び第2窒化ガリウム層150を成膜するスパッタリング工程でアルゴンガスが用いられた場合、これらの窒化ガリウム層にはアルゴンが含まれる。当該アルゴンは、例えば、これらの窒化ガリウム層に対する二次イオン質量分析法(SIMS)などの分析方法によって検出することができる。
 電極160は、第2窒化ガリウム層150の上方から第2窒化ガリウム層150と接している。電極160は、半導体装置10のソース側に設けられたソース側電極161と、半導体装置10のドレイン側に設けられたドレイン側電極163とを含む。ソース側電極161はソース側第2窒化ガリウム層151に接続されている。ドレイン側電極163はドレイン側第2窒化ガリウム層153に接続されている。電極160として、一般的な金属が用いられる。例えば、電極160として、アルミニウム、チタン、プラチナ、ニッケル、タンタル、及びこれらの合金が単層又は積層で用いられる。
 ゲート電極130に所定の電圧(ON電圧)が供給されると、第1窒化ガリウム層120とゲート絶縁層140との界面付近において、第1窒化ガリウム層120にキャリアが生成される(チャネルが形成される)。この状態で、ソース側第2窒化ガリウム層151とドレイン側第2窒化ガリウム層153との間に電位差が与えられることで、当該チャネルを介してソース側第2窒化ガリウム層151からドレイン側第2窒化ガリウム層153に電流が流れる。
[1-2.半導体装置10の製造方法]
 非晶質ガラス基板である基板100の上に配向絶縁層110が形成される。上記のように、配向絶縁層110は、例えばスパッタリング法によって形成される。配向絶縁層110の上に第1窒化ガリウム層120及び第2窒化ガリウム層150が形成される。これらの窒化ガリウム層は、例えばスパッタリング法によって形成される。配向絶縁層110、第1窒化ガリウム層120、及び第2窒化ガリウム層150の形成は、連続して行われることが好ましい。例えば、これらの層の形成は、それぞれの層を形成するための複数のチャンバが備えられたスパッタリング装置において、真空保持されたまま行われてもよい。このように上記の層を形成することで、配向絶縁層110と第1窒化ガリウム層120との間の界面、及び第1窒化ガリウム層120と第2窒化ガリウム層150との間の界面におけるコンタミネーションを低減することができ、第1窒化ガリウム層120及び第2窒化ガリウム層150の欠陥を低減することができる。その結果、第1窒化ガリウム層120及び第2窒化ガリウム層150の各々について、良好な結晶性を得ることができる。
 続いて、図1に示すように、後にゲート電極130及びゲート絶縁層140が設けられる領域に形成された第2窒化ガリウム層150が除去され、当該領域の第1窒化ガリウム層120が露出される。
 続いて、ゲート絶縁層140及びゲート電極130が形成される。ゲート絶縁層140及びゲート電極130は、第1窒化ガリウム層120及び第2窒化ガリウム層150の各々の上に形成される。その後、図1に示すように、ゲート絶縁層140及びゲート電極130がパターニングされる。続いて、電極160が全面に形成され、図1に示すようにパターニングされる。
 上記のように、配向絶縁層110、第1窒化ガリウム層120、及び第2窒化ガリウム層150の形成が連続して行われるため、第1窒化ガリウム層120及び第2窒化ガリウム層150の各々について、良好な結晶性を得ることができる。
 上記では、ゲート絶縁層140及びゲート電極130のパターンが形成された後に電極160が形成される製造方法が例示されたが、この製造方法に限定されない。例えば、第2窒化ガリウム層150を形成した直後に電極160が形成され、電極160のパターニング及び第2窒化ガリウム層150のパターニングが行われた後にゲート絶縁層140及びゲート電極130のパターンが形成されてもよい。
[1-3.第1窒化ガリウム層120及び第2窒化ガリウム層150の成膜方法]
 スパッタリングを用いた窒化ガリウム層の成膜について説明する。
 スパッタリング装置の真空チャンバ内において、窒化ガリウムターゲットと対向する位置に、非晶質ガラス基板などの基板100が配置される。窒化ガリウムターゲットにおける窒化ガリウムの組成比は、窒素に対するガリウムの比で0.7以上2以下であることが好ましい。真空チャンバには、スパッタリングガス(アルゴン又はクリプトンなど)に加えて窒素ガスが供給される。その場合、窒化ガリウムターゲットの窒化ガリウムの組成比は、窒素よりもガリウムが多い比であることが好ましい。例えば、窒素は窒素ラジカル供給源によって供給されてもよい。スパッタリング電源は、DC電源、RF電源、又はパルスDC電源のいずれであってもよい。
 真空チャンバ内において、基板100が加熱されてもよい。例えば、基板100は、400℃以上600℃未満で加熱されてもよい。この加熱温度であれば、耐熱性の低い非晶質ガラス基板に対して加熱処理を適用することができる。この加熱温度は、有機金属気相成長法(MOCVD)又はハイドライド気相成長法(HVPE)の加熱温度よりも低い。
 基板100が配置された真空チャンバ内が十分に排気された後、スパッタリングガスが供給される。所定の圧力で基板100と窒化ガリウムターゲットとの間に電圧を印加してプラズマを生成することで、窒化ガリウム層が成膜される。
 スパッタリング装置の構成又はスパッタリングの条件は適宜変更することができる。窒化ガリウムターゲットではなく、窒化アルミニウムガリウムターゲットを用いれば、窒化アルミニウムガリウム層を成膜することができる。
[2.第2実施形態]
 図2を参照して、本発明の第2実施形態に係る半導体装置10Aについて説明する。半導体装置10Aは、第1実施形態に係る半導体装置10と類似している。以下の説明において、半導体装置10Aの構成のうち第1実施形態の半導体装置10と同様の構成の説明を省略し、主に半導体装置10と相違する点について説明する。以下の説明において、第1実施形態と同様の構成について説明をする場合、図1を参照し、図1に示された符号の後にアルファベット“A”を付して説明する。
[2-1.半導体装置10Aの構成]
 図2に示すように、第2窒化ガリウム層150A(151A、153A)は、配向絶縁層110Aの上方から配向絶縁層110Aに接している。第2窒化ガリウム層150Aは、ソース側第2窒化ガリウム層151Aとドレイン側第2窒化ガリウム層153Aとに分離されている。第1窒化ガリウム層120Aは、第2窒化ガリウム層150Aの上、及び第2窒化ガリウム層150Aから露出された配向絶縁層110Aの上に設けられている。第1窒化ガリウム層120Aは、第1領域121Aにおいて、第2窒化ガリウム層150Aの上方から第2窒化ガリウム層150Aと接している。第1窒化ガリウム層120Aは、第2領域122Aにおいて、配向絶縁層110Aの上方から配向絶縁層110Aと接している。換言すると、第1窒化ガリウム層120Aは、ソース側第2窒化ガリウム層151Aとドレイン側第2窒化ガリウム層153Aとの間に設けられた開口部を埋めるように設けられる。
 ゲート電極130A及びゲート絶縁層140Aは、上記第2領域122Aに対応する領域に設けられる。図2に示すように、D1方向において、ゲート電極130Aの幅W1は、ソース側第2窒化ガリウム層151Aとドレイン側第2窒化ガリウム層153Aとの間の距離W2より大きい。換言すると、D1方向において、半導体装置10Aのソース電極(ソース側第2窒化ガリウム層151A)とドレイン電極(ドレイン側第2窒化ガリウム層153A)との間の距離W2は、ゲート電極130Aの幅W1より小さい。
 図2では、第1窒化ガリウム層120Aの上面が平坦であるが、この構成に限定されない。例えば、第2領域122Aに対応する領域において、第1窒化ガリウム層120Aの上面が凹んでいてもよい。
[2-2.半導体装置10Aの製造方法]
 図2に示すように、配向絶縁層110Aの上に第2窒化ガリウム層150Aが形成され、第2領域122Aの第2窒化ガリウム層150Aが除去され、第2領域122Aの配向絶縁層110Aが露出される。露出された配向絶縁層110Aの上及び第2窒化ガリウム層150Aの上に第1窒化ガリウム層120Aが形成される。続いて、第1窒化ガリウム層120Aの上にゲート絶縁層140A及びゲート電極130Aが形成される。その後、ゲート絶縁層140A、ゲート電極130A、及び第1窒化ガリウム層120Aは図2に示すようにパターニングされる。最後に、電極160Aのパターンが形成される。
 上記のように、第1窒化ガリウム層120A、ゲート絶縁層140A、及びゲート電極130Aの形成が連続して行われるため、第1窒化ガリウム層120Aとゲート絶縁層140Aとの界面におけるコンタミネーションを低減することができ、第1窒化ガリウム層120A上部(チャネルが形成される領域)の欠陥を低減することができる。その結果、半導体装置10Aの良好な電気特性を得ることができる。
[3.第3実施形態]
 図3を参照して、本発明の第3実施形態に係る半導体装置10Bについて説明する。半導体装置10Bは、第2実施形態に係る半導体装置10Aと類似している。以下の説明において、半導体装置10Bの構成のうち、主に半導体装置10Aと相違する点について説明する。以下の説明において、上記の実施形態と同様の構成について説明をする場合、図1を参照し、図1に示された符号の後にアルファベット“B”を付して説明する。
[3-1.半導体装置10Bの構成]
 図3に示すように、D1方向において、ゲート電極130Bの幅W1は第2領域122Bの幅W2より小さい。第2領域122Bにおいて、第1窒化ガリウム層120Bの上面には凹部が形成されている。当該凹部にゲート絶縁層140B及びゲート電極130Bが設けられている。図3の例では、第1窒化ガリウム層120Bの膜厚が第2窒化ガリウム層150Bの膜厚より小さいため、D2方向において、第2窒化ガリウム層150Bの上面の位置はゲート絶縁層140Bの下面よりも上方に位置する。
 第3実施形態に係る半導体装置10Bによって、第2実施形態に係る半導体装置10Aと同様の効果を得ることができる。
[4.第4実施形態]
 図4を参照して、本発明の第4実施形態に係る半導体装置10Cについて説明する。半導体装置10Cは、第2実施形態に係る半導体装置10Aと類似している。以下の説明において、半導体装置10Cの構成のうち、主に半導体装置10Aと相違する点について説明する。以下の説明において、上記の実施形態と同様の構成について説明をする場合、図1を参照し、図1に示された符号の後にアルファベット“C”を付して説明する。
[4-1.半導体装置10Cの構成]
 図4に示すように、配向絶縁層110Cの上に第1窒化ガリウム層120C及びゲート絶縁層140Cが設けられている。第1窒化ガリウム層120Cは配向絶縁層110Cと接している。第1窒化ガリウム層120Cが設けられていない領域において、配向絶縁層110Cの上に第2窒化ガリウム層150Cが設けられている。第2窒化ガリウム層150Cは配向絶縁層110Cと接している。第2窒化ガリウム層150Cは、第1窒化ガリウム層120C及びゲート絶縁層140Cのパターン端部に乗り上げており、ゲート絶縁層140Cの上にも設けられている。つまり、第2窒化ガリウム層150Cの一部は、ゲート絶縁層140Cの上方からゲート絶縁層140Cと接している。第2窒化ガリウム層150Cは、第1窒化ガリウム層120Cの側壁において、第1窒化ガリウム層120Cと接している。ソース側第2窒化ガリウム層151Cとドレイン側第2窒化ガリウム層153Cとの間の領域において、ゲート絶縁層140Cの上にゲート電極130Cが設けられている。
[4-2.半導体装置10Cの製造方法]
 配向絶縁層110Cの上に第1窒化ガリウム層120C及びゲート絶縁層140Cが連続で形成される。その後、第1窒化ガリウム層120C及びゲート絶縁層140Cが一括でパターニングされる。続いて、配向絶縁層110C及びゲート絶縁層140Cの上に第2窒化ガリウム層150Cが形成され、図4のようにパターニングされる。当該パターニングによって、ソース側第2窒化ガリウム層151Cとドレイン側第2窒化ガリウム層153Cとの間のゲート絶縁層140Cが露出される。露出されたゲート絶縁層140Cの上にゲート電極130Cが形成される。最後に、電極160Cのパターンが形成される。
 上記の様に、本実施形態の半導体装置10Cでは、配向絶縁層110C、第1窒化ガリウム層120C、及びゲート絶縁層140Cが連続して形成される。その結果、第1窒化ガリウム層120Cの良好な結晶性を得ることができ、第1窒化ガリウム層120Cとゲート絶縁層140Cとの界面におけるコンタミネーションを低減することができ、第1窒化ガリウム層120C上部(チャネルが形成される領域)の欠陥を低減することができる。
[4-3.第3実施形態の変形例]
 図5に示すように、第1窒化ガリウム層120Cの側壁123Cがテーパ形状であってもよい。側壁123Cがテーパ形状であることで、第1窒化ガリウム層120Cと第2窒化ガリウム層150Cとを容易に接触させることができる。その結果、第1窒化ガリウム層120Cと第2窒化ガリウム層150Cとの導通不良などの問題を回避することができる。
 図5では、第1窒化ガリウム層120Cの側壁123Cのテーパ角とゲート絶縁層140Cの側壁のテーパ角とが同じ角度である構成を例示したが、この構成に限定されない。例えば、ゲート絶縁層140Cの側壁のテーパ角が側壁123Cのテーパ角よりも小さくてもよく、大きくてもよい。ゲート絶縁層140Cのパターン端部が後退して、第1窒化ガリウム層120Cの上面が露出されてもよい。
[5.第5実施形態]
 図6を参照して、本発明の第5実施形態に係る半導体装置10Dについて説明する。半導体装置10Dは、第2実施形態に係る半導体装置10Aと類似している。以下の説明において、半導体装置10Dの構成のうち、主に半導体装置10Aと相違する点について説明する。以下の説明において、上記の実施形態と同様の構成について説明をする場合、図1を参照し、図1に示された符号の後にアルファベット“D”を付して説明する。
[5-1.半導体装置10Dの構成]
 図6に示すように、ゲート電極130Dは配向絶縁層110Dの上に設けられている。換言すると、配向絶縁層110Dは基板100Dとゲート電極130Dとの間に設けられている。ゲート絶縁層140Dはゲート電極130Dの上に設けられている。ゲート電極130D及びゲート絶縁層140Dは配向絶縁層110Dと接している。ゲート絶縁層140Dはパターニングされており、配向絶縁層110Dの一部はゲート絶縁層140Dから露出される。第2窒化ガリウム層150Dは、露出された配向絶縁層110Dの上方から配向絶縁層110Dに接している。第1窒化ガリウム層120Dは、ゲート絶縁層140D及び第2窒化ガリウム層150Dの上に設けられている。第2窒化ガリウム層150Dは、第1窒化ガリウム層120Dの下方から第1窒化ガリウム層120Dと接している。
 本実施形態において、ゲート電極130D及びゲート絶縁層140Dは、結晶の配向性(例えば、c軸配向性)を有している。具体的には、ゲート電極130D及びゲート絶縁層140Dの表面が6回回転対称を持つ面である。例えば、ゲート電極130D及びゲート絶縁層140Dは、六方最密構造における(0001)面、又は、面心立方構造における(111)面を有する。ゲート電極130Dとして、例えば、チタン又はアルミニウムが用いられる。ゲート絶縁層140Dとして、例えば、窒化アルミニウム、酸化ガリウム、又は酸化チタンが用いられる。
 図6の例では、D2方向において、ゲート絶縁層140Dの高さと第2窒化ガリウム層150Dの高さとが一致する構成が例示されているが、この構成に限定されない。例えば、D2方向において、ゲート絶縁層140Dの高さが第2窒化ガリウム層150Dの高さより大きくてもよい。この場合、ゲート絶縁層140Dの一部が第2窒化ガリウム層150Dの上に設けられていてもよい。上記とは逆に、D2方向において、ゲート絶縁層140Dの高さが第2窒化ガリウム層150Dの高さより小さくてもよい。この場合、第2窒化ガリウム層150Dの一部がゲート絶縁層140Dの上に設けられていてもよい。
 上記のように、配向絶縁層110Dの上に第2窒化ガリウム層150Dが設けられていることで、第2窒化ガリウム層150について、良好な結晶性を得ることができる。同様に、配向絶縁層110Dの上に結晶の配向性を有するゲート電極130D及びゲート絶縁層140Dが設けられ、ゲート絶縁層140Dの上に第1窒化ガリウム層120Dが設けられていることで、第1窒化ガリウム層120Dについて、良好な結晶性を得ることができる。
[5-2.半導体装置10Dの製造方法]
 配向絶縁層110Dの上にゲート電極130Dが形成され、図6に示すようにパターニングされる。パターニングされたゲート電極130Dの上にゲート絶縁層140Dが形成され、図6に示すようにパターニングされる。続いて、第2窒化ガリウム層150Dが形成され、図6に示すようにパターニングされる。ゲート絶縁層140D及び第2窒化ガリウム層150Dの上に第1窒化ガリウム層120Dが形成され、パターニングされる。最後に、電極160Dのパターンが形成される。
 本実施形態では、ゲート電極130D及びゲート絶縁層140Dが形成された後に第2窒化ガリウム層150Dが形成される製造方法を例示したが、第2窒化ガリウム層150Dが形成された後にゲート電極130D及びゲート絶縁層140Dが形成される製造方法であってもよい。
[6.第6実施形態]
 図7を参照して、本発明の第6実施形態に係る半導体装置10Eについて説明する。半導体装置10Eは、第5実施形態に係る半導体装置10Dと類似している。以下の説明において、半導体装置10Eの構成のうち、主に半導体装置10Dと相違する点について説明する。以下の説明において、上記の実施形態と同様の構成について説明をする場合、図1を参照し、図1に示された符号の後にアルファベット“E”を付して説明する。
[6-1.半導体装置10Eの構成]
 図7に示すように、本実施形態では、配向絶縁層110Eは、基板100Eと第2窒化ガリウム層150Eとの間に設けられており、第2窒化ガリウム層150Eと接している。第2窒化ガリウム層150Eは、第1窒化ガリウム層120Eの下方から第1窒化ガリウム層120Eと接している。ゲート電極130Eは、第5実施形態のゲート電極130Dと同様に結晶の配向性を有する。一方、第5実施形態に係る半導体装置10Dとは異なり、ゲート電極130E及びゲート絶縁層140Eが設けられた領域に配向絶縁層110Eは設けられておらず、ゲート電極130Eが基板100Eに接している。本実施形態では、ゲート電極130Eの上に設けられたゲート絶縁層140Eが基板100Eに接しており、配向絶縁層110Eの上に設けられた第2窒化ガリウム層150Eが基板100Eに接している。
 図7では、第2窒化ガリウム層150Eが配向絶縁層110Eのパターン端部を覆う構成を例示したが、この構成に限定されない。当該パターン端部は、ゲート絶縁層140Eと第2窒化ガリウム層150Eとの境界付近に存在してもよく、ゲート絶縁層140Eによって覆われていてもよい。配向絶縁層110Eの代わりに、ゲート電極130Eと同一層で形成された結晶の配向性の導電層が設けられていてもよい。
[7.第7実施形態]
 図8を参照して、本発明の第7実施形態に係る半導体装置10Fについて説明する。半導体装置10Fは、第7実施形態に係る半導体装置10Eと類似している。以下の説明において、半導体装置10Fの構成のうち、主に半導体装置10Eと相違する点について説明する。以下の説明において、上記の実施形態と同様の構成について説明をする場合、図1を参照し、図1に示された符号の後にアルファベット“F”を付して説明する。
[7-1.半導体装置10Fの構成]
 図8に示すように、第2窒化ガリウム層150F及び電極160Fが第1窒化ガリウム層120Fの上に設けられている。第2窒化ガリウム層150Fは第1窒化ガリウム層120Fと接している。第1窒化ガリウム層120Fは配向絶縁層110F及びゲート絶縁層140Fを覆っている。配向絶縁層110Fは、平面視で第2窒化ガリウム層150Fと重なる領域において、第1窒化ガリウム層120Fと基板100Fとの間で第1窒化ガリウム層120Fと接している。
 図8では、D1方向において、ゲート電極130Fの幅W1がソース側第2窒化ガリウム層151Fとドレイン側第2窒化ガリウム層153Fとの間の距離W2より大きい構成が例示されているが、この構成に限定されない。ゲート電極130Fの幅W1がソース側第2窒化ガリウム層151Fとドレイン側第2窒化ガリウム層153Fとの間の距離W2より小さくてもよく、ソース側第2窒化ガリウム層151Fとドレイン側第2窒化ガリウム層153Fとが連続して繋がっていてもよい。
[7-2.半導体装置10Fの製造方法]
 配向絶縁層110F、ゲート電極130F、及びゲート絶縁層140Fがそれぞれパターニングされた後に、第1窒化ガリウム層120F及び第2窒化ガリウム層150Fが連続で形成される。続いて、第2窒化ガリウム層150Fがパターニングされる。そして、パターニングされた第2窒化ガリウム層150Fの上に電極160Fが形成される。
 上記のように、第2窒化ガリウム層150Fが第1窒化ガリウム層120Fの上に設けられることで、これらの層の接触面積を大きくすることができる。その結果、これらの層の接合領域における電流集中を抑制することができる。さらに、配向絶縁層110F及びゲート絶縁層140Fの上に第1窒化ガリウム層120F及び第2窒化ガリウム層150Fが連続で形成されることで、第1窒化ガリウム層120F及び第2窒化ガリウム層150Fについて、良好な結晶性を得ることができる。
[8.第8実施形態]
 図9を参照して、本発明の第8実施形態に係る半導体装置10Gについて説明する。半導体装置10Gは、第8実施形態に係る半導体装置10Fと類似している。以下の説明において、半導体装置10Gの構成のうち、主に半導体装置10Fと相違する点について説明する。以下の説明において、上記の実施形態と同様の構成について説明をする場合、図1を参照し、図1に示された符号の後にアルファベット“G”を付して説明する。
[8-1.半導体装置10Gの構成]
 図9に示すように、配向絶縁層110Gはゲート電極130Gを覆っている。配向絶縁層110Gの上に第1窒化ガリウム層120Gが設けられている。つまり、本実施形態において、配向絶縁層110Gがゲート絶縁層として機能する。図9に示すように、平面視で第2窒化ガリウム層150Gと重なる領域において、ゲート絶縁層としての機能を有する配向絶縁層110Gと第1窒化ガリウム層120Gとが接している。同様に、上記の領域において、第1窒化ガリウム層120Gと第2窒化ガリウム層150Gとが接している。
[8-2.半導体装置10Gの製造方法]
 ゲート電極130Gがパターニングされた後に配向絶縁層110G、第1窒化ガリウム層120G、及び第2窒化ガリウム層150Gが連続で形成される。続いて、第2窒化ガリウム層150Gがパターニングされる。そして、パターニングされた第2窒化ガリウム層150Gの上に電極160Gが形成される。
 本実施形態の構成によると、第7実施形態と同様の効果を得ることができる。
[8-3.半導体装置10Gの変形例]
 図10に示すように、ゲート電極130Gが基板100Gに埋め込まれていてもよい。つまり、基板100Gに凹部が形成され、当該凹部にゲート電極130Gが埋め込まれている。図10では、D2方向において基板100Gの上面とゲート電極130Gの上面とが一致しているが、D2方向において両者の上面が一致していなくてもよい。
 図11に示すように、基板100Gと配向絶縁層110Gとの間に平坦化層165Gが設けられていてもよい。この場合、仮にD2方向における基板100Gの上面とゲート電極130Gの上面との位置が一致していなくても、配向絶縁層110Gが形成される面(平坦化層165Gの上面)を提供することができる。したがって、配向絶縁層110Gの良好な配向性を得ることができる。
[9.第9実施形態]
 図12を参照して、本発明の第9実施形態に係る半導体装置10Hについて説明する。半導体装置10Hは、第9実施形態に係る半導体装置10Gと類似している。以下の説明において、半導体装置10Hの構成のうち、主に半導体装置10Gと相違する点について説明する。以下の説明において、上記の実施形態と同様の構成について説明をする場合、図1を参照し、図1に示された符号の後にアルファベット“H”を付して説明する。
[9-1.半導体装置10Hの構成]
 図12に示すように、第2窒化ガリウム層150Hは第1窒化ガリウム層120Hと水平方向(D1方向)に隣接している。換言すると、第1窒化ガリウム層120H及び第2窒化ガリウム層150Hの各々は配向絶縁層110Hと接している。第2窒化ガリウム層150Hは、第1窒化ガリウム層120Hの側壁において、第1窒化ガリウム層120Hと接している。ゲート電極130Hに所定の電圧が供給されると、第1窒化ガリウム層120Hと配向絶縁層110Hとの界面付近において、第1窒化ガリウム層120Hにキャリアが生成される(チャネルが形成される)。つまり、第2窒化ガリウム層150Hは、第1窒化ガリウム層120Hのうちキャリアが形成される領域付近(124H)において第1窒化ガリウム層120Hと接している。
 上記のように、第2窒化ガリウム層150Hが、上記のキャリアが形成される領域(チャネルが形成される領域)において、第1窒化ガリウム層120Hと接するため、電極160Hから第1窒化ガリウム層120Hに形成されるチャネルまでの電流経路の抵抗を低減することができる。
[9-2.半導体装置10Hの変形例]
 図12では、D2方向において、第1窒化ガリウム層120Hの上面と第2窒化ガリウム層150Hの上面との位置が一致した構成を例示したが、この構成に限定されない。例えば、先に第2窒化ガリウム層150Hを形成してパターニングし、後から第1窒化ガリウム層120Hを形成することで、図13に示すような構成を得ることができる。一方、先に第1窒化ガリウム層120Hを形成してパターニングし、後から第2窒化ガリウム層150Hを形成することで、図14に示すように構成を得ることができる。いずれの構成においても、図12の構成と同様に電極160Hから第1窒化ガリウム層120Hに形成されるチャネルまでの電流経路の抵抗を低減することができる。
[10.第10実施形態]
 図15~図17を参照して、本発明の第10実施形態に係る表示装置20Jについて説明する。図15は、本発明の一実施形態に係る表示装置の構成を示す概略図である。図16は、本発明の一実施形態に係る表示装置の画素の回路図(画素回路)である。図17は、本発明の一実施形態に係る表示装置の画素の断面図である。
[10-1.表示装置20Jの構成の概要]
 図15は、本発明の一実施形態に係る表示装置20Jの構成を示す概略図である。表示装置20Jは、基板100J上に、表示部1020J、駆動回路部1030J、及び端子部1040Jを有している。駆動回路部1030Jは、表示部1020Jの周辺に設けられ、表示部1020Jを制御する。駆動回路部1030Jは、例えば、走査駆動回路などを含む。端子部1040Jは、基板100Jの端部に設けられ、外部からの信号及び電力を表示装置20Jに供給する。端子部1040Jは、例えば、端子1041Jを含む。端子1041Jは、フレキシブルプリント回路基板1050Jと接続される。フレキシブルプリント回路基板1050J上には、ドライバIC1060Jが設けられている。
 表示部1020Jは、画像又は映像を表示することができ、マトリクス状に配置された複数の画素1021Jを含む。ただし、複数の画素1021Jの配置は、マトリクス状に限られない。複数の画素1021Jは、例えば、千鳥状に配置されてもよい。
[10-2.画素1021Jの構成]
 図16は、本発明の一実施形態に係る表示装置20Jの画素1021Jの回路図(画素回路)である。画素1021Jは、第1のトランジスタ200J-1、第2のトランジスタ200J-2、発光ダイオード300J、及び容量素子400Jを含む。
 第1のトランジスタ200J-1は、選択トランジスタとして機能する。すなわち、第1のトランジスタ200J-1は、走査線1110Jにより導通状態が制御される。第1のトランジスタ200J-1において、ゲート、ソース、及びドレインは、それぞれ、走査線1110J、信号線1120J、及び第2のトランジスタ200J-2のゲートと電気的に接続されている。
 第2のトランジスタ200J-2は、駆動トランジスタとして機能する。すなわち、第2のトランジスタ200J-2は、発光ダイオード300Jの発光輝度を制御する。第2のトランジスタ200J-2において、ゲート、ソース、及びドレインは、それぞれ、第1のトランジスタ200J-1のドレイン、駆動電源線1140J、及び発光ダイオード300Jの陽極(p型電極)と電気的に接続されている。
 容量素子400Jの容量電極の一方は、第2のトランジスタ200J-2のゲート及び第1のトランジスタ200J-1のドレインと電気的に接続されている。容量素子400Jの容量電極の他方は、駆動電源線1140Jに電気的に接続されている。
 発光ダイオード300Jの陽極は、第2のトランジスタ200J-2のドレインに接続されている。発光ダイオード300Jの陰極(n型電極)は、基準電源線1160Jに接続されている。
[10-3.表示装置20Jの断面構造]
 図17を参照して、画素1021Jの層構成を説明する。図17の説明において、第1のトランジスタ200J-1と第2のトランジスタ200J-2とを特に区別せず、トランジスタ200Jとして説明する。
 図17は、図15に示すA1-A2線で切断された画素1021Jの断面図である。図17に示すように、表示装置20Jは、基板100J、下地層105J、配向絶縁層110J、トランジスタ200J、発光ダイオード300J、遮光壁500J、遮光層600J、層間膜170J、導電層180J、及び透明導電層190Jを含む。下地層105J、配向絶縁層110J、トランジスタ200J、発光ダイオード300J、遮光壁500J、層間膜170J、導電層180J、及び透明導電層190Jは、基板100Jの第1の面101J側に設けられている。遮光層600Jは、基板100Jの第1の面101Jの反対の第2の面102J側に設けられている。
 基板100Jは、トランジスタ200J及び発光ダイオード300Jの支持基板である。基板100Jとして、上記のように非晶質ガラス基板などを用いることができる。
 下地層105Jは、基板100Jの上に設けられている。下地層105Jは、基板100Jからの不純物又は外部からの不純物(例えば、水分又はナトリウムなど)の拡散を防止することができる。下地層105Jとして、例えば、窒化シリコン層、又は酸化シリコン層及び窒化シリコン層の積層が用いられてもよい。
 配向絶縁層110Jは、下地層105Jの上に設けられている。配向絶縁層110Jが設けられていることにより、配向絶縁層110Jの上に形成されるトランジスタ200Jの第1窒化ガリウム層120Jの結晶性を向上させることができ、配向絶縁層110Jの上に形成される発光ダイオード300Jの窒化ガリウム層310Jの結晶性を向上させることができる。第1窒化ガリウム層120J及び窒化ガリウム層310Jは、同一層に形成されており、同様の膜厚及び物性を有する。
 配向絶縁層110Jが窒素化合物(例えば、窒化チタン又は窒化アルミニウム)を含む場合、下地層105Jが設けられなくてもよい。上記窒素化合物に含まれる窒素は電気陰性度が大きいため、基板100Jに含まれる不純物をトラップすることができる。
 トランジスタ200Jは、第1窒化ガリウム層120J、ゲート電極130J、ゲート絶縁層140J、ソース電極250J、及びドレイン電極260Jを含む。ソース電極250Jは、例えば、図1におけるソース側第2窒化ガリウム層151及びソース側電極161に相当する。ドレイン電極260Jは、例えば、図1におけるドレイン側第2窒化ガリウム層153及びドレイン側電極163に相当する。
 第1窒化ガリウム層120Jは、配向絶縁層110Jの上に設けられている。上記のように、第1窒化ガリウム層120Jは配向絶縁層110Jと接しているため、配向絶縁層110Jによって第1窒化ガリウム層120Jの結晶成長が制御される。その結果、第1窒化ガリウム層120Jは、基板100Jに対してc軸配向する。
 トランジスタ200Jは、いわゆるMOSトランジスタであるが、HEMT(High Electron Mobility Transistor)であってもよい。
 発光ダイオード300Jは、配向絶縁層110Jの上に設けられている。発光ダイオード300Jは、窒化ガリウム層310J、n型半導体層320J、発光層330J、p型半導体層340J、n型電極350J、及びp型電極360Jを含む。
 窒化ガリウム層310Jは、配向絶縁層110Jの上に設けられている。窒化ガリウム層310Jとして、例えば、窒化ガリウム層などが用いられる。窒化ガリウム層310Jは配向絶縁層110Jと接しているため、配向絶縁層110Jによって窒化ガリウム層310Jの結晶成長が制御される。その結果、窒化ガリウム層310Jは、基板100Jに対してc軸配向する。
 n型半導体層320Jは、窒化ガリウム層310Jの上に設けられている。n型半導体層320Jとして、例えば、シリコンをドープした窒化ガリウム層などが用いられる。
 発光層330Jは、n型半導体層320Jの上に設けられている。発光層330Jとして、例えば、窒化インジウムガリウム層と窒化ガリウム層とが交互に積層されたものが用いられる。
 p型半導体層340Jは、発光層330Jの上に設けられている。p型半導体層340Jとして、例えば、マグネシウムをドープした窒化ガリウム層が用いられる。
 n型電極350J及びp型電極360Jは、それぞれn型半導体層320J及びp型半導体層340Jの上に設けられている。n型電極350Jとして、例えば、インジウムなどの金属が用いられる。p型電極360Jとして、例えば、パラジウム又は金などの金属が用いられる。
 発光ダイオード300Jは、いわゆるマイクロLED又はミニLEDであるが、これらに限られない。マイクロLEDは、一辺が100μm以下の大きさのLEDである。ミニLEDは、一辺が100μmよりも大きい大きさのLEDである。
 図示しないが、必要に応じて、トランジスタ200J又は発光ダイオード300Jを覆うように、保護層が設けられてもよい。保護層として、窒化シリコン、又は酸化シリコン層及び窒化シリコン層の積層が用いられてもよい。
 遮光壁500Jは、トランジスタ200Jと発光ダイオード300Jとの間に設けられている。遮光壁500Jは、発光ダイオード300Jから発せられた光を遮断し、トランジスタ200Jに光が照射されることを防止することができる。遮光壁500Jとして、例えば、カーボンが添加されたアクリル樹脂(樹脂ブラック)などを用いることができる。
 遮光層600Jは、基板100Jの第2の面102Jに設けられている。遮光層600Jは、外部からの光を遮断し、トランジスタ200Jに光が照射されることを防止することができる。遮光層600Jとして、例えば、カーボンが添加されたアクリル樹脂(樹脂ブラック)などが用いられてもよい。
 層間膜170Jは、トランジスタ200J、発光ダイオード300J、及び遮光壁500Jを覆うように設けられている。層間膜170Jは、トランジスタ200J、発光ダイオード300J、及び遮光壁500Jによって形成される凹凸を平坦化することができる。層間膜170Jとして、例えば、アクリル樹脂膜又はポリイミド樹脂膜などの有機絶縁膜が用いられる。層間膜170Jは、単層であってもよく、積層であってもよい。層間膜170Jが積層である場合、層間膜170Jは、有機絶縁層だけでなく、酸化シリコン層又は窒化シリコン層などの無機絶縁層を含んでいてもよい。
 導電層180J及び透明導電層190Jは、層間膜170J上に設けられている。導電層180Jは、層間膜170Jに設けられた開口部を介してゲート電極130Jと電気的に接続される。透明導電層190Jは、層間膜170Jに設けられた開口部を介してドレイン電極260Jとp型電極360Jとを電気的に接続する。発光ダイオード300Jの発光層330Jから発せられた光は、透明導電層190Jを透過して外部へ出射される。導電層180Jとして、例えば、アルミニウム及びチタンの積層(例えば、Ti/Al/Ti)を用いることができる。透明導電層190Jとして、例えば、酸化インジウムスズ(ITO)膜又は酸化インジウム亜鉛(IZO)膜などの透明導電層を用いることができる。
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。各実施形態を基にして、当業者が適宜構成要素の追加、削除、もしくは設計変更を行ったもの、又は、工程の追加、省略、もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 上述した各実施形態によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。
10:半導体装置、  20J:表示装置、  100:基板、  101J:第1の面、  102J:第2の面、  105J:下地層、  110:配向絶縁層、  120:第1窒化ガリウム層、  121A:第1領域、  122A:第2領域、  123C:側壁、  130:ゲート電極、  140:ゲート絶縁層、  150:第2窒化ガリウム層、  151:ソース側第2窒化ガリウム層、  153:ドレイン側第2窒化ガリウム層、  160:電極、  161:ソース側電極、  163:ドレイン側電極、  165G:平坦化層、  170J:層間膜、  180J:導電層、  190J:透明導電層、  200J:トランジスタ、  250J:ソース電極、  260J:ドレイン電極、  300J:発光ダイオード、  310J:窒化ガリウム層、  320J:n型半導体層、  330J:発光層、  340J:p型半導体層、  350J:n型電極、  360J:p型電極、  400J:容量素子、  500J:遮光壁、  600J:遮光層、  1020J:表示部、  1021J:画素、  1030J:駆動回路部、  1040J:端子部、  1041J:端子、  1050J:フレキシブルプリント回路基板、  1110J:走査線、  1120J:信号線、  1140J:駆動電源線、  1160J:基準電源線
 

Claims (19)

  1.  非晶質ガラス基板と、
     前記非晶質ガラス基板の上に設けられ、結晶の配向性を有する配向絶縁層と、
     前記配向絶縁層の上に設けられ、前記配向絶縁層と接する第1の導電型の第1窒化ガリウム層と、
     前記第1窒化ガリウム層と対向するゲート電極と、
     前記第1窒化ガリウム層と前記ゲート電極との間のゲート絶縁層と、を有する半導体装置。
  2.  前記配向絶縁層は、6回回転対称を持つ面を有する、請求項1に記載の半導体装置。
  3.  前記配向絶縁層は、六方最密構造における(0001)面、又は、面心立方構造における(111)面を有する、請求項2に記載の半導体装置。
  4.  前記配向絶縁層は、窒化アルミニウム、酸化ガリウム、窒化チタン、又は酸化チタンを含む、請求項1に記載の半導体装置。
  5.  前記ゲート電極は、前記第1窒化ガリウム層の上に設けられている、請求項1に記載の半導体装置。
  6.  前記第1窒化ガリウム層よりも高い導電性を有する第2の導電型の第2窒化ガリウム層をさらに有し、
     前記第2窒化ガリウム層は、前記第1窒化ガリウム層の上方から前記第1窒化ガリウム層と接している、請求項1乃至5のいずれか一に記載の半導体装置。
  7.  前記第1窒化ガリウム層よりも高い導電性を有する第2の導電型の第2窒化ガリウム層をさらに有し、
     第1領域において、前記第1窒化ガリウム層は、前記第2窒化ガリウム層の上方から前記第2窒化ガリウム層と接し、
     前記第1領域とは異なる第2領域において、前記第1窒化ガリウム層は、前記第2窒化ガリウム層から露出された前記配向絶縁層と接する、請求項1乃至5のいずれか一に記載の半導体装置。
  8.  前記第2窒化ガリウム層は、ソース側第2窒化ガリウム層及びドレイン側第2窒化ガリウム層を含み、
     前記非晶質ガラス基板の主面における任意の第1方向において、前記ゲート電極の幅は、前記ソース側第2窒化ガリウム層と前記ドレイン側第2窒化ガリウム層との間の距離より大きい、請求項7に記載の半導体装置。
  9.  前記第1窒化ガリウム層よりも高い導電性を有する第2の導電型の第2窒化ガリウム層をさらに有し、
     前記ゲート絶縁層は、前記第1窒化ガリウム層の上方から前記第1窒化ガリウム層と接し、
     前記第2窒化ガリウム層の一部は、前記ゲート絶縁層の上方から前記ゲート絶縁層と接している、請求項1乃至5のいずれか一に記載の半導体装置。
  10.  非晶質ガラス基板と、
     前記非晶質ガラス基板の上に設けられたゲート電極と、
     前記ゲート電極の上に設けられ、結晶の配向性を有するゲート絶縁層と、
     前記ゲート絶縁層の上に設けられ、前記ゲート絶縁層と接する第1の導電型の第1窒化ガリウム層と、を有する半導体装置。
  11.  前記ゲート絶縁層は、6回回転対称を持つ面を有する、請求項10に記載の半導体装置。
  12.  前記ゲート絶縁層は、六方最密構造における(0001)面、又は、面心立方構造における(111)面を有する、請求項11に記載の半導体装置。
  13.  前記ゲート絶縁層は、窒化アルミニウム、酸化ガリウム、窒化チタン、又は酸化チタンを含む、請求項10に記載の半導体装置。
  14.  前記非晶質ガラス基板と前記ゲート電極との間に設けられ、前記ゲート電極と接し、結晶の配向性を有する配向絶縁層をさらに有し、
     前記ゲート電極及び前記ゲート絶縁層は、前記配向絶縁層と同じ結晶の配向性を有する、請求項10乃至13のいずれか一に記載の半導体装置。
  15.  前記第1窒化ガリウム層よりも高い導電性を有する第2の導電型の第2窒化ガリウム層をさらに有し、
     前記第2窒化ガリウム層は、前記配向絶縁層の上方から前記配向絶縁層と接し、前記第1窒化ガリウム層の下方から前記第1窒化ガリウム層と接している、請求項14に記載の半導体装置。
  16.  前記第1窒化ガリウム層よりも高い導電性を有する第2の導電型の第2窒化ガリウム層と、
     前記非晶質ガラス基板と前記第2窒化ガリウム層との間に設けられ、前記第2窒化ガリウム層と接し、結晶の配向性を有する配向絶縁層と、をさらに有し、
     前記ゲート電極は、結晶の配向性を有し、前記ゲート絶縁層と接し、
     前記第2窒化ガリウム層は、前記第1窒化ガリウム層の下方から前記第1窒化ガリウム層と接している、請求項10乃至13のいずれか一に記載の半導体装置。
  17.  前記第1窒化ガリウム層よりも高い導電性を有する第2の導電型の第2窒化ガリウム層と、
     平面視で前記第2窒化ガリウム層と重なる領域において、前記非晶質ガラス基板と前記第1窒化ガリウム層との間で前記第1窒化ガリウム層と接し、結晶の配向性を有する配向絶縁層と、をさらに有し、
     前記第2窒化ガリウム層は、前記第1窒化ガリウム層の上方から前記第1窒化ガリウム層と接している、請求項10乃至13のいずれか一に記載の半導体装置。
  18.  前記第1窒化ガリウム層よりも高い導電性を有する第2の導電型の第2窒化ガリウム層をさらに有し、
     平面視で前記第2窒化ガリウム層と重なる領域において、前記ゲート絶縁層と前記第1窒化ガリウム層とが接し、前記第1窒化ガリウム層と前記第2窒化ガリウム層とが接する、請求項10乃至13のいずれか一に記載の半導体装置。
  19.  前記第1窒化ガリウム層よりも高い導電性を有する第2の導電型の第2窒化ガリウム層をさらに有し、
     前記第2窒化ガリウム層は、前記非晶質ガラス基板の主面における任意の第1方向において、前記第1窒化ガリウム層と隣接する位置で、前記ゲート絶縁層と接する、請求項10乃至13のいずれか一に記載の半導体装置。
     
PCT/JP2022/022888 2021-06-29 2022-06-07 半導体装置 WO2023276575A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531739A JPWO2023276575A1 (ja) 2021-06-29 2022-06-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-108107 2021-06-29
JP2021108107 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276575A1 true WO2023276575A1 (ja) 2023-01-05

Family

ID=84690275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022888 WO2023276575A1 (ja) 2021-06-29 2022-06-07 半導体装置

Country Status (2)

Country Link
JP (1) JPWO2023276575A1 (ja)
WO (1) WO2023276575A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016245A (ja) * 2000-06-29 2002-01-18 Nec Corp 半導体装置
WO2006001369A1 (ja) * 2004-06-24 2006-01-05 Nec Corporation 半導体装置
JP2007266577A (ja) * 2006-03-03 2007-10-11 Matsushita Electric Ind Co Ltd 窒化物半導体装置及びその製造方法
JP2014107458A (ja) * 2012-11-28 2014-06-09 Renesas Electronics Corp 半導体装置及び半導体ウェハ
US20140264379A1 (en) * 2013-03-15 2014-09-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy III-Nitride P-Channel Field Effect Transistor with Hole Carriers in the Channel
JP2016115931A (ja) * 2014-12-11 2016-06-23 パナソニックIpマネジメント株式会社 窒化物半導体装置および窒化物半導体装置の製造方法
JP2016134610A (ja) * 2015-01-22 2016-07-25 国立大学法人名古屋大学 Iii族窒化物半導体素子とその製造方法
US20190319020A1 (en) * 2018-04-17 2019-10-17 Shaoher Pan Integrated multi-color light-emitting pixel arrays based devices by bonding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016245A (ja) * 2000-06-29 2002-01-18 Nec Corp 半導体装置
WO2006001369A1 (ja) * 2004-06-24 2006-01-05 Nec Corporation 半導体装置
JP2007266577A (ja) * 2006-03-03 2007-10-11 Matsushita Electric Ind Co Ltd 窒化物半導体装置及びその製造方法
JP2014107458A (ja) * 2012-11-28 2014-06-09 Renesas Electronics Corp 半導体装置及び半導体ウェハ
US20140264379A1 (en) * 2013-03-15 2014-09-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy III-Nitride P-Channel Field Effect Transistor with Hole Carriers in the Channel
JP2016115931A (ja) * 2014-12-11 2016-06-23 パナソニックIpマネジメント株式会社 窒化物半導体装置および窒化物半導体装置の製造方法
JP2016134610A (ja) * 2015-01-22 2016-07-25 国立大学法人名古屋大学 Iii族窒化物半導体素子とその製造方法
US20190319020A1 (en) * 2018-04-17 2019-10-17 Shaoher Pan Integrated multi-color light-emitting pixel arrays based devices by bonding

Also Published As

Publication number Publication date
JPWO2023276575A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
KR102625489B1 (ko) 마이크로 led 표시 패널 및 그 제조 방법
KR102207563B1 (ko) 유기 발광 표시장치 및 유기 발광 표시장치의 제조 방법
US9768310B2 (en) Thin film transistor, organic light-emitting diode display including the same, and manufacturing method thereof
US8871566B2 (en) Method of manufacturing thin film transistor
WO2019042474A1 (zh) 阵列基板及显示装置
US8946758B2 (en) Organic light emitting display device and method of manufacturing organic light emitting display device
US8692453B2 (en) Organic light emitting display device and method of fabricating the same
CN104716143A (zh) 薄膜晶体管阵列基底及其制造方法、有机发光显示设备
US20110006972A1 (en) Organic el display device
CN110416244B (zh) 显示面板及其制作方法
CN112447785B (zh) 一种发光二极管显示面板及其制备方法、显示装置
KR102477631B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
KR102555828B1 (ko) 고 해상도 마이크로 led 표시 장치 및 그 제조 방법
TWI729612B (zh) 主動矩陣led陣列前驅物
US20050258745A1 (en) Organic light emitting diode display device and method of manufacturing the same
US9412846B2 (en) Thin-film transistor, method of manufacturing the same, and organic light-emitting diode (OLED) display including the same
KR100786294B1 (ko) 유기 전계 발광 표시 장치 및 그 제조 방법
TWI597835B (zh) 有機發光顯示器及製造其之方法
US20140175423A1 (en) Thin film transistor array panel and method of manufacturing the same
KR20120106192A (ko) 유기 발광 장치 및 그 제조 방법
US8405088B2 (en) Thin film transistor and organic light emitting diode display device
KR101780893B1 (ko) 조명장치에 포함되는 전계 발광소자 및 이를 제조하는 방법
KR102462498B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
WO2023276575A1 (ja) 半導体装置
WO2023037870A1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531739

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE