WO2023274228A1 - 空调器的起火检测控制方法 - Google Patents

空调器的起火检测控制方法 Download PDF

Info

Publication number
WO2023274228A1
WO2023274228A1 PCT/CN2022/101906 CN2022101906W WO2023274228A1 WO 2023274228 A1 WO2023274228 A1 WO 2023274228A1 CN 2022101906 W CN2022101906 W CN 2022101906W WO 2023274228 A1 WO2023274228 A1 WO 2023274228A1
Authority
WO
WIPO (PCT)
Prior art keywords
set value
compressor
fire
current time
temperature
Prior art date
Application number
PCT/CN2022/101906
Other languages
English (en)
French (fr)
Inventor
王建营
安超
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2023274228A1 publication Critical patent/WO2023274228A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/33Responding to malfunctions or emergencies to fire, excessive heat or smoke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of air conditioners, and specifically provides a fire detection and control method for an air conditioner.
  • An air conditioner is a device capable of adjusting the indoor ambient temperature. It can reduce the indoor ambient temperature by cooling and increase the indoor ambient temperature by heating, thereby improving user comfort.
  • the air conditioner may catch fire during use. Once the air conditioner catches fire, since the indoor unit and the outdoor unit are connected by connecting pipes, the fire will quickly spread throughout the room and outside, causing immeasurable damage. If the fire begins to occur on the side of the outdoor unit, it will be difficult for the user to detect it. When the user finds that the air conditioner is on fire, he may not be able to take timely countermeasures, and it will easily pose a threat to other users’ families.
  • the research is generally carried out from the fire prevention aspect of the air conditioner, that is, to prevent fire by monitoring the operating status of the compressor and the outdoor fan, such as adjusting the operating frequency of the compressor at any time, or adjusting the speed of the outdoor fan, etc.
  • this method is only to prevent fires, and the causes of air conditioner fires are still very diverse, and prevention alone is obviously not enough to meet the safety requirements of users.
  • the present invention aims to solve the above-mentioned technical problems, that is, to solve the problem that the existing air conditioner cannot take countermeasures in time once it catches fire, and the user may find out that if it is not timely, serious consequences will easily occur, thereby failing to meet the user's safety requirements.
  • the present invention provides a fire detection and control method for an air conditioner.
  • the fire detection and control method includes:
  • the exhaust temperature of the compressor, the coil temperature of the indoor unit, the coil temperature of the outdoor unit, the operating frequency of the compressor and the outdoor ambient temperature are obtained in real time;
  • the compressor is stopped after a set time and a fire warning is issued.
  • the step of "judging whether the air conditioner is on fire according to the judgment result" specifically includes:
  • the difference between the discharge temperature of the compressor before the first preset time and the discharge temperature of the compressor at the current time is greater than or equal to the first set value, and it is determined that the indoor unit
  • the difference between the coil temperature before the first preset time and the coil temperature of the indoor unit at the current time is greater than or equal to the second set value, and it is determined that the first preset value of the compressor is It is assumed that the difference between the operating frequency before the time and the operating frequency of the compressor at the current time is less than or equal to the third set value, and it is determined that the outdoor ambient temperature before the first preset time is different from the outdoor ambient temperature at the current time.
  • the absolute value of the difference of ambient temperature is smaller than the fourth set value, and it is determined that the difference between the discharge temperature of the compressor at the current time and the coil temperature of the indoor unit at the current time is greater than the fifth set value.
  • the set value lasts for the second preset time, and it is determined that the coil temperature of the indoor unit at the current time is greater than or equal to the sixth set value or the coil temperature of the outdoor unit at the current time is greater than or equal to is equal to the seventh set value, it is determined that the air conditioner is on fire.
  • the difference between the discharge temperature of the compressor before the first preset time and the discharge temperature of the compressor at the current time is greater than or equal to the first set value , and it is determined that the difference between the coil temperature of the indoor unit before the first preset time and the coil temperature of the indoor unit at the current time is greater than or equal to the second set value, and it is determined that the The difference between the operating frequency of the compressor before the first preset time and the operating frequency of the compressor at the current time is less than or equal to the third set value, and it is determined that the operating frequency before the first preset time is The absolute value of the difference between the outdoor ambient temperature and the outdoor ambient temperature at the current time is less than the fourth set value, and it is determined that the discharge temperature of the compressor at the current time is different from the coil temperature of the indoor unit at the current time
  • the difference value is greater than the fifth set value and lasts for the second preset time, and it is determined that the coil temperature of the indoor unit at the current time is greater than or equal to the sixth set value
  • the fire detection and control method when it is determined that the air conditioner is on fire, the fire detection and control method further includes:
  • the step of "determining the fire location of the air conditioner” specifically includes:
  • both the first preset time and the second preset time are 5 minutes
  • the first set value is 10 degrees Celsius
  • the second set value is -5 degrees Celsius
  • the third setting value is 5HZ
  • the fourth setting value is 2 degrees Celsius
  • the fifth setting value is 58 degrees Celsius
  • the sixth setting value and the seventh setting The values are all 100 degrees Celsius.
  • the third preset time is 1 minute.
  • the step of "sending a fire prompt" includes:
  • the controller of the air conditioner communicates with the user terminal, and the step of "sending a fire warning" includes:
  • the present invention can accurately determine the exhaust temperature of the compressor, the coil temperature of the indoor unit, the coil temperature of the outdoor unit, the operating frequency of the compressor and the outdoor ambient temperature obtained in real time. Check whether the air conditioner is on fire, and there will be no misjudgment, and the compressor can stop in a steady state after a fire occurs, avoiding immediate shutdown that will cause the air conditioner to be in an unsteady state and aggravate the fire.
  • parameters other than the air conditioner itself are used.
  • the compressor adopts countermeasures and reminds the user at the same time, further improving the user experience.
  • the air conditioner caught fire it is easy for users to adopt different coping strategies. For example, when the outdoor side of the air conditioner catches fire but the indoor side does not catch fire, the user can promptly notify the firefighters indoors or take corresponding solutions by themselves. According to the scheme, when the indoor side of the air conditioner catches fire, the user can escape first to avoid affecting his own life safety.
  • the indoor unit beep and alarm
  • the high-pitched sound can prompt the user to evacuate in an emergency, so as to avoid affecting his own life safety.
  • Fig. 1 is the flowchart of the fire detection control method of the air conditioner of the present invention
  • Fig. 2 is a flow chart of an embodiment of the fire detection and control method of the air conditioner of the present invention.
  • the present invention provides an air conditioner fire prevention
  • the detection and control method aims to accurately determine whether the air conditioner is on fire, and can promptly notify the user when the air conditioner is on fire, so as to improve the safety of the air conditioner, meet the safety requirements of the user, and improve user experience.
  • the inventor has done in-depth research on the fire situation of the air conditioner.
  • the exhaust temperature of the compressor, the coil temperature of the indoor unit, the coil temperature of the outdoor unit and the operating frequency of the compressor are selected as the relevant parameters of the air conditioner for comprehensively judging the fire of the air conditioner.
  • the air conditioner parameters selected in the present invention can not only determine whether the air conditioner is on fire, but also ensure the accuracy of the judgment.
  • the present invention has also selected outdoor ambient temperature as the parameter of non-air conditioner itself, thus eliminates the influence of outdoor ambient temperature, avoids the temperature change of outdoor environment and influences on fire accuracy judgment.
  • fire detection control method of the present invention comprises:
  • the compressor When it is determined that the air conditioner is on fire, the compressor is stopped after a set time and a fire warning is issued.
  • the value range of the set time is preferably 5 to 15 seconds, more preferably 10 seconds, and those skilled in the art can flexibly set the set time in practical applications.
  • the air conditioner can be shut down in a relatively steady state after the shutdown, so as to avoid the aggravation of the fire, and the shutdown method of the compressor is preferably to use a uniform speed reduction shutdown or a stepwise reduction in speed, for example, to complete the shutdown within 10 to 15 seconds , compared to the shutdown speed of the air conditioner under normal operating conditions.
  • the comparison is also designed to compare and judge the difference TD2-TM2 between the discharge temperature TD2 of the compressor at the current time and the coil temperature TM2 of the indoor unit and the fifth set value T5, so as to avoid the compressor itself Misjudgment caused by abnormal operation and inaccurate detection of the coil temperature sensor of the indoor unit and the coil temperature sensor of the outdoor unit.
  • the exhaust temperature of the unit and the operating frequency deviate, and the coil temperature of the indoor unit and the coil temperature of the outdoor unit may also be detected abnormally due to their own reasons, but on this basis, the comparison between TD2-TM2 and T5 must also be satisfied.
  • the probability of the condition is basically zero, and the present invention can eliminate the misjudgment that the air conditioner is on fire to the greatest extent through the above logic design, and ensure the detection accuracy of the air conditioner on fire.
  • TM2 ⁇ T6 and TC2 ⁇ T7 only needs to meet one of them to determine that the air conditioner is on fire. And when the air conditioner is on fire, it can be determined whether the indoor unit is on fire or the outdoor unit is on fire through the comparison results of TM2 and T6 and TC2 and T7, so as to further determine the fire location of the air conditioner.
  • the coil temperature TM2 of the indoor unit at the current time is greater than or equal to the sixth set value T6, it is determined that the indoor unit is on fire, and if the coil temperature TC2 of the outdoor unit at the current time is greater than or equal to the seventh set value T7, it is determined If the outdoor unit is on fire, if the above two conditions are met at the same time, it is determined that both the indoor unit and the outdoor unit are on fire.
  • a time limit can also be added to the aforementioned conditions of ⁇ TD ⁇ T1, ⁇ TM ⁇ T2, ⁇ F ⁇ F3, ⁇ TAI ⁇ T4 and TD2-TM2>T5 and TM2 ⁇ T6 or TC2 ⁇ T7 , that is, the air conditioner is judged to be on fire when the above conditions are met within the time limit, thereby further improving the accuracy of detection.
  • the possibility of misjudgment of the air conditioner is basically zero.
  • the difference ⁇ TD between the discharge temperature TD1 of the compressor before the first preset time t1 and the discharge temperature TD2 of the compressor at the current time is greater than or equal to the first set Set the value T1
  • the difference ⁇ TM between the coil temperature TM1 of the indoor unit before the first preset time t1 and the coil temperature TM2 of the indoor unit at the current time is greater than or equal to the second set value T2
  • the compression The difference ⁇ F between the operating frequency F1 before the first preset time t1 of the compressor and the operating frequency F2 at the current time of the compressor is less than or equal to the third set value F3, and it is determined that the outdoor environment before the first preset time t1
  • the absolute value ⁇ TAI of the difference between the temperature TAI1 and the outdoor ambient temperature TAI2 at the current time is less than the fourth set value T4, and it is determined that the discharge temperature TD2 of the compressor at the current time is different from the coil
  • the difference TD2-TM2 is greater than the fifth set value T5 and lasts for the second preset time t2, and it is determined that the coil temperature TM2 of the indoor unit at the current time is greater than or equal to the sixth set value T6 or the coil temperature of the outdoor unit at the current time. Only when the tube temperature TC2 is greater than or equal to the seventh set value T7 can it be determined that the air conditioner is on fire.
  • the specific values of the set value F3, the fourth set value T4, the fifth set value T5, the sixth set value T6 and the seventh set value T7 for example: the first preset time t1 and the second preset time t2 is 5 minutes, the third preset time t3 is 1 minute, the first setting value T1 is 10 degrees Celsius, the second setting value T2 is -5 degrees Celsius, the third setting value F3 is 5HZ, and the fourth setting The value T4 is 2°C, the fifth set value T5 is 58°C, the sixth set value T6 and the seventh set value T7 are both 100°C.
  • the above-mentioned third preset time t3 is less than the second preset time t2, it means that within the determination time of the third preset time t3, TD2-TM2>T5 needs to meet the requirement that the second preset time t2 has lasted , once the condition of the second preset time t2 is not satisfied, and it is not judged that the air conditioner is on fire, and if TD2-TM2>T5 is met and lasts for the second preset time t2, if ⁇ TD ⁇ T1, ⁇ TM If one of ⁇ T2, ⁇ F ⁇ F3 and ⁇ TAI ⁇ T4 is not satisfied, or neither of TM2 ⁇ T6 and TC2 ⁇ T7 is satisfied, it is not determined that the air conditioner is on fire.
  • the step of "sending a fire warning” includes: making the indoor unit buzz to give an alarm.
  • a buzzer that communicates with the controller of the air conditioner may be provided on the housing of the indoor unit, and when the air conditioner catches fire, the controller controls the buzzer to sound to remind indoor users.
  • the controller of the air conditioner communicates with the user terminal (such as a mobile phone, a tablet, a smart bracelet/watch, etc.), and the step of "sending a fire reminder" includes: sending a reminder message to the user terminal.
  • a short message may be sent to the user terminal or a phone call reminder may be automatically pushed, and a voice prompt may be sent to the user terminal, or the APP of the user terminal may automatically pop up prompt information.
  • the discharge temperature TD of the compressor, the coil temperature TM of the indoor unit, the coil temperature TC of the outdoor unit, the operating frequency F of the compressor, and the outdoor ambient temperature are obtained in real time TAI;
  • the sensor that detects the outdoor ambient temperature needs to ensure that its setting position will not be affected when the air conditioner catches fire.
  • the outdoor ambient temperature sensor can be arranged away from the air conditioner.
  • the controller only needs to maintain communication. If the outdoor ambient temperature sensor is installed on the casing of the outdoor unit, a fireproof board can be installed on the casing to prevent the fire from flowing to the location where the outdoor ambient temperature sensor is located, so as to avoid affecting the detection accuracy of the outdoor ambient temperature sensor.
  • the outdoor ambient temperature is preferably obtained through weather forecast, so as to avoid the possible impact on the detection of the outdoor ambient temperature when the air conditioner catches fire.
  • the module realizes the communication interaction between the controller and the cloud server, so as to download the weather forecast data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器的起火检测控制方法,旨在解决现有空调器一旦起火无法及时采取应对措施且用户有可能发现不及时而易出现严重后果,从而无法满足用户的安全性要求的问题。为此目的,所述起火检测控制方法包括:在空调器运行的过程中,实时获取压缩机的排气温度(TD)、室内机的盘管温度(TM)、室外机的盘管温度(TC)、压缩机的运行频率(F)和室外环境温度(TAI);根据压缩机的排气温度(TD)、室内机的盘管温度(TM)、室外机的盘管温度(TC)、压缩机的运行频率(F)和室外环境温度(TAI),判定空调器是否起火;在判定空调器起火的情况下,使压缩机在设定时间后停机并发出起火提示。该控制方法在空调器起火时能够及时通知用户,提高空调器的安全性,满足用户的安全性要求。

Description

空调器的起火检测控制方法 技术领域
本发明涉及空调器技术领域,具体提供一种空调器的起火检测控制方法。
背景技术
空调器是能够对室内环境温度进行调节的设备,其能够通过制冷使室内环境温度降低,通过制热使室内环境温度升高,从而提高用户的舒适度。
空调器作为用电设备,其有可能在使用的过程中出现起火的情况,一旦空调器起火,由于其室内机和室外机通过连机管连接,火势会很快蔓延整个室内外,造成不可估量的损失,严重地威胁人身安全,如果火势开始发生在室外机一侧,用户更是难以察觉,等到用户发现空调器起火,其可能已经无法及时采取应对措施,且容易对其他用户家庭造成威胁。
现有技术中,一般是从空调器的起火预防方面着手进行研究,即通过监控压缩机和室外风机的运行状态来预防起火,例如随时调整压缩机的运行频率,或者调整室外风机的转速等,但是这种方式仅是对起火进行预防,而空调器起火的原因还是非常多样的,单单预防显然是不够的,无法满足用户的安全性要求。
因此,本领域需要一种新的空调器的起火检测控制方法来解决上述问题。
发明内容
本发明旨在解决上述技术问题,即,解决现有空调器一旦起火无法及时采取应对措施且用户有可能发现不及时而易出现严重后果,从而无法满足用户的安全性要求的问题。
本发明提供一种空调器的起火检测控制方法,所述起火检测控制方法包括:
在所述空调器运行的过程中,实时获取压缩机的排气温度、室内机的盘管温度、室外机的盘管温度、压缩机的运行频率和室外环境温度;
根据所述压缩机的排气温度、所述室内机的盘管温度、所述室外机的盘管温度、所述压缩机的运行频率和所述室外环境温度,判定所述空调器是否起火;
在判定所述空调器起火的情况下,使所述压缩机在设定时间后停机并发出起火提示。
在上述起火检测控制方法的优选技术方案中,“根据所述压缩机的排气温度、所述室内机的盘管温度、所述室外机的盘管温度、所述压缩机的运行频率和所述室外环境温度,判定所述空调器是否起火”的步骤具体包括:
判断所述压缩机的第一预设时间前的排气温度与所述压缩机的当前时间的排气温度的差值是否大于或等于第一设定值,判断所述室内机的所述第一预设时间前的盘管温度与所述室内机的当前时间的盘管温度的差值是否大于或等于第二设定值,判断所述压缩机的所述第一预设时间前的运行频率与所述压缩机的当前时间的运行频率的差值是否小于或等于第三设定值,判断所述第一预设时间前的室外环境温度与当前时间的室外环境温度的差值的绝对值是否小于第四设定值,判断所述压缩机的当前时间的排气温度与所述室内机的当前时间的盘管温度的差值是否大于第五设定值且持续第二预设时间,判断所述室内机的当前时间的盘管温度是否大于或等于第六设定值或者所述室外机的当前时间的盘管温度是否大于或等于第七设定值;
根据判断结果,判定所述空调器是否起火。
在上述起火检测控制方法的优选技术方案中“根据判断结果,判定所述空调器是否起火”的步骤具体包括:
如果判定所述压缩机的第一预设时间前的排气温度与所述压缩机的当前时间的排气温度的差值大于或等于所述第一设定值,且判定所述室内机的所述第一预设时间前的盘管温度与所述室内机的当前时间的盘管 温度的差值大于或等于所述第二设定值,且判定所述压缩机的所述第一预设时间前的运行频率与所述压缩机的当前时间的运行频率的差值小于或等于所述第三设定值,且判定所述第一预设时间前的室外环境温度与当前时间的室外环境温度的差值的绝对值小于所述第四设定值,且判定所述压缩机的当前时间的排气温度与所述室内机的当前时间的盘管温度的差值大于所述第五设定值且持续所述第二预设时间,且判定所述室内机的当前时间的盘管温度大于或等于所述第六设定值或者所述室外机的当前时间的盘管温度大于或等于所述第七设定值,则判定出所述空调器起火。
在上述起火检测控制方法的优选技术方案中“如果判定所述压缩机的第一预设时间前的排气温度与所述压缩机的当前时间的排气温度的差值大于或等于所述第一设定值,且判定所述室内机的所述第一预设时间前的盘管温度与所述室内机的当前时间的盘管温度的差值大于或等于所述第二设定值,且判定所述压缩机的所述第一预设时间前的运行频率与所述压缩机的当前时间的运行频率的差值小于或等于所述第三设定值,且判定所述第一预设时间前的室外环境温度与当前时间的室外环境温度的差值的绝对值小于所述第四设定值,且判定所述压缩机的当前时间的排气温度与所述室内机的当前时间的盘管温度的差值大于所述第五设定值且持续所述第二预设时间,且判定所述室内机的当前时间的盘管温度大于或等于所述第六设定值或者所述室外机的当前时间的盘管温度大于或等于所述第七设定值,则判定出所述空调器起火”的步骤包括:
如果在第三预设时间内,判定所述压缩机的第一预设时间前的排气温度与所述压缩机的当前时间的排气温度的差值大于或等于所述第一设定值,且判定所述室内机的所述第一预设时间前的盘管温度与所述室内机的当前时间的盘管温度的差值大于或等于所述第二设定值,且判定所述压缩机的所述第一预设时间前的运行频率与所述压缩机的当前时间的运行频率的差值小于或等于所述第三设定值,且判定所述第一预设时间前的室外环境温度与当前时间的室外环境温度的差值的绝对值小于所述第四设定值,且判定所述压缩机的当前时间的排气温度与所述室内机的当前时间的盘管温度的差值大于所述第五设定值且持续所述第二预设时 间,且判定所述室内机的当前时间的盘管温度大于或等于所述第六设定值或者所述室外机的当前时间的盘管温度大于或等于所述第七设定值,则判定出所述空调器起火。
在上述起火检测控制方法的优选技术方案中在判定所述空调器起火的情形下,所述起火检测控制方法还包括:
进一步确定所述空调器的起火位置。
在上述起火检测控制方法的优选技术方案中“确定所述空调器的起火位置”的步骤具体包括:
如果所述室内机的当前时间的盘管温度大于或等于所述第六设定值,则所述室内机起火;
如果所述室外机的当前时间的盘管温度大于或等于所述第七设定值,则所述室外机起火。
在上述起火检测控制方法的优选技术方案中所述第一预设时间和所述第二预设时间均为5分钟,所述第一设定值为10摄氏度,所述第二设定值为-5摄氏度,所述第三设定值为5HZ,所述第四设定值为2摄氏度,所述第五设定值为58摄氏度,所述第六设定值和所述第七设定值均为100摄氏度。
在上述起火检测控制方法的优选技术方案中所述第三预设时间为1分钟。
在上述起火检测控制方法的优选技术方案中“发出起火提示”的步骤包括:
使所述室内机蜂鸣报警。
在上述起火检测控制方法的优选技术方案中所述空调器的控制器与用户终端通信,“发出起火提示”的步骤包括:
向所述用户终端发送提示信息。
在采用上述技术方案的情况下,本发明能够通过实时获取到的压缩机的排气温度、室内机的盘管温度、室外机的盘管温度、压缩机的运行频率和室外环境温度准确地判定出空调器是否起火,且不会出现误判,并且在起火后压缩机能够在稳态下停机,避免立即停机而导致空调器处于非稳态反而加剧火势,在压缩机停机的同时能够及时提醒用户,便于 用户及时知晓空调器起火,从而使得用户能够及时采取应对措施,例如及时通知消防人员或者逃生等,避免出现未及时知晓空调器起火而未及时采取应对措施的情况,同时在火势严重的情况下也能够给予用户足够的时间逃生,提高空调器的安全性,满足用户的安全性要求,提升用户体验。
进一步地,除了采用空调器本身的参数进行判断,即压缩机之前的排气温度和当前的排气温度,室内机之前的盘管温度和当前的盘管温度,压缩机之前的运行频率和当前的运行频率,压缩机当前的排气温度和室内机当前的盘管温度,以及室内机当前的盘管温度和室外机当前的盘管温度本身之外,还采用了非空调器本身的参数,即之前的室外环境温度和当前的室外环境温度,从而消除室外环境温度改变而对空调器产生的影响,降低由于非空调器参数而出现误判的几率,提高空调器起火判断的准确性,使得在空调器真的起火的情况下压缩机才采用应对策略同时提醒用户,进一步提升用户体验。
进一步地,通过明确空调器起火的位置,能够便于用户采用不同的应对处理策略,例如当空调器的室外侧起火但是室内侧未起火时,用户可以在室内及时通知消防人员或者自行采用相应的解决方案,当空调器的室内侧起火时,用户可以先进行逃生,避免影响自身的生命安全。
进一步地,通过使室内机蜂鸣报警能够高音提示用户紧急撤离,避免影响自身的生命安全。
进一步地,通过向用户终端发送提示信息能够避免出现用户未在家中但是空调器起火而导致用户无法及时知晓的情况,便于用户不在家中时也能够在空调器起火时及时地通知消防人员以及其他家庭成员采取应对措施,进一步提升用户体验。
附图说明
下面结合附图来描述本发明的优选实施方式,附图中:
图1是本发明的空调器的起火检测控制方法的流程图;
图2是本发明的空调器的起火检测控制方法实施例的流程图。
具体实施方式
本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。
需要说明的是,在本发明的描述中,尽管本申请中按照特定顺序描述了本发明的控制方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。此外,术语“第一”、“第二”、“第三”、“第四”、“第五”、“第六”、“第七”仅用于描述目的,而不能理解为指示或暗示相对重要性。
基于背景技术指出的现有空调器一旦起火无法及时采取应对措施且用户有可能发现不及时而易出现严重后果,从而无法满足用户的安全性要求的问题,本发明提供了一种空调器的起火检测控制方法,旨在准确地判定出空调器是否起火,并且在空调器起火时能够及时地通知用户,提高空调器的安全性,满足用户的安全性要求,提升用户体验。
需要说明的是,针对于空调器起火的情况,发明人做了深入的研究,在探究空调器发生起火的影响时,也比对了空调器本身的各个参数之间的优劣,并且从众多的空调器参数中选择了压缩机的排气温度、室内机的盘管温度、室外机的盘管温度和压缩机的运行频率作为综合判断空调器起火的空调器相关参数,相比于电子膨胀阀开度、室内机的风机转速和室外机的风机转速等参数,本发明选取的空调器参数不仅能够判断出空调器是否起火,同时也能够保证判断的准确性。换言之,在探究空调器发生起火的影响时,发明人发现其起火对压缩机、室外机的盘管以及室内机的盘管影响巨大,也更利于组合判断,而对于室内机的风机转速和室外机的风机转速,其受风机上的脏污程度、结霜或者有冷凝水等的影响,反而会影响空调器起火判断的准确性,不利于空调器起火的准确判断。同时,除了采用上述的空调器本身的参数之外,本发明还选取了室外环境温度作为非空调器自身的参数,从而消除室外环境温度的影响,避免室外环境的温度变化而影响对起火准确性的判断。
为此,如图1所示,本发明的起火检测控制方法包括:
在空调器运行的过程中,实时获取压缩机的排气温度TD、室内机的盘管温度TM、室外机的盘管温度TC、压缩机的运行频率F和室外环境温度TAI;
根据压缩机的排气温度TD、室内机的盘管温度TM、室外机的盘管温度TC、压缩机的运行频率F和室外环境温度TAI,判定空调器是否起火;
在判定空调器起火的情况下,使压缩机在设定时间后停机并发出起火提示。
在上述中,设定时间的取值范围优选为5至15秒,进一步优选为10秒,本领域技术人员可以在实际应用中对设定时间进行灵活地设置。经过发明人的反复研究发现,当空调器起火的情况下,除非是由于起火原因使得压缩机被迫停机的情况下,如果在空调器刚刚发生起火的情况下空调器主动立即控制压缩机停机,此时整个空调器会处于严重的非稳态状态,如果是由于空调器本身运行问题而引起的起火,这时候反而会加剧火势,本发明通过将压缩机在空调器发生起火时在设定时间后才停机使得空调器能够处于相对的稳态进行停机,避免火势加剧,并且压缩机的停机方式优选采用匀速降速停机或者呈阶梯状态逐级降速停机,例如在10至15秒内完成停机,相比于空调器正常运行状态下的停机速度要快。
优选地,前述中“根据压缩机的排气温度TD、室内机的盘管温度TM、室外机的盘管温度TC、压缩机的运行频率F和室外环境温度TAI,判定空调器是否起火”的步骤具体包括:
判断压缩机的第一预设时间t1前的排气温度TD1与压缩机的当前时间的排气温度TD2的差值△TD是否大于或等于第一设定值T1,判断室内机的第一预设时间t1前的盘管温度TM1与室内机的当前时间的盘管温度TM2的差值△TM是否大于或等于第二设定值T2,判断压缩机的第一预设时间t1前的运行频率F1与压缩机的当前时间的运行频率F2的差值△F是否小于或等于第三设定值F3,判断第一预设时间t1前的室外环境温度TAI1与当前时间的室外环境温度TAI2的差值的绝对值△TAI是否小于第四设定值T4,判断压缩机的当前时间的排气温度TD2与室内机的 当前时间的盘管温度TM2的差值TD2-TM2是否大于第五设定值T5且持续第二预设时间t2,判断室内机的当前时间的盘管温度TM2是否大于或等于第六设定值T6或者室外机的当前时间的盘管温度TC2是否大于或等于第七设定值T7;
根据判断结果,判定空调器是否起火。
需要说明的是,在上述所有空调器本身的参数(即压缩机的排气温度TD、室内机的盘管温度TM、室外机的盘管温度TC和压缩机的运行频率F)之中,除了将之前时间和当前时间的压缩机的排气温度以及运行频率做差值计算,以及将室内机的盘管温度和室外机的盘管温度分别与第六设定值和第七设定值直接比较之外,还设计了压缩机的当前时间的排气温度TD2与室内机的当前时间的盘管温度TM2的差值TD2-TM2与第五设定值T5的比较判断,从而避免压缩机自身运行异常以及室内机的盘管温度传感器和室外机的盘管温度传感器检测不准确而带来的误判,即在极端情况下,压缩机本身有可能发生异常而导致之前时间和当前时间的压缩机的排气温度以及运行频率出现偏差,室内机的盘管温度和室外机的盘管温度也有可能由于自身的原因发生检测异常,但是在这基础上,还要满足TD2-TM2与T5的比较条件的几率基本为零,本发明通过上述的逻辑设计,能够最大程度上地消除空调器起火的误判,保证空调器起火的检测准确性。
在一种具体的情形中,如果判定压缩机的第一预设时间t1前的排气温度TD1与压缩机的当前时间的排气温度TD2的差值△TD大于或等于第一设定值T1,且判定室内机的第一预设时间t1前的盘管温度TM1与室内机的当前时间的盘管温度TM2的差值△TM大于或等于第二设定值T2,且判定压缩机的第一预设时间t1前的运行频率F1与压缩机的当前时间的运行频率F2的差值△F小于或等于第三设定值F3,且判定第一预设时间t1前的室外环境温度TAI1与当前时间的室外环境温度TAI2的差值的绝对值△TAI小于第四设定值T4,且判定压缩机的当前时间的排气温度TD2与室内机的当前时间的盘管温度TM2的差值TD2-TM2大于第五设定值T5且持续第二预设时间t2,且判定室内机的当前时间的盘管温度TM2大于或等于第六设定值T6或者室外机的当前时间的盘管温度TC2 大于或等于第七设定值T7,则判定出空调器起火。
需要说明的是,上述中△TD≥T1、△TM≥T2、△F≤F3、△TAI<T4以及TD2-TM2>T5且持续第二预设时间t2需要同时满足之外,TM2≥T6和TC2≥T7只需要满足其中一个就判定空调器起火。并且在空调器起火时,可以通过TM2与T6以及TC2与T7的比较结果判定是室内机起火还是室外机起火,从而进一步确定空调器的起火位置。如果室内机的当前时间的盘管温度TM2大于或等于第六设定值T6,则判定室内机起火,如果室外机的当前时间的盘管温度TC2大于或等于第七设定值T7,则判定室外机起火,如果上述两个条件同时满足,即判定室内机和室外机均起火。
进一步优选地,还可以在前述△TD≥T1、△TM≥T2、△F≤F3、△TAI<T4和TD2-TM2>T5以及TM2≥T6或TC2≥T7的条件上再加上一个时间限制,即在该时间限制内满足上述条件才判定空调器起火,从而进一步提高检测的准确性,经过发明人的测试,在这种条件下,空调器发生误判的可能性基本为零。即,如果在第三预设时间t3内,判定压缩机的第一预设时间t1前的排气温度TD1与压缩机的当前时间的排气温度TD2的差值△TD大于或等于第一设定值T1,且判定室内机的第一预设时间t1前的盘管温度TM1与室内机的当前时间的盘管温度TM2的差值△TM大于或等于第二设定值T2,且判定压缩机的第一预设时间t1前的运行频率F1与压缩机的当前时间的运行频率F2的差值△F小于或等于第三设定值F3,且判定第一预设时间t1前的室外环境温度TAI1与当前时间的室外环境温度TAI2的差值的绝对值△TAI小于第四设定值T4,且判定压缩机的当前时间的排气温度TD2与室内机的当前时间的盘管温度TM2的差值TD2-TM2大于第五设定值T5且持续第二预设时间t2,且判定室内机的当前时间的盘管温度TM2大于或等于第六设定值T6或者室外机的当前时间的盘管温度TC2大于或等于第七设定值T7,才判定出空调器起火。
本领域技术人员可以在实际应用中灵活地设置上述第一预设时间t1、第二预设时间t2、第三预设时间t3、第一设定值T1、第二设定值T2、第三设定值F3、第四设定值T4、第五设定值T5、第六设定值T6和第七设 定值T7的具体值,例如:第一预设时间t1和第二预设时间t2均为5分钟,第三预设时间t3为1分钟,第一设定值T1为10摄氏度,第二设定值T2为-5摄氏度,第三设定值F3为5HZ,第四设定值T4为2摄氏度,第五设定值T5为58摄氏度,第六设定值T6和第七设定值T7均为100摄氏度。
需要说明的是,当上述第三预设时间t3小于第二预设时间t2时,说明在第三预设时间t3的判定时间内,TD2-TM2>T5需要满足已经持续第二预设时间t2,一旦不满足这个第二预设时间t2的条件,且不判定为空调器起火,并且如果在刚满足TD2-TM2>T5且持续第二预设时间t2时,如果△TD≥T1、△TM≥T2、△F≤F3和△TAI<T4中的一个不满足或者TM2≥T6且TC2≥T7均不满足,则也不判定为空调器起火。
进一步地,在上述中,如果△TD<T1、△TM<T2、△F>F3、△TAI≥T4、TD2-TM2≤T5或者TD2-TM2>T5但没有持续第二预设时间t2,或者TM2<T6且TC2<T7时,则判定空调器未起火。
优选地,在本发明中,“发出起火提示”的步骤包括:使室内机蜂鸣报警。具体地,可以在室内机的壳体上设置与空调器的控制器通信的蜂鸣器,当空调器起火时,通过控制器控制蜂鸣器蜂鸣来提示室内的用户。
优选地,在本发明中,空调器的控制器与用户终端(例如手机、平板、智能手环/手表等)通信,“发出起火提示”的步骤包括:向用户终端发送提示信息。具体地,可以向用户终端发送短信或者自动推送电话提醒,还可以向用户终端发送语音提示,或者使用户终端的APP自动弹出提示信息。
在上述中,优选的是使室内机蜂鸣报警和向用户终端发送提示信息都执行,通过使室内机蜂鸣报警可以及时提示室内的用户,通过向用户终端发送提示信息能够避免用户不在家中时空调器起火而无法及时应对。
下面参照一个具体的实施例来阐述本发明的技术方案。
如图2所示,在空调器运行的过程中,实时获取压缩机的排气温度TD、室内机的盘管温度TM、室外机的盘管温度TC、压缩机的运行频率F和室外环境温度TAI;
判断在1分钟内,5分钟前的压缩机排气温度和当前的排气温度的差值△TD是否≥10℃,5分钟前的室内机盘管温度和当前的盘管温度的差值△TM是否≥-5℃,5分钟前的压缩机运行频率和当前的运行频率的差值△F是否≤5HZ,5分钟前的室外环境温度与当前的室外环境温度的差值的绝对值△TAI是否<2℃(消除室外环境温度对起火判断的影响),当前的压缩机的排气温度与室内机的盘管温度的差值TD2-TM2是否>58℃且已经持续5分钟,以及TM2是否≥100℃或TC2是否≥100℃;
如果在1分钟内,5分钟前的压缩机排气温度和当前的排气温度的差值△TD≥10℃,5分钟前的室内机盘管温度和当前的盘管温度的差值△TM≥-5℃,5分钟前的压缩机运行频率和当前的运行频率的差值△F≤5HZ,5分钟前的室外环境温度与当前的室外环境温度的差值的绝对值△TAI<2℃,当前的压缩机的排气温度与室内机的盘管温度的差值TD2-TM2>58℃且已经持续5分钟,以及TM2≥100℃或TC2≥100℃,则判定空调器起火,否则继续判断空调器是否起火,在判定空调器起火后,经过10s后使压缩机停机、室内机蜂鸣提示以及向用户发送提示信息。
在本发明中,检测室外环境温度的传感器需要保证其设置位置在空调器起火时不受影响,例如可以将室外环境温度传感器远离空调器设置,这时只需将室外环境温度传感器与空调器的控制器保持通信即可,如果室外环境温度传感器设置在室外机的外壳上,可以在外壳上设置防火板来阻止火向室外环境温度传感器所在的位置流窜,避免影响室外环境温度传感器检测的准确性,另外,室外环境温度优选的是通过天气预报来获取,从而避免空调器起火时可能对室外环境温度检测造成影响,为此,可以在空调器上设置具有防火保护结构的通信模块,通过该通信模块实现控制器与云服务器的通信交互,从而下载天气预报数据。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调器的起火检测控制方法,其特征在于,所述起火检测控制方法包括:
    在所述空调器运行的过程中,实时获取压缩机的排气温度、室内机的盘管温度、室外机的盘管温度、压缩机的运行频率和室外环境温度;
    根据所述压缩机的排气温度、所述室内机的盘管温度、所述室外机的盘管温度、所述压缩机的运行频率和所述室外环境温度,判定所述空调器是否起火;
    在判定所述空调器起火的情况下,使所述压缩机在设定时间后停机并发出起火提示。
  2. 根据权利要求1所述的起火检测控制方法,其特征在于,“根据所述压缩机的排气温度、所述室内机的盘管温度、所述室外机的盘管温度、所述压缩机的运行频率和所述室外环境温度,判定所述空调器是否起火”的步骤具体包括:
    判断所述压缩机的第一预设时间前的排气温度与所述压缩机的当前时间的排气温度的差值是否大于或等于第一设定值,判断所述室内机的所述第一预设时间前的盘管温度与所述室内机的当前时间的盘管温度的差值是否大于或等于第二设定值,判断所述压缩机的所述第一预设时间前的运行频率与所述压缩机的当前时间的运行频率的差值是否小于或等于第三设定值,判断所述第一预设时间前的室外环境温度与当前时间的室外环境温度的差值的绝对值是否小于第四设定值,判断所述压缩机的当前时间的排气温度与所述室内机的当前时间的盘管温度的差值是否大于第五设定值且持续第二预设时间,判断所述室内机的当前时间的盘管温度是否大于或等于第六设定值或者所述室外机的当前时间的盘管温度是否大于或等于第七设定值;
    根据判断结果,判定所述空调器是否起火。
  3. 根据权利要求2所述的起火检测控制方法,其特征在于,“根据判 断结果,判定所述空调器是否起火”的步骤具体包括:
    如果判定所述压缩机的第一预设时间前的排气温度与所述压缩机的当前时间的排气温度的差值大于或等于所述第一设定值,且判定所述室内机的所述第一预设时间前的盘管温度与所述室内机的当前时间的盘管温度的差值大于或等于所述第二设定值,且判定所述压缩机的所述第一预设时间前的运行频率与所述压缩机的当前时间的运行频率的差值小于或等于所述第三设定值,且判定所述第一预设时间前的室外环境温度与当前时间的室外环境温度的差值的绝对值小于所述第四设定值,且判定所述压缩机的当前时间的排气温度与所述室内机的当前时间的盘管温度的差值大于所述第五设定值且持续所述第二预设时间,且判定所述室内机的当前时间的盘管温度大于或等于所述第六设定值或者所述室外机的当前时间的盘管温度大于或等于所述第七设定值,则判定出所述空调器起火。
  4. 根据权利要求3所述的起火检测控制方法,其特征在于,“如果判定所述压缩机的第一预设时间前的排气温度与所述压缩机的当前时间的排气温度的差值大于或等于所述第一设定值,且判定所述室内机的所述第一预设时间前的盘管温度与所述室内机的当前时间的盘管温度的差值大于或等于所述第二设定值,且判定所述压缩机的所述第一预设时间前的运行频率与所述压缩机的当前时间的运行频率的差值小于或等于所述第三设定值,且判定所述第一预设时间前的室外环境温度与当前时间的室外环境温度的差值的绝对值小于所述第四设定值,且判定所述压缩机的当前时间的排气温度与所述室内机的当前时间的盘管温度的差值大于所述第五设定值且持续所述第二预设时间,且判定所述室内机的当前时间的盘管温度大于或等于所述第六设定值或者所述室外机的当前时间的盘管温度大于或等于所述第七设定值,则判定出所述空调器起火”的步骤包括:
    如果在第三预设时间内,判定所述压缩机的第一预设时间前的排气温度与所述压缩机的当前时间的排气温度的差值大于或等于所述第一设定值,且判定所述室内机的所述第一预设时间前的盘管温度与所述室内 机的当前时间的盘管温度的差值大于或等于所述第二设定值,且判定所述压缩机的所述第一预设时间前的运行频率与所述压缩机的当前时间的运行频率的差值小于或等于所述第三设定值,且判定所述第一预设时间前的室外环境温度与当前时间的室外环境温度的差值的绝对值小于所述第四设定值,且判定所述压缩机的当前时间的排气温度与所述室内机的当前时间的盘管温度的差值大于所述第五设定值且持续所述第二预设时间,且判定所述室内机的当前时间的盘管温度大于或等于所述第六设定值或者所述室外机的当前时间的盘管温度大于或等于所述第七设定值,则判定出所述空调器起火。
  5. 根据权利要求2至4中任一项所述的起火检测控制方法,其特征在于,在判定所述空调器起火的情形下,所述起火检测控制方法还包括:
    进一步确定所述空调器的起火位置。
  6. 根据权利要求5所述的起火检测控制方法,其特征在于,“确定所述空调器的起火位置”的步骤具体包括:
    如果所述室内机的当前时间的盘管温度大于或等于所述第六设定值,则所述室内机起火;
    如果所述室外机的当前时间的盘管温度大于或等于所述第七设定值,则所述室外机起火。
  7. 根据权利要求2至4中任一项所述的起火检测控制方法,其特征在于,所述第一预设时间和所述第二预设时间均为5分钟,所述第一设定值为10摄氏度,所述第二设定值为-5摄氏度,所述第三设定值为5HZ,所述第四设定值为2摄氏度,所述第五设定值为58摄氏度,所述第六设定值和所述第七设定值均为100摄氏度。
  8. 根据权利要求4所述的起火检测控制方法,其特征在于,所述第三预设时间为1分钟。
  9. 根据权利要求2至4中任一项所述的起火检测控制方法,其特征在于,“发出起火提示”的步骤包括:
    使所述室内机蜂鸣报警。
  10. 根据权利要求2至4中任一项所述的起火检测控制方法,其特征在于,所述空调器的控制器与用户终端通信,“发出起火提示”的步骤包括:
    向所述用户终端发送提示信息。
PCT/CN2022/101906 2021-06-30 2022-06-28 空调器的起火检测控制方法 WO2023274228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110732609.8A CN113465119B (zh) 2021-06-30 2021-06-30 空调器的起火检测控制方法
CN202110732609.8 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023274228A1 true WO2023274228A1 (zh) 2023-01-05

Family

ID=77874071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101906 WO2023274228A1 (zh) 2021-06-30 2022-06-28 空调器的起火检测控制方法

Country Status (2)

Country Link
CN (1) CN113465119B (zh)
WO (1) WO2023274228A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465119B (zh) * 2021-06-30 2023-05-26 青岛海尔空调电子有限公司 空调器的起火检测控制方法
CN114183899B (zh) * 2021-12-09 2022-12-09 珠海格力电器股份有限公司 空调控制方法、装置、存储介质、处理器及空调

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324191A (ja) * 2000-05-18 2001-11-22 Daikin Ind Ltd 空気調和装置
JP2010231752A (ja) * 2009-03-28 2010-10-14 Toshitaka Kobayashi 他電源制御付火災警報器
CN107062521A (zh) * 2017-01-25 2017-08-18 青岛海尔空调器有限总公司 变频空调防火控制方法
CN107610402A (zh) * 2017-08-14 2018-01-19 青岛海尔空调器有限总公司 基于空调器的火灾报警方法与系统
CN109631229A (zh) * 2019-01-31 2019-04-16 四川长虹空调有限公司 制冷系统制冷剂快速泄漏的判定方法
CN110887165A (zh) * 2018-09-10 2020-03-17 奥克斯空调股份有限公司 一种冷媒泄漏的检测方法、装置及空调器
CN112728719A (zh) * 2021-01-26 2021-04-30 青岛海尔空调器有限总公司 一种基于空调器室内机的火灾提醒方法及设备
CN113465119A (zh) * 2021-06-30 2021-10-01 青岛海尔空调电子有限公司 空调器的起火检测控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888817B1 (ja) * 1998-02-26 1999-05-10 松下電器産業株式会社 空気調和システムにおける冷媒回収制御方法
JP2009257611A (ja) * 2008-04-11 2009-11-05 Daikin Ind Ltd 空気調和機
CN104075420B (zh) * 2014-07-02 2017-05-17 珠海格力电器股份有限公司 可燃制冷剂空调器防火系统及其应用方法、空调器
JP6618841B2 (ja) * 2016-03-15 2019-12-11 株式会社ミナミテクノ 排気ダクト内火災の検知システムおよび警報装置
KR102440553B1 (ko) * 2018-04-10 2022-09-06 주식회사 경동나비엔 공기조화기 시스템 및 그 제어방법
CN109282419B (zh) * 2018-09-12 2020-04-10 珠海格力电器股份有限公司 空调系统、其防火预警方法、计算机设备及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001324191A (ja) * 2000-05-18 2001-11-22 Daikin Ind Ltd 空気調和装置
JP2010231752A (ja) * 2009-03-28 2010-10-14 Toshitaka Kobayashi 他電源制御付火災警報器
CN107062521A (zh) * 2017-01-25 2017-08-18 青岛海尔空调器有限总公司 变频空调防火控制方法
CN107610402A (zh) * 2017-08-14 2018-01-19 青岛海尔空调器有限总公司 基于空调器的火灾报警方法与系统
CN110887165A (zh) * 2018-09-10 2020-03-17 奥克斯空调股份有限公司 一种冷媒泄漏的检测方法、装置及空调器
CN109631229A (zh) * 2019-01-31 2019-04-16 四川长虹空调有限公司 制冷系统制冷剂快速泄漏的判定方法
CN112728719A (zh) * 2021-01-26 2021-04-30 青岛海尔空调器有限总公司 一种基于空调器室内机的火灾提醒方法及设备
CN113465119A (zh) * 2021-06-30 2021-10-01 青岛海尔空调电子有限公司 空调器的起火检测控制方法

Also Published As

Publication number Publication date
CN113465119A (zh) 2021-10-01
CN113465119B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2023274228A1 (zh) 空调器的起火检测控制方法
CN110895024B (zh) 一种冷媒泄漏检测方法及空调器
CN110895020B (zh) 一种制冷剂泄漏检测方法及空调器
CN103134142B (zh) 空调系统全堵的检测方法
CN105115111A (zh) 空调室内机及空调室内机的感温包检测方法
CN105928156A (zh) 冷媒泄漏检测方法、冷媒泄漏检测装置及空调器
CN110044025A (zh) 空调的制冷剂泄漏检测方法、系统及空调
CN105509241B (zh) 判断冷凝器管中感温包是否脱落的方法、装置及空调器
WO2019109959A1 (zh) 空调装置及用于判断其运行状态是否正常的方法
CN107449102B (zh) 医院风机盘管故障自诊方法、装置和可读存储介质
US11002454B2 (en) Detection of refrigerant side faults
CN105485856A (zh) 空调系统及空调系统制热状态下的异常检测方法
WO2022068964A1 (zh) 空调器的控制方法、存储介质及控制装置
WO2023284458A1 (zh) 空调器的冷媒泄漏检测及排出方法
CN112393377A (zh) 故障判断方法及空调器
WO2023005323A1 (zh) 空调机组的故障监测方法
EP3795915B1 (en) Malfunction diagnosis system
CN111140990A (zh) 一种空调换热器脏堵检验方法和空调器
CN110878988B (zh) 用于空调器的防凝露控制方法
US20230235907A1 (en) Leakage detection and mitigation system
CN115638523A (zh) 空调器冷媒泄露检测方法、装置及空调器
CN110701726A (zh) 一种空调冷媒泄露的检测方法
WO2020220451A1 (zh) 空调的制冷剂泄漏检测方法、系统及空调
CN113251571A (zh) 用于空调器的控制方法及空调器
CN110836519A (zh) 一种空调器冷媒泄漏检测方法及检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE