WO2023276433A1 - 高周波回路基板用導電性フィルム及び高周波回路基板 - Google Patents

高周波回路基板用導電性フィルム及び高周波回路基板 Download PDF

Info

Publication number
WO2023276433A1
WO2023276433A1 PCT/JP2022/018965 JP2022018965W WO2023276433A1 WO 2023276433 A1 WO2023276433 A1 WO 2023276433A1 JP 2022018965 W JP2022018965 W JP 2022018965W WO 2023276433 A1 WO2023276433 A1 WO 2023276433A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
layer
frequency circuit
adhesion layer
copper
Prior art date
Application number
PCT/JP2022/018965
Other languages
English (en)
French (fr)
Inventor
敏之 保住
Original Assignee
尾池工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尾池工業株式会社 filed Critical 尾池工業株式会社
Publication of WO2023276433A1 publication Critical patent/WO2023276433A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a conductive film for a high frequency circuit board and a high frequency circuit board.
  • Patent Document 1 discloses a substrate for high-speed transmission of high-frequency signals provided with an underlying layer selected from the group of chromium, nickel, and nickel-chromium alloys in order to increase the adhesion between a base material having a low dielectric constant and a copper layer. disclosed.
  • an underlying layer selected from the group of chromium, nickel, and nickel-chromium alloys in order to increase the adhesion between a base material having a low dielectric constant and a copper layer.
  • an object of the present invention is to solve the above-mentioned problems in the past and to achieve the following objects. That is, an object of the present invention is to provide a conductive film for a high-frequency circuit board and a high-frequency circuit board, which have a small transmission loss, excellent adhesion between a substrate and a copper layer, and excellent etchability.
  • Means for solving the above problems are as follows. Namely ⁇ 1> a substrate; an adhesion layer disposed on at least one surface of the base material; and a copper layer arranged on the adhesion layer in this order,
  • the dielectric constant of the substrate at a measurement frequency of 10 GHz is 3.3 or less
  • the conductive film for a high-frequency circuit board is characterized in that the adhesion layer contains a nickel-copper alloy.
  • ⁇ 2> The conductive film for a high-frequency circuit board according to ⁇ 1>, wherein the substrate contains at least one of a cycloolefin polymer resin, a polyphenylene sulfide resin, a polystyrene resin, a fluororesin, and a polyether ether ketone resin. is.
  • ⁇ 3> The conductive film for a high-frequency circuit board according to any one of ⁇ 1> to ⁇ 2>, wherein the adhesive strength at the interface between the substrate and the adhesive layer is 0.5 N/mm or more.
  • the dielectric constant of the substrate at a measurement frequency of 10 GHz is 3.3 or less
  • the high-frequency circuit board is characterized in that the adhesion layer contains a nickel-copper alloy.
  • FIG. 1 is a cross-sectional view showing an example of the conductive film for a high-frequency circuit board of the present invention.
  • FIG. 2A is a cross-sectional view showing an example of the high frequency circuit board of the present invention.
  • FIG. 2B is a cross-sectional view showing another example of the high frequency circuit board of the present invention.
  • FIG. 2C is a cross-sectional view showing another example of the high-frequency circuit board of the present invention.
  • FIG. 2D is a cross-sectional view showing another example of the high-frequency circuit board of the present invention.
  • FIG. 3 is a diagram showing an example of the relationship between transmission loss and frequency in Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 3 is a diagram showing an example of the relationship between transmission loss and frequency in Examples 1 to 4 and Comparative Examples 1 and 2.
  • the conductive film for a high-frequency circuit board of the present invention has a base material, an adhesion layer arranged on at least one surface of the base material, and a copper layer arranged on the adhesion layer in this order.
  • the dielectric constant of the base material at a measurement frequency of 10 GHz is 3.3 or less
  • the adhesion layer contains a nickel-copper alloy, and further has other layers as necessary.
  • frequencies of 10 kHz or higher are referred to as high frequencies.
  • the substrate is the substrate of the conductive film for high-frequency circuit substrates of the present invention, and is a material having a dielectric constant of 3.3 or less at a measurement frequency of 10 GHz.
  • Transmission loss in signal transmission can be broadly divided into three causes: dielectric loss, conductor loss, and other losses.
  • the dielectric loss is expressed as a function of the dielectric constant and the dielectric loss tangent of the base material as shown in the following formula 1, and the dielectric loss increases as the dielectric constant and the dielectric loss tangent increase. Therefore, in order to reduce the dielectric loss, it is preferable to use a base material having a low dielectric constant and a low dielectric loss tangent.
  • a substrate having a low dielectric constant and a low dielectric loss tangent it is possible to obtain a conductive film for a high-frequency circuit board with low transmission loss.
  • dielectric constant
  • f frequency
  • c speed of light
  • tan ⁇ dielectric loss tangent
  • the dielectric constant of the substrate is 3.3 or less, preferably 3.1 or less, and more preferably 2.5 or less.
  • the dielectric constant of the substrate is measured at a measurement frequency of 10 GHz by a cavity resonator method according to JIS R1641.
  • the dielectric loss tangent is preferably 0.005 or less, more preferably 0.003 or less, and even more preferably 0.001 or less.
  • the dielectric loss tangent of the base material is measured at a measurement frequency of 10 GHz by a cavity resonator method according to JIS R1641.
  • the shape, structure, and size of the base material are not particularly limited, and can be appropriately selected according to the purpose.
  • the base material examples include cycloolefin polymer resins, polyphenylene sulfide resins, polystyrene resins, fluororesins, and polyetheretherketone resins. These may be used individually by 1 type, and may use 2 or more types together. By using these materials as the base material, a conductive film for a high-frequency circuit board with little transmission loss can be obtained.
  • the average thickness of the substrate is preferably 6 ⁇ m or more and 300 ⁇ m or less, more preferably 12 ⁇ m or more and 250 ⁇ m or less, and even more preferably 25 ⁇ m or more and 200 ⁇ m or less.
  • the average thickness of the base material is 6 ⁇ m or more, it is possible to improve the handleability and flexibility during processing. Further, when the average thickness of the substrate is 300 ⁇ m or less, a bendable conductive film for a high-frequency circuit board can be obtained.
  • the optimum average thickness of the base material differs depending on the intended use, and an average thickness of the base material close to 6 ⁇ m is required in areas where a thinner film and higher flexibility are required.
  • the average thickness of the substrate is obtained by measuring the thickness at five points using an electronic micrometer (manufactured by Anritsu Co., Ltd., device name: KG3001A) and calculating the average value.
  • the conductor loss in the transmission loss of signal transmission is expressed as a function of resistivity and magnetic permeability as in Equation 2 below. Due to the skin effect in the high-frequency region, the current flows only on the surface of the conductor, and the unevenness of the interface between the substrate and the conductor greatly affects signal transmission. Therefore, the smoothness of the interface between the substrate and the conductor is important, and the smaller the unevenness of the interface, the smaller the resistivity and the smaller the conductor loss. In order to suppress transmission loss in high-frequency circuit boards, it is necessary to consider not only dielectric loss but also conductor loss.
  • f frequency
  • magnetic permeability
  • resistivity
  • Examples of indicators of the smoothness of the base material include the arithmetic mean roughness Ra of the surface of the base material and the maximum height Rz of the surface of the base material.
  • the arithmetic mean roughness Ra of the substrate surface is preferably 500 nm or less, more preferably 400 nm or less, and even more preferably 300 nm or less.
  • the arithmetic mean roughness Ra of the surface of the base material can be measured using an optical interference type surface profile roughness meter (WYKO Contour GT K1M, manufactured by Bruker Japan Co., Ltd., measurement conditions: VSI mode).
  • the maximum height Rz of the surface of the substrate is preferably 5000 nm or less, more preferably 3000 nm or less, and even more preferably 2000 nm or less.
  • the maximum height Rz means the average value of the 10 largest values among the intervals between the top and bottom values on the measurement plane.
  • the maximum height Rz of the surface of the base material can be measured using an optical interference type surface roughness meter (WYKO Contour GT K1M manufactured by Bruker Japan Co., Ltd., measurement conditions: VSI mode).
  • the substrate is not particularly limited in its transparency, but when the conductive film for a high-frequency circuit board of the present invention is used in a device that requires transparency such as a transparent display and a transparent antenna, transparency ( Those having high transmittance and haze are preferred.
  • the transmittance of the substrate is preferably 60% or higher, more preferably 70% or higher, and even more preferably 80% or higher.
  • the haze of the substrate is preferably 10% or less, more preferably 8% or less, and even more preferably 6% or less.
  • the transmittance conforms to JIS K7361-1, and the haze conforms to JIS K7136, and can be measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., device name: NDH5000SP).
  • the transmittance and haze of the base material are not particularly limited. % or less, the FPC itself becomes less conspicuous. Further, in fields where higher transparency is required, higher transparency and lower haze are required, in which case transmittance: 80% or more and haze: 6% or less are required.
  • the adhesion layer is a layer arranged on at least one surface of the substrate.
  • the adhesion layer is a layer arranged between the base material and a copper layer described later, and is a layer having a function of strongly bonding the copper layer described later and the base material.
  • the adhesion layer contains a nickel-copper alloy and, if necessary, other components. Since the adhesion layer contains a nickel-copper alloy, it is possible to obtain a conductive film for a high-frequency circuit board having excellent etching properties and adhesion properties.
  • the content of copper in the nickel-copper alloy of the adhesive layer is preferably 32% by mass or more and 67% by mass or less, and more preferably 32% by mass or more and 56% by mass or less as a ratio of copper to the total amount of nickel and copper in the adhesive layer. It is more preferably 32% by mass or more and 45% by mass or less, and most preferably 32% by mass or more and 40% by mass or less.
  • the composition of the adhesion layer by setting the ratio of copper to the total amount of nickel and copper in the adhesion layer to be 32% by mass or more, the adhesion layer ceases to be a ferromagnetic material at room temperature, and the magnetic permeability can be lowered. This makes it possible to reduce the influence of the skin effect.
  • the content of nickel in the nickel-copper alloy of the adhesion layer is preferably 33% by mass or more and 68% by mass or less, and 44% by mass or more and 68% by mass or less as a ratio of nickel to the total amount of nickel and copper in the adhesion layer. It is more preferably 55% by mass or more and 68% by mass or less, and most preferably 60% by mass or more and 68% by mass or less.
  • the material of the adhesion layer is not particularly limited as long as the content of nickel and copper is 90% by mass or more with respect to the total amount of the material of the adhesion layer, as long as the effect of the present invention is exhibited. may contain the components of
  • the shape, structure, and size of the adhesion layer are not particularly limited, and can be appropriately selected according to the purpose.
  • the other components are not particularly limited, and may contain components other than the nickel-copper alloy as appropriate as long as the effects of the present invention are not hindered.
  • the average thickness of the adhesion layer is preferably 3 nm or more and 100 nm or less, more preferably 4 nm or more and 50 nm or less, and more preferably 5 nm or more and 25 nm or less.
  • Adhesion can be improved when the average thickness of the adhesion layer is 3 nm or more, and productivity can be improved when the average thickness is 100 nm or less.
  • the nickel alloy is inferior in conductivity to copper, and if the average thickness of the adhesion layer is 100 nm or more, it may affect signal transmission.
  • the average thickness (height) of the adhesion layer is measured as follows.
  • a substrate on which an adhesion layer having a plurality of levels of predetermined thickness is formed is prepared, and the physical film thickness of the adhesion layer having a plurality of levels of predetermined thickness is measured by a contact profilometer. Further, the amount of the adhesion layer material in the adhesion layer having a plurality of levels of predetermined thickness is measured by quantitative analysis using an X-ray fluorescence spectrometer (XRF). A calibration curve is prepared from the film thickness measured by the contact profilometer and the amount of the adhesive layer material measured by quantitative analysis using a fluorescent X-ray spectrometer (XRF).
  • XRF X-ray fluorescence spectrometer
  • the amount of adhesion layer material is quantitatively analyzed using an X-ray fluorescence spectrometer (XRF), and the film thickness is calculated using the prepared calibration curve.
  • XRF X-ray fluorescence spectrometer
  • the adhesion strength (N/mm) between the substrate and the adhesion layer is preferably 0.5 N/mm or more, more preferably 0.6 N/mm or more, and even more preferably 0.7 N/mm or more. Since the adhesion strength between the base material and the adhesion layer is 0.5 N/mm or more, the base material and the adhesion layer do not peel off during resist coating or patterning during circuit formation, making it possible to form a circuit. is. Further, a higher adhesion strength is required for fine circuit formation, and an adhesion strength of 0.5 N/mm or more is preferable.
  • various sputtering methods typified by DC magnetron sputtering using a nickel-copper alloy as a material, vapor deposition, ion plating, etc. are used to form the entire surface of the base material. methods of processing, and the like.
  • the copper layer is a layer arranged on the adhesion layer.
  • the copper layer is arranged at least on the surface of the adhesion layer opposite to the surface facing the substrate.
  • the shape, structure, and size of the copper layer are not particularly limited and can be appropriately selected according to the purpose.
  • the material of the copper layer is not particularly limited as long as the copper content is 95% by mass or more with respect to the total amount of the material of the copper layer, as long as the effect of the present invention is exhibited, and other components are appropriately added depending on the purpose. may contain.
  • the average thickness of the copper layer is preferably 0.05 ⁇ m or more and 5 ⁇ m or less, more preferably 0.06 ⁇ m or more and 3 ⁇ m or less, and even more preferably 0.07 ⁇ m or more and 2 ⁇ m or less.
  • the average thickness (height) of the copper layer is measured as follows.
  • a substrate on which a plurality of levels of predetermined thicknesses of copper layers are formed is prepared, and the physical film thickness of the plurality of levels of predetermined thicknesses of the copper layers is measured by a contact profilometer.
  • the amount of copper layer material in the copper layer having a plurality of levels of predetermined thickness is measured by quantitative analysis using an X-ray fluorescence spectrometer (XRF).
  • XRF X-ray fluorescence spectrometer
  • the amount of copper layer material is quantitatively analyzed using an X-ray fluorescence spectrometer (XRF), and the film thickness is calculated using the prepared calibration curve.
  • Ten samples are prepared in the same manner, and the average value is taken as the average thickness.
  • the average thickness of the copper layer is preferably 0.05 ⁇ m or more and 40 ⁇ m or less, more preferably 0.05 ⁇ m or more and 25 ⁇ m or less, and even more preferably 0.05 ⁇ m or more and 18 ⁇ m or less.
  • the average thickness of the copper layer is 40 ⁇ m or less, it is possible to form a circuit equivalent to that of a base material with a copper foil that is commonly used for circuit formation.
  • the average thickness of the copper layer which will be described later, can be obtained, for example, as an average of 10 or more points (locations) of the thickness of one copper layer in an image of a cross section taken in a direction perpendicular to the surface direction of the substrate.
  • the copper layer having an average thickness of 0.05 ⁇ m or more and 5 ⁇ m or less for example, various sputtering methods such as DC magnetron sputtering using copper as a material, vapor deposition, ion plating, etc. are used. A method of treating at least the entire surface of the adhesion layer opposite to the surface facing the substrate may be mentioned. Examples of the method for forming the copper layer having an average thickness of 0.05 ⁇ m or more and 40 ⁇ m or less include electrolytic copper plating.
  • the other layer is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include an antioxidant layer.
  • the anti-oxidation layer is a layer arranged on the surface of the copper layer opposite to the surface facing the adhesion layer.
  • the shape, structure and size of the anti-oxidation layer are not particularly limited and can be appropriately selected according to the purpose.
  • Examples of materials for the anti-oxidation layer include metals including at least one of nickel, chromium, silicon, zinc, silver, gold, and aluminum, oxides, and nitrides.
  • the average thickness of the antioxidant layer is preferably 0.001 ⁇ m or more and 5 ⁇ m or less, more preferably 0.002 ⁇ m or more and 3 ⁇ m or less.
  • Examples of the method for forming the anti-oxidation layer include various sputtering methods such as DC magnetron sputtering using various metals and alloys as materials, vapor deposition, ion plating, electroplating, electroless plating, and wet plating. Examples include a method of forming the copper layer on the entire surface of the copper layer opposite to the surface facing the adhesive layer by coating, dipping, spray coating, or the like.
  • FIG. 1 is a cross-sectional view showing an example of the conductive film for a high-frequency circuit board of the present invention.
  • the conductive film 10 for a high-frequency circuit board shown in FIG. 1 has an adhesion layer 12 and a copper layer 13 in this order on a substrate 11 .
  • Applications of the conductive film for high-frequency circuit boards of the present invention include, for example, antenna-related 5G base stations, millimeter wave radars, and various antennas, and high-speed communication FPC-related smartphones, tablets, and servers. be done.
  • the high-frequency circuit board of the present invention has a base material, an adhesion layer arranged on at least one surface of the base material, and wiring arranged on the adhesion layer in this order, and is measured at 10 GHz.
  • the dielectric constant of the base material at frequencies is 3.3 or less
  • the adhesion layer contains a nickel-copper alloy, and further has other layers as necessary.
  • the substrate and the adhesion layer are the same as those of the conductive film for high-frequency circuit board of the present invention.
  • the wiring is wiring arranged on a surface of the adhesion layer opposite to the surface facing the substrate.
  • the shape of the wiring is not particularly limited and can be appropriately selected depending on the intended purpose.
  • the structure of the wiring is not particularly limited and can be appropriately selected depending on the purpose.
  • the material of the wiring is not particularly limited as long as the copper content is 95% by mass or more with respect to the total amount of the material of the wiring, so long as the effect of the present invention is exhibited, and it can be appropriately selected according to the purpose. .
  • the width of the wiring is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the circuit board can be miniaturized, and the semiconductor device to which it is applied can be miniaturized.
  • the average thickness (height) of the wiring is not particularly limited as long as it is thick enough to exhibit its function, and can be appropriately selected according to the purpose. It is preferably 1.5 ⁇ m or more and 25 ⁇ m or less, and further preferably 2.0 ⁇ m or more and 18 ⁇ m or less.
  • the average thickness (height) of the wiring is, for example, 10 points (points) or more of the thickness (height) of one wiring in an image of a cross section taken in a direction perpendicular to the surface direction of the high-frequency circuit board. It can be calculated as an average.
  • the average thickness of the wiring is 1.0 ⁇ m or more, it is possible to transmit electric signals, and it is suitably used as a circuit board. By being 40 ⁇ m or less, it is suitably used as a flexible circuit board.
  • the width of the wiring is 50 ⁇ m or less, examples of the method for forming the wiring include SAP (Semi Additive Process) and MSAP (Modified Semi Additive Process). Said SAP and said MSAP can be suitably used to form fine circuits.
  • the method for forming the wiring is not particularly limited, but may include SAP (Semi Additive Process), MSAP (Modified Semi Additive Process), subtractive process, and the like.
  • the anti-oxidation layer is a layer arranged on the exposed surfaces of the wiring and the adhesion layer.
  • the anti-oxidation layer is the same as the conductive film for a high-frequency circuit board.
  • the antirust layer is a layer arranged on the exposed surfaces of the wiring and the adhesion layer, or on the exposed surface of the antioxidation layer in the wiring.
  • the shape, structure, and size of the antirust layer are not particularly limited, and can be appropriately selected according to the purpose.
  • Examples of the material for the antirust layer include benzotriazole-based, imidazole-based, and mercapto-based compounds.
  • the antirust layer can be formed on the exposed surfaces of the wiring and the adhesion layer or the exposed surface of the antioxidation layer on the wiring by wet coating, dipping, spray coating, or the like.
  • the transmission loss of the high-frequency circuit board of the present invention is preferably ⁇ 10 dB/100 mm or more, more preferably ⁇ 9 dB/100 mm or more, and even more preferably ⁇ 8 dB/100 mm or more at a frequency of 40 GHz.
  • the transmission loss of the high-frequency circuit board was measured by forming microstrip lines on various substrates and adjusting the circuit width and the average thickness of the wiring so that the impedance of the circuit was 50 ⁇ . Impedance and transmission loss can be obtained by measuring up to 40 GHz with a probe method using a network analyzer (manufacturer: KEYSIGHT TECHNOLOGIES, model number: E8363B).
  • the high-frequency circuit board of the present invention has the substrate, the adhesion layer, the wiring, and the other layers in this order.
  • FIG. 2A is a cross-sectional view showing an example of the high frequency circuit board of the present invention.
  • the high-frequency circuit board 20 shown in FIG. 2A has the adhesion layer 12 and the wiring 14 on the substrate 11 in this order.
  • FIG. 2B is a cross-sectional view showing another example of the high frequency circuit board of the present invention.
  • the high-frequency circuit board 20 shown in FIG. 2B has the adhesion layer 12, the wiring 14, and the antioxidant layer 15 on the base material 11 in this order.
  • FIG. 2C is a cross-sectional view showing another example of the high-frequency circuit board of the present invention.
  • the high-frequency circuit board 20 shown in FIG. 2C has the adhesion layer 12, the wiring 14, and the antirust layer 16 on the base material 11 in this order.
  • the antirust layer 16 is arranged to cover the exposed surfaces of the adhesion layer 12 and the wiring 14 .
  • FIG. 2D is a cross-sectional view showing another example of the high-frequency circuit board of the present invention.
  • the high-frequency circuit board 20 shown in FIG. 2D has the adhesion layer 12, the wiring 14, the oxidation prevention layer 15, and the rust prevention layer 16 on the base material 11 in this order.
  • Example 1 ⁇ Production of conductive film 1 for high frequency circuit board>
  • a nickel-copper alloy containing 35% by mass of copper is used as a material and argon Sputtering was performed under gas introduction to form an adhesion layer having an average thickness of 10 nm.
  • a copper layer having an average thickness of 120 nm was formed on the adhesion layer by sputtering under the introduction of argon gas using copper as a material, thereby obtaining a conductive film 1 for a high frequency circuit board.
  • Example 2-8 and Comparative Examples 1-2 Conductive films 2 to 10 for high-frequency circuit boards were produced in the same manner as in Example 1, except that the type of base material and the type of adhesion layer were changed as shown in Table 1. The average thickness of each layer in the conductive film for high-frequency circuit boards was measured as follows.
  • a substrate on which an adhesion layer or copper layer having a plurality of levels of predetermined thickness was formed was prepared, and the physical film thickness of the adhesion layer or copper layer having a plurality of levels of predetermined thickness was measured using a contact profilometer.
  • the amount of adhesive layer or copper layer material in the adhesive layer or copper layer having a predetermined thickness at multiple levels was measured by quantitative analysis using an X-ray fluorescence spectrometer (XRF).
  • XRF X-ray fluorescence spectrometer
  • the conductive film for high-frequency circuit boards is quantitatively analyzed using an X-ray fluorescence spectrometer (XRF) to detect nickel and copper (or chromium) derived from the adhesion layer, and the average value of the measured values at 10 locations. average thickness.
  • XRF X-ray fluorescence spectrometer
  • the average thickness of the copper layer was measured in the same manner as the average thickness of the adhesion layer except that the copper derived from the copper layer was detected and the average value of the measured values at 10 locations was used as the average thickness. Table 1 shows the results.
  • the dielectric constant and dielectric loss tangent of the base material were measured at a measurement frequency of 10 GHz by the cavity resonator method according to JIS R1641. Table 1 shows the results.
  • the surface roughness of each base material was measured using an optical interference type surface profile roughness meter (model number: WYKO ContourGT K1M, measurement conditions: VSI mode) manufactured by Bruker Japan Co., Ltd.
  • the optical properties of each base material were measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model number, etc.: NDH5000SP) in accordance with JIS K7361-1 / HAZE: JIS K7136.
  • the total light transmittance was measured. . Table 1 shows the results.
  • composition of the adhesion layer was measured by analyzing the element concentrations of nickel, chromium, and copper in the adhesion layer using an X-ray photoelectron spectrometer (XPS, ESCA, manufactured by ULVAC-PHI, model number: model 5400). . Table 2 shows the results.
  • the base material fixed to the mount is fixed to the lower clamp, and the adhesion layer and the wet-plated copper layer part, which are peeled off with a trigger, are attached to the upper clamp.
  • an autograph Shiadzu Corporation
  • it is pulled at a speed of 50 mm/min and a pulling direction of 180°, and the load at that time is measured.
  • ⁇ Transmission loss> A subtractive process was used to form a microstrip line on the copper layer (copper sputtering) of the obtained conductive film for high-frequency circuit boards, a high-frequency circuit board was manufactured, and the transmission loss was measured. The circuit width and plating thickness were adjusted so that the impedance of the circuit was 50 ⁇ . Impedance and transmission loss were evaluated up to 40 GHz by a probe method using a network analyzer (manufacturer: KEYSIGHT TECHNOLOGIES, model number: E8363B). The results are shown in Table 3 and FIG. Note that the transmission loss was not measured for Examples 5-8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Optical Head (AREA)

Abstract

基材と、前記基材の少なくとも一方の面に配された密着層と、前記密着層の上に配された銅層と、をこの順に有し、10GHzの測定周波数における前記基材の比誘電率が3.3以下であり、前記密着層がニッケル銅合金を含有する、高周波回路基板用導電性フィルムを提供する。

Description

高周波回路基板用導電性フィルム及び高周波回路基板
 本発明は、高周波回路基板用導電性フィルム及び高周波回路基板に関する。
 現在、主に第5世代移動通信規格化(5G)に伴い、従来の信号をより高周波領域で伝送させることが求められている。5Gの特長(超高速、超低遅延、同時多重接続)を生かすには準ミリ波領域での信号伝送が求められている。
 従来より、回路基板として用いられているポリイミド基材をベースとしたフレキシブルプリント回路基板(FPC)では、伝送損失が大きく、準ミリ波領域での信号伝送を行う回路基板に適用することが難しいという問題がある。そのため、ポリイミドよりも比誘電率、誘電正接が低い基材(低誘電材料)をベースとしたFPCが求められる。
 さらに、今後、準ミリ波領域のみならず、更に高い周波数領域(ミリ波領域)を活用することが検討されている。また、すでに第6世代移動通信規格(6G)の議論もされており、6Gでは100GHz~1000GHz(1THz)領域の活用も検討されている。
 上記背景から、低誘電材料を用いた伝送損失の少ないフレキシブル銅張積層板(FCCL)が求められている。
特開2018-160636号公報
 特許文献1には、低誘電率を有する基材と銅層との密着性を高めるために、クロム、ニッケル、ニッケル-クロム合金の群から選ばれる下地層を設けた高周波信号高速伝送用基板が開示されている。しかしながら、特許文献1に開示の技術では、基材と銅層との密着性は優れるものの、回路形成時のエッチング性が良くない場合があるという問題がある。
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、伝送損失が小さく、基材と銅層との密着性、及びエッチング性に優れる高周波回路基板用導電性フィルム、及び高周波回路基板を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 基材と、
 前記基材の少なくとも一方の面に配された密着層と、
 前記密着層の上に配された銅層と、をこの順に有し、
 10GHzの測定周波数における前記基材の比誘電率が3.3以下であり、
 前記密着層がニッケル銅合金を含有する、ことを特徴とする高周波回路基板用導電性フィルムである。
 <2> 前記基材が、シクロオレフィンポリマー樹脂、ポリフェニレンサルファイド樹脂、ポリスチレン樹脂、フッ素樹脂、及びポリエーテルエーテルケトン樹脂の少なくともいずれかを含む、前記<1>に記載の高周波回路基板用導電性フィルムである。
 <3> 前記基材と前記密着層との界面における密着強度が0.5N/mm以上である、前記<1>から<2>のいずれかに記載の高周波回路基板用導電性フィルムである。
 <4> 基材と、
 前記基材の少なくとも一方の面に配された密着層と、
 前記密着層の上に配された配線と、をこの順に有し、
 10GHzの測定周波数における前記基材の比誘電率が3.3以下であり、
 前記密着層がニッケル銅合金を含有する、ことを特徴とする高周波回路基板である。
 本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、伝送損失が小さく、基材と銅層との密着性、及びエッチング性に優れる高周波回路基板用導電性フィルム、及び高周波回路基板を提供することができる。
図1は、本発明の高周波回路基板用導電性フィルムの一例を示す断面図である。 図2Aは、本発明の高周波回路基板の一例を示す断面図である。 図2Bは、本発明の高周波回路基板の他の一例を示す断面図である。 図2Cは、本発明の高周波回路基板の他の一例を示す断面図である。 図2Dは、本発明の高周波回路基板の他の一例を示す断面図である。 図3は、実施例1から4、並びに比較例1及び2における伝送損失と周波数との関係の一例を表す図である。
(高周波回路基板用導電性フィルム)
 本発明の高周波回路基板用導電性フィルムは、基材と、前記基材の少なくとも一方の面に配された密着層と、前記密着層の上に配された銅層と、をこの順に有し、10GHzの測定周波数における前記基材の比誘電率が3.3以下であり、前記密着層がニッケル銅合金を含有し、さらに必要に応じてその他の層を有する。
 本発明において、無線通信の場合、10kHz以上の周波数を高周波と称する。
<基材>
 前記基材は、本発明の高周波回路基板用導電性フィルムの基板であり、10GHzの測定周波数における比誘電率が3.3以下である材料である。
 信号伝送の伝送損失は大きく分けて、誘電体損失、導体損失、及びその他損失の3つの原因がある。この中でも、前記誘電体損失は、下記式1のように基材の比誘電率、誘電正接の関数で表され、比誘電率や誘電正接が大きくなるほど誘電体損失が大きくなる。そのため、誘電体損失を少なくするためには前記比誘電率、前記誘電正接の低い基材を用いることが好ましい。前記比誘電率、前記誘電正接が低い基材を使用することで、伝送損失の少ない高周波回路基板用の導電性フィルムを得ることができる。
Figure JPOXMLDOC01-appb-M000001
 ただし、ε:比誘電率、f:周波数、c:光速、tanδ:誘電正接を表す。
-比誘電率-
 前記基材の比誘電率は3.3以下であり、3.1以下が好ましく、2.5以下がより好ましい。
 前記基材の比誘電率の測定は、JIS R1641に準じた空洞共振器法により、測定周波数10GHzで測定する。
-誘電正接-
 前記誘電正接は、0.005以下が好ましく、0.003以下がより好ましく、0.001以下がさらに好ましい。
 前記基材の誘電正接の測定は、JIS R1641に準じた空洞共振器法により、測定周波数10GHzで測定する。
 前記基材の形状、構造、及び大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。
 前記基材としては、例えば、シクロオレフィンポリマー樹脂、ポリフェニレンサルファイド樹脂、ポリスチレン樹脂、フッ素樹脂、ポリエーテルエーテルケトン樹脂などが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。前記基材としてこれらの材質を用いることにより、伝送損失の少ない高周波回路基板用導電性フィルムを得ることができる。
 前記基材の平均厚みとしては、6μm以上300μm以下が好ましく、12μm以上250μm以下がより好ましく、25μm以上200μm以下がさらに好ましい。前記基材の平均厚みが6μm以上であることにより、加工時のハンドリング性、屈曲性を向上させることができる。また、前記基材の平均厚みが300μm以下であることにより、折り曲げ可能な高周波回路基板用導電性フィルムを得ることができる。基材の平均厚みは使用用途により最適な厚みが異なり、より薄膜、高い屈曲性が求められる領域では6μmに近い基材の平均厚みが求められる。また、絶縁性、高信頼性、回路形成工法から300μmに近い基材の平均厚みが求められる用途もある。
 前記基材の平均厚みは、電子マイクロメーター(アンリツ株式会社製、装置名:KG3001A)を用いて、5点の厚みを測定し、その平均値を算出することにより求める。
 また、信号伝送の伝送損失における導体損失について、前記導体損失は下記式2のように抵抗率、透磁率の関数で表される。高周波領域では表皮効果の影響により、電流が導体表面しか流れず、基材と導体の界面凹凸が信号伝送に非常に影響を及ぼす。このため、基材と導体の界面の平滑性が重要であり、界面凹凸が小さいほど、抵抗率が小さくなり、導体損失も小さくなる。高周波回路基板は伝送損失を抑えるために、誘電体損失のみならず、導体損失も考慮する必要がある。
Figure JPOXMLDOC01-appb-M000002
 ただし、f:周波数、μ:透磁率、ρ:抵抗率を表す。
 前記基材の平滑性の指標としては、例えば、前記基材の表面の算術平均粗さRa、前記基材の表面の最大高さRzが挙げられる。
 前記基材の表面の算術平均粗さRaとしては、500nm以下が好ましく、400nm以下がより好ましく、300nm以下がさらに好ましい。前記基材の表面の算術平均粗さRaが500nm以下であると、伝送損失の少ない高周波回路基板用導電性フィルムを得ることができる。
 前記基材の表面の算術平均粗さRaの測定は、光干渉型表面形状粗さ計(ブルカージャパン株式会社製、WYKO ContourGT K1M、測定条件:VSI mode)を用いて測定することができる。
 前記基材の表面の最大高さRzは、5000nm以下が好ましく、3000nm以下がより好ましく、2000nm以下がさらに好ましい。
 前記最大高さRzとは、測定面においてトップとボトムの値の間隔のうち、最も大きい10点の値の平均値を意味する。
 前記基材の表面の最大高さRzは、光干渉型表面形状粗さ計(ブルカージャパン株式会社製、WYKO ContourGT K1M、測定条件:VSI mode)を用いて測定することができる。
 前記基材としては、透明性は特に限定されないが、本発明の高周波回路基板用導電性フィルムが透明ディスプレイ、透明アンテナ等の透明性が必要とされるデバイスに用いられる場合には、透明性(透過率、ヘイズ)が高いものが好ましい。
 前記基材の透過率は、60%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。
 また、前記基材のヘイズは10%以下が好ましく、8%以下がより好ましく、6%以下がさらに好ましい。
 前記透過率はJIS K7361-1に準拠し、前記ヘイズはJIS K7136に準拠し、ヘイズメーター(日本電色工業株式会社製、装置名:NDH5000SP)を用いて測定することができる。
 前記基材の透過率、ヘイズは特に限定されないが、透明なデバイス、モジュールにフレキシブルプリント回路基板(FPC)を配置させる場合、FPCを目立たせない事も求められ、60%以上の透過率、10%以下のヘイズの基材を用いる事で、FPC自体がそれほど目立たなくなる。また、より透明性を求められる分野では更に高透明、低ヘイズが求められ、その場合、透過率:80%以上、ヘイズ:6%以下が求められる。
<密着層>
 前記密着層は前記基材の少なくとも一方の面に配された層である。前記密着層は、前記基材と後述する銅層の間に配される層であり、後述する銅層と前記基材とを強固に密着させる機能を担う層である。
 前記密着層はニッケル銅合金を含有し、さらに必要に応じてその他の成分を含有する。密着層がニッケル銅合金を含有していることにより、エッチング性や密着性に優れた高周波回路基板用導電性フィルムとすることができる。
 前記密着層の前記ニッケル銅合金における銅の含有量としては、前記密着層におけるニッケルと銅の全量に対する銅の割合として32質量%以上67質量%以下が好ましく、32質量%以上56質量%以下がより好ましく、32質量%以上45質量%以下がさらに好ましく、32質量%以上40質量%以下が最も好ましい。
 密着層の組成について、前記密着層におけるニッケルと銅の全量に対する銅の割合を32質量%以上とすることにより、常温で強磁性体ではなくなり、透磁率を下げることができる。これにより、表皮効果の影響を低減することが可能である。また、前記密着層におけるニッケルと銅の全量に対する銅の割合を67質量%以下とすることにより基材と密着層の界面の密着性を向上させることができ、40質量%以下にすることにより密着性をより向上させることができる。
 前記密着層の前記ニッケル銅合金におけるニッケルの含有量としては、前記密着層におけるニッケルと銅の全量に対するニッケルの割合として33質量%以上68質量%以下が好ましく、44質量%以上68質量%以下がより好ましく、55質量%以上68質量%以下がさらに好ましく、60質量%以上68質量%以下が最も好ましい。
 前記密着層の材質としては、密着層の材質の全量に対してニッケル及び銅の含有量が90質量%以上であれば、本発明の効果を奏する限り特に制限はなく、目的に応じて適宜その他の成分を含有してもよい。
 前記密着層の形状、構造、大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。
 前記その他の成分としては、特に制限はなく、本発明の効果を阻害しなければ、ニッケル銅合金以外の成分を適宜含有していてもよい。
 前記密着層の平均厚みは、3nm以上、100nm以下が好ましく、4nm以上、50nm以下がより好ましく、5nm以上、25nm以下がより好ましい。前記密着層の平均厚みが3nm以上であると密着性を向上させることができ、100nm以下であると生産性を向上させることができる。また、ニッケル合金は導電性が銅と比較すると悪く、密着層の平均厚みが100nm以上では信号伝送に影響を及ぼす可能性がある。なお、前記密着層の平均厚み(高さ)は、以下のようにして測定する。
 まず、複数の水準の所定の厚みの密着層を形成した基板を用意し、複数の水準の所定の厚みの前記密着層の物理膜厚を接触式段差計により測定する。また、複数の水準の所定の厚みの前記密着層における密着層材料の量を、蛍光X線測定装置(XRF)を用いた定量分析により測定する。接触式段差計により測定した前記膜厚と、蛍光X線測定装置(XRF)を用いた定量分析により測定した密着層材料の量から、検量線を作成する。実際に測定したいサンプルにおいて、蛍光X線測定装置(XRF)を用い密着層材料の量を定量分析し、作成した検量線を用いて膜厚を算出する。10点のサンプルを同様に作成し、その平均値を平均厚みとする。
 前記基材と前記密着層との密着強度(N/mm)は、0.5N/mm以上が好ましく、0.6N/mm以上がより好ましく、0.7N/mm以上がさらに好ましい。前記基材と前記密着層の密着強度が0.5N/mm以上であることにより、回路形成時のレジスト塗布やパターニングの際に前記基材と前記密着層が剥離することなく、回路形成が可能である。また、微細回路形成には更に強い密着強度が必要であり、0.5N/mm以上の密着強度が好ましい。
 前記密着層の形成方法としては、例えば、ニッケル銅合金を材料とするDCマグネトロンスパッタ法を代表とする各種スパッタリング法、蒸着法、イオンプレーティング法などを用いて、前記基材の表面の全面に処理する方法などが挙げられる。
<銅層>
 前記銅層は、前記密着層の上に配された層である。前記銅層は、前記密着層における前記基材と対向する面とは反対の面上に少なくとも配される。
 前記銅層の形状、構造、大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。
 前記銅層の材質としては、銅層の材質の全量に対して銅の含有量が95質量%以上であれば、本発明の効果を奏する限り特に制限はなく、目的に応じて適宜その他の成分を含有してもよい。
 前記銅層の平均厚みは、0.05μm以上5μm以下が好ましく、0.06μm以上3μm以下がより好ましく、0.07μm以上2μm以下がさらに好ましい。前記銅層の平均厚みが0.05μm以上であると、シード層としての銅層を形成後の後加工の銅電解めっきで厚膜化が可能であり、5μm以下であると、生産性に優れた銅層が形成可能である。
 なお、前記銅層の平均厚み(高さ)は、以下のようにして測定する。
 まず、複数の水準の所定の厚みの銅層を形成した基板を用意し、複数の水準の所定の厚みの前記銅層の物理膜厚を接触式段差計により測定する。また、複数の水準の所定の厚みの前記銅層における銅層材料の量を、蛍光X線測定装置(XRF)を用いた定量分析により測定する。接触式段差計により測定した前記膜厚と、蛍光X線測定装置(XRF)を用いた定量分析により測定した銅層材料の量から、検量線を作成する。実際に測定したいサンプルにおいて、蛍光X線測定装置(XRF)を用い銅層材料の量を定量分析し、作成した検量線を用いて膜厚を算出する。10点のサンプルを同様に作成し、その平均値を平均厚みとする。
 また別の態様として、前記銅層の平均厚みは、0.05μm以上40μm以下が好ましく、0.05μm以上25μm以下がより好ましく、0.05μm以上18μm以下がさらに好ましい。前記銅層の平均厚みが40μm以下であると、一般的な回路形成に用いられる銅箔付き基材と同等の回路形成が可能である。
 なお、後述する銅層の平均厚みは、例えば、基板の面方向と直交する方向の断面を撮影した画像における一の前記銅層の厚みの10点(箇所)以上の平均として求めることができる。
 平均厚み0.05μm以上5μm以下の前記銅層の形成方法としては、例えば、銅を材料とするDCマグネトロンスパッタ法を代表とする各種スパッタリング法、蒸着法、イオンプレーティング法などを用いて、前記密着層における前記基材と対向する面とは反対の面の全面を少なくとも処理する方法が挙げられる。
 平均厚み0.05μm以上40μm以下の前記銅層の形成方法としては、例えば、電解銅めっきなどが挙げられる。
<その他の層>
 前記その他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化防止層などが挙げられる。
<<酸化防止層>>
 前記酸化防止層は、前記銅層における前記密着層と対向する面とは反対の面上に配される層である。
 前記酸化防止層の形状、構造、大きさとしては特に制限はなく、目的に応じて適宜選択できる。
 前記酸化防止層の材質としては、例えば、ニッケル、クロム、ケイ素、亜鉛、銀、金、及びアルミニウムの少なくともいずれかを含む金属、酸化物、並びに、窒化物などが挙げられる。
 前記酸化防止層の平均厚みは、0.001μm以上5μm以下が好ましく、0.002μm以上3μm以下がより好ましい。
 前記酸化防止層の形成方法としては、例えば、各種金属、合金を材料としてDCマグネトロンスパッタ法を代表とする各種スパッタリング法、蒸着法、イオンプレーティング法、その他に、電解めっき、無電解めっき、ウェットコーティング、ディッピング、スプレーコートなどによって、前記銅層における前記密着層と対向する面とは反対の面の全面に形成する方法などが挙げられる。
 本発明の高周波回路基板用導電性フィルムは、前記基材、前記密着層、前記銅層、及び前記その他の層をこの順で有している。
 ここで、図面を参照して、本発明の高周波回路基板用導電性フィルムの一例について説明する。
 図1は、本発明の高周波回路基板用導電性フィルムの一例を示す断面図である。
 図1に示す高周波回路基板用導電性フィルム10においては、基材11上に、密着層12と、銅層13と、をこの順で有する。
 本発明の高周波回路基板用導電性フィルムの用途としては、例えば、アンテナ関連では5G基地局、ミリ波レーダー、及び各種アンテナなどが挙げられ、高速通信FPC関連ではスマートフォン、タブレット、及びサーバーなどが挙げられる。
(高周波回路基板)
 本発明の高周波回路基板としては、基材と、前記基材の少なくとも一方の面に配された密着層と、前記密着層の上に配された配線と、をこの順に有し、10GHzの測定周波数における前記基材の比誘電率が3.3以下であり、前記密着層がニッケル銅合金を含有し、さらに必要に応じてその他の層を有する。
 本発明の高周波回路基板において、前記基材、及び前記密着層については、本発明の高周波回路基板用導電性フィルムと同様である。
<配線>
 前記配線は、前記密着層における前記基板と対向する面とは反対の面上に配された配線である。
 前記配線の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、長さ方向に直交する断面が、略四角形などが挙げられる。
 前記配線の構造としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記配線の材質としては、配線の材質の全量に対して銅の含有量が95質量%以上であれば、本発明の効果を奏する限り特に制限はなく、目的に応じて適宜選択することができる。
 前記配線の大きさの一例としては、前記配線の幅が50μm以下であることが好ましく、40μm以下であることがより好ましく、30μm以下であることがさらに好ましい。前記配線の幅が50μm以下であると、回路基板を微細化することができ、適用する半導体装置を小型化することができる。また、前記配線の平均厚み(高さ)としては、その機能を発揮できる程度の厚みであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、1.0μm以上40μm以下が好ましく、1.5μm以上25μm以下がより好ましく、2.0μm以上18μm以下がさらに好ましい。なお、前記配線の平均厚み(高さ)は、例えば、高周波回路基板の面方向と直交する方向の断面を撮影した画像における一の前記配線の厚み(高さ)の10点(箇所)以上の平均として求めることができる。前記配線の平均厚みが1.0μm以上であることにより、電気信号の伝達が可能であり、回路基板として好適に用いられる。40μm以下であることにより、フレキシブル性のある回路基板として好適に用いられる。
 前記配線の幅が50μm以下である場合における、前記配線の形成方法としては、例えば、SAP(Semi Additive Process)及びMSAP(Modified Semi Additive Process)などが挙げられる。前記SAP及び前記MSAPは微細回路を形成するのに好適に用いることができる。
 前記配線の形成方法としては特に限定されないが、SAP(Semi Additive Process)及びMSAP(Modified Semi Additive Process)の他にサブトラクティブプロセスなどが挙げられる。
<その他の層>
 前記その他の層としては、例えば、酸化防止層、防錆層などが挙げられる。
<<酸化防止層>>
 前記酸化防止層は、前記配線及び密着層における露出表面に配される層である。
 前記酸化防止層としては、前記高周波回路基板用導電性フィルムと同様である。
<<防錆層>>
 前記防錆層は、前記配線及び前記密着層の露出表面、又は前記配線における前記酸化防止層の露出表面に配される層である。
 前記防錆層の形状、構造、大きさとしては特に制限はなく、目的に応じて適宜選択できる。
 前記防錆層の材質としては、例えば、ベンゾトリアゾール系、イミダゾール系、メルカプト系等の化合物が挙げられる。
 前記防錆層の形成方法としては、ウェットコーティング、ディッピング、スプレーコートなどによって、前記配線及び前記密着層の露出表面、又は前記配線における前記酸化防止層の露出表面に形成することができる。
 本発明の高周波回路基板の伝送損失としては、40GHzの周波数において、-10dB/100mm以上が好ましく、-9dB/100mm以上がより好ましく、-8dB/100mm以上がさらに好ましい。
 高周波回路基板の伝送損失は、各種基材にマイクロストリップラインを形成し、回路はインピーダンスが50Ωとなるよう回路幅と前記配線の平均厚みを調整した。インピーダンス及び伝送損失はネットワークアナライザー(メーカー:KEYSIGHT TECNOLOGIES社、型番:E8363B)を用いてプローブ方式で40GHzまで測定することで得ることができる。
 本発明の高周波回路基板は、前記基材、前記密着層、前記配線、及び前記その他の層をこの順で有している。
 ここで、図面を参照して、本発明の高周波回路基板の一例について説明する。
 図2Aは、本発明の高周波回路基板の一例を示す断面図である。図2Aに示す高周波回路基板20においては、基材11上に、密着層12と、配線14と、をこの順で有する。
 図2Bは、本発明の高周波回路基板の他の一例を示す断面図である。図2Bに示す高周波回路基板20においては、基材11上に、密着層12と、配線14と、酸化防止層15と、をこの順で有する。酸化防止層15は密着層12及び配線14の露出表面を覆うように配されている。
 図2Cは、本発明の高周波回路基板の他の一例を示す断面図である。図2Cに示す高周波回路基板20においては、基材11上に、密着層12と、配線14と、防錆層16と、をこの順で有する。防錆層16は密着層12及び配線14の露出表面を覆うように配されている。
 図2Dは、本発明の高周波回路基板の他の一例を示す断面図である。図2Dに示す高周波回路基板20においては、基材11上に、密着層12と、配線14と、酸化防止層15と、防錆層16と、をこの順で有する。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(実施例1)
<高周波回路基板用導電性フィルム1の製造>
 平均厚み100μmのシクロオレフィンポリマー(COP)フィルム(基材、日本ゼオン社製、製品名:ZEONOR)の上に前処理を行った後、35質量%の銅を含有するニッケル銅合金を材料としてアルゴンガス導入下でスパッタリングを行い、平均厚みが10nmの密着層を形成した。
 次に、密着層の上に銅を材料としてアルゴンガス導入下でスパッタリングを行い、平均厚みが120nmの銅層を形成し、高周波回路基板用導電性フィルム1を得た。
(実施例2~8及び比較例1~2)
 実施例1において、基材の種類、密着層の種類を表1に示すように変更した以外は、実施例1と同様にして高周波回路基板用導電性フィルム2~10を製造した。
 なお、高周波回路基板用導電性フィルムにおける各層の平均厚みは以下のようにして測定した。
-密着層及び銅層の平均厚み-
 まず、複数の水準の所定の厚みの密着層又は銅層を形成した基板を用意し、複数の水準の所定の厚みの密着層又は銅層の物理膜厚を接触式段差計により測定した。また、複数の水準の所定の厚みの密着層又は銅層における密着層又は銅層材料の量を、蛍光X線測定装置(XRF)を用いた定量分析により測定した。接触式段差計により測定した前記膜厚と、蛍光X線測定装置(XRF)を用いた定量分析により測定した密着層又は銅層材料の量から、検量線を作成した。高周波回路基板用導電性フィルムを、蛍光X線測定装置(XRF)を用いた定量分析によって、密着層に由来するニッケル、及び銅(又はクロム)を検出し、10箇所における測定値の平均値を平均厚みとした。
 銅層の平均厚みについては、銅層に由来する銅を検出し、10箇所における測定値の平均値を平均厚みとした以外は、密着層の平均厚みの測定と同様にして行った。結果を表1に示す。
 また、基材の比誘電率及び誘電正接は、JIS R1641に準じた空洞共振器法により、測定周波数10GHzで測定した。結果を表1に示す。
 各基材の表面粗さは、ブルカージャパン株式会社製、光干渉型表面形状粗さ計(型番:WYKO ContourGT K1M、測定条件:VSI mode)を使用した。
 また、各基材の光学特性は、ヘイズメーター(日本電色工業株式会社製、型番等:NDH5000SP)を用いて、JIS K7361-1 / HAZE :JIS K7136に準拠して全光線透過率を測定した。結果を表1に示す。
 また、密着層の組成は、X線光電子分光分析装置(XPS、ESCA、アルバックファイ製、型番:モデル5400)を使用し、密着層のニッケル、クロム、銅の元素濃度を分析することにより測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 次に、得られた高周波回路基板用導電性フィルムについて、以下のようにして、「エッチング性」、「密着強度」、及び「伝送損失」を評価した。結果を表3に示した。
<エッチング性>
 ガラスビーカーに1%塩化第二鉄(液温:23℃)を入れ、そこに高周波回路基板用導電性フィルムを浸漬させ180秒後に取り出し、その後、水洗いした。キムタオルで水分を拭取り目視にて残渣の有無を下記評価基準に基づき、評価した。
[評価基準]
 残渣がない:○
 残渣がある:×
<密着強度>
 まず、銅層(銅スパッタ)面を希硫酸で表面洗浄後、硫酸銅水溶液中で電解めっきを実施し、平均厚み20μmの湿式めっき銅層を得て、試験用サンプルとした。得られた試験用サンプルを用いて、下記測定方法に基づいて、密着強度を測定した。
-測定方法-
 10cm角の銅層(銅スパッタ)サンプル上に、電解めっきで平均厚み20μmの銅層を形成後、幅5mmにカットする。サンプルを台紙に両面粘着テープで貼り付ける。台紙に固定した基材部分を下のクランプに固定し、きっかけを作って引き剥がした密着層及び湿式めっき銅層部分を上のクランプに取り付ける。オートグラフ(島津製作所)を用いて、速度:50mm/min、引張方向:180°で引張り、その時の荷重を測定する。
<伝送損失>
 得られた高周波回路基板用導電性フィルムにおける銅層(銅スパッタ)上に、サブトラクティブプロセスを用いてマイクロストリップラインを形成し、高周波回路基板を製造し、伝送損失を測定した。回路はインピーダンスが50Ωとなるよう回路幅とめっき厚みを調整した。インピーダンス及び伝送損失はネットワークアナライザー(メーカー:KEYSIGHT TECNOLOGIES社、型番:E8363B)を用いてプローブ方式で40GHzまで評価した。結果を表3及び図3に示す。なお、実施例5-8に関しては、伝送損失を測定していない。
Figure JPOXMLDOC01-appb-T000005
 10 高周波回路基板用導電性フィルム
 11 基材
 12 密着層
 13 銅層
 14 配線
 15 酸化防止層
 16 防錆層
 20 高周波回路基板

Claims (4)

  1.  基材と、
     前記基材の少なくとも一方の面に配された密着層と、
     前記密着層の上に配された銅層と、をこの順に有し、
     10GHzの測定周波数における前記基材の比誘電率が3.3以下であり、
     前記密着層がニッケル銅合金を含有する、ことを特徴とする高周波回路基板用導電性フィルム。
  2.  前記基材が、シクロオレフィンポリマー樹脂、ポリフェニレンサルファイド樹脂、ポリスチレン樹脂、フッ素樹脂、及びポリエーテルエーテルケトン樹脂の少なくともいずれかを含む、請求項1に記載の高周波回路基板用導電性フィルム。
  3.  前記基材と前記密着層との界面における密着強度が0.5N/mm以上である、請求項1から2のいずれかに記載の高周波回路基板用導電性フィルム。
  4.  基材と、
     前記基材の少なくとも一方の面に配された密着層と、
     前記密着層の上に配された配線と、をこの順に有し、
     10GHzの測定周波数における前記基材の比誘電率が3.3以下であり、
     前記密着層がニッケル銅合金を含有する、ことを特徴とする高周波回路基板。

     
PCT/JP2022/018965 2021-06-30 2022-04-26 高周波回路基板用導電性フィルム及び高周波回路基板 WO2023276433A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021108391A JP7057012B1 (ja) 2021-06-30 2021-06-30 高周波回路基板用導電性フィルム及び高周波回路基板
JP2021-108391 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276433A1 true WO2023276433A1 (ja) 2023-01-05

Family

ID=81291705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018965 WO2023276433A1 (ja) 2021-06-30 2022-04-26 高周波回路基板用導電性フィルム及び高周波回路基板

Country Status (3)

Country Link
JP (1) JP7057012B1 (ja)
TW (1) TWI818527B (ja)
WO (1) WO2023276433A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015931A (ja) * 1999-07-01 2001-01-19 Ibiden Co Ltd 多層プリント配線板およびその製造方法
WO2014156489A1 (ja) * 2013-03-26 2014-10-02 株式会社カネカ 導電性フィルム基板、透明導電性フィルムおよびその製造方法、ならびにタッチパネル

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850487B2 (ja) * 2005-11-07 2012-01-11 富士フイルム株式会社 プリント配線板用積層体、それを用いたプリント配線板、プリント配線基板の作製方法、電気部品、電子部品、および、電気機器
CN105073824A (zh) * 2013-03-19 2015-11-18 日本瑞翁株式会社 聚合性组合物、树脂成型体、复合体及叠层体
JP2016199779A (ja) * 2015-04-08 2016-12-01 パナソニックIpマネジメント株式会社 修飾金属ナノ粒子,その製造方法,修飾金属ナノインク及び配線層形成方法
CN109233543B (zh) * 2017-05-03 2020-09-22 中山台光电子材料有限公司 树脂组合物及由其制成的物品
JP7141275B2 (ja) * 2018-08-07 2022-09-22 信越ポリマー株式会社 高周波回路基板
JP6706013B1 (ja) * 2019-10-02 2020-06-03 住友金属鉱山株式会社 銅張積層板および銅張積層板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015931A (ja) * 1999-07-01 2001-01-19 Ibiden Co Ltd 多層プリント配線板およびその製造方法
WO2014156489A1 (ja) * 2013-03-26 2014-10-02 株式会社カネカ 導電性フィルム基板、透明導電性フィルムおよびその製造方法、ならびにタッチパネル

Also Published As

Publication number Publication date
TW202304272A (zh) 2023-01-16
JP2023006022A (ja) 2023-01-18
JP7057012B1 (ja) 2022-04-19
TWI818527B (zh) 2023-10-11

Similar Documents

Publication Publication Date Title
JP5129642B2 (ja) 表面処理銅箔及びその表面処理銅箔を用いて得られる銅張積層板並びにその銅張積層板を用いて得られるプリント配線板
EP3424703B1 (en) Metal-clad laminate and manufacturing method for same
EP2527499A1 (en) Roughened copper foil, method for producing same, and copper clad laminate and printed circuit board
KR102274906B1 (ko) 구리박 및 이것을 갖는 동장 적층판
US20100190029A1 (en) Metal layer laminate having roughened metal surface layer and method for producing the same
WO2013168646A1 (ja) 表面処理銅箔及びそれを用いた積層板、銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2013155415A (ja) 高周波伝送用表面処理銅箔、高周波伝送用積層板及び高周波伝送用プリント配線板
CN107109663B (zh) 高频信号传输电路形成用表面处理铜箔、覆铜层压板及印刷线路板
US20120196144A1 (en) Ultra thin copper foil with very low profile copper foil as carrier and its manufacturing method
JP6722452B2 (ja) 表面処理銅箔、その表面処理銅箔を用いて得られる銅張積層板及びプリント配線板
KR20210039898A (ko) 동장 적층판 및 동장 적층판의 제조 방법
KR20130136534A (ko) 프린트 배선판용 구리박 및 그것을 사용한 적층체
WO2023276433A1 (ja) 高周波回路基板用導電性フィルム及び高周波回路基板
JP6379055B2 (ja) 表面処理銅箔及び積層板
CN111757607B (zh) 表面处理铜箔、覆铜层叠板及印制布线板
KR20200142137A (ko) 저유전율을 가지는 불소계 기판 및 그의 제조 방법
JP6827083B2 (ja) 表面処理銅箔、銅張積層板、及びプリント配線板
WO2022255422A1 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板
Fukazaw et al. Silver-seed Cu-Wirings for High-speed Transmission
KR20220163345A (ko) 금속화 필름 및 그 제조 방법
TW202239278A (zh) 覆銅層壓膜、包括其的電子元件以及所述覆銅層壓膜的製造方法
KR20140035552A (ko) 담체로서 매우 낮은 프로파일의 구리 호일을 갖는 초박형 구리 호일

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE