KR102555828B1 - 고 해상도 마이크로 led 표시 장치 및 그 제조 방법 - Google Patents

고 해상도 마이크로 led 표시 장치 및 그 제조 방법 Download PDF

Info

Publication number
KR102555828B1
KR102555828B1 KR1020180163161A KR20180163161A KR102555828B1 KR 102555828 B1 KR102555828 B1 KR 102555828B1 KR 1020180163161 A KR1020180163161 A KR 1020180163161A KR 20180163161 A KR20180163161 A KR 20180163161A KR 102555828 B1 KR102555828 B1 KR 102555828B1
Authority
KR
South Korea
Prior art keywords
micro led
layer
substrate
bank
area
Prior art date
Application number
KR1020180163161A
Other languages
English (en)
Other versions
KR20200074591A (ko
Inventor
최원진
채기성
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020180163161A priority Critical patent/KR102555828B1/ko
Priority to US16/545,973 priority patent/US10903195B2/en
Publication of KR20200074591A publication Critical patent/KR20200074591A/ko
Application granted granted Critical
Publication of KR102555828B1 publication Critical patent/KR102555828B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6835Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 생산 시간을 줄이고 생산 수율을 높이며, 마이크로 LED 장치의 제조 과정에서 발생될 수 있는 크랙 전파를 최소화하고, 마이크로 LED들 간의 경계 영역을 최소화하여 경계 영역에 대한 사용자의 인지를 최소화할 수 있는 고 해상도 마이크로 LED 장치 및 그 제조 방법에 대한 것이다.
이를 위해 마이크로 LED를 미리 설정된 어레이 영역 단위로 전사하되, 절단 영역에 대응되는 박막 트랜지스터층, 마이크로 LED층 및 뱅크막을 절단 공정 이전에 미리 제거하여, 절단 공정 중 상기 층들과 막을 통해서 직접 전달될 수 있는 크랙의 전파를 최소화하여 불량율을 최소화할 수 있다.
또한 절단 영역에 대응되는 박막 트랜지스터층, 마이크로 LED층 및 뱅크막을 절단 공정 이전에 미리 제거하기 때문에, 소자들의 손상을 방지하기 위한 데드존(Dead Zone) 영역을 줄여 뱅크층의 두께를 감소시켜, 마이크로 LED들 간의 간격을 최소화할 수 있어 고 해상도의 구현에 유리할 수 있다.

Description

고 해상도 마이크로 LED 표시 장치 및 그 제조 방법{HIGH RESOLUTION MICRO LED DISPLAY DEVICE AND THE MANUFACTURING METHOD OF THE SAME}
본 발명은 마이크로 LED들간의 경계 영역을 감소시키고, 제조 과정에서 발생될 수 있는 마이크로 LED 소자로의 크랙 전파를 최소화할 수 있는 고 해상도 마이크로 LED 표시 장치 및 그 제조 방법에 관한 것이다.
현대 사회가 점점 정보화 사회로 발전해가면서 가전기기, 각종 휴대용 전자기기 등에 대한 요구가 증대됨에 따라, 경량 박형의 다양한 평판형 표시 장치에 대한 요구도 증대되고 있다.
이러한 평판형 표시 장치는 액정 표시 장치(Liquid Crystal Display Device, LCD), 플라즈마 표시 장치(Plasma Display Panel, PDP), 유기 발광 표시 장치(Organic Light Emitting Diode, OLED), 마이크로 LED 표시 장치(Micro Light Emitting Diode, Micro LED) 등 다양한 형태로 구현되고 있다.
이 중에서 유기 발광 표시 장치와 마이크로 LED 표시 장치는 자체 발광 소자를 이용하기 때문에, 액정 표시 장치에 사용되는 백라이트(Back Light)와 같은 별도의 광원이 필요하지 않아 두께를 더욱 얇게 하거나 다양한 형태의 표시 장치로 활용할 수 있다.
다만 유기물을 사용하는 유기 발광 표시 장치는 수분과 산소에 의해 불량화소가 발생하기 쉽기 때문에, 수분과 산소의 침투를 최소화하기 위한 차단 방지 구조가 요구된다.
이에 반해 GaN과 같은 무기 재료로 이루어진 마이크로 LED 소자를 사용하는 마이크로 LED 표시 장치는, 수분, 산소, 열 등 외부 환경 요인에 의한 영향성이 낮아 고신뢰성을 가질 수 있다.
또한 마이크로 LED 표시 장치의 마이크로 LED 소자는 내부 양자 효율이 매우 높아 유기 발광 표시 장치 대비 고휘도의 영상을 표시하면서도, 전력의 소모가 낮아 최근 마이크로 LED 표시 장치에 대한 개발이 활발히 진행되고 있다.
본 발명의 목적은 생산 시간을 줄이고 생산 수율을 높여 생산 단가를 낮출 수 있는 고 해상도 마이크로 LED 장치 및 그 제조 방법을 제공하는 것이다.
또한 본 발명의 목적은 마이크로 LED 장치의 제조 과정에서 발생될 수 있는 마이크로 LED로의 크랙 전파를 최소화할 수 있는 고 해상도 마이크로 LED 장치 및 그 제조 방법을 제공하는 것이다.
또한 본 발명의 목적은 마이크로 LED들 간의 경계 영역을 최소화할 수 있는 고 해상도 마이크로 LED 장치 및 그 제조 방법을 제공하는 것이다.
또한 본 발명의 목적은 마이크로 LED들 간의 경계 영역에 대한 사용자의 인지를 최소화할 수 있는 고 해상도 마이크로 LED 장치 및 그 제조 방법을 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명에 따른 마이크로 LED 표시 장치는 다음과 같은 제조 방법을 통해 제조 될 수 있다.
먼저 복수의 박막 트랜지스터 영역을 포함하는 복수의 박막 트랜지스터 어레이 영역으로 구획된 제1 기판 상에 복수의 박막 트랜지스터 어레이를 형성하고, 복수의 마이크로 LED 영역을 포함하는 복수의 마이크로 LED 어레이 영역으로 구획된 제2 기판 상에 복수의 마이크로 LED 어레이를 형성할 수 있다.
다음으로 박막 트랜지스터 어레이 영역에 대응되는 마이크로 LED 어레이를 제1 기판 상에 전사할 수 있다.
다음으로 제1 기판 상에 제3 기판과 뱅크막을 형성하고, 뱅크막을 패터닝하여 마이크로 LED 영역들 간의 경계 영역에 대응되는 제1 뱅크층과 마이크로 LED 어레이 영역의 가장자리 영역에 대응되는 제2 뱅크층을 형성함으로써 각각 화소 영역과 화소 어레이 영역을 형성하고, 서로 인접한 제2 뱅크층들 간의 경계 영역에 있는 뱅크막을 제거하도록 뱅크막을 패터닝할 수 있다.
다음으로 서로 인접한 제2 뱅크층들 간의 경계 영역 내에 설정된 절단 영역을 따라, 제3 기판과 제1 기판을 절단하고, 박막 트랜지스터 어레이와 마이크로 LED 어레이를 포함하는 화소 어레이를 제1 기판으로부터 분리하여, 제4 기판 상에 전사할 수 있다.
이와 같이 본 발명에 따른 마이크로 LED 표시 장치의 제조 방법은 마이크로 LED를 미리 설정된 어레이 영역 단위로 전사할 수 있어 개별적으로 전사하는 공정 대비 생산 시간을 줄이고, 수율을 높일 수 있다.
또한 절단 영역에 대응되는 박막 트랜지스터층, 마이크로 LED층 및 뱅크막을 절단 공정 이전에 미리 제거하여, 절단 공정에서 발생될 수 있는 크랙의 전파를 최소화할 수 있고, 마이크로 LED들 간의 경계 영역을 최소화할 수 있다.
또한 본 발명에 따른 마이크로 LED 표시 장치는 복수의 화소 영역을 포함하는 복수의 화소 어레이 영역이 정의된 하부 기판과, 하부 기판 상에 있고, 각각의 화소 영역에 대응되는 복수의 박막 트랜지스터를 포함하는 박막 트랜지스터 어레이와, 박막 트랜지스터 어레이 상에 있고, 각각의 화소 영역에 대응되는 복수의 마이크로 LED를 포함하는 마이크로 LED 어레이와, 마이크로 LED 어레이 상에 있는 상부 기판 및 상부 기판 상에 있는, 화소 영역들 간의 경계 영역에 있는 제1 뱅크층과 화소 어레이 영역의 가장 자리 영역에 있는 제2 뱅크층을 포함할 수 있다.
이 경우 제2 뱅크층은 화소 어레이 영역에 대응되는 상부 기판의 끝단부로부터 일정 거리 이격될 수 있다.
이와 같이 본 발명에 따른 마이크로 LED 표시 장치는 제2 뱅크층이 상부 기판의 끝단부로부터 일정 거리 이격되어 있기 때문에 제2 뱅크층을 통해서 직접 전파될 수 있는 크랙을 최소화할 수 있다. 또한 상부 기판의 이격부에 의해서 내부 광이 재반사될 수 있어 경계 영역이 사용자에게 인식되는 것을 최소화할 수 있다.
본 발명에 따르면 마이크로 LED를 개별적으로 전사하는 것이 아니라, 미리 설정된 어레이 영역 단위로 전사할 수 있어 생산 시간을 줄일 수 있고, 다양한 크기와 패턴의 어레이 영역 단위를 설정할 수 있어 원형의 기판에서 사용되지 않는 영역을 최소화할 수 있어 생산 수율을 높여 생산 단가를 낮출 수 있다.
또한 본 발명에 따르면 절단 영역에 대응되는 박막 트랜지스터층, 마이크로 LED층 및 뱅크막을 절단 공정 이전에 미리 제거하여, 절단 공정 중 상기 층들과 막을 통해서 직접 전달될 수 있는 크랙의 전파를 최소화하여 불량율을 최소화할 수 있다. 아울러 화소 어레이 영역의 가장 자리 영역에 있는 제2 뱅크층을 상부 기판의 끝단으로부터 일정 거리 이격되도록 형성하여, 절단 공정 중 제2 뱅크층을 통해서 직접 전달될 수 있는 크랙의 전파를 최소화하여 불량율을 최소화할 수 있다.
또한 본 발명에 따르면 절단 영역에 대응되는 박막 트랜지스터층, 마이크로 LED층 및 뱅크막을 절단 공정 이전에 미리 제거하기 때문에, 절단 공정으로 인해 발생할 수 있는 소자들의 손상을 방지하기 위한 데드존(Dead Zone) 영역의 폭 설정을 최소화함으로써 제2 뱅크층의 두께를 감소시켜, 마이크로 LED들 간의 간격을 최소화할 수 있어 고 해상도의 구현에 유리할 수 있다.
또한 본 발명에 따르면 마이크로 LED들 간의 경계 영역에 있는 상부 기판의 이격부가 커버층에 의해서 내부로 반사된 마이크로 LED의 광을 외부로 재반사할 수 있어 마이크로 LED들 간의 경계 영역에 대한 사용자의 인지를 최소화할 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 본 발명의 일 실시예에 따른 마이크로 LED 표시 장치의 제조 방법에 대한 공정 순서도이다.
도 2a와 도 2b는 각각 제1 기판 상에 복수의 박막 트랜지스터 어레이를 형성하는 공정도에 대한 개략적인 평면도와 단면도이다.
도 3a와 도 3b는 각각 제2 기판 상에 마이크로 LED 어레이를 형성하는 공정도에 대한 개략적인 평면도와 단면도이다.
도 4a와 도 4b는 마이크로 LED 어레이를 제1 기판 상에 전사하는 공정도에 대한 개략적인 평면도와 단면도이다.
도 5a와 도 5b는 제1 기판 상에 제3 기판과 뱅크막을 형성하는 공정도에 대한 개략적인 평면도와 단면도이다.
도 6a와 도 6b는 뱅크막을 패터닝하는 공정도에 대한 개략적인 평면도와 단면도이다.
도 7a와 도 7b는 제3 기판과 제1 기판을 절단하는 공정도에 대한 개략적인 평면도와 단면도이다.
도 8은 화소 어레이를 제1 기판으로부터 분리하여, 분리된 화소 어레이를 제4 기판 상에 전사하는 공정도에 대한 개략적인 평면도이다.
도 9a, 도 9b, 도 9c는 다양한 크기와 패턴을 갖는 화소 어레이 영역의 다양한 실시예에 대한 개략적인 평면도이다.
도 10은 본 발명의 실시예에 따른 마이크로 LED 표시 장치의 일부 영역에 대한 단면도이다.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
이하에서 구성요소의 "상부 (또는 하부)" 또는 구성요소의 "상 (또는 하)"에 임의의 구성이 배치된다는 것은, 임의의 구성이 상기 구성요소의 상면 (또는 하면)에 접하여 배치되는 것뿐만 아니라, 상기 구성요소와 상기 구성요소 상에 (또는 하에) 배치된 임의의 구성 사이에 다른 구성이 개재될 수 있음을 의미할 수 있다.
또한 어떤 구성요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 상기 구성요소들은 서로 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성요소 사이에 다른 구성요소가 "개재"되거나, 각 구성요소가 다른 구성요소를 통해 "연결", "결합" 또는 "접속"될 수도 있는 것으로 이해되어야 할 것이다.
도 1은 본 발명의 일 실시예에 따른 마이크로 LED 표시 장치(10)의 제조 방법에 대한 공정 순서도이다.
먼저 복수의 박막 트랜지스터 영역(TA)을 포함하는 복수의 박막 트랜지스터 어레이 영역(TAA)으로 구획된 제1 기판(100) 상에 복수의 박막 트랜지스터 어레이(120)를 형성하고, 복수의 마이크로 LED 영역(MA)을 포함하는 복수의 마이크로 LED 어레이 영역(MAA)으로 구획된 제2 기판(200) 상에 복수의 마이크로 LED 어레이(220)를 형성할 수 있다. (S101-1, S101-2)
다음으로 박막 트랜지스터 어레이 영역(TAA)에 대응되는 마이크로 LED 어레이(220)를 제1 기판(100) 상에 전사할 수 있다. (S102)
다음으로 제1 기판(100) 상에 제3 기판(300)과 뱅크막(310)을 형성할 수 있다. (S103)
다음으로 뱅크막(310)을 패터닝하여 마이크로 LED 영역(MA)들 간의 경계 영역에 대응되는 제1 뱅크층(311)과 마이크로 LED 어레이 영역(MAA)의 가장자리 영역에 대응되는 제2 뱅크층(312)을 형성하여 각각 화소 영역(PA)과 화소 어레이 영역(PAA)을 형성하고, 서로 인접한 제2 뱅크층(312)들 간의 경계 영역에 있는 뱅크막(310)을 제거하도록 뱅크막(310)을 패터닝할 수 있다. (S104)
다음으로 서로 인접한 제2 뱅크층(312)들 간의 경계 영역 내에 설정된 절단 영역(Scribe Zone, SZ)을 따라, 제3 기판(300)과 제1 기판(100)을 절단할 수 있다. (S105)
다음으로 박막 트랜지스터 어레이(120)와 마이크로 LED 어레이(220)를 포함하는 화소 어레이를 제1 기판(100)으로부터 분리하여, 제4 기판(400) 상에 전사하여 마이크로 LED 표시 장치(10)를 제조할 수 있다. (S106)
이하에서는 상기 공정 순서도에 따라 본 발명의 일 실시예에 따른 마이크로 LED 표시 장치의 제조 방법에 따라서 자세히 설명하도록 한다.
이하에서 설명하는 각 층들 및 막들에 대한 패턴 형성 방법은 당업계에서 통상의 기술자가 실시하는 기술인, 증착(Deposition), 포토레지스트 도포(PR Coating), 노광(Exposure), 현상(Develop), 식각(Etch), 포토레지스트 박리(PR Strip)를 포함하는 포토리소그래피(Photolithography) 공정을 이용할 수 있는 바 이에 대한 자세한 설명은 생략한다. 예를 들어 증착의 경우 금속 재료일 경우에는 스퍼터링(Sputtering), 반도체나 절연막인 경우에는 플라즈마 화학증착(Plasma Enhanced Vapor Deposition; PECVD)와 같은 방법을 나누어서 사용할 수 있으며, 식각의 경우에도 재료에 따라 건식 식각 및 습식 식각을 선택하여 사용할 수 있는 것으로 당업계에서 통상의 기술자가 실시하는 기술을 적용할 수 있다.
도 2a와 도 2b는 각각 제1 기판(100) 상에 복수의 박막 트랜지스터 어레이(120)를 형성하는 공정도에 대한 개략적인 평면도와 단면도이다.
제1 기판(100) 상에는 복수의 박막 트랜지스터 영역(TA)을 포함하는 복수의 박막 트랜지스터 어레이 영역(TAA)이 구획되도록, 박막 트랜지스터층이 형성될 수 있다.
즉 복수의 박막 트랜지스터(110)들이 모여 하나의 박막 트랜지스터 어레이(120)를 형성할 수 있다.
박막 트랜지스터층은 제1 기판(100) 전면에 형성된 버퍼층(111)과, 버퍼층(111) 상에 형성된 게이트 전극(112)과, 게이트 전극(112)을 덮도록 제1 기판(100) 전면에 형성된 게이트 절연층(113)과, 게이트 절연층(113) 상에 형성된 반도체층(114)과, 반도체층(114) 상에 형성된 제1 전극(115a) 및 제2 전극(115b)을 포함하도록 형성될 수 있다.
각각의 박막 트랜지스터 영역(TA)에 대응되도록 박막 트랜지스터(Thin Film Transistor, TFT, 110)들이 형성되며, 박막 트랜지스터(110)는 마이크로 LED(210)를 구동시킬 수 있는 구동 소자로 작동할 수 있다.
서로 인접한 박막 트랜지스터 어레이 영역(TAA)들 간의 경계 영역에 대응되는 박막 트랜지스터층은 식각을 이용한 패터닝 방법을 통해서 제거될 수 있다. 이 경우 제거되는 박막 트랜지스터층은 제1 기판(100) 전면에 형성된 버퍼층(111)과 게이트 절연층(113)일 수 있다.
이에 따라 서로 인접한 박막 트랜지스터 어레이 영역(TAA)들은 각각의 영역들이 구획되어, 서로 이어지지 않고 물리적으로 나뉘어질 수 있다.
더욱 구체적으로 제1 기판(100) 상에 있는 복수의 박막 트랜지스터 어레이 영역(TAA)들은 각각의 박막 트랜지스터 어레이 영역(TAA)의 패턴을 따라 박막 트랜지스터층이 패터닝되어, 각각의 박막 트랜지스터 어레이 영역(TAA)들은 섬(Island) 형상으로 분리되도록 형성될 수 있다.
박막 트랜지스터 어레이 영역(TAA)의 크기와 패턴은 설계를 통해서 미리 설정될 수 있다. 구체적으로는 최종적으로 전사되어 형성될 마이크로 LED 표시 장치(10)의 화소 어레이 영역(PAA)에 대응되도록 크기와 패턴이 미리 설정될 수 있다.
따라서 동일한 제1 기판(100) 상에 있는 복수의 박막 트랜지스터 어레이 영역(TAA)들의 크기와 패턴은 서로 동일할 수도 있지만, 각각이 서로 다른 크기와 패턴을 갖도록 미리 설정될 수 있는 것으로 최종적으로 형성될 마이크로 LED 표시 장치(10)의 화소 어레이 영역(PAA)의 크기와 패턴에 따라 달라지게 된다.
제1 기판(100)은 사파이어 기판이나 실리콘 기판을 사용할 수 있지만 특별히 한정되는 것은 아니다.
도 3a와 도 3b는 각각 제2 기판(200) 상에 마이크로 LED 어레이(220)를 형성하는 공정도에 대한 개략적인 평면도와 단면도이다.
제2 기판(200) 상에는 복수의 마이크로 LED 영역(MA)을 포함하는 복수의 마이크로 LED 어레이 영역(MAA)이 구획되도록, 마이크로 LED층이 형성될 수 있다.
즉 도 3a와 같이 복수의 마이크로 LED(210)들이 모여 하나의 마이크로 LED 어레이(220)를 형성할 수 있다.
마이크로 LED(210)는 제2 기판(200) 전면에 형성된 도핑되지 않은 GaN 버퍼층(211)과 n형 GaN층(212), 다중양자우물(Multi Quantum Well: MQW) 구조를 가진 활성층(213), p형 GaN층(214)이 적층되도록 형성될 수 있다.
각각의 마이크로 LED 영역(MA)에 대응되도록 마이크로 LED(210)들이 형성되며, 마이크로 LED(210)는 각각이 자체 발광을 할 수 있는 발광 소자로서 작동할 수 있다. 본 발명에 따른 마이크로 LED(210)는 청색 광을 발광하는 것을 사용하였지만 이에 한정되는 것은 아니며, 각각의 마이크로 LED(210)들이 적색, 녹색, 청색을 발광하는 것을 사용할 수도 있다.
서로 인접한 마이크로 LED 어레이 영역(MAA)들 간의 경계 영역에 대응되는 마이크로 LED층은 식각을 이용한 패터닝 방법을 통해서 제거될 수 있다. 이 경우 제거되는 마이크로 LED층은 제2 기판(200) 전면에 형성된 도핑되지 않은 GaN 버퍼층(211)과 n형 GaN층(212)일 수 있다.
이에 따라 서로 인접한 마이크로 LED 어레이 영역(MAA)들은 각각의 영역들이 구획되어, 서로 이어지지 않고 물리적으로 나뉘어질 수 있다.
더욱 구체적으로 제2 기판(200) 상에 있는 복수의 마이크로 LED 어레이 영역(MAA)들은 각각의 마이크로 LED 어레이 영역(MAA)의 패턴을 따라 마이크로 LED층이 패터닝되어, 각각의 마이크로 LED 어레이 영역(MAA)들은 섬(Island) 형상으로 분리되도록 형성될 수 있다.
마이크로 LED 어레이 영역(MAA)의 크기와 패턴은 설계를 통해서 미리 설정될 수 있다. 구체적으로는 최종적으로 전사되어 형성될 마이크로 LED 표시 장치(10)의 화소 어레이 영역(PAA)에 대응되도록 크기와 패턴이 미리 설정될 수 있다.
따라서 동일한 제2 기판(200) 상에 있는 복수의 마이크로 LED 어레이 영역(MAA)들의 크기와 패턴은 서로 동일할 수도 있지만, 각각이 서로 다른 크기와 패턴을 갖도록 미리 설정될 수 있는 것으로 최종적으로 형성될 마이크로 LED 표시 장치(10)의 화소 어레이 영역(PAA)의 크기와 패턴에 따라 달라지게 된다.
결국 마이크로 LED 어레이 영역(MAA)의 크기와 패턴은 앞서 설명한 박막 트랜지스터 어레이 영역(TAA)의 크기와 패턴에도 동일하게 대응될 수 있다.
마이크로 LED(210)는 제2 기판(200) 상에 버퍼층을 형성하고 버퍼층 상에 GaN 박막을 성장함으로써 형성될 수 있다. 이 경우 GaN 박막의 성장을 위한 제2 기판(200)으로는 사파이어(sapphire), 실리콘(Si), GaN, 실리콘 카바이드(SiC), 갈륨비소(GaAs), 산화아연(ZnO) 등이 사용될 수 있지만 이에 한정되는 것은 아니다.
구체적으로 마이크로 LED(210)는 GaN과 같은 무기재료를 반도체 기판 상에 결정화하는 것으로 형성하게 되는데, 이러한 결정화 공정은 통상 에피택시(Epitaxy), 에피텍셜 성장(Epitaxial growth) 또는 에피 공정으로 불리울 수 있다.
도 4a와 도 4b는 마이크로 LED 어레이(220)를 제1 기판(100) 상에 전사하는 공정도에 대한 개략적인 평면도와 단면도이다.
박막 트랜지스터 어레이(120)들과 마이크로 LED 어레이(220)들의 크기와 패턴은 최종적으로 형성될 마이크로 LED 표시 장치(10)의 화소 어레이의 크기와 패턴에 따라 미리 설정되기 때문에, 마이크로 LED 어레이(220)들에 대응되는 크기와 패턴을 갖는 박막 트랜지스터 어레이(120)들이 제1 기판(100) 상에 존재하게 된다.
따라서 박막 트랜지스터 어레이 영역(TAA)의 크기와 패턴에 대응되는 마이크로 LED 어레이(220)를 제2 기판(200)으로부터 분리시키고, 분리된 마이크로 LED 어레이(220)를 제1 기판(100) 상에 전사할 수 있다.
박막 트랜지스터 어레이(120)들이 있는 제1 기판(100)의 크기가 마이크로 LED 어레이(220)들이 있는 제2 기판(200)의 크기보다 크게 형성하는 경우, 제1 기판(100)의 마이크로 LED 어레이(220)들을 박막 트랜지스터 어레이(120)들에 모두 대응시키기 위하여 복수의 제2 기판(200)들이 사용될 수 있다.
마이크로 LED 어레이(220)들을 제2 기판(200)으로부터 분리시키는 방법은 LLO(Laser Lift Off) 방법을 사용할 수 있으나 이에 한정되지는 않고 다양한 분리 방법을 사용할 수 있다.
또한 분리된 마이크로 LED 어레이(220)들을 제1 기판(100)에 전사시키는 방법은 PDMS를 이용한 전사 방법을 사용할 수 있으나 이에 한정되지는 않고 다양한 분리 방법을 사용할 수 있다.
도 5a와 도 5b는 제1 기판(100) 상에 제3 기판(300)과 뱅크막(310)을 형성하는 공정도에 대한 개략적인 평면도와 단면도이다.
제1 기판(100) 상에 형성된 박막 트랜지스터 어레이(120)들과 마이크로 LED 어레이(220)들 상에는 제3 기판(300)이 형성되고, 제3 기판(300) 전면을 덮도록 뱅크막(310)을 형성할 수 있다.
뱅크막(310)은 유기물 또는 무기물로 형성될 수 있는 것으로 특별히 재질이 한정되지는 않으나, 두꺼운 두께를 형성하는 경우 유기물을 사용할 수 있다.
이 경우 뱅크막(310)과 제3 기판(300) 사이에 버퍼막(301)을 추가로 형성할 수 있다. 버퍼막(301)은 무기물을 사용할 수 있다.
도 6a와 도 6b는 뱅크막(310)을 패터닝하는 공정도에 대한 개략적인 평면도와 단면도이다.
뱅크막(310)은 패터닝되어 마이크로 LED 영역(MA)들 간의 경계 영역에 대응되는 제1 뱅크층(311)과 마이크로 LED 어레이 영역(MAA)의 가장자리 영역에 대응되는 제2 뱅크층(312)으로 형성될 수 있다.
구체적으로 마이크로 LED 영역(MA)들 간의 경계 영역에 대응되는 뱅크막(310)은 남기고 마이크로 LED 영역(MA)에 대응되는 뱅크막(310)은 제거함으로써, 마이크로 LED 영역(MA)에 대응되는 영역은 개구부를 갖도록 할 수 있다.
즉 마이크로 LED 영역(MA)들 간의 경계 영역에 대응되는 뱅크막(310)은 제1 뱅크층(311)이 되고, 상기 제1 뱅크층(311)들 사이에 형성된 개구부에 대응되는 영역은 화소 영역(PA)으로 정의될 수 있다.
하나의 화소 영역(PA)은 제1 기판(100) 상에 있는 하나의 박막 트랜지스터(110)와 하나의 마이크로 LED(210) 및 제1 뱅크층(311)들에 의해 형성된 개구부를 포함하도록 정의될 수 있다.
뱅크막(310)을 패터닝하는 단계 이후에는 각각의 화소 영역(PA)에 컬러 필터층(320)을 형성하는 단계를 추가로 포함할 수 있다.
즉 제1 뱅크층(311)들에 의해 형성된 각각의 개구부에는 컬러 필터층(320)이 형성되어 화소 영역(PA)에 포함될 수 있으며, 사용자가 원하는 색상의 광을 구현할 수 있다.
컬러 필터층(320)은 일반적인 컬러 필터 필름을 사용할 수 있으며, 잉크젯 방식으로 퀀텀닷(Quantum Dot) 필름을 형성하여 컬러 필터층(320)을 형성할 수도 있는 것으로 특별히 한정되지 않는다.
예를 들어, 본 발명의 일 실시예로 마이크로 LED(210)는 청색의 광을 내는 것으로 사용할 수 있다. 이 경우 적색, 녹색, 청색을 구현하기 위해서 컬러 필터층(320)에는 청색의 광을 내는 마이크로 LED(210)가 통과하는 경우 적색과 녹색을 구현하고자 하는 화소 영역(PA)에는 컬러 필터층(320)을 형성할 수 있으며, 청색을 구현하고자 하는 화소 영역(PA)에는 별도의 컬러 필터층(320)을 형성하지 않고 청색의 광을 내는 마이크로 LED(210)를 그대로 사용할 수 있다.
한편, 마이크로 LED 어레이 영역(MAA)의 가장자리 영역에 대응되는 뱅크막(310)은 제2 뱅크층(312)이 될 수 있다.
즉 제2 뱅크층(312)은 마이크로 LED 어레이 영역(MAA)의 가장자리 영역을 둘러싸도록 형성됨으로써, 각각의 마이크로 LED 어레이 영역(MAA)들 간의 경계를 구분 짓게 할 수 있으며, 이에 따라 화소 어레이 영역(PAA)이 정의될 수 있다.
제2 뱅크층(312)은 제1 뱅크층(311)과 동일한 형상으로 패터닝될 수 있다.
구체적으로 마이크로 LED 어레이 영역(MAA)의 가장자리 영역에 대응되는 뱅크막(310)은 남기고 제1 뱅크층(311)과 사이에서 마이크로 LED 영역(MA)에 대응되는 뱅크막(310)은 제거하여 제2 뱅크층(312)을 형성할 수 있다.
제1 뱅크층(311)과 제2 뱅크층(312) 사이의 영역은 제1 뱅크층(311)들 사이의 영역과 동일하게 화소 영역(PA)으로 정의될 수 있으며, 뱅크막(310)이 제거된 개구부를 가질 수 있다. 따라서 제1 뱅크층(311)과 제2 뱅크층(312) 사이의 화소 영역(PA)에 있는 개구부에도 컬러 필터층(320)이 형성될 수 있다.
아울러 본 발명의 실시예에 따른 뱅크막(310)은 화소 영역(PA)에 대응되는 영역의 뱅크막(310)만을 제거하는 것이 아니라, 서로 인접한 제2 뱅크층(312)들 간의 경계 영역에 있는 뱅크막(310)도 제거되도록 식각을 이용하여 뱅크막(310)을 패터닝할 수 있다.
앞서 설명한 바와 같이 제2 뱅크층(312)은 마이크로 LED 어레이 영역(MAA)들 간의 경계를 구분 짓게 할 수 있으며, 이는 화소 어레이 영역(PAA)들 간의 경계를 구분 짓게 하는 것으로도 표현될 수 있다.
즉 화소 어레이 영역(PAA)들 간에는 경계 영역이 존재하게 되는데, 제1 뱅크층(311)과 제2 뱅크층(312)을 형성하는 패터닝 공정을 진행하면서, 이 경계 영역에 대응되는 뱅크막(310)도 제거함으로써, 서로 인접한 제2 뱅크층(312)들 간의 경계 영역에도 개구부가 형성되도록 패터닝할 수 있다.
서로 인접한 제2 뱅크층(312)들 간의 경계 영역에 형성된 개구부는 하부에 있는, 서로 인접한 박막 트랜지스터 어레이 영역(TAA)들 간의 경계 영역에서 박막 트랜지스터층이 제거된 영역 및 서로 인접한 마이크로 LED 어레이 영역(MAA)들 간의 경계 영역에서 마이크로 LED층이 제거된 영역과 일치하도록 형성될 수 있다.
이에 따라 서로 인접한 제2 뱅크층(312)들 간의 경계 영역에 형성된 개구부의 하부에는, 마이크로 LED층이 제거된 제3 기판(300)과 박막 트랜지스터층이 제거된 제1 기판(100)이 있을 수 있다.
제3 기판(300)과 뱅크막(310) 사이에 버퍼막(301)을 형성하는 경우 버퍼막(301)도 상기 서로 인접한 제2 뱅크층(312)들 간의 경계 영역에 형성된 개구부에 대응되도록 패터닝되어 각각의 화소 어레이 영역(PAA)에 대응되는 제3 기판의 버퍼층(302)으로 형성될 수 있다.
서로 인접한 제2 뱅크층(312)들 간의 경계 영역은 다음 단계로 진행될 제3 기판(300)의 절단 공정에서 정의되는 절단 영역(SZ)과 일치할 수 있으나, 경계 영역이 절단 영역(SZ)보다 더 넓게 형성될 수 있다.
제1 뱅크층(311)과 제2 뱅크층(312)은 각각의 화소 영역(PA)과 화소 어레이 영역(PAA)을 형성하도록 경계 역할을 하는 격벽으로 사용되며, 각각의 화소 영역(PA)에서 발광되는 서로 다른 색상의 광들이 혼색되지 않도록 하는 역할을 할 수 있다.
도 7a와 도 7b는 제3 기판(300)과 제1 기판(100)을 절단하는 공정도에 대한 개략적인 평면도와 단면도이다.
도 7a와 도7b에서와 같이 서로 인접한 제2 뱅크층(312)들 간의 경계 영역 내에 설정된 절단 영역(SZ)을 따라, 제3 기판(300)과 제1 기판(100)을 레이저로 절단할 수 있다.
이 경우 앞서 설명한 바와 같이 절단 영역(Scribe Zone, SZ)은 서로 인접한 제2 뱅크층(312)들 간의 경계 영역과 동일하게 일치할 수 있으나 좁은 영역으로도 설정되어 절단 공정이 진행될 수 있다.
이와 같이 절단 영역(SZ)이 서로 인접한 제2 뱅크층(312)들 간의 경계 영역보다 동일하거나 좁은 영역으로 설정되어 있기 때문에 레이저로 절단하는 공정을 진행하는 경우 제2 뱅크층(312), 마이크로 LED층 및 박막 트랜지스터층들과 절단 영역(SZ)이 겹치지 않아 상기 층들이 직접적으로 레이저의 절단에 영향을 받지 않아 각 소자들로의 크랙(Crack) 전파를 최소화하여 불량율을 감소시킬 수 있다.
이와 비교하여 레이저로 절단하는 절단 영역(SZ)에 대응되는 뱅크막(310), 마이크로 LED층 및 박막 트랜지스터층들이 제거되지 않은 상태로 레이저로 절단을 하는 경우, 상기 뱅크막(310), 마이크로 LED층 및 박막 트랜지스터층들이 직접적으로 레이저 절단 공정에 영향을 받아 마이크로 LED(210), 박막 트랜지스터(110)와 같은 소자들에 크랙을 전파할 수 있어 불량율이 증가할 수 있다.
또한 크랙이 잘 전파되지 않게 하기 위한 일종의 완충재 역할을 위해서, 뱅크막(310), 마이크로 LED층 및 박막 트랜지스터층 들에는 크랙 전파를 최소화하기 위한 완충 영역인 데드존(Dead Zone, DZ)이 비교적 넓게 미리 설정되어야 한다.
즉 레이저의 절단 공정에 소자들이 영향 받는 것을 최소화하기 위해서 소자들과 레이저의 절단 영역(SZ) 사이에 완충 영역 역할을 할 수 있는 데드존(DZ)을 각각의 제2 뱅크층(312), 마이크로 LED층 및 박막 트랜지스터층들과의 사이에 설정할 수 있다.
다만 데드존(DZ)이 넓게 설정되는 경우, 예를 들어 제2 뱅크층(312)의 데드존(DZ)이 넓어지는 만큼 제2 뱅크층(312)의 폭도 넓어지게 되는 바, 최종적으로 화소 어레이가 전사될 마이크로 LED 표시 장치(10)에 있어서 제2 뱅크층(312)을 사이에 둔 화소들 간의 거리가 더욱 멀어질 수 있게 된다.
이에 따라 화소들 간의 거리가 멀어지기 때문에 고 해상도의 구현에 어려움이 있을 수 있으며, 넓어진 경계 영역이 사용자에게 인지될 수도 있다.
하지만 본 발명의 실시예와 같이 레이저의 절단 공정 이전에 절단 영역(SZ)에 대응되는 경계 영역을 미리 식각에 의해서 패터닝해 놓는 경우, 절단 공정에 의한 영향이 제2 뱅크층(312), 마이크로 LED층 및 박막 트랜지스터층들에 직접적으로 가해지지 않기 때문에 각 소자들로의 크랙 전파를 최소화하여 불량율을 감소시킬 수 있다.
이에 따라 본 발명의 실시예의 경우 크랙의 전파를 최소화하기 위한 완충 영역인 데드존(DZ)의 설정을 비교적 좁게 설정할 수 있다.
따라서 본 발명의 실시예와 같이 데드존(DZ)의 설정을 좁게 설정할 수 있는 경우, 최종적으로 화소 어레이가 전사될 마이크로 LED 표시 장치(10)에 있어서 제2 뱅크층(312)을 사이에 둔 화소들 간의 거리를 최대한 가깝게 할 수 있어 고 해상도를 구현할 수 있으며, 경계 영역이 사용자에게 인지되는 것을 최소화할 수 있다.
도 8은 화소 어레이를 제1 기판(100)으로부터 분리하여, 분리된 화소 어레이를 제4 기판(400) 상에 전사하는 공정도에 대한 개략적인 평면도이다.
도 7a와 도 7b 공정에서 각각의 화소 어레이 영역(PAA)에 있는 화소 어레이들은 레이저에 의해서 미리 설정된 크기와 패턴으로 절단되게 된다. 이렇게 절단된 화소 어레이들은 마이크로 LED 표시 장치(10)의 베이스 기판이 되는 제4 기판(400)에 전사되게 된다.
이 경우 화소 어레이들은 박막 트랜지스터 어레이 영역(TAA)이 형성되는 단계 터, 제4 기판(400)에 형성되는 화소 어레이 영역(PAA)에 대응되는 크기와 패턴으로 형성이 되기 때문에 제4 기판(400)에 전사되는 화소 어레이들은 최종적으로 사용자가 설계한 마이크로 LED 표시 장치(10)의 화소 어레이 영역(PAA)들에 일치하도록 전사될 수 있는 것이다.
제4 기판(400)에 사용자가 미리 설계하는 화소 어레이 영역(PAA)의 크기와 패턴은 도 9a, 도 9b 및 도9c에 도시된 바와 같이 다양한 크기와 패턴을 가질 수 있다.
이렇게 화소 어레이의 크기와 패턴을 다양한 크기와 패턴을 설정함으로써, 생산 수율을 최대로 높일 수 있다.
구체적으로 제1 기판(100)과 제2 기판(200)이 원형의 실리콘 웨이퍼 기판으로 사용되는 경우, 원형의 기판의 특성상 모든 영역을 남김없이 모두 사용하는 것은 쉽지 않다.
따라서 본 발명의 실시예에 따른 마이크로 LED 표시 장치(10)의 제조 방법은 화소 어레이의 크기와 패턴을 다양하게 설정할 수 있기 때문에, 원형으로 된 실리콘 웨이퍼 기판을 사용하는 경우에도 낭비되는 영역을 최소화하도록 공정을 진행하여 생간 수율을 높일 수 있다.
예를 들어 매우 큰 크기의 화소 어레이 영역(PAA)들이 필요한 경우 먼저 해당 크기의 화소 어레이 영역(PAA)들에 맞는 화소 어레이들을 형성한다. 그리고 큰 크기의 화소 어레이 영역(PAA)들에 의해서 남게 되는 기판의 영역들은 작은 크기의 화소 어레이 영역(PAA)을 형성하는 것으로 사용할 수 있다.
따라서 최종적으로는 큰 크기의 화소 어레이들뿐만 아니라 큰 크기의 화소 어레이들을 사용하고 남은 영역은 그 영역의 크기에 맞는 작은 화소 어레이들을 추가적으로 형성함에 따라 거의 모든 기판의 영역 부분을 화소 어레이들을 형성하는데 사용할 수가 있는 것이다.
따라서 기판의 사용 면적을 낭비없이 최대한 사용할 수 있어 생산 수율을 높일 수 있어 생산 단가를 감소시킬 수 있다.
또한 본 발명의 실시예에 따른 마이크로 LED(210) 장치의 제조 방법은 마이크로 LED(210)들을 개별적으로 하나씩 전사하는 것이 아니라, 복수의 마이크로 LED(210)들이 포함되어 형성되는 마이크로 LED 어레이(220), 즉 화소 어레이 단위 별로 한 번에 전사함으로써 공정 상의 효율을 높일 수 있으며, 화소 영역(PA)들 간의 간격을 최소화할 수 있다.
이와 비교하여 마이크로 LED(210)를 하나씩 절단하여 전사를 하는 경우에는, 각각의 마이크로 LED(210)들 간의 경계 영역을 절단해야 하기 때문에 각각의 마이크로 LED(210)들을 감싸는 뱅크층의 두께도 더욱 두꺼워질 수 밖에 없다.
예를 들어, 본 발명의 실시예에 따른 제1 뱅크층(311)은 화소 영역(PA)들 간의 경계 영역에 대응되어 형성되는데, 복수의 화소 영역(PA)들이 포함된 화소 어레이 영역(PAA) 단위로 절단 및 전사가 되기 때문에 화소 영역(PA)들 간의 경계 영역은 절단될 필요가 없어 제1 뱅크층(311)의 폭이 넓게 형성될 필요가 없다.
하지만 마이크로 LED(210)를 하나씩 절단하여 전사를 하는 경우에는, 화소 영역(PA)들 간의 경계 영역이 절단이 되어야 하기 때문에 본 발명의 실시예에 따른 제1 뱅크층(311)에 대응되는 뱅크층의 폭이 소정의 데드존(DZ)을 포함할 수 있도록 두껍게 형성되어야 한다.
이에 따라 각각 절단된 마이크로 LED(210)를 둘러싸는 뱅크층의 폭이 두꺼울 뿐만 아니라, 각각의 마이크로 LED(210)들 사이에는 복수의 뱅크층들이 경계를 이루기 때문에 화소 영역(PA)들 간의 간격이 넓어질 수 밖에 없다.
따라서 넓어진 화소 영역(PA)들 간의 간격에 따라 화소 영역(PA)들 간의 경계 영역이 사용자들에게 인식될 수 있다. 또한 각각의 마이크로 LED(210)들을 절단하는 경우 마이크로 LED(210)들을 감싸는 뱅크층이 절단되면서 인접한 소자들에 크랙을 전파할 수 있기 때문에 각각의 마이크로 LED(210)들의 불량 발생 가능성이 더욱 높아지게 된다.
하지만 본 발명의 실시예와 같이 마이크로 LED(210)를 하나씩 절단 및 전사하는 것이 아니라, 복수의 마이크로 LED(210)를 포함하는 마이크로 LED 어레이(220) 단위로 절단 및 전사를 하는 경우 크랙 전파의 가능성을 줄이고, 화소 영역(PA)들 간의 간격도 최소화할 수 있어 고 해상도를 구현할 수 있으며 경계 영역이 사용자들에게 인지되는 것도 최소화할 수 있다.
제4 기판(400)에는 복수의 화소 어레이들이 전사되고, 전사된 화소 어레이들에 각종 신호와 전원을 연결해줄 수 있는 게이트 패드부나 ROIC 패드부와 같은 패드부(410)들과 배선들이 형성되어 마이크로 LED 표시 장치(10)를 구성할 수 있다.
도 10은 본 발명의 실시예에 따른 마이크로 LED 표시 장치(10)의 일부 영역에 대한 단면도이다.
본 발명에 따른 마이크로 LED 표시 장치(10)는 복수의 화소 영역(PA)을 포함하는 복수의 화소 어레이 영역(PAA)이 정의된 하부 기판(100)과, 하부 기판(100) 상에 있고, 각각의 화소 영역(PA)에 대응되는 복수의 박막 트랜지스터(110)를 포함하는 박막 트랜지스터층과, 박막 트랜지스터층 상에 있고, 각각의 화소 영역(PA)에 대응되는 복수의 마이크로 LED(210)를 포함하는 마이크로 LED층과, 마이크로 LED층 상에 있는 상부 기판(300) 및 상부 기판(300) 상에 있는, 화소 영역(PA)들 간의 경계 영역에 있는 제1 뱅크층(311)과 화소 어레이 영역(PAA)의 가장 자리 영역에 있는 제2 뱅크층(312)을 포함할 수 있다. 이 경우 제2 뱅크층(312)은 화소 어레이 영역(PAA)에 대응되는 상부 기판(300)의 끝단부로부터 일정 거리 이격될 수 있다.
아울러 상부 기판(300) 상에는 마이크로 LED 표시 장치(10)의 최외각 표면부인 커버층(500)이 있을 수 있으며, 커버층(500)의 하부에는 편광층(510)이 있을 수 있다.
하부 기판(100)은 박막 트랜지스터 어레이 기판으로 사용될 수 있으며, 유리 또는 플라스틱 재질을 사용할 수 있다. 또한 하부 기판(100)은 폴리이미드와 같은 유연성을 갖는 플라스틱 재질을 사용하는 플렉스블 기판을 사용할 수도 있다.
하부 기판(100) 상에는 복수의 화소 영역(PA)을 포함하는 복수의 화소 어레이 영역(PAA)이 정의될 수 있다.
구체적으로 각각의 화소 영역(PA)에는 각각의 박막 트랜지스터(110)가 대응되도록 형성되며, 복수의 화소 영역(PA)에 대응되는 복수의 박막 트랜지스터(110)들이 포함되어 화소 어레이 영역(PAA)에 대응되는 박막 트랜지스터 어레이(120)를 형성할 수 있다.
화소 어레이 영역(PAA)들은 서로 간의 경계 영역에서 박막 트랜지스터 어레이(120)들이 서로 분리된 상태로 형성될 수 있다. 다만 각각의 박막 트랜지스터 어레이(120)들은 물리적으로 서로 분리된 상태일 수 있지만, 하부 기판(100) 상에 형성된 각종 배선들에 의해서 전기적으로는 서로 연결된 상태일 수 있다.
구체적으로 하부 기판(100) 상에는 먼저 버퍼층(111)이 형성될 수 있다. 버퍼층(111)은 SiO2를 사용할 수 있으며, 단층 또는 다층으로 형성될 수 있다.
버퍼층(111)은 복수의 화소 영역(PA)들을 모두 덮도록 형성되는 것으로, 하나의 화소 어레이 영역(PAA)에 대응되는 하부 기판(100)을 덮도록 형성될 수 있다.
서로 인접한 화소 어레이 영역(PAA)에 있는 버퍼층(111)들은 화소 어레이 영역(PAA)들 간의 경계 영역을 따라 서로 단절되어 있을 수 있다.
버퍼층(111) 상에는 박막 트랜지스터(110)가 형성될 수 있다. 박막 트랜지스터(110는 하부 기판(100) 상에 형성된 게이트 전극(112)과 게이트 전극(112)을 덮도록 하부 기판(100) 전면에 형성된 게이트 절연층(113)과, 게이트 절연층(113) 상에 형성된 반도체층(114)과, 반도체층(114) 상에 형성된 제1 전극(115a) 및 제2 전극(115b)을 포함할 수 있다.
게이트 전극(112)은 Cr, Mo, Ta, Cu, Ti, Al와 같은 금속 또는 이들의 합금으로 형성될 수 있으나 이에 한정되는 것은 아니다.
게이트 전극(112) 상에는 게이트 전극(112)을 덮도록 하부 기판(100) 전면에 게이트 절연층(113)이 형성될 수 있다. 따라서 게이트 절연층(113)은 복수의 화소 영역(PA)에 대응되는 복수의 박막 트랜지스터(110)들의 게이트 전극(112)을 모두 덮을 수 있다.
즉 게이트 절연층(113)은 복수의 화소 영역(PA)들을 모두 덮도록 형성되는 것으로, 하나의 화소 어레이 영역(PAA)에 대응되는 하부 기판(100)을 덮도록 형성될 수 있다.
다만 서로 인접한 화소 어레이 영역(PAA)에 있는 게이트 절연층(113)들은 화소 어레이 영역(PAA)들 간의 경계 영역을 따라 서로 단절되어 있을 수 있다.
게이트 절연층(113)은 SiOx 또는 SiNx와 같은 무기물로 이루어진 단일층 또는 SiOx와 SiNx로 이루어진 복수층으로 형성될 수 있다.
게이트 절연층(113) 상에는 반도체층(114)이 형성될 수 있다. 반도체층(114)은 비정질 실리콘과 같은 비정질 반도체로 구성될 수 있으며, IGZO(Indium Gallium Zinc Oxide), TiO2, ZnO, WO3, SnO2와 같은 산화물 반도체로 구성될 수 있는 것으로, 특별히 한정되지는 않는다.
반도체층(114) 상에는 반도체층(114)과 연결된 제1 전극(115a) 및 제2 전극(115b)이 형성될 수 있으며, 제1 전극(115a)은 소스 전극이고, 제2 전극(115b)은 드레인 전극일 수 있으나, 전류의 방향에 따라 소스 전극과 드레인 전극이 바뀔 수도 있다. 제1 전극(115a) 및 제 2 전극은 Cr, Mo, Ta, Cu, Ti, Al와 같은 금속 또는 이들의 합금으로 형성될 수 있으나 이에 한정되는 것은 아니다.
본 발명에서는 게이트 전극(112)이 반도체층(114) 하부에 있는 버텀게이트(Bottom Gate) 방식의 박막 트랜지스터를 실시예로 설명하였지만, 이에 한정되는 것은 아니며 탑게이트(Top Gate) 방식의 박막 트랜지스터(110)와 같은 다앙한 방식의 박막 트랜지스터가 적용될 수 있다.
박막 트랜지스터(110) 상에는 화소 영역(PA)에 대응되는 마이크로 LED(210)가 형성될 수 있다. 각각의 박막 트랜지스터(110)와 마이크로 LED(210) 사이에는 절연층이 있을 수 있다. 이 경우 절연층은 포토아크릴과 같은 유기층이나 무기층의 단일층으로 형성될 수 있으며, 유기층과 무기층의 복수층으로 형성될 수도 있다.
박막 트랜지스터(110)는 마이크로 LED(210)와 제3 전극(117)을 통해서 전기적으로 연결되어, 박막 트랜지스터(110)는 마이크로 LED(210)를 구동시키는 구동 소자로서 작용할 수 있다. 박막 트랜지스터(110)와 마이크로 LED(210)가 연결되는 방식은 특별히 한정되지 않으며, 다양한 방식으로 연결될 수 있다.
마이크로 LED(210)는 도핑되지 않은 GaN 버퍼층(211), n형 GaN층(212), 다중양자우물(Multi Quantum Well: MQW) 구조를 가진 활성층(213), p형 GaN층(214)이 적층되어 형성될 수 있다.
또한 마이크로 LED(210)는 p형 GaN층(214) 상에 배치되는 오믹접촉층, 오믹접촉층의 일부와 접촉되는 p형 전극, 활성층(213)과 p형 GaN층(214) 및 오믹접촉층의 일부를 식각하여 노출되는 n형 GaN층(212)의 일부와 접촉되는 n형 전극이 추가로 형성될 수 있다.
n형 GaN층(212)은 활성층(213)에 전자를 공급하기 위한 층으로, GaN 반도체층에 실리콘과 같은 n형 불순물을 도핑함으로써 형성될 수 있다.
활성층(213)은 주입되는 전자와 정공이 결합되어 광을 발산하는 층이다. 활성층(213)의 다중양자우물구조는 복수의 장벽층과 우물층이 교대로 배치되며, 우물층은 InGaN층으로 구성되고 장벽층은 GaN으로 구성될 수 있지만 이에 한정되는 것은 아니다.
p형 GaN층(214)은 활성층(213)에 정공을 주입하기 위한 층으로, GaN 반도체층에 Mg, Zn 및 Be와 같은 p형 불순물이 도핑되어 형성될 수 있다.
오믹접촉층은 p형 GaN층(214)과 p형 전극을 오믹접촉(ohmic contact)시키기 위한 것으로, ITO(Indium Tin Oxide), IGZO(Indium Galium Zinc Oxide), IZO(Indium Zinc Oxide)와 같은 투명한 금속산화물을 사용할 수 있다.
p형 전극과 n형 전극은 Ni, Au, Pt, Ti, Al, Cr 중 적어도 하나의 금속 또는 이들의 합금으로 이루어진 단일층 또는 복수층으로 구성될 수 있다.
이러한 구조의 마이크로 LED(210)에서 p형 전극 및 n형 전극에 전압이 인가됨에 따라 n형 GaN층(212) 및 p형 GaN층(214)으로부터 활성층(213)으로 각각 전자 및 정공이 주입되면, 활성층(213) 내에는 여기자(exciton)가 생성되며 여기자가 소멸(decay)함에 따라 발광층의 LUMO(Lowest Unoccupied Molecular Orbital)와 HOMO(Highest Occupied Molecular Orbital)의 에너지 차이에 해당하는 광이 발생하게 되어 외부로 발산하게 된다.
이때, 마이크로 LED(210)에서 발광하는 광의 파장은 활성층(213)의 다중양자우물구조의 장벽층의 두께를 조절함으로써 조절할 수 있게 된다. 본 발명에 따른 마이크로 LED(210)는 청색 광을 발광하는 것을 사용하였지만 이에 한정되는 것은 아니다.
본 발명에 따른 마이크로 LED(210)는 특정 구조에 한정되는 것이 아니라 수직구조 마이크로LED 및 수평구조 마이크로LED와 같이 다양한 구조의 마이크로 LED(210)가 적용될 수 있다.
복수의 마이크로 LED(210)를 포함하는 마이크로 LED층 상에는 상부 기판(300)이 형성될 수 있다. 이 경우 상부 기판(300)은 각각의 화소 어레이 영역(PAA)에 대응되는 크기와 패턴을 가지도록 형성되기 때문에, 서로 인접한 화소 어레이 영역(PAA)에 있는 상부 기판(300)과는 서로 경계 영역을 두고 이격되어 있을 수 있다.
상부 기판(300) 상에는 화소 영역(PA)들 간의 경계 영역에 있는 제1 뱅크층(311)과 화소 어레이 영역(PAA)의 가장 자리 영역에 있는 제2 뱅크층(312)이 있을 수 있다.
상부 기판(300)과 제1 뱅크층(311) 및 제2 뱅크층(312) 사이에는 제3 기판의 버퍼층(302)이 형성될 수 있다. 이 경우 제3 기판의 버퍼층(302)은 하나의 화소 어레이 영역에 대응되도록 상부 기판(300) 전면을 따라 형성될 수 있다.
뱅크층은 각각의 화소 영역(PA)과 화소 어레이 영역(PAA)을 형성하도록 경계 역할을 하는 격벽으로 사용되며, 각각의 화소 영역(PA)에서 발광되는 서로 다른 색상의 광들이 혼색되지 않도록 하는 역할을 할 수 있다.
이 경우 제2 뱅크층(312)은 화소 어레이 영역(PAA)에 대응되는 상부 기판(300)의 끝단으로부터 일정 거리 이격되어 형성될 수 있다.
즉 본 발명에 따른 마이크로 LED 표시 장치(10)에 있어서, 상부 기판(300) 상에 있는 제2 뱅크층(312)은 상부 기판(300)의 끝단부에 일치하는 것이 아니라 상부 기판(300)의 끝단부로부터 일정 거리 이격되어 배치되기 때문에, 제2 뱅크층(312)이 절단 영역(SZ)에 대응되지 않아 상부 기판(300) 및 뱅크막(310)의 절단 공정에서 발생될 수 있는 크랙의 전파를 최소화할 수 있다.
구체적으로 본 발명에 따른 마이크로 LED 표시 장치(10)는 각각의 화소 영역(PA)에 대응되는 화소들을 각각 절단하여 하부 기판(100)에 전사하는 것이 아니라, 복수의 화소들을 포함하는 화소 어레이들을 어레이별로 절단하여 전사하는 것이기 때문에, 특히 화소 어레이들 간의 경계 영역에서의 크랙 전파를 최소화하는 구조가 요구될 수 있다.
따라서 상부 기판(300)의 끝단부는 레이저에 의한 절단 공정에 의해서 절단이 되는 절단 영역(SZ)의 경계부와 대응이 되기 때문에, 제2 뱅크층(312)이 상부 기판(300)의 끝단부와 일치하도록 형성되는 경우 상부 기판(300)의 절단 공정시에 제2 뱅크층(312)을 통해서 크랙이 전파되어 화소 영역(PA)에 있는 마이크로 LED 소자나 박막 트랜지스터 소자 등에 영향을 끼칠 수 있다.
이에 따라 본 발명의 경우 제2 뱅크층(312)이 상부 기판(300)의 끝단부로부터 일정 거리 이격되도록 형성하여, 절단 영역(SZ)의 경계부로부터 일정 거리 이격될 수 있기 때문에, 상부 기판(300)의 절단 공정시에 제2 뱅크층(312)을 통해서 크랙이 전파되어 화소 영역(PA)에 있는 마이크로 LED 소자나 박막 트랜지스터 소자 등에 영향을 끼치는 것을 최소화할 수 있다.
그리고 제3 기판의 버퍼층(302)도 제2 뱅크층(312)의 끝단부와 일치하도록 제거될 수도 있다. 이에 따라 제3 기판의 버퍼층(302)도 절단 영역에 대응이 되지 않기 때문에 상부 기판(300)의 절단 공정시에 제3 기판의 버퍼층(302)을 통해서 크랙이 전파되어 화소 영역(PA)에 있는 마이크로 LED 소자나 박막 트랜지스터 소자 등에 영향을 끼치는 것을 더욱 최소화할 수 있다.
또한 본 발명에 따르면 제2 뱅크층(312)이 상부 기판(300)의 끝단부로부터 일정 거리 이격되도록 배치됨으로써 상부 기판(300)의 끝단부는 제2 뱅크층(312)이 형성되지 않고 외부로 노출되는 이격부(330)가 형성되게 된다.
이러한 이격부(330)는 화소 영역(PA)에서 발광된 광이 커버층(500)에 의해서 내부로 반사되고, 반사된 마이크로 LED(210)의 광을 이격부(330)가 외부로 재반사시킬 수 있어 경계 영역에서 별도의 마이크로 LED(210)와 같은 광원 없이도 광을 발산시키는 효과를 얻을 수 있다. 이에 따라 마이크로 LED(210)들 간의 경계 영역에 대한 사용자의 인지를 최소화할 수 있다.
구체적으로 마이크로 LED(210)들 간의 경계 영역의 경우 마이크로 LED(210)가 배치되어 있지 않기 때문에, 광이 발광되지 않아 해당 경계 영역의 경우 사용자가 외부에서 인식을 할 수도 있다. 따라서 해당 경계 영역으로 최대한 광을 보내어 사용자가 외부에서 인식이 잘 되지 않도록 하는 것이 필요할 수 있다.
하지만 본 발명의 경우 마이크로 LED(210)들 간의 경계 영역에 있는 상부 기판(300)의 이격부(330)가 커버층(500)에 의해서 내부로 반사된 광을 다시 외부로 재반사시킴으로써 경계 영역에서도 광을 발산하는 기능을 하도록 할 수 있어 마이크로 LED(210)들 간의 경계 영역에 대한 사용자의 인지를 최소화할 수 있다.
또한 본 발명의 경우 마이크로 LED(210)들을 개별적으로 하나씩 전사하는 것이 아니라, 복수의 마이크로 LED(210)들이 포함되어 형성되는 마이크로 LED 어레이(220), 즉 화소 어레이 단위 별로 한 번에 전사하여 형성하기 때문에 화소 영역(PA)들 간의 간격을 최소화할 수 있다.
이에 따라 제1 뱅크층(311)을 사이에 둔 상기 마이크로 LED(210)들 간의 거리는 상기 제2 뱅크층(312)을 사이에 둔 상기 마이크로 LED(210)들 간의 거리보다 가까울 수 있다.
예를 들어, 본 발명의 실시예에 따른 제1 뱅크층(311)은 화소 영역(PA)들 간의 경계 영역에 대응되어 형성되는데, 복수의 화소 영역(PA)들이 포함된 화소 어레이 영역(PAA) 단위로 절단 및 전사가 되기 때문에 화소 영역(PA)들 간의 경계 영역은 절단될 필요가 없어 제1 뱅크층(311)의 폭이 넓게 형성될 필요가 없다.
하지만 마이크로 LED(210)를 하나씩 절단하여 전사를 하는 경우에는, 화소 영역(PA)들 간의 경계 영역이 절단이 되어야 하기 때문에 뱅크층의 폭이 소정의 폭을 갖는 데드존(DZ)을 포함할 수 있도록 두껍게 형성되어야 한다.
이에 따라 각각 절단된 마이크로 LED(210)를 둘러싸는 뱅크층의 폭이 두꺼울 뿐만 아니라, 각각의 마이크로 LED(210)들 사이에는 복수의 뱅크층들이 경계를 이루기 때문에 화소 영역(PA)들 간의 간격이 넓어질 수 밖에 없다.
따라서 넓어진 화소 영역(PA)들 간의 간격에 따라 화소 영역(PA)들 간의 경계 영역이 사용자들에게 인식될 수 있다. 또한 각각의 마이크로 LED(210)들을 절단하는 경우 마이크로 LED(210)들을 감싸는 뱅크층이 절단되면서 인접한 소자들에 크랙을 전파할 수 있기 때문에 마이크로 LED(210)들의 불량 발생 가능성이 더욱 높아지게 된다.
하지만 본 발명의 실시예와 같이 마이크로 LED(210)를 하나씩 절단 및 전사하는 것이 아니라, 복수의 마이크로 LED(210)를 포함하는 마이크로 LED 어레이(220) 단위로 절단 및 전사를 하는 경우, 크랙 전파의 가능성을 줄이고, 화소 영역(PA)들 간의 간격도 최소화할 수 있어 경계 영역이 사용자들에게 인식되는 것을 최소화할 수 있으며 고 해상도를 구현하는데 유리할 수 있다.
제1 뱅크층(311)과 제2 뱅크층(312)은 마이크로 LED(210)가 발광하는 방향을 향하는 경사면을 갖도록 형성될 수 있어, 마이크로 LED(210)의 광 효율을 향상시킬 수 있다.
또한 서로 인접한 제2 뱅크층(312)들이 마주보는 면들 또한 마이크로 LED(210)가 발광하는 방향을 향하는 경사면을 갖도록 형성될 수 있어, 마이크로 LED(210)의 광 효율을 더욱 향상시킬 수 있다.
구체적으로 서로 인접한 제2 뱅크층(312)들 사이의 영역의 경우 별도의 마이크로 LED(210)가 배치된 영역이 아니지만, 화소 영역(PA)에서 발광하는 마이크로 LED(210)의 광이 마이크로 LED(210) 상부에 있는 커버층(500)으로부터 반사되어 내부로 들어오는 경우 제2 뱅크층(312)들의 경사면에 의해서 다시 외부로 재반사될 수 있다.
본 발명에 따른 마이크로 LED 표시 장치(10)의 복수의 화소 어레이 영역(PAA)들은 모두 동일한 크기와 패턴을 가질 수도 있지만, 화소 어레이 영역(PAA)의 적어도 하나는 다른 크기를 갖도록 하여 다양한 크기와 패턴을 가질 수 있다.
상부 기판(300) 상에는 화소 영역(PA)에 대응되는 컬러 필터층(320)이 있을 수 있다.
즉 제1 뱅크층(311)들에 의해 형성된 각각의 개구부에는 컬러 필터층(320)이 형성되어 화소 영역(PA)에 포함될 수 있으며, 사용자가 원하는 색상의 광을 발광시킬 수 있다.
컬러 필터층(320)은 일반적인 컬러 필터 필름을 사용할 수 있으며, 잉크젯 방식으로 퀀텀닷 필름을 형성하여 컬러 필터층(320)을 형성할 수도 있는 것으로 특별히 한정되지 않는다.
예를 들어, 본 발명의 일 실시예로 마이크로 LED(210)는 청색의 광을 내는 것으로 사용할 수 있다. 이 경우 적색, 녹색, 청색을 구현하기 위해서 컬러 필터층(320)에는 청색의 광을 내는 마이크로 LED(210)가 통과하는 경우 적색과 녹색을 구현하고자 하는 화소 영역(PA)에는 컬러 필터층(320)을 형성할 수 있으며, 청색을 구현하고자 하는 화소 영역(PA)에는 별도의 컬러 필터층(320)을 형성하지 않고 청색의 광을 내는 마이크로 LED(210)를 그대로 사용할 수 있다.
아울러 화소 어레이 영역(PAA) 이외의 하부 기판(100) 상에는 패드 영역이 형성되어 각종 연결 배선 등을 포함한 패드부(410)에 의해서 화소 영역(PA)에 각종 신호와 전압을 인가해 줄 수 있다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.
TA: 박막 트랜지스터 영역 TAA: 박막 트랜지스터 어레이 영역
MA: 마이크로 LED 영역 MAA: 마이크로 LED 어레이 영역
PA: 화소 영역 PAA: 화소 어레이 영역
DZ: 데드존 SZ: 스크라이브존
10: 마이크로 LED 표시 장치 100: 제1 기판, 하부 기판
110: 박막 트랜지스터 120: 박막 트랜지스터 어레이
111: 버퍼층 112: 게이트 전극
113: 게이트 절연층 114: 반도체층
115a: 제1 전극 115b: 제2 전극
116: 보호층 117: 제3 전극
200: 제2 기판 210: 마이크로 LED
211: 도핑되지 않은 GaN 버퍼층 212: n형 Gan층
213: 활성층 214: p형 Gan층
220: 마이크로 LED 어레이 300: 제3 기판, 상부 기판
301: 제3 기판 버퍼막 302: 제3 기판 버퍼층
310: 뱅크막 311: 제1 뱅크층
312: 제2 뱅크층 320: 컬러 필터층
330: 이격부 400: 제4 기판
410: 패드부 500: 커버층
510: 편광층

Claims (14)

  1. 복수의 박막 트랜지스터 영역을 포함하는 복수의 박막 트랜지스터 어레이 영역으로 구획된 제1 기판 상에 복수의 박막 트랜지스터 어레이를 형성하고,
    복수의 마이크로 LED 영역을 포함하는 복수의 마이크로 LED 어레이 영역으로 구획된 제2 기판 상에 복수의 마이크로 LED 어레이를 형성하는 단계;
    상기 박막 트랜지스터 어레이 영역에 대응되는 상기 마이크로 LED 어레이를 상기 제1 기판 상에 전사하는 단계;
    상기 제1 기판 상에 제3 기판과 뱅크막을 형성하는 단계;
    상기 뱅크막을 패터닝하여 상기 마이크로 LED 영역들 간의 경계 영역에 대응되는 제1 뱅크층과 상기 마이크로 LED 어레이 영역의 가장자리 영역에 대응되는 제2 뱅크층을 형성함으로써 각각 화소 영역과 화소 어레이 영역을 형성하고, 서로 인접한 상기 제2 뱅크층들 간의 경계 영역에 있는 뱅크막을 제거하도록 상기 뱅크막을 패터닝하는 단계;
    서로 인접한 상기 제2 뱅크층들 간의 경계 영역 내에 설정된 절단 영역을 따라, 상기 제3 기판과 상기 제1 기판을 절단하는 단계; 및
    상기 박막 트랜지스터 어레이와 상기 마이크로 LED 어레이를 포함하는 화소 어레이를 상기 제1 기판으로부터 분리하여, 제4 기판 상에 전사하는 단계; 를 포함하는 마이크로 LED 표시 장치의 제조 방법.
  2. 제1항에 있어서,
    상기 복수의 박막 트랜지스터 어레이를 형성하는 단계와 상기 복수의 마이크로 LED 어레이를 형성하는 단계는,
    각각 서로 인접한 상기 박막 트랜지스터 어레이 영역들 간의 경계 영역에 대응되는 박막 트랜지스터층을 제거하는 단계와, 서로 인접한 상기 마이크로 LED 어레이 영역들 간의 경계 영역에 대응되는 마이크로 LED층을 제거하는 단계를 포함하는 마이크로 LED 표시 장치의 제조 방법.
  3. 제2항에 있어서,
    상기 뱅크막, 상기 박막 트랜지스터층 및 상기 마이크로 LED층은 식각에 의해서 제거되는 마이크로 LED 표시 장치의 제조 방법.
  4. 제1항에 있어서,
    상기 박막 트랜지스터 어레이 영역의 크기 및 패턴은 상기 마이크로 LED 어레이 영역의 크기 및 패턴과 동일한 마이크로 LED 표시 장치의 제조 방법.
  5. 제1항에 있어서,
    상기 제3 기판과 제1 기판은 레이저에 의해서 절단되는 마이크로 LED 표시 장치의 제조 방법.
  6. 제1항에 있어서,
    서로 인접한 상기 제2 뱅크층들 간의 경계 영역은 상기 절단 영역보다 넓은 폭을 갖는 마이크로 LED 표시 장치의 제조 방법.
  7. 제1항에 있어서,
    상기 화소 어레이 영역들 중 적어도 하나는 다른 크기를 갖도록 형성되는 마이크로 LED 표시 장치의 제조 방법.
  8. 제1항에 있어서,
    상기 뱅크막을 패터닝하는 단계 이후에,
    상기 제3 기판 상의 각각의 상기 화소 영역에 컬러 필터층을 형성하는 단계를 추가로 더 포함하는 마이크로 LED 표시 장치의 제조 방법.
  9. 복수의 화소 영역을 포함하는 복수의 화소 어레이 영역이 정의된 하부 기판;
    상기 하부 기판 상에 있고, 각각의 상기 화소 영역에 대응되는 복수의 박막 트랜지스터를 포함하는 박막 트랜지스터 어레이;
    상기 박막 트랜지스터 어레이 상에 있고, 각각의 상기 화소 영역에 대응되는 복수의 마이크로 LED를 포함하는 마이크로 LED 어레이;
    상기 마이크로 LED 어레이 상에 있는 상부 기판; 및
    상기 상부 기판 상에 있는, 상기 화소 영역들 간의 경계 영역에 있는 제1 뱅크층과 상기 화소 어레이 영역의 가장 자리 영역에 있는 제2 뱅크층을 포함하며,
    상기 제2 뱅크층은 상기 화소 어레이 영역에 대응되는 상기 상부 기판의 끝단부로부터 일정 거리 이격된 마이크로 LED 표시 장치.
  10. 제9항에 있어서,
    상기 제1 뱅크층을 사이에 둔 마이크로 LED들 간의 거리는 상기 제2 뱅크층을 사이에 둔 마이크로 LED들 간의 거리보다 가까운 마이크로 LED 표시 장치.
  11. 제9항에 있어서,
    상기 제1 뱅크층과 상기 제2 뱅크층은 상기 마이크로 LED가 발광하는 방향을 향하는 경사면을 갖는 마이크로 LED 표시 장치.
  12. 제9항에 있어서,
    서로 인접한 상기 제2 뱅크층들이 마주보는 면은 상기 마이크로 LED가 발광하는 방향을 향하는 경사면을 갖는 마이크로 LED 표시 장치.
  13. 제9항에 있어서,
    상기 화소 어레이 영역들 중 적어도 하나는 다른 크기를 갖는 마이크로 LED 표시 장치.
  14. 제9항에 있어서,
    상기 상부 기판 상에는 상기 화소 영역에 대응되는 컬러 필터층이 있는 마이크로 LED 표시 장치.
KR1020180163161A 2018-12-17 2018-12-17 고 해상도 마이크로 led 표시 장치 및 그 제조 방법 KR102555828B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180163161A KR102555828B1 (ko) 2018-12-17 2018-12-17 고 해상도 마이크로 led 표시 장치 및 그 제조 방법
US16/545,973 US10903195B2 (en) 2018-12-17 2019-08-20 High-resolution micro-LED display device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180163161A KR102555828B1 (ko) 2018-12-17 2018-12-17 고 해상도 마이크로 led 표시 장치 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20200074591A KR20200074591A (ko) 2020-06-25
KR102555828B1 true KR102555828B1 (ko) 2023-07-13

Family

ID=71072918

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180163161A KR102555828B1 (ko) 2018-12-17 2018-12-17 고 해상도 마이크로 led 표시 장치 및 그 제조 방법

Country Status (2)

Country Link
US (1) US10903195B2 (ko)
KR (1) KR102555828B1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705562B (zh) * 2019-12-13 2020-09-21 國立中興大學 大面積被動式微發光二極體陣列顯示器
KR20220020483A (ko) * 2020-08-11 2022-02-21 삼성디스플레이 주식회사 화소 및 이를 구비한 표시 장치
CN112582519B (zh) * 2020-12-02 2022-03-11 苏州芯聚半导体有限公司 微发光二极管的转移方法及转移设备
CN116583962A (zh) * 2020-12-11 2023-08-11 索尼集团公司 发光装置和发光装置的制造方法
WO2022197705A1 (en) * 2021-03-16 2022-09-22 Google Llc Method for display manufacturing using groups of micro-leds and micro-led arrays
WO2022212125A1 (en) * 2021-03-31 2022-10-06 Apple Inc. Buried seam with kirigami pattern for 3d micro led display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049716A1 (ja) 2010-10-15 2012-04-19 パナソニック株式会社 有機発光パネルとその製造方法、および有機表示装置
JP5545279B2 (ja) 2011-09-20 2014-07-09 豊田合成株式会社 面状光源装置
US10090335B2 (en) 2016-10-28 2018-10-02 Lg Display Co., Ltd. Light emitting diode display device
US10672946B2 (en) 2016-07-12 2020-06-02 Samsung Display Co., Ltd. Display apparatus having light emitting device with inclined electrode and method of manufacturing the same
KR102263041B1 (ko) 2016-02-26 2021-06-09 삼성전자주식회사 멀티 컬러를 구현할 수 있는 발광 소자
KR102307727B1 (ko) 2014-12-24 2021-10-05 엘지디스플레이 주식회사 유기발광 표시장치 및 이를 제조하는 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216872A (en) * 1975-07-30 1977-02-08 Sugiyama Sogyo:Kk General purpose polluted water treating unit
JP5574114B2 (ja) * 2009-12-22 2014-08-20 パナソニック株式会社 表示装置とその製造方法
US9111464B2 (en) * 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
KR102465382B1 (ko) * 2015-08-31 2022-11-10 삼성디스플레이 주식회사 표시장치 및 표시장치의 제조방법
KR102591388B1 (ko) * 2016-01-18 2023-10-19 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR102591412B1 (ko) * 2016-02-16 2023-10-19 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
US10340256B2 (en) * 2016-09-14 2019-07-02 Innolux Corporation Display devices
KR102422386B1 (ko) * 2017-04-21 2022-07-20 주식회사 루멘스 마이크로 led 디스플레이 장치 및 그 제조방법
KR102476117B1 (ko) * 2017-12-22 2022-12-08 엘지디스플레이 주식회사 유기발광 표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049716A1 (ja) 2010-10-15 2012-04-19 パナソニック株式会社 有機発光パネルとその製造方法、および有機表示装置
JP5545279B2 (ja) 2011-09-20 2014-07-09 豊田合成株式会社 面状光源装置
KR102307727B1 (ko) 2014-12-24 2021-10-05 엘지디스플레이 주식회사 유기발광 표시장치 및 이를 제조하는 방법
KR102263041B1 (ko) 2016-02-26 2021-06-09 삼성전자주식회사 멀티 컬러를 구현할 수 있는 발광 소자
US10672946B2 (en) 2016-07-12 2020-06-02 Samsung Display Co., Ltd. Display apparatus having light emitting device with inclined electrode and method of manufacturing the same
US10090335B2 (en) 2016-10-28 2018-10-02 Lg Display Co., Ltd. Light emitting diode display device

Also Published As

Publication number Publication date
US20200194407A1 (en) 2020-06-18
US10903195B2 (en) 2021-01-26
KR20200074591A (ko) 2020-06-25

Similar Documents

Publication Publication Date Title
KR102555828B1 (ko) 고 해상도 마이크로 led 표시 장치 및 그 제조 방법
US11705479B2 (en) Display apparatus and method of manufacturing the same
US11527520B2 (en) Micro light emitting diode display device
KR102625489B1 (ko) 마이크로 led 표시 패널 및 그 제조 방법
KR101953797B1 (ko) 마이크로led 표시장치 제조방법
TWI729612B (zh) 主動矩陣led陣列前驅物
KR102550331B1 (ko) 마이크로 led 전사 방법, 이를 이용한 마이크로 led 표시 패널 제조 방법 및 마이크로 led 표시 패널
KR102415243B1 (ko) 반도체 모듈 및 이를 포함하는 표시 장치
US11515299B2 (en) Method for manufacturing display array
KR20220079170A (ko) 발광 소자 및 표시 장치
WO2020238395A1 (zh) LED芯片及其制备方法、芯片晶圆、Micro-LED显示装置
US20220376144A1 (en) Light-emitting diode and display device comprising same
KR102569732B1 (ko) 고 해상도 마이크로 led 표시 장치
KR20220043742A (ko) 마이크로 led 및 이를 구비한 디스플레이 모듈
KR102570949B1 (ko) 발광 다이오드 표시장치
US20230132423A1 (en) Light emitting diode array with inactive implanted isolation regions and methods of forming the same
KR102655336B1 (ko) 표시 장치 및 이의 제조 방법
KR102462718B1 (ko) 반도체 소자
TW202401815A (zh) 用於平板顯示器的積體電路
KR20210131219A (ko) 표시 장치
KR20220018374A (ko) 발광 소자 및 웨이퍼
KR20190043918A (ko) 반도체 소자

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant