WO2023274174A1 - 电气隔离开关及其开关层和多层开关层组件、灭弧方法 - Google Patents
电气隔离开关及其开关层和多层开关层组件、灭弧方法 Download PDFInfo
- Publication number
- WO2023274174A1 WO2023274174A1 PCT/CN2022/101645 CN2022101645W WO2023274174A1 WO 2023274174 A1 WO2023274174 A1 WO 2023274174A1 CN 2022101645 W CN2022101645 W CN 2022101645W WO 2023274174 A1 WO2023274174 A1 WO 2023274174A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- contact conductive
- arc
- switch
- arc extinguishing
- slot
- Prior art date
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims abstract description 63
- 230000003068 static effect Effects 0.000 claims description 305
- 230000033001 locomotion Effects 0.000 claims description 116
- 230000002093 peripheral effect Effects 0.000 claims description 55
- 238000009434 installation Methods 0.000 claims description 47
- 230000008569 process Effects 0.000 claims description 37
- 230000009471 action Effects 0.000 claims description 26
- 238000005538 encapsulation Methods 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 11
- 238000010891 electric arc Methods 0.000 abstract description 5
- 230000001965 increasing effect Effects 0.000 description 27
- 230000002829 reductive effect Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 238000004146 energy storage Methods 0.000 description 15
- 230000008901 benefit Effects 0.000 description 14
- 238000011161 development Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 238000004806 packaging method and process Methods 0.000 description 10
- 230000036961 partial effect Effects 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 230000008033 biological extinction Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 238000010892 electric spark Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/04—Means for extinguishing or preventing arc between current-carrying parts
- H01H33/18—Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H73/00—Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
- H01H73/02—Details
- H01H73/18—Means for extinguishing or suppressing arc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/30—Means for extinguishing or preventing arc between current-carrying parts
- H01H9/44—Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
Definitions
- the application relates to the field of switches, in particular to an electrical isolating switch, a switch layer, a multi-layer switch layer assembly, and an arc extinguishing method.
- the DC switch used to control the connection between the photovoltaic panel and the inverter is provided with a static contact part and a movable contact part that can move relative to the static contact part.
- a static contact part When the voltage and/or When the current is greater than the preset range, in the process of cutting off the conducted DC circuit through the DC switch, an arc will be formed between the moving contact part and the static contact part of the DC switch at the moment of separation. Because the arc can conduct electricity, even if the moving contact part is separated from the static contact part, the DC circuit is still in a conducting state, and the DC circuit cannot be disconnected until the arc is extinguished, that is, the arc will prolong the DC switch breaking circuit time.
- the DC switch may be burned, other equipment electrically connected to the DC switch in the circuit may be damaged, and an explosion may be caused in a place sensitive to electric sparks generated by the arc (for example, a gas plant). It can be seen that the arc extinguishing performance of the DC switch is an important index for evaluating the quality of the DC switch, which affects the service life, safety and reliability of the DC switch.
- photovoltaic DC switches play a vital role in the safety of photovoltaic systems.
- the photovoltaic DC switch is mainly used to control the direct current between the inverter and the photovoltaic panel, so as to disconnect the DC path between the inverter and the photovoltaic panel when installing the photovoltaic system, replacing or repairing the inverter, so as to avoid electric shock and equipment damage. Therefore, the reliability of photovoltaic DC switches is not only related to the good operation of the entire photovoltaic system, but also to the stable development of the photovoltaic industry.
- the photovoltaic DC switch is provided with a static contact and a movable contact that can move relative to the static contact, and the photovoltaic DC switch can realize a DC circuit by controlling the conduction and disconnection between the movable contact and the static contact. disconnection. At the moment when the moving contact moves away from the static contact, the neutral medium between the moving contact and the static contact is dissociated, forming a conductive arc, so that the DC circuit cannot be disconnected in time until the moving contact and the static contact Only when the arc between the heads is extinguished can the DC circuit be truly disconnected.
- An advantage of the present application is to provide an electrical isolating switch and its switch layer and arc extinguishing method, wherein the electrical isolating switch fine-tunes the structure of the electrical isolating switch on the basis of the traditional magnet arc extinguishing scheme.
- a narrow space acting on the arc is formed on the deflection path of the arc. The narrow space can force the arc entering it to become thinner and longer to accelerate the breaking and extinction of the arc. In this way, the electrical isolation switch is enhanced. Arc extinguishing capability.
- Another advantage of the present application is to provide an electrical isolating switch and an arc extinguishing method thereof, wherein, by configuring the narrow space, the electrical isolating switch can be used without greatly increasing its overall size or without increasing its overall size Under the premise of enhancing the arc extinguishing capability of the electrical isolation switch. That is, the electrical isolating switch provided by the present application can meet the development trend of miniaturization of the switch while having relatively strong arc extinguishing performance.
- Another advantage of the present application is to provide an electrical isolating switch and its arc extinguishing method, wherein the electrical isolating switch can be obtained by structurally modifying the traditional DC switch, for example, by replacing the shell of the traditional DC switch body for modification.
- Another advantage of the present application is to provide an electrical isolating switch and its arc extinguishing method, wherein, in some examples of the present application, the narrow space is formed by at least one arc extinguishing groove recessedly formed in the bearing housing, especially Specifically, in some examples, the at least one arc extinguishing slot includes at least two slot body parts with different widths, so as to speed up the arc extinguishing speed through the static variable diameter structure of the arc extinguishing slot.
- Another advantage of the present application is to provide an electrical isolation switch and its switch layer and arc extinguishing method, wherein, in some embodiments of the application, the electrical isolation switch can dynamically change the narrow space that allows the arc to enter The width dimension makes the arc entering the narrow space further thinner by means of "dynamic diameter reduction". In this way, the arc extinguishing speed is accelerated.
- An advantage of the present application is to provide an electrical isolating switch and its switch layer, wherein the electrical isolating switch can combine the characteristics of the action of the magnet on the arc and the influence of the contact area on the arc extinguishing effect, and make full use of the synergy between the advantages of the two It acts on the arc, accelerates the arc extinguishing speed, and enhances the arc extinguishing capability of the electric isolating switch.
- Another advantage of the present application is to provide an electrical isolating switch and its switch layer and multi-layer switch layer assembly, wherein, by adjusting the contact area of the components on the deflection path of the arc, the electrical isolating switch can be used without a large increase.
- the arc extinguishing capability of the electrical isolating switch is enhanced without increasing its overall size or without increasing its overall size. That is, the electrical isolating switch provided by the present application can meet the development trend of miniaturization of the switch while having relatively strong arc extinguishing performance.
- Another advantage of the present application is to provide an electrical isolating switch and its switch layer and multi-layer switch layer assembly, wherein the electrical isolating switch can use the narrow slit principle to quickly narrow and elongate the arc to achieve rapid extinction
- the arc can also be extended by designing the position of the magnetic element to extend the deflection path of the arc, so that the arc can be extinguished relatively quickly under the dual effects of the slit effect and the magnetic field deflection.
- Another advantage of the present application is to provide an electrical isolation switch and its switch layer and multi-layer switch layer assembly, wherein the electrical isolation switch arranges the magnetic element and the movable contact conductive assembly in the same lateral space, so as to The switch layer can be made flatter, that is, the overall height of the electrical isolation switch can be reduced.
- an electrical isolating switch which includes: a housing assembly; an electrical contact assembly mounted on the housing assembly, wherein the electrical contact assembly includes at least one static contact portion and at least a dynamic contact part, the dynamic contact part is movable relative to the static contact part, so as to be suitable for controlling the switch between the on state and the off state of the electric isolating switch, when the electric isolating switch is switched to In the on state, the dynamic contact part is in contact with the static contact part, and when the electrical isolating switch is switched to the off state, the dynamic contact part is in contact with the static contact part.
- the housing assembly forms at least one narrow space positioned between the arc on the deflection path.
- the at least one magnetic field generating element includes a first magnetic element corresponding to the moving path of the moving contact portion.
- the at least one magnetic field generating element comprises a first magnetic element away from the moving path of the moving contact part along the radial direction of the electrical contact assembly.
- the first magnetic element has opposite first and second magnetic poles, wherein the first magnetic pole faces the moving path of the dynamic contact portion, and the second magnetic pole is along The axial direction of the electrical contact assembly is away from the first magnetic pole.
- the at least one narrow space includes a first narrow space, and the first narrow space is located outside the moving path of the moving contact part.
- the at least one narrow space further includes a second narrow space, and the second narrow space is located inside the moving path of the moving contact part.
- the housing assembly includes a bearing housing, and the bearing housing has a first installation cavity for installing the electrical contact assembly therein, wherein the bearing housing There is also a first arc extinguishing slot recessedly formed therein, the first arc extinguishing slot forming the first narrow space.
- the carrying case further has a second arc extinguishing slot recessed therein, and the second arc extinguishing slot forms the second narrow space.
- the first magnetic element has opposite first and second magnetic poles, wherein the first magnetic pole faces the moving path of the dynamic contact portion, and the second magnetic pole is along The radial direction of the electrical contact assembly is away from the first magnetic pole.
- the at least one narrow space includes a first narrow space, and the first narrow space is located on the upper side of the moving path of the moving contact part.
- the at least one narrow space further includes a second narrow space, and the second narrow space is located on the lower side of the moving path of the moving contact part.
- the first magnetic element has an arc-shaped structure extending along the moving path of the dynamic contact part.
- the extending manner of the first narrow space and/or the second narrow space is consistent with the extending manner of the first magnetic element.
- the housing assembly includes a bearing housing and an encapsulating housing that covers the bearing housing, and the bearing housing has a function for installing the electrical contact assembly therein. a first installation cavity and a second installation cavity for installing the first magnetic element therein, the second installation cavity is located outside the first installation cavity, wherein the first narrow space forms the Between the packaging case and the bearing case and on the upper side of the first magnetic element.
- the second narrow space is formed between the encapsulating case and the bearing case and is located on the lower side of the first magnetic element.
- an electrical isolation switch which includes: at least one switch layer; and an actuation control assembly operatively connected to the at least one switch layer, the actuation control assembly being configured to The at least one switching layer is controlled to switch between a closed state and an open state.
- each of the switch layers includes: a bearing housing; a pair of static contact conductive elements and a movable contact conductive assembly installed on the bearing housing, wherein the movable contact conductive assembly includes a A pair of movable contact conductive elements that can move the static contact conductive elements, the movable contact conductive elements include a pair of dynamic contact parts, and the movable contact conductive elements are adapted to be moved to selectively make the pair of dynamic contact parts and A pair of the static contact conductive elements engage or disengage to make the switch layer switch between the closed state and the open state; A first magnetic element for deflecting an arc generated during engagement or disengagement; wherein, the bearing housing has a first arc chute formed on the deflection path of the arc, and the first arc chute includes a first A trough portion and a second trough portion, the first trough portion having a width dimension different from the width dimension of the second trough portion.
- the width dimension of the second groove body part is smaller than the width dimension of the first groove body part, and the distance between the second groove body part and the static contact conductive element is greater than that of the first groove body part. A distance between the groove part and the static contact conductive element.
- the distance between the second slot part and the static contact conductive element in the depth direction of the first arc extinguishing slot is greater than the distance between the first slot body part and the static contact conductive element The distance in the depth direction of the first arc extinguishing groove.
- the distance between the second slot part and the static contact conductive element in the length direction of the first arc extinguishing slot is greater than the distance between the first slot body part and the static contact conductive element The distance in the length direction of the first arc extinguishing slot.
- the first magnetic element has opposite first magnetic poles and second magnetic poles, wherein the first magnetic poles are directed toward the moving path of the dynamic contact portion, and the second magnetic poles are along the moving path of the dynamic contact portion.
- the axial direction of the movable contact conductive component is away from the first magnetic pole.
- the first arc extinguishing slot is formed on the outside of the first magnetic element
- the bearing housing has a second arc extinguishing slot located on the deflection path of the arc
- the second arc extinguishing slot is The arc extinguishing groove is formed inside the first magnetic element.
- the second arc extinguishing slot includes a third slot body part and a fourth slot body part, and the width dimension of the fourth slot body part is smaller than the width dimension of the third slot body part.
- the distance between the fourth slot part and the static contact conductive element is greater than the distance between the third slot body part and the static contact conductive element.
- the distance between the fourth slot part and the static contact conductive element in the depth direction of the second arc extinguishing slot is greater than the distance between the third slot body part and the static contact conductive element The distance in the depth direction of the second arc extinguishing groove.
- the distance between the fourth slot part and the static contact conductive element in the length direction of the second arc extinguishing slot is greater than the distance between the third slot body part and the static contact conductive element The distance in the length direction of the second arc extinguishing groove.
- an electrical isolation switch which includes: at least one switch layer; and an actuation control assembly operatively connected to the at least one switch layer, wherein the actuation control assembly is controlled by It is configured to control the switching between the closed state and the open state of the at least one switch layer;
- each of the switch layers includes: a carrying case; a pair of static contact conductive elements installed on the carrying case and a movable contact conductive assembly, the movable contact conductive assembly includes an insulating turntable and a movable contact conductive element installed on the insulating turntable, the movable contact conductive assembly is opposite to a pair of the static contact conductive elements rotatable so that the movable contact conductive element can be selectively engaged with or disengaged from a pair of the static contact conductive elements to control the switch layer to switch between the closed state and the open state; and vertically A first magnetic element arranged and corresponding to the movement path of the moving contact conductive element, the first magnetic element is suitable
- the first magnetic element has opposite first magnetic poles and second magnetic poles, the first magnetic poles are directed toward the moving path of the movable contact conductive element, and the second magnetic poles are along the movable path.
- the axial direction of the moving contact conductive assembly is away from the first magnetic pole.
- the peripheral portion of the notch structure has an inner edge, wherein, during the movement of the movable contact conductive assembly relative to the pair of static contact conductive elements, the inner edge The set radial direction of the switch layer extends into the at least one arc extinguishing slot.
- the peripheral portion of the notch structure has an inner edge and an outer edge opposite to the inner edge, and when the movable contact conductive assembly moves relative to the pair of static contact conductive elements During the process, the inner edge and/or outer edge of the peripheral portion of the notch structure protrudes into the at least one arc extinguishing groove in the radial direction set by the switch layer.
- the extending manner of the peripheral portion of the notch structure is inconsistent with the extending manner of the first arc extinguishing groove.
- the peripheral portion of the notch structure includes a first edge portion and a second edge portion, and the second edge portion protrudes from the first edge portion.
- the carrying case has a first arc extinguishing slot and a second arc extinguishing slot formed on the deflection path of the arc, and the first arc extinguishing slot is formed on the first magnetic element
- the second arc extinguishing groove is formed on the inner side of the first magnetic element.
- the peripheral portion of the notch structure has an inner edge, and when the movable contact conductive assembly moves relative to the pair of static contact conductive elements, the peripheral portion of the notch structure The inner edge of the switch layer extends into the second arc extinguishing groove in the radial direction set by the switch layer.
- the peripheral portion of the notch structure has an inner edge and an outer edge opposite to the inner edge, and when the movable contact conductive assembly moves relative to the pair of static contact conductive elements During the process, the inner edge of the peripheral portion of the notch structure extends into the second arc extinguishing groove in the radial direction set by the switch layer, and/or, the outer edge of the peripheral portion of the notch structure The edge protrudes into the first arc chute in a radial direction set by the switch layer.
- the carrying case has a first arc extinguishing groove formed on the deflection path of the arc, the first arc extinguishing groove is formed on the outer side of the first magnetic element, and the During the movement of the movable contact conductive assembly relative to the pair of static contact conductive elements, the outer edge of the insulating turntable extends into the first arc extinguishing in the radial direction set by the switch layer. groove.
- a switch layer which includes: a bearing housing; a pair of static contact conductive elements and a movable contact conductive assembly installed on the bearing housing, wherein the movable contact
- the head conductive assembly includes a movable contact conductive element movable relative to the pair of static contact conductive elements, and the movable contact conductive element is adapted to be moved to selectively align the movable contact conductive element with the pair of static contact conductive elements.
- the bearing housing has at least one arc extinguishing slot, and the at least one arc extinguishing slot is located on the deflection path of the arc.
- the first magnetic element has opposite first magnetic poles and second magnetic poles, the first magnetic poles are directed toward the movement path of the movable contact conductive element, and the second magnetic poles are along the moving path of the moving contact conductive element.
- the axial direction of the conductive component of the moving contact is away from the first magnetic pole.
- the at least one arc extinguishing slot includes a first arc extinguishing slot located inside the first magnetic element.
- the at least one arc extinguishing slot further includes a second arc extinguishing slot located outside of the first magnetic element.
- the carrying case has a protrusion corresponding to the movement path of the movable contact conductive element, the first magnetic element is fitted into the protrusion, and the first An arc extinguishing slot is formed inside the protrusion, and the second arc extinguishing slot is formed outside the protrusion.
- the first magnetic element extends along the movement path of the movable contact conductive element.
- the extending manner of the first arc extinguishing slot and/or the second arc extinguishing slot is consistent with the extending manner of the first magnetic element.
- the first magnetic element is a sector magnet.
- the distance between the first arc extinguishing slot and the first magnetic element is greater than 0 and less than or equal to 9mm, and/or the distance between the second arc extinguishing slot and the first The distance between the magnetic elements is greater than 0 and less than or equal to 9mm.
- the first arc extinguishing groove communicates with the outside world.
- the second arc extinguishing slot communicates with the first arc extinguishing slot.
- a switch layer which includes: a bearing housing; a pair of static contact conductive elements and a movable contact conductive assembly installed on the bearing housing, wherein the movable contact
- the head conductive assembly includes a movable contact conductive element movable relative to the pair of static contact conductive elements, and the movable contact conductive element is adapted to be moved to selectively align the movable contact conductive element with the pair of static contact conductive elements.
- the bearing housing has a first arc extinguishing slot formed on the deflection path of the arc, and the first arc extinguishing slot includes a first slot body part and a second slot body part, the The width dimension of the first trough part is different from the width dimension of the second trough part.
- the second slot part extends from the first slot part along the depth direction of the first arc extinguishing slot, and the width dimension of the second slot part is smaller than the The width dimension of the first tank portion.
- the cross-sectional shape of the first arc extinguishing slot is trapezoidal or triangular.
- the second slot body part extends from the first slot body part along the length direction of the first arc extinguishing slot, and the width dimension of the second slot body part is smaller than the The width dimension of the first tank portion.
- the distance between the second slot part and the static contact conductive element in the length direction of the first arc extinguishing slot is greater than the distance between the first slot part and the static contact. The distance of the conductive element in the length direction of the first arc extinguishing slot.
- the first magnetic element has opposite first magnetic poles and second magnetic poles, wherein the first magnetic poles are directed toward the movement path of the movable contact conductive element, and the second magnetic poles are along The axial direction of the conductive component of the movable contact is away from the first magnetic pole.
- the first arc extinguishing slot is formed inside the first magnetic element.
- the carrying case forms a second arc extinguishing slot located on the deflection path of the arc, and the second arc extinguishing slot is formed outside the first magnetic element.
- the second arc extinguishing slot includes a third slot body part and a fourth slot body part, the width dimension of the third slot body part and the width dimension of the fourth slot body part different.
- the fourth slot part extends from the third slot part along the depth direction of the second arc extinguishing slot, and the width dimension of the fourth slot part is smaller than the The width dimension of the third tank part.
- the fourth slot body part extends from the third slot body part along the length direction of the second arc extinguishing slot, and the width dimension of the fourth slot body part is smaller than the The width dimension of the third tank part.
- the distance between the fourth slot part and the static contact conductive element in the length direction of the second arc extinguishing slot is greater than the distance between the third slot part and the static contact. The distance of the conductive element in the length direction of the second arc extinguishing slot.
- the first magnetic element extends along the movement path of the movable contact conductive element.
- a switch layer which includes: a bearing housing; a pair of static contact conductive elements and a movable contact conductive assembly installed on the bearing housing, wherein the movable contact
- the head conductive assembly includes an insulating turntable and a moving contact conductive element installed on the insulating turntable, and the movable contact conductive assembly can rotate relative to a pair of the static contact conductive elements so that the movable contact conductive element can be selectively connected with a pair of said static contact conductive elements engaging or disengaging; and a first magnetic element corresponding to the movement path of said moving contact conductive element, said first magnetic element being suitable for said moving contact conductive element and said static contact
- the arc generated during the engagement or disengagement process of the contact conductive element is deflected; wherein, the bearing housing has at least one arc extinguishing groove located on the deflection path of the arc, and the insulating turntable has a predetermined shape configuration so that the During the movement of the movable
- the first magnetic element has opposite first magnetic poles and second magnetic poles, the first magnetic poles are directed toward the movement path of the movable contact conductive element, and the second magnetic poles are along the moving path of the moving contact conductive element.
- the axial direction of the conductive component of the movable contact is away from the first magnetic pole.
- the insulating turntable has a notch structure, wherein, during the movement of the movable contact conductive component relative to the pair of static contact conductive elements, the insulating turntable A peripheral portion of the notch structure extends into the at least one arc extinguishing slot in a radial direction set by the switch layer.
- the peripheral portion of the notch structure has an inner edge, so that when the movable contact conductive component moves relative to the pair of static contact conductive elements, the notch The inner edge of the structure protrudes into the at least one arc extinguishing groove in the radial direction set by the switch layer.
- the peripheral portion of the notch structure has an inner edge and an outer edge formed on the inner edge and on the outer side of the inner edge, so that the movable contact conductive component is opposite During the movement of the pair of static contact conductive elements, the inner edge and/or outer edge of the peripheral part of the notch structure extends into the at least one switch layer in the radial direction set by the switch layer. inside the arc groove.
- the extending manner of the peripheral portion of the notch structure is inconsistent with the extending manner of the first arc extinguishing groove.
- the peripheral portion of the notch structure includes a first edge portion and a second edge portion, and the second edge portion protrudes from the first edge portion.
- the notch structure is a fan-shaped notch structure.
- the angle value of the central angle of the fan-shaped notch structure is smaller than the action angle of the switch layer.
- the action angle of the switch layer is 85° to 95°.
- the difference between the central angle of the sector and the operating angle is less than 5%-15% of the operating angle.
- the carrying case has a first arc extinguishing slot and a second arc extinguishing slot formed on the deflection path of the arc, and the first arc extinguishing slot is formed on the first arc extinguishing slot.
- the outer side of the magnetic element, the second arc extinguishing groove is formed on the inner side of the first magnetic element, and during the movement of the movable contact conductive assembly relative to the pair of static contact conductive elements, the The peripheral portion of the notch structure of the insulating turntable protrudes into the first arc extinguishing slot and/or the second arc extinguishing slot in a radial direction set by the switch layer.
- the carrying case has a first arc extinguishing groove formed on the deflection path of the arc, the first arc extinguishing groove is formed on the outer side of the first magnetic element, During the movement of the movable contact conductive assembly relative to the pair of static contact conductive elements, the outer edge of the insulating turntable extends into the first radial direction set by the switch layer. Arc chute.
- a switch layer which includes: a housing assembly; a pair of static contact conductive elements and a movable contact conductive assembly installed on the housing assembly, wherein the movable
- the contact conductive assembly includes a movable contact conductive element movable relative to the pair of static contact conductive elements, and the movable contact conductive element is adapted to be moved to selectively make the movable contact conductive element and the pair of static contact conductive elements Engagement or disengagement of the contact conductive element; and a first magnetic element arranged on the outside of the movable contact conductive element, used to control the arc generated during the engagement or disengagement of the movable contact conductive element and the static contact conductive element deflection; wherein the housing assembly forms at least one slot in the deflection path of the arc.
- the first magnetic element has opposite first magnetic poles and second magnetic poles, wherein the first magnetic poles are directed toward the movement path of the movable contact conductive element, and the second magnetic poles are along The radial direction of the conductive component of the movable contact is away from the first magnetic pole.
- the at least one slit includes a first slit located on the lower side of the moving path of the movable contact conductive element.
- the at least one slit includes a second slit located on the upper side of the moving path of the movable contact conductive element.
- the width dimension of the first slit and/or the second slit gradually decreases along the set radial direction of the switch layer.
- the housing assembly includes a bearing housing and an encapsulation housing that covers the bearing housing, and the bearing housing has a function for installing the movable contact conductive assembly.
- a first installation cavity inside and a second installation cavity for installing the first magnetic element therein, the second installation cavity is located outside the first installation cavity, wherein the carrying case A part of the gap between the first magnetic element and the switch layer in the axial direction set by the switch layer forms the first slit, and the gap between the packaging case and the first magnetic element A portion of the gap in an axial direction set by the switch layer forms the second slit.
- the first magnetic element has an arc-shaped structure extending along a movement path of the movable contact conductive element.
- the extension manner of the first slit and/or the second slit is consistent with the extension manner of the first magnetic element.
- a switch layer which includes: a bearing housing; a pair of static contact conductive elements and a movable contact conductive assembly installed on the bearing housing, wherein the movable contact
- the head conductive assembly includes a movable contact conductive element movable relative to the pair of static contact conductive elements, and the movable contact conductive element is adapted to be moved to selectively align the movable contact conductive element with the pair of static contact conductive elements.
- the first magnetic element has opposite first magnetic poles and second magnetic poles, the first magnetic poles are directed toward the movement path of the movable contact conductive element, and the second magnetic poles are along the The axial direction of the conductive component of the moving contact is away from the first magnetic pole.
- the at least one protrusion includes at least one first protrusion formed inside the first magnetic element.
- the at least one protrusion includes at least one second protrusion formed outside the first magnetic element.
- the at least one protrusion further includes at least one third protrusion formed between at least one first protrusion and at least one second protrusion.
- the first magnetic element has an arc-shaped structure extending along a movement path of the movable contact conductive element.
- the at least one first protrusion includes a plurality of first protrusions, and the plurality of first protrusions are arranged in an arc along the extending direction of the first magnetic element.
- the at least one second protrusion includes a plurality of second protrusions, and the plurality of second protrusions are arranged in an arc along the extending direction of the first magnetic element.
- the at least one first protrusion and the at least one second protrusion are staggered from each other in the radial direction of the carrier housing.
- a switch layer which includes: a bearing housing; a pair of static contact conductive elements and a movable contact conductive assembly installed on the bearing housing, wherein the movable contact
- the head conductive assembly includes a movable contact conductive element movable relative to a pair of said static contact conductive elements, said movable contact conductive element includes a pair of dynamic contact portions, said movable contact conductive element is adapted to be moved to selectively make A pair of dynamic contact parts engages or disengages with a pair of said static contact conductive elements; and a first magnetic element corresponding to the movement path of said movable contact conductive element is used to align said movable contact conductive element with said The arc generated during the engagement or disengagement of the static contact conductive element is deflected; wherein at least a part of the first magnetic element corresponds to the movement path of the movable contact conductive element along the axis set by the switch layer , the carrying case has at least one arc extingu
- the first magnetic element has opposite first magnetic poles and second magnetic poles, the first magnetic poles are directed toward the movement path of the movable contact conductive element, and the second magnetic poles are along the moving path of the moving contact conductive element.
- the axial direction of the conductive component of the moving contact is away from the first magnetic pole.
- the at least one arc extinguishing slot includes at least one first arc extinguishing slot located outside the first magnetic element.
- the at least one arc extinguishing slot further includes at least one second arc extinguishing slot at the inner side of the first magnetic element.
- At least one of the first arc extinguishing slots is located on the lower side of the moving contact conductive element, and at least one of the second arc extinguishing slots is located on the lower side of the moving contact conductive element.
- the first arc extinguishing groove communicates with the outside world.
- the second arc extinguishing slot communicates with the first arc extinguishing slot.
- the first magnetic element extends along the movement path of the movable contact conductive element.
- the extending manner of the first arc extinguishing slot and/or the second arc extinguishing slot is consistent with the extending manner of the first magnetic element.
- the first magnetic element has an arc-shaped structure extending along a movement path of the movable contact conductive element.
- the distance between the first arc extinguishing slot and the first magnetic element is greater than 0 and less than or equal to 9mm, and/or the distance between the second arc extinguishing slot and the first The distance between the magnetic elements is greater than 0 and less than or equal to 9mm.
- an electrical isolating switch which includes: the above-mentioned switch layers; and an actuation control component operatively connected to the at least one switch layer, wherein the operation
- a dynamic control assembly is configured to control switching of the at least one switching layer between a closed state and an open state.
- a multi-layer switch layer assembly which includes: at least two switch layers as described above stacked on each other.
- the magnetic pole orientation of the first magnetic element of the switch layer on the upper layer is opposite to that of the first magnetic element of the switch layer on the lower layer.
- an arc extinguishing method for an electrical isolating switch which includes: guiding the arc generated by the electrical isolating switch during state switching to at least one narrow space by using a magnetic field generating element.
- an arc extinguishing method which includes: arranging at least one magnetic element on the moving path of the moving contact conductive element, so as to connect the moving contact conductive element and a pair of static contact conductive elements The arc generated during the engagement or disengagement process is deflected; and at least one arc extinguishing slot is arranged on the deflection path of the arc.
- Fig. 1 illustrates a schematic block diagram of an electrical isolating switch according to an embodiment of the present application.
- Fig. 2 illustrates a partial perspective view of a specific example of the electrical isolation switch according to the embodiment of the present application.
- Fig. 3 illustrates a partial perspective view of another specific example of the electrical isolation switch according to the embodiment of the present application.
- Fig. 4 illustrates a schematic perspective view of the internal structure of the electrical isolation switch according to an embodiment of the present application.
- Fig. 5 illustrates a partially disassembled schematic diagram of a switch switching unit of the electrical isolation switch according to an embodiment of the present application.
- Fig. 6A illustrates a partial perspective view of an implementation of the electrical isolation switch according to an embodiment of the present application.
- Fig. 6B illustrates a partial perspective view of another implementation of the electrical isolation switch according to an embodiment of the present application.
- Fig. 7 illustrates a perspective view of an electrical isolating switch according to an embodiment of the present application.
- Fig. 8 illustrates a schematic perspective view of the internal structure of an implementation of the electrical isolation switch according to an embodiment of the present application.
- Fig. 9 illustrates a partially disassembled perspective view of the electrical isolation switch shown in Fig. 8 according to an embodiment of the present application.
- Fig. 10 illustrates a schematic perspective view of a partial explosion of another implementation of the electrical isolation switch according to an embodiment of the present application.
- Fig. 11A illustrates a schematic perspective view of a plurality of switch layers of still another implementation of the electrical isolation switch according to an embodiment of the present application.
- FIG. 11B illustrates another perspective view of multiple switch layers of the electrical isolation switch shown in FIG. 11A according to the embodiment of the present application.
- FIG. 12 is a schematic disassembly diagram of multiple switch layers of the electrical isolation switch shown in FIG. 11A according to an embodiment of the present application.
- FIG. 13A is a schematic perspective view of a switch layer of the electrical isolation switch shown in FIG. 11A according to an embodiment of the present application.
- FIG. 13B is a schematic perspective view of another switch layer of the electrical isolation switch shown in FIG. 11A according to the embodiment of the present application.
- FIG. 14A illustrates a schematic plan view of an embodiment of a switch layer of the electrical isolation switch shown in FIG. 8 according to an embodiment of the present application.
- FIG. 14B illustrates a schematic plan view of another implementation of the switch layer of the electrical isolation switch shown in FIG. 8 according to the embodiment of the present application.
- FIG. 15A is a schematic structural diagram of one side of the switch layer of the electrical isolation switch shown in FIG. 8 according to the embodiment of the present application.
- FIG. 15B is a schematic structural diagram of the other side of the switch layer of the electrical isolation switch shown in FIG. 8 according to the embodiment of the present application.
- Fig. 16 illustrates a schematic plan view of the carrying case of the switch layer of the electrical isolation switch shown in Fig. 8 according to the embodiment of the present application.
- FIG. 17A illustrates a partial plan view of a switch layer of the electrical isolation switch shown in FIG. 11A according to an embodiment of the present application.
- FIG. 17B illustrates another schematic plan view of a modified implementation of one switch layer of the electrical isolation switch shown in FIG. 11A according to an embodiment of the present application.
- FIG. 18 illustrates a schematic plan view of a load-bearing housing of a switch layer of the electrical isolation switch shown in FIG. 11A according to an embodiment of the present application.
- FIG. 19 illustrates a partial plan view of another switch layer of the electrical isolation switch shown in FIG. 11A according to an embodiment of the present application.
- FIG. 20 illustrates a schematic plan view of another switch layer bearing case of the electrical isolation switch shown in FIG. 11A according to the embodiment of the present application.
- Fig. 21 illustrates a schematic diagram of a state switching process of a switch layer of the electrical isolation switch according to an embodiment of the present application.
- Fig. 22 is a schematic diagram illustrating another state switching process of the switch layer of the electrical isolation switch according to the embodiment of the present application.
- Fig. 23A is a schematic perspective view of an insulating turntable mounted with a movable contact conductive element of the switch layer according to an embodiment of the present application.
- Fig. 23B illustrates another perspective view of the insulating turntable on which the movable contact conductive element is installed on the switch layer according to the embodiment of the present application.
- Fig. 24A illustrates a schematic plan view of a positional relationship between the insulating turntable and the arc extinguishing groove of the switch layer according to an embodiment of the present application.
- Fig. 24B is a schematic plan view illustrating another positional relationship between the insulating turntable and the arc extinguishing groove of the switch layer according to the embodiment of the present application.
- Fig. 25A illustrates a schematic plan view of a modified embodiment of the insulating turntable of the switch layer according to an embodiment of the present application.
- Fig. 25B illustrates a schematic plan view of still another positional relationship between the insulating turntable and the arc extinguishing groove of the switch layer according to the embodiment of the present application.
- Fig. 26 illustrates a schematic plan view of the positional relationship between the moving contact conductive element, the static contact conductive element and the magnetic element in the switch layer of the electrical isolation switch according to the embodiment of the present application.
- Fig. 27A illustrates a schematic diagram of the force of an arc in the electrical isolation switch according to an embodiment of the present application.
- Fig. 27B illustrates another schematic diagram of the force of the arc in the electrical isolation switch according to the embodiment of the present application.
- Fig. 28 is a schematic perspective view of an electrical isolation switch according to an embodiment of the present application.
- Fig. 29 illustrates a partially disassembled schematic diagram of the electrical isolation switch according to an embodiment of the present application.
- Fig. 30 illustrates a partial perspective view of an implementation of the switch layer of the electrical isolation switch according to an embodiment of the present application.
- Fig. 31 illustrates a partial perspective view of another implementation of the switch layer according to an embodiment of the present application.
- Fig. 32 shows a schematic perspective view of an electrical isolation switch according to an embodiment of the present application.
- Fig. 33 illustrates a partially disassembled schematic diagram of the electrical isolation switch according to an embodiment of the present application.
- Fig. 34 illustrates a perspective disassembled schematic diagram of a single switch layer of the electrical isolation switch according to an embodiment of the present application.
- Fig. 35 illustrates a schematic structural diagram of a single switch layer of the electrical isolation switch according to an embodiment of the present application.
- Fig. 36 illustrates a schematic structural diagram of another single switch layer of the electrical isolation switch according to an embodiment of the present application.
- Fig. 37 illustrates a schematic structural diagram of two adjacent switch layers of the electrical isolation switch according to an embodiment of the present application.
- Fig. 38 illustrates a schematic plan view of a switch layer of the electrical isolation switch according to an embodiment of the present application.
- the inventors of the present application have found through research on the scheme of magnet arc extinguishing that: in the scheme of using magnets to deflect the arc so as to lengthen the arc and then break the arc, in order to pull the arc long enough and thin enough to break it , needs to provide enough space for arc stretching, which will undoubtedly increase the overall size of the DC switch. That is to say, in the scheme of magnet arc extinguishing, the shell space is a technical contradiction.
- the internal space of the shell is not increased to provide enough space for breaking the arc, the performance of magnet arc extinguishing is not good, and if it is increased If the internal space of the housing is reduced, the overall size of the DC switch will increase, which is not in line with the current trend of miniaturization of the DC switch.
- the inventors of the present application try to configure an intervention mechanism for the deflected arc on the basis of magnet arc extinguishing, so as to enhance the arc extinguishing capability of the DC switch through an appropriate intervention mechanism. It should be noted that in the traditional DC switch with magnets to extinguish the arc, the extinguishing of the arc depends on the natural law of the arc becoming thinner during the process of being elongated without any external intervention mechanism.
- a narrow space capable of acting on the arc is configured on the deflection path of the arc, wherein the narrow space can force the arc entering it to become thinner and longer based on the "narrow slit principle" to The breaking and extinction of the arc is accelerated, and in this way, the arc extinguishing capability of the electrical isolation switch is enhanced.
- the narrow space is a newly established intervention mechanism.
- the arc will be deflected in a specific direction under the action of the magnetic field, that is, the magnetic field generated by the magnet can control the deflection mode of the arc.
- a magnetic field generating element such as a magnet or a coil, etc.
- a narrow space capable of interfering with the arc is arranged on the deflection path, so that the arc is rapidly thinned and elongated through physical intervention in the narrow space to realize rapid arc extinguishing. It is worth mentioning that since the magnetic field can deflect the arc in a specific direction, the deflection path of the arc and the position of the narrow space on the deflection path of the arc can be selectively and flexibly planned.
- the electrical isolating switch can enhance the arc extinguishing capability of the electrical isolating switch without greatly increasing its overall size or without increasing its overall size. That is, the electrical isolating switch provided by the present application can meet the development trend of miniaturization of the switch while having relatively strong arc extinguishing performance. Moreover, the electrical isolating switch can be obtained by structurally modifying a traditional DC switch, for example, the modification can be realized by replacing the casing of the traditional DC switch.
- an electrical isolation switch which includes: a housing assembly, an electrical contact assembly mounted on the housing assembly, and at least one magnetic field generating element.
- the electrical contact assembly includes at least one static contact portion and at least one dynamic contact portion, the dynamic contact portion being movable relative to the static contact portion, adapted to control the electrical isolating switch in an on state and an off state switch between, when the electrical isolating switch is switched to the on state, the dynamic contact portion is in contact with the static contact portion, when the electrical isolating switch is switched to the off state, The dynamic contact portion is separated from the static contact portion.
- the housing assembly forms at least one narrow space on a deflection path of the arc.
- the present application provides a switch layer, which includes: a bearing housing, a pair of static contact conductive elements and a movable contact conductive assembly installed on the bearing housing; The first magnetic element on the path.
- the movable contact conductive assembly includes a movable contact conductive element movable relative to a pair of the static contact conductive elements, and the movable contact conductive element is adapted to be moved to selectively make the movable contact conductive element and a Engaging or disengaging the static contact conductive element, the first magnetic element is used to deflect the arc generated during the engagement or disengagement process of the movable contact conductive element and the static contact conductive element, and the bearing shell
- the body has at least one arc chute, the at least one arc chute is located on the deflection path of the arc.
- the present application provides a switch layer, which includes: a bearing housing, a pair of static contact conductive elements and a movable contact conductive assembly installed on the bearing housing; The first magnetic element on the path.
- the movable contact conductive assembly includes a movable contact conductive element movable relative to a pair of the static contact conductive elements, and the movable contact conductive element is adapted to be moved to selectively make the movable contact conductive element and a Engaging or disengaging the static contact conductive element, the first magnetic element is used to deflect the arc generated during the engagement or disengagement process of the movable contact conductive element and the static contact conductive element, and the bearing shell
- the body has a first arc extinguishing slot formed on the deflection path of the arc, the first arc extinguishing slot includes a first slot body part and a second slot body part, the width dimension of the first slot body part and the The width dimensions of the second groove body parts are different.
- the present application provides a switch layer, which includes: a bearing housing, a pair of static contact conductive elements and a movable contact conductive assembly installed on the bearing housing, and, corresponding to the movement of the movable contact conductive elements The first magnetic element on the path.
- the movable contact conductive assembly includes an insulating turntable and a movable contact conductive element installed on the insulating turntable, and the movable contact conductive assembly can rotate relative to a pair of the static contact conductive elements so that the movable contact
- the conductive element can be selectively engaged with or disengaged from a pair of static contact conductive elements, and the first magnetic element is used to control the arc generated during the engagement or disengagement of the movable contact conductive element with the static contact conductive element.
- the carrying case has at least one arc extinguishing groove located on the deflection path of the arc
- the insulating turntable has a predetermined shape configuration so that when the movable contact conductive component is opposite to the pair of the static contacts During the movement of the conductive element, at least a part of the insulating turntable partially overlaps the at least one arc extinguishing groove in the axial direction set by the switch layer.
- a protrusion that can act on the arc is arranged on the deflection path of the arc, wherein the protrusion can improve the arc extinguishing efficiency by increasing the contact area between the arc and the parts in contact with it, by In this manner, the arc extinguishing capability of the electrical isolation switch is enhanced.
- the protrusion is a new intervention mechanism.
- the arc will be deflected in a specific direction under the action of the magnetic field, that is, the magnetic field generated by the magnet can control the deflection mode of the arc.
- the magnetic element can be arranged in the DC switch to guide the arc in a specific way through the specific magnetic field generated by it so that it can be deflected in a predetermined way, and at the same time, the deflection path of the arc can be arranged to intervene in the arc.
- the protrusions so that the physical intervention of the protrusions will increase the contact area between the arc and the parts in contact with it to achieve rapid arc extinguishing. It is worth mentioning that since the magnetic field can deflect the arc in a specific direction, the deflection path of the arc and the position of the protrusion on the arc deflection path can be selectively and flexibly planned.
- a switch layer which includes: a bearing housing, a pair of static contact conductive elements and a movable contact conductive assembly mounted on the bearing housing, and at least one first magnetic element.
- the movable contact conductive assembly includes a movable contact conductive element movable relative to a pair of the static contact conductive elements, and the movable contact conductive element is adapted to be moved to selectively make the movable contact conductive element and a
- the first magnetic element is arranged on the movement path of the movable contact conductive element, and is used to engage or disengage the movable contact conductive element with the static contact conductive element
- the arc generated during the opening process is deflected, and the bearing housing is provided with at least one protrusion formed on the deflection path of the arc.
- the deflection path of the arc can be extended by controlling the position of the magnet, and the arc can be further elongated, thereby speeding up the arc extinguishing speed.
- a switch layer which includes: a housing component, a pair of static contact conductive elements and a movable contact conductive component installed on the bearing housing, and a conductive component arranged on the movable contact The first magnetic element on the moving path of the conductive element moves in contact with the head conductive assembly.
- the movable contact conductive assembly includes a movable contact conductive element movable relative to a pair of the static contact conductive elements, and the movable contact conductive element is adapted to be moved to selectively make the movable contact conductive element and a Engaging or disengaging the static contact conductive element, the first magnetic element is used to deflect the arc generated during the engagement or disengagement process of the movable contact conductive element and the static contact conductive element, the housing The assembly forms at least one slot in the deflection path of the arc.
- the present application also provides an electrical isolation switch, which includes at least one switch layer as described above, and an actuation control component operatively connected to the at least one switch layer, wherein the actuation A control assembly is configured to control switching of the at least one switching layer between a closed state and an open state.
- the present application also provides an arc extinguishing method for an electrical isolating switch, which includes: guiding the arc generated by the electrical isolating switch during state switching to at least one narrow space through a magnetic field generating element.
- the present application also provides an arc extinguishing method, which includes: arranging at least one magnetic element on the moving path of the movable contact conductive element, so as to prevent the moving contact conductive element from engaging or disengaging from a pair of static contact conductive elements.
- the generated arc is deflected; and at least one arc extinguishing slot is arranged on the deflection path of the arc.
- the electrical isolation switch according to the embodiment of the present application is illustrated, which is used to control the interruption of direct current, for example, to control the electrical connection between the photovoltaic panel and the inverter in the photovoltaic system. break.
- the electrical isolation switch according to the embodiment of the present application includes at least one switch switching unit 650 and a control unit 660 for controlling the state switching of the switch switching unit 650 .
- the electrical isolation switch includes a housing assembly 610, an electrical contact assembly 620 mounted on the housing assembly 610, and at least one magnetic field generating element 630, and the housing assembly 610 , the electrical contact assembly 620 and at least one magnetic field generating element 630 form at least one switching unit 650 , wherein the housing assembly 610 forms at least one narrow space 640 for acting on an arc.
- the housing assembly 610 forms at least one bearing housing 611 and at least one packaging housing 612 that covers at least one bearing housing 611 , and the housing assembly 610
- the carrying case 611 and/or the packaging case 612 form at least a narrow space 640 , and this part will be expanded in the subsequent description.
- a carrying case 611 in the case assembly 610 and an encapsulation case 612 covering it form a case structure of a switch switching unit 650 .
- the housing structures of each switching switching unit 650 can be independent of each other, so that through the housing assembly 610 implements electrical isolation between each switching unit 650 .
- at least part of the housing structure of the switching unit 650 of the electrical isolation switch can also be shared, as long as it does not affect the safety, which is not for this application. limited.
- the combination of the at least two switch switching units 650 is not limited by the present application.
- the at least two switching units 650 are combined together in a stacked manner, as shown in FIG. 2 .
- the at least two switching units 650 are combined in a side-to-side horizontal connection, as shown in FIG. 3 .
- one switching unit 650 in the electrical isolation switch and another switching unit 650 adjacent to it are stacked up and down along the axial direction of the electrical isolation switch, wherein, as shown in FIG. 5 , the encapsulation case 612 of each switch switching unit 650 is located above the carrying case 611 , and the carrying case 611 of the switch switching unit 650 on the upper layer is formed adjacent to and located at The encapsulation casing 612 of the switch switching unit 650 in the lower layer. In this way, the housing components 610 of the two stacked switch switching units 650 are partly shared, which can save axial space and reduce the axial size of the electrical isolating switch.
- the housing component 610 forms a first installation cavity 6101 for installing the electrical contact component 620 therein.
- the formation manner and formation location of the first installation cavity 6101 are not limited by the present application.
- the bearing housing 611 has a first installation cavity 6101 for installing the electrical contact assembly 620 therein.
- the package housing 612 has a first installation cavity 6101 for installing the electrical contact assembly 620 therein.
- the bearing housing 611 of the housing assembly 610 has a cavity
- the packaging housing 612 has another cavity corresponding to the cavity
- the bearing housing 611 The cavities of the housing and the corresponding cavities of the package housing 612 cooperate to form the first installation cavity 6101 .
- the electrical contact assembly 620 includes at least one static contact part 622 and at least one dynamic contact part 621, and the dynamic contact part 621 is movable relative to the static contact part 622 under the action of the control unit 660 to suit It is used to control the switch between the on state and the off state of the electrical isolation switch.
- the control unit 660 When the electrical isolating switch is switched to the on state, the dynamic contact portion 621 is in contact with the static contact portion 622, and when the electrical isolating switch is switched to the off state, the The dynamic contact portion 621 is separated from the static contact portion 622 .
- the control unit 660 includes at least one operating member 661 , and the operating member 661 is driveably connected to the dynamic contact portion 621 .
- the operating member 661 is driven to drive the dynamic contact part 621 to move relative to the static contact part 622 until the dynamic contact part 621 is in contact with the static contact part 621
- the static contact portion 622 is in contact with each other.
- at least one switching unit 650 in the electrical isolation switch is turned on, it is considered that the electrical isolation switch is in the conduction state.
- the electrical isolating switch is switched to the off state, the dynamic contact portion 621 is driven by the operating member 661 to separate from the static contact portion 622 .
- the plurality of switch switching units 650 of the electrical isolation switch are linked to each other so that the states of the plurality of switch switching units 650 can be changed synchronously, that is, the plurality of switches
- the switching unit 650 can be switched to the on state or switched to the off state at the same time, as shown in FIG. 4 .
- each switch switching unit 650 of the two adjacent switch switching units 650 in the electrical isolation switch includes a dynamic conductive component 670 provided with a dynamic contact portion 621, when the dynamic conductive component 670 When being driven to move, the moving contact part 621 moves relative to the static contact part 622 .
- the dynamic conductive component 670 of one switching unit 650 of the two adjacent switching units 650 in the electrical isolation switch is driveably connected to the dynamic conductive component 670 of the other switching unit 650 .
- the dynamic conductive component 670 of the switch switching unit 650 When the operating member 661 of one switch switching unit 650 of the two switch switching units 650 is driveably connected to drive the dynamic conductive component 670 of the switch switching unit 650 to move, the dynamic conductive component 670 of the switch switching unit 650 will The dynamic conductive component 670 of the other switching unit 650 is driven to move, and in this way, the control unit 660 performs coordinated control on the two switching units 650 .
- each switch switching unit 650 can be independently controlled by the control unit 660 to perform state switching, which is not covered by this application. limited.
- the electrical isolation switch includes two switching units 650 whose dynamic conductive components 670 are independent of each other, that is, the dynamic conductive components 670 of the two switching units 650 are independent of each other, wherein The movement of the dynamic conductive component 670 of one switching unit 650 does not affect the movement of the dynamic conductive component 670 of the other switching unit 650 .
- the control unit 660 includes a control member for controlling the dynamic conductive component 670 of one switch unit 650 of the two switch units 650 and a control member for controlling the other switch unit 650 of the two switch units 650. Another control member of the dynamic conductive component 670, in this way, the control unit 660 controls the two switching units 650 independently.
- each switching unit 650 the number of the static contact portions 622 (or, the dynamic contact portions 621 ) is greater than or equal to 61.
- a switching unit 650 includes two static contact portions 622 and two dynamic contact portions 621, that is, the number of the static contact portions 622 is 62, and the dynamic contact portions 621 The number is 62, and in this embodiment, the two dynamic contact parts 621 are integrally connected, that is, the two dynamic contact parts 621 have an integral structure.
- the switching unit 650 includes a dynamic contact element, the dynamic contact element has two opposite conductive ends, and the two opposite conductive ends form the two dynamic contact portions 621, In this way, the two dynamic contact parts 621 are integrally connected.
- the two dynamic contact parts 621 may also be of a split structure, which is not limited by the present application.
- the manner in which the operating member 661 drives the dynamic contact portion 621 is not limited by the present application.
- the operating member 661 is configured to drive the dynamic contact portion 621 to rotate through rotational movement.
- the operating member 661 is configured to drive the dynamic contact portion 621 to rotate through linear motion.
- the operating member 661 is configured to drive the dynamic contact portion 621 to perform a linear movement through linear movement, which is not limited by the present application.
- the voltage and/or current in the DC circuit is greater than the preset range, in the process of cutting off the conducted DC circuit through the DC switch, the moment when the moving contact part and the static contact part of the DC switch are separated An arc will form between them.
- the greater the voltage or current in the DC circuit the more arcs will be generated during the process of breaking the DC circuit through the DC switch. That is, the greater the voltage or current in the circuit loop, the more arcs will be generated when the electrical isolating switch switches states. When the generated arc exceeds a certain limit, the electrical isolating switch will be burned, or cannot work normally.
- the inventors of the present application have found through the study of the magnet arc extinguishing scheme that: in the scheme of using magnets to deflect the arc so as to lengthen the arc and then break the arc, in order to pull the arc long enough and thin enough to break it, it is necessary to Arc stretching provides sufficient space, which undoubtedly increases the overall size of the DC switch. That is to say, in the scheme of magnet arc extinguishing, the shell space is a technical contradiction.
- the internal space of the shell is not increased to provide enough space for breaking the arc, the performance of magnet arc extinguishing is not good, and if it is increased If the internal space of the housing is reduced, the overall size of the DC switch will increase, which is not in line with the current trend of miniaturization of the DC switch.
- the inventors of the present application try to configure an intervention mechanism for the deflected arc on the basis of magnet arc extinguishing, so as to enhance the arc extinguishing capability of the DC switch through an appropriate intervention mechanism.
- the extinguishing of the arc depends on the natural law of the arc becoming thinner during the process of being elongated without any external intervention mechanism.
- a narrow space 640 capable of acting on the arc is arranged on the deflection path of the arc, wherein the narrow space 640 can force the arc entering it to be thinner and thinner based on the "narrow slit principle". Long to accelerate the breaking and extinction of the arc, in this way, the arc extinguishing capability of the electrical isolation switch is enhanced.
- the narrow space is a newly established intervention mechanism.
- the arc will be deflected in a specific direction under the action of the magnetic field, that is, the magnetic field generated by the magnet can control the deflection mode of the arc.
- a magnetic field generating element such as a magnet or a coil, etc.
- a narrow space 640 capable of interfering with the arc is arranged on the deflection path, so that the physical intervention of the narrow space 640 can quickly thin and elongate the arc to realize rapid arc extinguishing. It is worth mentioning that since the magnetic field can deflect the arc in a specific direction, the deflection path of the arc and the position of the narrow space 640 on the deflection path of the arc can be selectively and flexibly planned.
- the arc in the process of extinguishing the arc through the magnet, the arc will be deflected in a specific direction under the action of the magnetic field, so that a narrow space 640 constraining the arc can be arranged on the deflection path of the arc, and the arc will be thinned and elongated.
- the magnetic field can deflect the arc in a specific direction, the deflection path of the arc and the position of the narrow space 640 on the deflection path of the arc can be selectively and flexibly planned, so as not to greatly increase the overall size of the DC switch.
- Arc extinguishing is achieved under the condition of size.
- the narrow space is not only conducive to rapid arc extinguishing, but also can save the space it occupies, which is conducive to the miniaturization of the electrical isolating switch.
- the electrical isolating switch includes at least one magnetic field generating element 630 for deflecting the arc generated when the electrical isolating switch switches states and a At least one narrow space 640 .
- the arc is generated between the static contact portion 622 and the dynamic contact portion 621 , and without the action of a magnetic field, the movement track of the arc is almost consistent with the movement path of the dynamic contact portion 621 . Therefore, in the embodiment of the present application, the arrangement of other components is described by using the motion trajectory of the dynamic contact portion 621 as a position reference.
- At least a part of the magnetic field generating element 630 corresponds to the movement track of the dynamic contact part 621 along the axial direction of the electrical contact assembly 620 .
- the magnetic field generating element 630 moves away from the moving path of the dynamic contact part 621 along the radial direction of the electrical contact assembly 620, for example, the magnetic field generating element 630 moves along the The radial direction of the electrical contact assembly 620 is away from the moving path of the dynamic contact part 621 within a certain distance range, so as to ensure that the magnetic field generated by the magnetic field generating element 630 can act on the arc.
- the setting position of the magnetic field generating element 630 is not limited by the present application, it only needs to meet the requirement that the magnetic field generated by the magnetic field generating element 630 can act on the arc so that the The arc is deflected along a predetermined direction. It is worth mentioning that, in the embodiment of the present application, the magnetic field generating element 630 may be implemented as any element capable of generating a magnetic field, for example, magnetic elements such as permanent magnets, soft magnets, and energized coils.
- the at least one magnetic field generating element 630 includes a first magnetic element 631 along at least a part of the axial direction of the electrical contact assembly 620 corresponding to the movement path of the dynamic contact portion 621 , As shown in Figure 6A. In another embodiment of the present application, the at least one magnetic field generating element 630 includes a first magnetic element 631 away from the moving path of the dynamic contact part 621 along the radial direction of the electrical contact assembly 620, as shown in FIG. 6B.
- the orientation of the magnetic poles of the magnetic element will affect the deflection path of the arc, and further affect the position of the narrow space 640 .
- the first magnetic element 631 has opposite first magnetic poles and second magnetic poles, the first magnetic poles are directed toward the moving path of the dynamic contact portion 621 , and the second magnetic poles are along the moving path of the dynamic contact portion 621.
- the axial direction of the electrical contact assembly 620 is away from the first magnetic pole.
- the bearing housing 611 has a second installation cavity 6102 for installing the first magnetic element 631 therein, at least a part of the second installation cavity 6102 corresponds to the axial direction of the housing assembly 610
- the wall of the second installation cavity 6102 is made of insulating material.
- the deflection path of the arc can be determined according to the orientation of the magnetic poles of the first magnetic element 631 , and then the arrangement position and arrangement method of the narrow space 640 can be determined.
- the electrical isolating switch guides the arc to deflect according to a preset path through the magnetic field generated by the first magnetic element 631, and then captures the arc through the narrow space 640 provided on the deflection path of the arc.
- the arc is thinned and elongated to realize arc extinguishing.
- the narrow space 640 of the electrical isolating switch includes a first narrow space 641 and a second narrow space 642, the first narrow space 641 is located outside the movement path of the dynamic contact part 621, the The second narrow space 642 is located inside the movement path of the dynamic contact part 621 .
- the inner side refers to the side close to the center of the housing assembly 610
- the outer side refers to the side near the outer periphery of the housing assembly 610 .
- the number of the first narrow spaces 641 is greater than or equal to 61
- the number of the second narrow spaces 642 is greater than or equal to 61.
- the first narrow space 641 may be formed on the upper side and/or the lower side of the dynamic contact portion 621
- the second narrow space 642 may also be formed on the upper side and/or lower side of the dynamic contact portion 621 , which is not limited by this application.
- the electrical isolating switch may only be provided with the first narrow space 641 located outside the movement path of the dynamic contact part 621 , or only have the first narrow space 641 located outside the movement path of the dynamic contact part 621
- the second narrow space 642 on the inner side of the motion path.
- a narrow space 640 may also be provided on the left side and/or right side of the first magnetic element 631 .
- the first narrow space 641 and the second narrow space 642 are formed by the grooves of the carrying case 611 itself.
- the carrying case 611 has a first arc extinguishing groove formed therein in a concave manner, and the first arc extinguishing groove forms the first narrow space 641 , and the carrying case 611 also has a recessedly formed In the second arc extinguishing groove, the second arc extinguishing groove forms the second narrow space 642 .
- the opening of the first arc extinguishing slot and the opening of the second arc extinguishing slot both face the dynamic contact portion 621, and the depth direction of the first arc extinguishing slot and the depth direction of the second arc extinguishing slot are the same as
- the axial directions of the casing components 610 are consistent.
- the first narrow space 641 and the second narrow space 642 may be formed in other ways.
- the second arc extinguishing groove is formed inside the movement path of the dynamic contact part 621, and is provided by the bearing housing 611 itself, and does not occupy an extra diameter. to space. And by controlling the shape and width of the first arc extinguishing groove and the second arc extinguishing groove, the shape of the arc can be constrained, the arc can be thinned and elongated, and the arc extinguishing speed can be accelerated. In this way, the arrangement of the first arc extinguishing slots enables the electrical isolating switch to accelerate the arc extinguishing speed and improve the arc extinguishing performance without increasing its radial dimension.
- the first magnetic element 631 is disposed outside the dynamic contact portion 621, and the first magnetic element 631 has opposite first magnetic poles and second magnetic poles, wherein the The first magnetic pole moves toward the moving path of the dynamic contact portion 621 , and the second magnetic pole moves away from the first magnetic pole along the radial direction of the electrical contact assembly 620 .
- the bearing housing 611 has a second installation cavity 6102 for installing the first magnetic element 631 therein, the second installation cavity 6102 is located outside the first installation cavity 6101, the second installation cavity
- the cavity walls of cavity 6102 are made of insulating material.
- the electrical isolating switch includes a first narrow space 641 and a second narrow space 642, the first narrow space 641 is located on the lower side of the movement path of the dynamic contact part 621, and the second narrow space 642 The space 642 is located on the upper side of the movement path of the dynamic contact part 621 .
- the first narrow space 641 is formed between the packaging case 612 and the bearing case 611 and is located on the lower side of the first magnetic element 631
- the second narrow space 642 is formed at The encapsulation case 612 and the carrying case 611 are located on the upper side of the first magnetic element 631 .
- the gap between the bearing housing 611 and the first magnetic element 631 forms the first narrow space 641
- the packaging housing 612 and the first magnetic element forms the second narrow space 642 .
- the opening of the first narrow space 641 and the opening of the second narrow space 642 are both facing the dynamic contact portion 621, and the depth direction of the first narrow space 641 and the depth direction of the second narrow space 642 are the same as those of the second narrow space 642.
- the radial directions of the housing components 610 are consistent.
- the electrical isolating switch may only be provided with the first narrow space 641 located on the upper side of the moving path of the dynamic contact part 621, or only provided with The second narrow space 642 on the lower side of the movement path of 621 .
- the first narrow space 641 and the second narrow space 642 may also be formed in other ways.
- the width dimension of the first narrow space 641 and the width dimension of the second narrow space 642 are consistent with the axial direction of the housing assembly 610, in order to restrain the arc
- the shape of the electric arc is narrowed, and the width dimensions of the first narrow space 641 and the width dimension of the second narrow space 642 are relatively narrow, so that the axial dimension of the electrical isolation switch can be reduced.
- the shape of the first magnetic element 631 is consistent with the movement path of the dynamic contact part 621 .
- the first magnetic element 631 has an arc-shaped structure extending along the movement path of the dynamic contact portion 621 .
- the shape of the first magnetic element 631 may not be completely consistent with the movement path of the dynamic contact part 621, for example, the first magnetic element 631 has a triangular cross-sectional shape, Alternatively, the rectangular or trapezoidal structure is not limited by the present application.
- first magnetic element 631 it is also possible to increase the number of the first magnetic element 631, or increase the volume of the first magnetic element 631 so that the magnetic field generated by the first magnetic element 631 covers the dynamic contact portion as much as possible.
- the movement path of 621 acts on the arc.
- the extension of the first narrow space 641 and the second narrow space 642 is the same as that of the first magnetic element 631 The extensions are the same.
- the electrical isolating switch can achieve arc extinguishing under the cooperation of the magnetic field generating element 630 and the narrow space 640.
- the arc method includes: using the magnetic field generating element 630 to guide the arc generated by the electrical isolating switch during state switching into at least one narrow space 640 .
- the electrical isolating switch can realize arc extinguishing under the cooperation of the magnetic element and the arc extinguishing groove.
- an arc extinguishing method of the electrical isolating switch is also provided , which includes: setting at least one magnetic element on the moving path of the movable contact conductive element 6123, so as to deflect the arc generated during the engagement or disengagement of the movable contact conductive element 6123 with a pair of static contact conductive elements 613; and , setting at least one arc extinguishing groove on the deflection path of the arc.
- the electrical isolating switch according to the embodiment of the present application is illustrated, which is suitable for being applied to a photovoltaic system to control electrical disconnection between photovoltaic panels and inverters. It should be understood that although the application of the electrical isolation switch to a photovoltaic system is taken as an example, in other embodiments of the present application, the electrical isolation switch can also be applied to other occasions, such as a wind power system. limited by this application.
- the electrical isolation switch includes at least one switch layer 710 and is configured to control the switching of the at least one switch layer 710 between a closed state and an open state.
- An actuation control component 720 wherein the actuation control component 720 is operatively connected to the at least one switch layer 710.
- the rotary electrical switch generally includes a plurality of switch layers 710 stacked on top of each other, that is, the at least one switch layer 710 includes at least two switch layers layer 710, each switch layer 710 in the at least two switch layers 710 is stacked on top of each other to form a multi-layer switch layer structure.
- the electrical isolation switch further includes a bottom mounting structure for carrying the at least one switch layer 710 and the actuation control component 720 thereon, so that the bottom mounting structure
- the above-mentioned electrical isolating switch is installed on the corresponding position such as the installation rail of the distribution cabinet.
- the actuation control component 720 is installed on the top of the at least two switch layers 710, and is used to control the switching of the electrical state of the at least two switch layers 710, that is, to control the closing or breaking of the at least two switch layers 710. open.
- the actuation control assembly 720 includes an actuation housing 721, an energy storage assembly 722 and a rotation assembly 723, wherein the energy storage assembly 722 and the rotation assembly 723 is accommodated in the actuating housing 721, the at least two switch layers 710 are rotatably connected to the lower end of the energy storage assembly 722, the rotation assembly 723 is arranged on the upper end of the energy storage assembly 722 and It is used to rotate the energy storage component 722 to drive the at least two switch layers 710 to realize the state switching of the at least two switch layers 710 .
- each of the switch layers 710 is assembled together in a driveable manner, that is, when the switch layer 710 on the top layer is rotated by the energy storage assembly 722, The underlying switch layer 710 is driven.
- the rotating assembly 723 includes a rotating shaft 7231 that penetrates into the actuating housing 721 and is plugged and fixed with the energy storage assembly 722 , and is used to drive the rotating shaft 7231
- the knob 7232 is installed on the upper end of the rotating shaft 7231 .
- the rotating assembly 723 further includes a nut 7233 fixed to the actuating housing 721, wherein the rotating shaft 7231 passes through the nut 7233 and extends into the actuating housing 721, it should be understood that the rotation shaft 7231 can rotate relative to the nut 7233.
- the rotating assembly 723 further includes a gasket 7234 disposed between the actuating housing 721 and the nut 7233 .
- the energy storage assembly 722 includes a driving turntable 7221, a rotating base 7223 and an energy storage element 7222, wherein the lower end of the rotating base 7223 is rotatably connected to the top switch layer 710, and the energy storage element 7222 is It is arranged in the rotating base 7223 , and the driving turntable 7221 is installed on the rotating base 7223 .
- the rotating shaft 7231 is fixed on the upper end of the driving turntable 7221, that is, when the rotating shaft 7231 rotates under the action of the knob 7232, it can drive the The driving turntable 7221 rotates relative to the rotating base 7223 .
- the drive dial 7221 is fixed on the lower end of the rotating shaft 7231
- the knob 7232 is fixed on the upper end of the rotating shaft 7231, so that the rotation of the rotating shaft 7231 Conduction, the knob 7232 can control the motion state of the driving dial 7221 .
- the drive turntable 7221 includes a turntable main body with an insertion head, an actuating member 72211 and a releasing member 72212 extending downward from the turntable main body, the actuating member 72211 and the releasing member 72212 extending downward from the outer peripheral edge of the main body of the turntable.
- the angle set between the actuating member 72211 and the releasing member 72212 relative to the center of the turntable body affects the operation control of the rotary electric switch.
- the angle range between the actuating member 72211 and the releasing member 72212 relative to the center of the turntable body is 170° to 175°, which can be rotated in a predetermined direction.
- the knob 7232 is about 80° to 100° to switch the state of the at least two switch layers 710, and correspondingly, the operating angle of the switch layer 710 is 80° to 100°.
- the angle range between the actuating member 72211 and the releasing member 72212 relative to the center of the turntable body is 175° to 180°, and the action of the switch layer 710 The angle is 85° to 95°.
- the electrical isolation switch includes a plurality of switch layers 710 stacked on top of each other.
- each switch layer 710 includes a bearing housing 711, a pair of static contact conductive elements 713 and a movable contact conductive component 712 installed on the bearing housing 711, and at least one magnetic element, wherein, the movable contact conductive component 712 is adapted to switchably conduct or disconnect with the pair of static contact conductive components 713 under the action of the rotating component 723 and the energy storage component 722 to realize each The state of the switch layer 710 is switched.
- the movable contact conductive component 712 of the switch layer 710 (that is, the topmost switch layer 710 ) closest to the actuation control component 720 in the electrical isolating switch and the energy storage component 722 of the actuation control component 720 Drivenly connected, the movable contact conductive components 712 of every two adjacent switch layers 710 in the electrical isolating switch are connected driveably, so that under the control of the actuation control component 720, each switch layer
- the movable contact conductive component 712 of 710 can be selectively engaged or disengaged from its static contact conductive element 713 to realize the state switching (closed/opened) of the switch layer 710 .
- the carrying case 711 has a first installation cavity 71101
- the movable contact conductive component 712 is fittingly fitted into the first mounting cavity 711 of the carrying case 711 .
- the movable contact conductive assembly 712 includes an insulating turntable 7121, a dial element 7122 for driving the insulating turntable 7121, and a dial element 7122 formed on the first insulating turntable 7121 and the first dial element
- the movable contact conductive element 7123 between 7122 is shown in Fig. 12 to Fig. 13B.
- the moving contact conductive element 7123 is fitted to the insulating turntable 7121 along the central axis of the insulating turntable 7121, and the length of the moving contact conductive element 7123 The size is close to the diameter of the insulating turntable 7121. In this way, after the movable contact conductive element 7123 is installed on the insulating turntable 7121 along the centerline of the insulating turntable 7121, the edge of the movable contact conductive element 7123 is in contact with the insulating turntable 7121. The edges of the insulating turntable 7121 are nearly flush.
- the movable contact conductive element 7123 has a first movable contact conductive end 71231 formed at its first end and a second movable contact conductive end 71231 formed at its second end (opposite to the first end).
- End 71232 that is, in the embodiment of the present application, the first movable contact end 71231 of the movable contact conductive element 7123 is formed on the edge of the insulating turntable 7121, and the second movable contact end 7123 of the movable contact conductive element 7123
- the conductive end 71232 is formed on the edge of the insulating turntable 7121 .
- the first movable contact conductive end 71231 and the second movable contact conductive end 71232 form a pair of dynamic contact parts, and the movable contact conductive element 7123 is adapted to be moved to selectively make the pair of dynamic contact parts and the pair of dynamic contact parts
- the static contact conductive element 713 is engaged or disengaged to realize switching of the state of each switch layer 710 .
- the insulating turntable 7121 is also provided with a partition partition 71212, as shown in FIG. end and a pair of static contact conductive elements 713 that are not matched with the static contact conductive element 713 during the state switching process of the switch layer 710, so as to avoid the dynamic contact during the state switching process of the switch layer 710.
- the distance between the contact conductive element 7123 and the static contact conductive element 713 is relatively close, and the creepage distance is relatively short, resulting in a short circuit.
- the shape of the movable contact conductive element 7123 and the arrangement of the movable contact conductive element 7123 are not limited by the present application.
- the movable contact conductive element 7123 may include two independent dynamic contact parts, and the two The two dynamic contact parts are electrically connected to each other.
- the insulating turntable 7121 and the two dynamic contact parts are prepared through an integral molding process, for example, prepared through a molding process, so that the insulating turntable 7121 and the moving contacts
- the conductive element 7123 has a one-piece structure.
- the dial element 7122 of the switch layer 710 is trivably connected to the actuation control assembly 720 in a manner of being engaged with the energy storage assembly 722, and the dial element 7122 is positioned
- the dial element 7122 is driven to rotate by the actuation control assembly 720
- the insulating turntable 7121 installed with the movable contact conductive element 7123 is driven to rotate.
- the dial element 7122 can also be rotatably connected to the insulating turntable 7121 in other ways, for example, fixed to the insulating turntable 7121 or integrally connected to the insulating turntable 7121 .
- the dial element 7122 of the switch layer 710 closest to the actuation control assembly 720 in the electrical isolation switch is driveably connected to the energy storage assembly 722 of the actuation control assembly 720, and is located at The insulating turntable 7121 of the upper switch layer 710 is engaged with the dial element 7122 of the lower switch layer 710.
- the movable contact conductive components of every two adjacent switch layers 710 in the electrical isolation switch 712 is rotatably connected, so that the actuation control assembly 720 can coordinately control the switching of the states of the plurality of switching layers 710 of the electrical isolating switch.
- a pair of static contact conductive elements 713 are mounted on the carrying case 711, each of the static contact conductive elements 713 has a static contact conductive end 7131, and the static contact conductive end 7131 forms a static contact.
- the pair of static contact conductive elements 713 are installed at the installation position of the bearing shell 711 so that the static contact conductive ends 7131 of the pair of static contact conductive elements 713 are arranged symmetrically with respect to the central axis of the bearing shell 711 And adjacent to the edge of the insulating turntable 7121, through such a position and structural configuration, the first movable contact conductive end 71231 and the second movable contact conductive end 71232 of the movable contact conductive element 7123 of the movable contact conductive assembly 712 Under the action of the rotating assembly 723 and the energy storage assembly 722 of the actuation control assembly 720, it can be engaged with or disengaged from the pair of static contact conductive ends 7131 of the static contact conductive element 713 at the same time, so as to realize the switch State switching of layer 710 .
- the switch layer 710 When the switch layer 710 is switched to the closed state, the movable contact conductive element 7123 is in contact with the static contact conductive element 713, and when the switch layer 710 is switched to the open state, the The movable contact conductive element 7123 is separated from the static contact conductive element 713 .
- a pair of static contact conductive elements 713 are arranged on opposite sides of the first installation cavity 71101 of the bearing housing 711, wherein a pair of static contact
- the conductive elements 713 are installed on the outer periphery of the carrying case 711 .
- the part of the static contact conductive element 713 that is used to electrically connect other electrical equipment is positioned as the electrical terminal 7132.
- the static contact conductive element 713 has a static contact conductive end 7131, an electrical terminal 7132, and , extending to the static contact extension portion 7133 of the static contact conductive end 7131 and the electrical connection end 7132 .
- the power connection end 7132 of at least one static contact conductive element 713 in the pair of static contact conductive elements 713 protrudes out of the bearing housing 711 . It should be understood that the pair of electrical terminals 7132 of the static contact conductive elements 713 may not protrude from the bearing housing 711 , which is not limited by the present application.
- the pair of static contact conductive elements 713 can be mounted on the bearing shell 711 in other ways, for example, a pair of the static contact conductive elements 713 are installed on the The carrying case 711 , or, one of the pair of static contact conductive elements 713 is mounted on the carrying case 711 in a fitted manner.
- each switch layer 710 of the electrical isolating switch includes a function for engaging or disengaging the moving contact conductive element 7123 with the static contact conductive element 713 At least one first magnetic element 714 for deflecting the arc generated during the process and at least one arc chute on the deflection path of the arc, wherein the at least one arc chute forms a narrow space on the deflection path of the arc .
- the arc is generated between the static contact conductive element 713 and the movable contact conductive element 7123, and without the action of a magnetic field, the movement track of the arc is almost the same as the movement path of the movable contact conductive element 7123 consistent. Therefore, in the embodiment of the present application, the arrangement of other elements is described by taking the movement trajectory of the movable contact conductive element 7123 as a position reference.
- the first magnetic element 714 is mounted on the carrying case 711 and arranged on the moving path of the moving contact conductive element 7123 .
- the specific installation manner of the first magnetic element 714 is not limited by this application.
- the carrying case 711 includes a bottom plate, and the carrying case 711 has a protrusion 71102 formed on the bottom plate and corresponding to the movement path of the moving contact conductive element 7123 , the first magnetic element 714 is fittingly installed in the protrusion 71102, and the surrounding wall of the protrusion 71102 is made of insulating material.
- the carrying case 711 has a groove, and the protrusion 71102 is protrudingly formed in the groove.
- the protrusion 71102 is formed under the movable contact conductive element 7123, and at least a part of the protrusion 71102 is along the switch
- the axial direction set by the layer 710 corresponds to the movable contact conductive element 7123, that is, at least a part of the protrusion 71102 overlaps the movable contact conductive element 7123 in the axial direction set by the switch layer 710 .
- At least a part of the first magnetic element 714 fitted into the protrusion 71102 corresponds to the moving path of the moving contact conductive element 7123 along the axis set by the switch layer 710 , that is, the At least a part of the first magnetic element 714 overlaps with the moving path of the moving contact conductive element 7123 in the axial direction set by the switch layer 710 .
- first magnetic element 714 has opposite first magnetic poles and second magnetic poles, the first magnetic poles are directed towards the moving path of the moving contact conductive element 7123, and the second magnetic poles are along the moving path of the moving contact The axial direction of the conductive component is away from the first magnetic pole.
- the insulating turntable 7121 installed on the moving contact conductive element 7123 is provided with at least one notch structure 71211 , as shown in FIG. 24A and FIG. 24B .
- the deflection path of the arc can be determined according to the orientation of the magnetic poles of the first magnetic element 714 , and then the arrangement position and arrangement method of the arc extinguishing slots can be determined.
- the electrical isolating switch guides the arc to deflect according to a preset path through the magnetic field generated by the first magnetic element 714, and then uses the slit effect through the arc extinguishing slot arranged on the deflection path of the arc
- the arc entering it is thinned and elongated to realize rapid arc extinguishing.
- the magnetic pole orientation of the magnetic element is determined, the path of the arc deflection under the action of the magnetic element is determined, and the layout position of the arc extinguishing groove can also be determined along with the determination of the deflection path. Then, it can be The position of the arc extinguishing groove is determined by selecting the position of the magnetic element and the orientation of the magnetic pole, or the position of the magnetic element and the orientation of the magnetic pole are determined by selecting the position of the arc extinguishing groove, so as to achieve the realization without greatly increasing the overall size of the DC switch Arc extinguishing.
- the moving conductive element 7123 deflects inward or outward, as shown in FIGS. 26 to 27B .
- the at least one arc extinguishing slot includes a first arc extinguishing slot 7111 and a second arc extinguishing slot 7112, as shown in FIG. 16 .
- the first arc extinguishing groove 7111 is formed on the outer side of the moving contact conductive element 7123
- the second arc extinguishing groove 7112 is formed on the inner side of the moving contact conductive element 7123 . Since the first magnetic element 714 is arranged on the moving path of the moving contact conductive element 7123, correspondingly, the first arc extinguishing groove 7111 is located outside the first magnetic element 714, and the second arc extinguishing groove
- the arc slot 7112 is located inside the first magnetic element 714 .
- the first arc extinguishing groove 7111 is connected with the outside world, where the outside world is relative to the switch layer 710, that is, the outside world refers to the outside space of the electrical isolation switch. In this way, the arc generated by the switch layer 710 during the state switching process can be guided to the outside through the first arc extinguishing groove 7111, so as to improve the structural stability and reliability of the electrical isolation switch.
- At least one end of the first arc extinguishing groove 7111 extends to the edge of the housing of the switch layer 710, so that the first arc extinguishing groove 7111 communicates with the outside world, as shown in FIGS. 17A to 22 .
- the second arc extinguishing slot 7112 is in communication with the first arc extinguishing slot 7111 .
- the moving path of the arc can be extended, and when the first arc extinguishing slot 7111 is connected with the outside world, the arc entering the second arc extinguishing slot 7112 can also be guided through the first arc extinguishing slot 7111 to the outside world.
- the number of the first arc extinguishing slots 7111 and the second arc extinguishing slots 7112 is not limited by this application, it can be 71, 72, 73, or more, and this is not limited by this application .
- the at least one arc extinguishing slot includes two second arc extinguishing slots 7112 and two second arc extinguishing slots 7112, wherein one first arc extinguishing slot 7111 and one second arc extinguishing slot 7111
- the arc extinguishing grooves 7112 are adjacent to one of the static contact conductive elements 713 in the pair of static contact conductive elements 713, and the other first arc extinguishing groove 7111 and the second arc extinguishing groove 7112 are adjacent to the pair of static contact conductive elements 713.
- the distance between the first arc extinguishing slot 7111 or the second arc extinguishing slot 7112 and the first magnetic element 714 should be kept within a certain range, so that the arc enters as much as possible The first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 .
- the distance between the first arc extinguishing slot 7111 and the first magnetic element 714 is greater than 70 mm and less than or equal to 9 mm, and/or, the distance between the second arc extinguishing slot 7112 and the The distance between the first magnetic elements 714 is greater than 0 and less than or equal to 9mm.
- the distance between the first arc extinguishing groove 7111 and the first magnetic element 714 in the radial direction of the bearing housing 711 is greater than 0 and less than or equal to 9mm, and/or, the second arc extinguishing groove
- the distance between the arc groove 7112 and the first magnetic element 714 in the radial direction of the bearing housing 711 is greater than 0 and less than or equal to 9 mm.
- the first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 are formed in the bearing shell 711 of the switch layer 710 where they are located, that is, the bearing
- the housing 711 has a first arc extinguishing slot 7111 and a second arc extinguishing slot 7112, wherein the first arc extinguishing slot 7111 is formed inside the protrusion 71102, and the second arc extinguishing slot 7112 is formed on the Outside the protrusion 71102 , the first arc extinguishing groove 7111 and the second arc extinguishing groove 7112 are located on the lower side of the moving contact conductive element 7123 .
- the forming manner of the first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 is not limited by the present application.
- the bearing housing 711 has a groove
- the protrusion 71102 is formed in the groove
- the peripheral wall of the groove and the protrusion 71102 The gaps between the surrounding walls form the first arc extinguishing groove 7111 and the second arc extinguishing groove 7112 .
- the opening of the first arc extinguishing groove 7111 and the opening of the second arc extinguishing groove 7112 are both facing the moving contact element, the depth direction of the first arc extinguishing groove 7111 and the second arc extinguishing groove 7112
- the depth direction is consistent with the axial direction set by the switch layer 710
- the width direction of the first arc extinguishing groove 7111 and the width direction of the second arc extinguishing groove 7112 are consistent with the diameter of the bearing housing 711 to the same.
- the first arc extinguishing slot 7111 and/or the second arc extinguishing slot 7112 may also be formed on the upper side of the moving contact conductive element 7123 .
- each switch layer 710 further includes an encapsulation case covering the upper part of its carrying case 711, and at least part of the first arc extinguishing slots 7111 are formed In the packaging case, at least part of the second arc extinguishing slots 7112 are formed in the packaging case.
- the lower part of the bearing case 711 of the upper switch layer 710 among two adjacent switch layers 710 forms the encapsulation case of the lower switch layer 710 .
- a part of the first arc extinguishing slots 7111 is formed in the bearing housing 711 of the switch layer 710 where they are located, and another part of the first arc extinguishing slots 7111 is formed in the The encapsulating case, that is, the other part of the first arc extinguishing slots 7111 is formed on the carrying case 711 of the switch layer 710 above the switch layer 710 where it is located.
- a part of the second arc extinguishing slots 7112 is formed in the bearing housing 711 of the switch layer 710 where they are located, and another part of the second arc extinguishing slots 7112 is formed in the The encapsulating case, that is, the other part of the second arc extinguishing slots 7112 is formed on the carrying case 711 of the switch layer 710 above the switch layer 710 where the second arc extinguishing slots 7112 are located.
- the encapsulation cases of the respective switch layers 710 may be independent of each other.
- the second arc extinguishing slot 7112 is formed inside the movement path of the moving contact conductive element 7123, and is provided by the bearing case 711 itself, and is not occupied. Extra radial space. In this way, the layout of the second arc extinguishing groove 7112 enables the electrical isolating switch to speed up the arc extinguishing speed without increasing its radial dimension and improve the arc extinguishing performance.
- both the first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 are formed in the shell structure of the electrical isolating switch, and the electrical isolating switch of the present application can pass the conventional The casing of the DC switch is obtained by structural modification.
- the shape of the first magnetic element 714 is consistent with the movement path of the movable contact conductive element 7123 .
- the first magnetic element 714 has an arc-shaped structure extending along the moving path of the moving contact conductive element 7123.
- the first magnetic element 714 A magnetic element 714 is a sector magnet.
- the shape of the first magnetic element 714 may be other shapes, for example, a rectangle, a trapezoid, a triangle, a bow, or an arch bridge.
- the path of motion of the element 7123 acts on the arc.
- the number of the first magnetic elements 714 is 72, 73, 74, or more, which is not limited by the present application.
- the extension of the first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 is the same as that of the first magnetic element
- the extending manner of 714 is consistent, specifically, the length extending manner of the first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 is consistent with the length extending manner of the first magnetic element 714 .
- the extending directions of the first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 are also consistent.
- both the first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 extend in an arc shape.
- the length extension of the first arc extinguishing slot 7111 or the second arc extinguishing slot 7112 may also be inconsistent with the length extension of the first magnetic element 714 .
- the first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 may also extend in other ways, for example, extending along a straight line or extending along an arch bridge, which is not limited by this application.
- the arc entering the arc chute can extend not only along the length of the arc chute, but also along the depth of the arc chute. In this way, the arc chute occupancy can be controlled by adjusting the depth of the arc chute the lengthwise space of .
- the arc extinguishing speed can be accelerated by reducing the width dimension of the space in the arc extinguishing groove that allows the arc to pass through (ie, the dimension in the radial direction of the bearing housing 711 ).
- the inventors of the present application propose that the width of the space in the arc chute that allows the arc to pass can be reduced by means of “static diameter reduction” and/or “dynamic diameter reduction”.
- static variable diameter means that the arc extinguishing slot itself has a size-changing structure
- dynamically variable diameter means that the width of the space in the arc extinguishing slot that allows arcs to pass through dynamically changes.
- the switch layer 710 reduces the width of the space in the arc chute that allows the arc to pass through a "static diameter reduction".
- the first arc extinguishing slot 7111 includes a first slot body part 71111 and a second slot body part 71112, and the width dimension of the first slot body part 71111 and the second slot body The width of the part 71112 is different.
- the second arc extinguishing slot 7112 includes a third slot part 71121 and a fourth slot part 71122.
- the width of the third slot part 71121 is the same as that of the fourth slot part 71122.
- the width dimensions are different.
- the first arc extinguishing groove 7111 and/or the second arc extinguishing groove 7112 can form a tapered structure along its depth direction; on the other hand, the first arc extinguishing groove 7111 and/or Or the second arc extinguishing groove 7112 can form a tapered structure along its length direction, so as to quickly extinguish the arc.
- the first arc extinguishing groove 7111 and the second arc extinguishing groove 7112 form a tapered structure along their depth direction.
- the second slot body part 71112 extends from the first slot body part 71111 along the depth direction of the first arc extinguishing slot 7111, and the width dimension of the second slot body part 71112 is smaller than that of the first slot body part 71111
- the fourth slot body part 71122 extends from the third slot body part 71121 along the depth direction of the second arc extinguishing slot 7112
- the width dimension of the fourth slot body part 71122 is smaller than the
- the width dimension of the third groove part 71121 that is, the width dimension of at least a part of the first arc extinguishing groove 7111 gradually decreases in its depth direction
- the width dimension of the second arc extinguishing groove 7112 decreases in its depth.
- the cross-sectional shape of the first arc extinguishing slot 7111 is trapezoidal or triangular
- the cross-sectional shape of the second arc-extinguishing slot 7112 is trapezoidal or triangular.
- the cross-sectional shape of the first arc extinguishing groove 7111 and the second arc extinguishing groove 7112 can also be other shapes, for example, step shape, half crescent shape and so on.
- the width dimension of the first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 gradually decreases along the direction away from the static contact conductive element 713, and the arc will be broken more easily. That is, preferably, the width of the portion of the first arc extinguishing slot 7111 and/or the second arc extinguishing slot 7112 that is far away from the adjacent static contact conductive element 713 is smaller than that of the adjacent portion. The distance between the static contact conductive element 713 is smaller than the width dimension of the part.
- the width dimension of the portion of the first arc extinguishing slot 7111 or the second arc extinguishing slot 7112 with a smaller distance from the adjacent static contact conductive element 713 is larger than that of the adjacent static contact conductive element 713 .
- the element 713 has a greater distance from the width dimension of the portion, so that the arc generated adjacent to the static contact conductive element 713 enters the first arc extinguishing slot 7111 and/or the second arc extinguishing slot 7112 more easily.
- one of the first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 of the at least one arc extinguishing slot is adjacent to one of the pair of static contact conductive elements 713
- the contact conductive element 713, the second slot body part 71112 is connected with one static contact conductive element 713 in a pair of said static contact conductive elements 713 (the static contact conductive element 713 adjacent to the first arc extinguishing groove 7111 ) is greater than the distance between the first slot body part 71111 and the static contact conductive element 713, the fourth slot body part 71122 and one of the pair of static contact conductive elements 713 (with the static contact conductive element 713
- the distance between the adjacent static contact conductive elements 713 of the second arc extinguishing groove 7112 is greater than the distance between the third slot body part 71121 and the static contact conductive elements 713 .
- the distance between the second slot body part 71112 and the static contact conductive element 713 in the depth direction of the first arc extinguishing slot 7111 is greater than the distance between the first slot body part 71111 and the static contact conductive element 713 is the distance in the depth direction of the first arc extinguishing slot 7111 .
- the distance between the third slot body part 71121 and the static contact conductive element 713 in the depth direction of the second arc extinguishing slot 7112 is greater than the distance between the fourth slot body part 71122 and the static contact conductive element 713.
- the distance in the depth direction of the second arc extinguishing slot 7112 is described above.
- the first arc extinguishing groove 7111 and the second arc extinguishing groove 7112 form a tapered structure along their length direction.
- the second slot body part 71112 extends from the first slot body part 71111 along the length direction of the first arc extinguishing slot 7111, and the width dimension of the second slot body part 71112 is smaller than that of the first slot body part
- the width dimension of 71111 is shown in Figure 17A to Figure 20.
- the fourth slot body part 71122 extends from the third slot body part 71121 along the length direction of the second arc extinguishing slot 7112, and the width dimension of the fourth slot body part 71122 is smaller than that of the third slot body part
- the width dimension of 71121 is shown in Figure 17B.
- the distance between the second slot body part 71112 and the static contact conductive element 713 in the length direction of the first arc extinguishing slot 7111 is greater than that between the first slot body part 71111 and the static contact conductive element
- the distance of 713 in the length direction of the first arc extinguishing groove 7111 is shown in FIG. 17A , FIG. 17B , and FIG. 19 .
- the distance between the third slot body part 71121 and the static contact conductive element 713 in the length direction of the second arc extinguishing slot 7112 is greater than the distance between the fourth slot body part 71122 and the static contact conductive element 713.
- the distance in the length direction of the second arc extinguishing groove 7112 is shown in FIG. 17B.
- the switch layer 710 reduces the width of the space in the arc extinguishing slot that allows the arc to pass through a "dynamically variable diameter".
- the insulating turntable 7121 has a predetermined shape configuration so that when the movable contact conductive assembly 712 moves relative to the pair of static contact conductive elements 713, at least a part of the insulating turntable 7121 The axial direction set by the switch layer 710 partially overlaps with at least one arc extinguishing slot, and in this way, the width of the space allowing the arc to pass through in the arc extinguishing slot is dynamically changed.
- the peripheral portion of the notch structure 71211 of the insulating turntable 7121 and/or Or the outer edge of the insulating turntable 7121 protrudes into at least one arc extinguishing slot in the radial direction set by the switch layer 710, so that the width of the space allowing the arc to pass through at least one of the arc extinguishing slots The size (ie radial size) is reduced.
- the outer edge of the insulating turntable 7121 is on the The switch layer 710 does not extend into at least one arc extinguishing slot in the radial direction set by the switch layer 710, and the peripheral portion of the notch structure 71211 of the insulating turntable 7121 extends into at least one arc extinguishing groove in the radial direction set by the switch layer 710.
- the width dimension (that is, the radial dimension) of the space allowing the arc to pass through at least one arc extinguishing slot is reduced, as shown in FIGS.
- the arc extinguishing groove mainly passes through the peripheral portion of the notch structure 71211 of the insulating turntable 7121 and the arc extinguishing groove.
- the dynamic change of the positional relationship among them realizes "dynamic diameter reduction", so that the radial dimension of the space allowing the arc to pass through in the arc extinguishing slot is dynamically changed.
- the peripheral portion of the notch structure 71211 of the insulating turntable 7121 is The switch layer 710 does not extend into at least one arc extinguishing slot in the radial direction set by the switch layer 710, and the outer edge of the insulating turntable 7121 extends into at least one arc extinguishing slot in the radial direction set by the switch layer 710.
- the width dimension (that is, the radial dimension) of the space allowing the arc to pass through at least one of the arc extinguishing slots is reduced.
- the outer edge of the insulating turntable 7121 is on the switch layer 710
- the set radial direction protrudes into the first arc extinguishing slot 7111 , so that the width dimension (that is, the radial dimension) of the space in the first arc extinguishing slot 7111 that allows the arc to pass is reduced. That is, when the movable contact conductive assembly 712 moves relative to the pair of static contact conductive elements 713, it mainly passes through the position between the outer edge of the insulating turntable 7121 and the arc extinguishing groove.
- the dynamic change of the relationship realizes "dynamic diameter change".
- the peripheral portion of the notch structure 71211 of the insulating turntable 7121 is The radial direction set by the switch layer 710 and the outer edge of the insulating turntable 7121 protrude into at least one arc extinguishing slot respectively, so that the width of the space allowing the arc to pass through at least one arc extinguishing slot The size (ie radial size) is reduced.
- the outer edge of the insulating turntable 7121 is on the switch layer 710
- the set radial direction protrudes into the first arc extinguishing slot 7111, so that the width dimension (that is, the radial dimension) of the space in the first arc extinguishing slot 7111 that allows the arc to pass is reduced
- the peripheral portion of the notch structure 71211 of the insulating turntable 7121 protrudes into the second arc extinguishing slot 7112 in the radial direction set by the switch layer 710, so that the second arc extinguishing slot 7112 allows all
- the width dimension (ie, radial dimension) of the space through which the arc passes is reduced, as shown in FIG.
- the way of realizing "dynamic diameter reduction” can be adjusted by adjusting the form of the notch structure 71211 of the insulating turntable 7121.
- the notch structure 71211 extends inwardly from the outer edge of the insulating turntable 7121 along the radial direction set by the switch layer 710, so that the notch structure 71211 forms an inner edge recessed inward relative to the outer edge of the insulating turntable 7121 .
- the inner edge of the notch structure 71211 extends in the radial direction set by the switch layer 710.
- the notch structure 71211 is along the radial direction set by the switch layer 710 from the outer edge of the insulating turntable 7121 along the position inside the switch layer 710 .
- the set radially inward extension makes the notch structure 71211 form an inner edge recessed inward relative to the outer edge of the insulating turntable 7121 and an outer edge located outside the inner edge.
- the inner edge and/or outer edge of the notch structure 71211 is set at the position set by the switch layer 710 Extending into at least one of the arc extinguishing slots in the radial direction, in this way, the peripheral portion of the notch structure 71211 is aligned with at least one of the arc extinguishing slots in the axial direction set by the switch layer 710 Partially overlapping, as shown in Figures 25A and 25B.
- the inner edge of the notch structure 71211 is in the The set radial direction of the switch layer 710 extends into at least one arc extinguishing groove.
- the inner edge of the notch structure 71211 is on the switch layer 710
- the set radial direction protrudes into the second arc extinguishing slot 7112, so that the width dimension (that is, the radial dimension) of the space allowing the arc to pass in the second arc extinguishing slot 7112 is reduced, As shown in Figure 25A.
- the outer edge of the notch structure 71211 is on the switch layer
- the radial direction set by 710 extends into at least one arc extinguishing slot.
- the outer edge of the notch structure 71211 is on the switch layer 710
- the set radial direction protrudes into the first arc extinguishing slot 7111, so that the width dimension (that is, the radial dimension) of the space in the first arc extinguishing slot 7111 that allows the arc to pass is reduced, As shown in Figure 25B.
- the inner edge of the notch structure 71211 is on the switch layer 710 Extending into the second arc extinguishing groove 7112 in the set radial direction, the outer edge of the notch structure 71211 extends into the first arc extinguishing groove in the set radial direction of the switch layer 710 In the slot 7111, the width dimension (that is, the radial dimension) of the space allowing the arc to pass in the first arc extinguishing slot 7111 and the second arc extinguishing slot 7112 is reduced.
- the way of realizing "dynamic diameter reduction” can be adjusted by adjusting the peripheral portion of the notch structure 71211 of the insulating turntable 7121 or the shape of the outer edge of the insulating turntable 7121 .
- the extension of the outer edge of the insulating turntable 7121 and/or the peripheral portion of the notch structure 71211 is inconsistent with the extension of the arc extinguishing slot, for example, the The arc groove extends in an arc shape, and the inner edge and/or outer edge of the notch structure 71211 extends in a non-arc shape, or at least a part of the inner edge and/or outer edge of the notch structure 71211 is aligned with the arc extinguishing
- the arcuate extension of the groove is inconsistent.
- the inner edge and/or outer edge of the peripheral portion of the notch structure 71211 extends in an arc shape, however, the inner edge and/or outer edge of the peripheral portion of the notch structure 71211 The extent to which the edge protrudes into the arc extinguishing slot in the radial direction set by the switch layer 710 changes as the movable contact conductive component 712 moves relative to the pair of static contact conductive elements 713 .
- the curvature of the inner edge and/or the outer edge of the notch structure 71211 is inconsistent with the curvature of at least one arc extinguishing groove, as shown in FIG. 24A .
- the movable contact conductive assembly 712 is moving relative to the pair of static contact conductive elements 713, different parts of the inner edge and/or outer edge of the notch structure 71211 protrude into the extinguisher.
- the degree of arc grooves varies.
- the peripheral portion of the notch structure 71211 includes at least one first edge portion 712111 and at least one second edge portion 712112, and the second edge portion 712112 protrudes from the first edge portion 712111 During the movement of the movable contact conductive assembly 712 relative to the pair of static contact conductive elements 713, the first edge 712111 and the second edge 712112 of the notch structure 71211 are in the The set radial direction of the switch layer 710 protrudes into the arc extinguishing groove to different extents, as shown in FIGS. 24A to 25B .
- the first edge portion 712111 and the second edge portion 712112 can be formed on the inner edge of the notch structure 71211 (as shown in FIG.
- the number of the first edge portion 712111 and the second edge portion 712112 is not limited to the present application, when the inner edge or the outer edge of the notch structure 71211 has a plurality of first edge portions 712111 and the second edge portion 712112 When the edge portion 712112, the shape of the inner or outer edge of the notch structure 71211 is zigzag, which can be realized when the movable contact conductive component 712 moves relative to the pair of static contact conductive elements 713 "Dynamic variable diameter" multiple times.
- the notch structure 71211 is a fan-shaped notch structure 71211 .
- the angle value of the central angle of the fan-shaped notch structure 71211 is smaller than the action angle of the switch layer 710, so that when the movable contact conductive component 712 moves relative to the pair of static contact conductive elements 713
- the static contact conductive element 713 will It is accommodated in the insulating disk 7121, so that the static contact conductive element 713 can be prevented from being damaged by the arc.
- the difference between the central angle of the sector and the action angle is less than 5%-15% of the action angle.
- the notch structure 71211 may also be a notch structure of other shapes, for example, rectangular, trapezoidal, triangular and so on.
- the inner edge and/or outer edge of the peripheral portion of the notch structure 71211 extend in a non-arc shape, such as a straight line, a slope, etc., so that when the movable contact conducts electricity During the movement of the component 712 relative to the pair of static contact conductive elements 713, different parts of the inner edge and/or outer edge of the notch structure 71211 extend in the radial direction set by the switch layer 710 The degree of entering the arc chute is different, and "dynamic diameter reduction" can be realized in this way.
- the extension of the inner edge and/or the outer edge of the notch structure 71211 may be consistent with the extension of the arc extinguishing groove, which is not limited by the application. limited.
- the shape of the outer edge of the insulating turntable 7121 may also be an arc whose radian is inconsistent with that of at least one arc extinguishing slot; or, the outer edge of the insulating turntable 7121
- the edge may also include at least one first outer edge portion and at least one second outer edge portion protruding relative to at least one of the first outer edge portions, as shown in Figure 25A and Figure 25B; or, the outer edge of the insulating turntable 7121
- the edge can also extend in a non-arc shape, such as a straight line, a slope, etc. In this way, "dynamic diameter reduction" can be realized.
- a protrusion that can act on the arc is arranged on the deflection path of the arc, wherein the protrusion can improve the arc extinguishing efficiency by increasing the contact area between the arc and the parts in contact with it, by In this manner, the arc extinguishing capability of the electrical isolation switch is enhanced.
- the protrusions can serve as newly established intervention mechanisms.
- the arc will be deflected in a specific direction under the action of the magnetic field, that is, the magnetic field generated by the magnet can control the deflection mode of the arc.
- the magnetic element can be arranged in the DC switch to guide the arc in a specific way through the specific magnetic field generated by it so that it can be deflected in a predetermined way, and at the same time, the deflection path of the arc can be arranged to intervene in the arc.
- the protrusions so that the physical intervention of the protrusions will increase the contact area between the arc and the parts in contact with it to achieve rapid arc extinguishing.
- the characteristics of the action of the magnet on the arc and the influence of the contact area on the arc extinguishing effect can be combined, and the advantages of the two can be fully used to act synergistically on the arc to speed up the arc extinguishing speed. It is worth mentioning that since the magnetic field can deflect the arc in a specific direction, the deflection path of the arc and the position of the protrusion on the arc deflection path can be selectively and flexibly planned.
- each switch layer 710 of the electrical isolating switch includes a function for controlling the arc generated during the engagement or disengagement process of the moving contact conductive element 7123 and the static contact conductive element 713.
- At least one first magnetic element 714 for deflection, and the first magnetic element 714 is arranged on the moving path of the moving contact conductive element 7123 .
- the bearing housing 711 of each switch layer 710 of the electrical isolation switch is provided with at least one protrusion formed on the deflection path of the arc, so as to increase the distance between the arc and its deflected The contact area between the areas of the way can speed up the arc extinguishing speed.
- the carrying case 711 has a first accommodating cavity 41211 for installing the first magnetic element 714, and the peripheral wall of the first accommodating cavity 41211 is made of an insulating material.
- the first magnetic element 714 Covered in the first accommodating cavity 41211 .
- first magnetic element 714 has opposite first magnetic poles and second magnetic poles, the first magnetic poles are directed toward the moving path of the movable contact conductive element 7123, and the second magnetic poles are along the moving path of the movable contact conductive elements 7123.
- the axial direction of the head conductive component 712 is away from the first magnetic pole.
- the deflection path of the arc can be determined according to the orientation of the magnetic poles of the first magnetic element 714 , so as to determine the arrangement position and arrangement method of the protrusions.
- the electric isolating switch guides the arc to deflect according to a preset path through the magnetic field generated by the first magnetic element 714, and then passes through the area with protrusions arranged on the deflection path of the arc, which can Increase the contact area between the arc and this area to speed up the arc extinguishing speed.
- the position of the protrusion can be determined by selecting the position of the magnetic element and the orientation of the magnetic pole, or the position of the magnetic element and the orientation of the magnetic pole can be determined by selecting the position of the protrusion, so as to realize the off condition without greatly increasing the overall size of the DC switch. arc.
- the conductive element 7123 deflects inwardly or outwardly relative to the movable contact.
- the at least one protrusion includes at least one first protrusion 41212 and at least one second protrusion 41213 , as shown in FIG. 30 .
- the first protrusion 41212 is formed inside the moving path of the moving contact conductive element 7123
- the second protrusion 41213 is formed outside the moving path of the moving contact conductive element 7123 .
- the first protrusion 41212 can be arranged inside the first magnetic element 714, and the second protrusion 41213 can be arranged outside of the first magnetic element 714 .
- the at least one protrusion further includes at least one third protrusion 41214 formed between at least one first protrusion 41212 and at least one second protrusion 41213, such as Figure 31.
- the roughness of the area where the protrusions are located is increased mainly by increasing the number or density of the protrusions
- the at least one first protrusion 41212 includes a plurality of first protrusions 41212
- the at least one second protrusion 41213 includes a plurality of second protrusions 41213 .
- the shape of the first magnetic element 714 is consistent with the movement path of the movable contact conductive element 7123 .
- the first magnetic element 714 has an arc-shaped structure extending along the moving path of the moving contact conductive element 7123.
- the first magnetic element 714 A magnetic element 714 is a sector magnet, that is, the shape of the first magnetic element 714 is sector-shaped, or approximately sector-shaped.
- the shape of the first magnetic element 714 may be other shapes, for example, a rectangle, a trapezoid, or a triangle.
- the path of motion which in turn acts on the arc.
- the arrangement of the plurality of first protrusions 41212 is consistent with the extension of the first magnetic element 714
- the arrangement of the plurality of second protrusions 41213 is consistent with the extension of the first magnetic element 714 .
- a plurality of first protrusions 41212 are arranged in an arc along the extending direction of the first magnetic element 714
- a plurality of second protrusions 41213 are arranged in an arc along the extending direction of the first magnetic element 714 .
- the first protrusion 41212 and the second protrusion 41213 are staggered from each other in the radial direction of the bearing housing 711, so as to increase the probability of being passed by the arc.
- the electrical isolation switch includes at least one switch layer 521 and an actuation control component configured to control the switch between the closed state and the open state of the at least one switch layer 521 510 , wherein the actuation control component 510 is operatively connected to the at least one switch layer 521 .
- the rotary electrical switch generally includes a plurality of switch layers 521 stacked on top of each other, that is, the at least one switch layer 521 includes at least two switch layers layer 521 , each switch layer 521 of the at least two switch layers 521 is stacked on top of each other to form a multi-layer switch layer assembly 520 .
- the actuation control component 510 is installed on the top of the at least two switch layers 521, and is used to control the switching of the electrical states of the at least two switch layers 521, that is, to control the at least two The switch layer 521 is closed or opened.
- the manner in which the actuation control component 510 controls the at least two switch layers 521 is not limited by the present application.
- the actuation control assembly 510 is driveably connected to the top middle switch layer 521 of the at least two switch layers 521 , and the switch layers 521 are driveably connected to each other.
- the switch layer 521 on the top layer is controlled to rotate by the actuation control assembly 510, the switch layer 521 on the bottom layer will be driven, and the at least two switch layers are controlled in this way Switching of the electrical state of 521.
- the actuation control component 510 may control the state switching of the at least two switch layers 521 in other ways.
- each switch layer 521 includes a housing component 5211, at least one static contact conductive element 5213 and a movable contact conductive component 5212 installed on the housing component 5211, wherein, The movable contact conductive component 5212 is adapted to switchably conduct or disconnect with at least one static contact conductive component 5213 under the action of the actuation control component 510 to realize the state of each switch layer 521 switch.
- the housing assembly 5211 of each switch layer 521 includes a bearing housing 52111 and an encapsulation housing 52112 that covers the bearing housing 52111, and the encapsulation housing 52112 is formed on the bearing housing Body 52111 above.
- the casing components 5211 of two adjacent switch layers 521 are partly shared, so as to reduce the overall size of the electrical isolation switch.
- the carrying case 52111 of each switch layer 521 includes a main case 52113 and a receiving case 52114 connected to the main case 52113, and the receiving case 52114
- the upper part of the receiving case 52114 is connected to the main housing 52113 of the switch layer 521, and the lower part of the receiving housing 52114 forms the lower part of the switch layer 521, and forms a cover that covers the switch layer 521 on its lower side.
- Encapsulation housing 52112 carrying housing 52111 carrying housing 52111 .
- the receiving housing 52114 of the bearing housing 52111 is fastened to the main housing 52113, and the bearing housing 52111 has a receiving cavity, and at least the main housing 52113 A part is accommodated in the accommodation cavity of the receiving housing 52114 .
- the housing components 5211 of the respective switch layers 521 may be formed independently of each other, which is not limited by the present application.
- the movable contact conductive component 5212 of each switch layer 521 includes at least one movable contact conductive element 52123 movably installed in the housing component 5211, so that at least one of the movable contact conductive elements 52123 The element 52123 can move relative to at least one of the static contact conductive elements 5213, and then switchably conduct and disconnect with at least one of the static contact conductive elements 5213.
- the specific driving manner in which the movable contact conductive element 52123 is driven to move relative to the static contact conductive element 5213 is not limited by the present application.
- the movable contact conductive assembly 5212 includes an insulating turntable 52121, a dial element 52122 for driving the insulating turntable 52121, as shown in FIG. 33 , and formed on the The movable contact conductive element 52123 of the insulating turntable 52121.
- the dial element 52122 is driveably connected to the actuation control assembly 510, so that the dial element 52122 is driven by the actuation control assembly 510 relative to the static contact
- the conductive element 5213 moves, and then drives the insulating turntable 52121 to move relative to the static contact conductive element 5213 , so that the movable contact conductive element 52123 formed on the insulating turntable 52121 moves relative to the static contact conductive element 5213 .
- the manner in which the movable contact conductive element 52123 is formed on the insulating turntable 52121 is not limited to the present application. It can be integrally combined with the insulating turntable 52121.
- the movable contact conductive assembly 5212 includes at least one movable contact conductive element 52123 and a motor that is driveably connected to at least one movable contact conductive element 52123 and the actuation control assembly 510
- the insulating transmission part is such that the insulating transmission part drives at least one of the movable contact conductive elements 52123 to move relative to the static contact conductive element 5213 under the drive of the actuation control assembly 510 .
- the movable contact conductive element 52123 may also be driven to move relative to the static contact conductive element 5213 in other ways.
- the number of the static contact conductive elements 5213 and the movable contact conductive elements 52123 is greater than or equal to 51, which is not limited by the present application.
- the number of the static contact conductive elements 5213 is 52
- the number of the movable contact conductive elements 52123 is 51, that is, the switch layer 521 includes a pair of static contact conductive elements 5213 And a moving contact conductive element 52123.
- the number of the static contact conductive elements 5213 is 52
- the number of the movable contact conductive elements 52123 is 52.
- each switch layer 521 of the electrical isolating switch includes at least one switch for deflecting the arc generated during the engagement or disengagement of the moving contact conductive element 52123 with the static contact conductive element 5213.
- a first magnetic element 5220, and the first magnetic element 5220 is arranged outside the moving contact conductive element 52123 to extend the deflection path of the arc and elongate the arc to speed up the arc extinguishing speed, as shown in Figure 35 to Figure 36.
- each switch layer 521 of the electrical isolating switch has at least one slit, and the at least one slit is located on the deflection path of the arc, and is used to restrain the arc and realize the protection of the arc. Deionize to quickly remove the arc.
- the electrical isolation switch arranges the first magnetic element and the movable contact conductive component 5212 in the same lateral space, so that the switch layer 521 can be flatter, that is, the electrical isolation The overall height dimension of the switch can be reduced.
- the first magnetic element 5220 is mounted on the carrying case 52111 .
- the carrying case 52111 has a first installation cavity 5210 for installing the movable contact conductive assembly 5212 therein and a second installation cavity for installing the first magnetic element 5220 therein 5250, the second installation cavity 5250 is located outside the first installation cavity 5210, as shown in Figure 34 to Figure 38, in this way, the moving contact conductive element 52123 is arranged on the moving contact conductive element 52123, wherein the wall of the second installation cavity 5250 is made of insulating material.
- the second installation cavity 5250 corresponds to the movable contact conductive element 52123 along the radial direction set by the switch layer 521, and the second installation cavity 5250 has
- the switch layer 521 has an upper surface and a lower surface opposite to each other in the axial direction.
- the upper surface of the second installation cavity 5250 is higher than the upper surface of the movable contact conductive element 52123, and the lower surface of the second installation cavity 5250 is lower than the lower surface of the movable contact conductive element 52123, so as to The axial direction set by the switch layer 521 completely covers the generation range of the arc.
- the first magnetic element 5220 installed in the second installation cavity 5250 corresponds to the movable contact conductive element 52123 along the radial direction set by the switch layer 521, and the first magnetic element 5220 is in the The axial direction set by the switch layer 521 completely covers the generation range of the arc. It should be understood that the first magnetic element 5220 may also only partially correspond to the generation range of the arc in the axial direction set by the switch layer 521 , which is not limited by the present application.
- the first magnetic element 5220 has opposite first magnetic poles and second magnetic poles, the first magnetic poles are directed towards the movement path of the movable contact conductive element 52123, and the second magnetic poles are along the moving path of the movable contact.
- the radial direction of the head conductive component 5212 is away from the first magnetic pole.
- the radial direction of the movable contact conductive component 5212 is consistent with the radial direction set by the switch layer 521, and the axial direction of the movable contact conductive component 5212 is consistent with the set radial direction of the switch layer 521. consistent with the given axial direction.
- the deflection path of the arc can be determined according to the orientation of the magnetic poles of the first magnetic element 5220 , and then the arrangement position and arrangement method of the slits can be determined.
- the electrical isolating switch guides the arc to deflect according to a preset path through the magnetic field generated by the first magnetic element 5220, and then passes through the slit arranged on the deflection path of the arc to utilize the slit effect to deflect the arc.
- the arc entering it is thinned and elongated, and the arc is deionized to realize rapid arc extinguishing.
- the magnetic pole orientation of the magnetic element is determined, the path of the arc deflection under the action of the magnetic element is determined, and the layout position of the slit can also be determined along with the determination of the deflection path. Then, it can be determined by The position of the slit is determined by selecting the position of the magnetic element and the orientation of the magnetic pole, or the position and orientation of the magnetic element are determined by selecting the position of the slit, so as to realize arc extinguishing without greatly increasing the overall size of the DC switch.
- the moving contact conductive element 52123 deflects upward or downward.
- the at least one slit includes a first slit 5230 and a second slit 5240 .
- the first slit 5230 is formed on the lower side of the moving path of the moving contact conductive element 52123
- the second slit 5240 is formed on the upper side of the moving path of the moving contact conductive element 52123 .
- the carrying case 52111 and the packaging case 52112 of the case assembly 5211 form the first slit 5230 and the second slit 5240 .
- the part located in the axial direction set by the switch layer 521 forms the first slit 5230
- the package The part of the gap between the housing 52112 and the first magnetic element 5220 located in the axial direction set by the switch layer 521 forms the second slit 5240, and the first slit 5230 and the
- the depth direction of the second slit 5240 is consistent with the radial direction of the housing assembly 5211, and the width dimension of the first slit 5230 and the width dimension of the second slit 5240 are consistent with the width dimension of the switch layer 521.
- the set axial direction is the same.
- the width dimension of the first slit 5230 and/or the second slit 5240 gradually decreases along the radial direction of the housing assembly 5211, that is, the The width dimension of the first slit 5230 and/or the second slit 5240 gradually decreases along the depth direction of the housing assembly 5211 , as shown in FIG. 36 .
- the width dimension of the first slit 5230 and/or the second slit 5240 may remain unchanged in the radial direction of the housing assembly 5211, and Not limited by this application.
- the shape of the first magnetic element 5220 is consistent with the movement path of the moving contact conductive element 52123 .
- the first magnetic element 5220 has an arc-shaped structure extending along the moving path of the moving contact conductive element 52123.
- the first magnetic element 5220 A magnetic element 5220 is a sector magnet.
- the shape of the first magnetic element 5220 may be other shapes, for example, rectangle, trapezoid, triangle, bow, and arch bridge.
- first magnetic element 5220 it is also possible to increase the number of the first magnetic element 5220, or increase the volume of the first magnetic element 5220 so that the magnetic field generated by the first magnetic element 5220 covers the dynamic contact part as much as possible.
- the path of motion which in turn acts on the arc.
- the magnetic element in each switch layer 521 may affect the force of the arc generated in its adjacent switch layer 521 .
- the magnetic elements of the two switching layers 521 will generate a force in the opposite direction to the arc formed between them, so that the arc is subjected to The force acting in the same direction as the force generated by the magnetic element of the switch layer 521 where it is located is weakened.
- the magnetic poles of the magnetic elements of the two adjacent switching layers 521 When the magnetic poles of the magnetic elements of the two adjacent switching layers 521 are facing oppositely, the magnetic elements of the two switching layers 521 will generate a force in the same direction on the arc formed between the two, so that the arc is subjected to the same direction as the arc it is on.
- the force in the same direction as the force generated by the magnetic element of the switch layer 521 is enhanced. Therefore, preferably, the magnetic pole orientation of the first magnetic element 5220 of the switch layer 521 located at the upper layer is opposite to that of the first magnetic element 5220 of the switch layer 521 located at the lower layer.
- the electrical isolating switch can realize arc extinguishing under the cooperation of the magnetic element and the arc extinguishing groove.
- an arc extinguishing method of the electrical isolating switch is also provided , which includes: setting at least one magnetic element on the moving path of the movable contact conductive element 7123 to deflect the arc generated during the engagement or disengagement of the movable contact conductive element 7123 with a pair of static contact conductive elements 713; and , setting at least one arc extinguishing groove on the deflection path of the arc.
- the electrical isolating switch can realize arc extinguishing under the cooperation of the magnetic element and the protrusion.
- an arc extinguishing method of the electrical isolating switch is also provided, It includes: setting at least one magnetic element on the moving path of the movable contact conductive element 7123 to deflect the arc generated during the engagement or disengagement of the movable contact conductive element 7123 with a pair of static contact conductive elements 713; and, At least one protrusion is provided on the deflection path of the arc.
- the electrical isolating switch can realize arc extinguishing under the cooperation of the magnetic element and the slit.
- an arc extinguishing method of the electrical isolating switch includes: setting at least one magnetic element on the outside of the movable contact conductive element 52123 to deflect the arc generated when the movable contact conductive element 52123 is engaged or disengaged from a pair of static contact conductive elements 5213; At least one slit is arranged on the deflection path of the arc.
- the electrical isolating switch guides the arc to deflect according to a preset method through a magnetic field, and then passes the narrow arc arranged on the deflection path of the arc.
- Space 640 physically intervenes to rapidly thin and elongate the arc to achieve rapid arc extinguishing.
- the magnetic field can deflect the arc in a specific direction, the deflection path of the arc and the position of the narrow space 640 on the deflection path of the arc can be selectively and flexibly planned.
- the electrical isolating switch guides the arc to deflect according to a preset path through a magnetic field, and then elongates and thins the arc through the arc extinguishing groove arranged on the deflection path of the arc, so that the overall size of the DC switch can not be greatly increased.
- Arc extinguishing under certain conditions can also speed up the arc extinguishing speed.
- the electrical isolating switch can lead the arc to the area provided with the at least one protrusion by using the guiding function of the magnetic element, thereby increasing the contact area between the switch layer and the arc, and accelerating the arc extinguishing speed.
- the electrical isolating switch can not only use the guiding function of the magnetic element to introduce the arc into the slit, make the arc thinner and elongate, but also prolong the deflection path of the arc by designing the position of the magnetic element, so that the arc can be separated by the slit effect and the magnetic field. Under the dual action of deflection, it is extinguished relatively quickly.
Landscapes
- Arc-Extinguishing Devices That Are Switches (AREA)
Abstract
本申请公开了一种电气隔离开关及其开关层和多层开关层组件、灭弧方法,其中,所述电气隔离开关包括壳体组件和适于控制所述电气隔离开关状态切换的电气接触组件。所述电气隔离开关利用磁场产生元件对其进行状态切换时产生的电弧进行偏转,进而通过设置在所述电弧的偏转路径上的窄空间进行物理干预,通过这样的方式,将所述电弧快速地拉细和拉长以实现快速灭弧。
Description
本申请涉及开关领域,具体涉及一种电气隔离开关及其开关层和多层开关层组件、灭弧方法。
近年来,随着直流传输系统向高电压的方向发展,市场对用于控制直流电开断的直流开关的要求越来越高。直流开关在其应用中面临的一个技术难点在于:有效地熄灭直流电所产生的电弧,即,灭弧。在绿色低碳发展理念的号召下,光伏行业成为国家大力支持和重视的行业,呈高速发展的势态,光伏系统的安全性也成为行业内的热点问题。
例如,在光伏系统中,用于控制光伏电池板和逆变器之间的直流开关设有静触部和能够相对于所述静触部移动的动触部,当直流电路中电压和/或电流大于预设范围时,在通过直流开关切断被导通的直流电路的过程中,直流开关的动触部与静触部分离的瞬间两者之间会形成电弧。由于电弧能够导电,即使动触部和所述静触部分离,直流电路仍处于导通状态,直到电弧被熄灭直流电路才能够被断开,也就是说,电弧会延长直流开关开断电路的时间。
直流回路中电压或电流越大,在通过直流开关开断直流电路的过程中产生的电弧越多。当产生的电弧过多时可能导致直流开关被烧毁、电路中与直流开关电连接的其他设备被损坏,在对电弧产生的电火花敏感的地方(例如,煤气厂)还可能引发爆炸。由此可见,直流开关的灭弧性能是评价直流开关的质量的一个重要指标,其影响直流开关的使用寿命、使用安全性和可靠性。
在光伏系统中,光伏直流开关对光伏系统的安全性起着至关重要的作用。光伏直流开关主要用于控制逆变器和光伏电池板之间的直流电,以在安装光伏系统、更换或者维修逆变器时断开逆变器与光伏电池板之间的直流通路,避免造成触电和设备损坏。因此,光伏直流开关的可靠性不仅关系到整个光伏系统的良好运行,更关系到光伏行业的稳定发展。
在光伏直流开关的应用中,光伏直流开关的灭弧性能是影响其可靠性 的重要指标。具体地,光伏直流开关设有静触头和能够相对于所述静触头移动的动触头,光伏直流开关可通过控制动触头和静触头之间的导通和断开实现直流电路的开断。在动触头从静触头移开的瞬间,动触头和静触头之间的中性介质被游离,形成导电的电弧,使得直流回路无法被及时断开,直到动触头和静触头之间的电弧被熄灭直流回路才能被真正地断开。
直流回路中电压或电流越大,在通过光伏直流开关实现直流电路的开断的过程中产生的电弧越多,可能导致直流开关被烧毁。而近年来,直流传输系统不断向高压的方向发展,这对光伏直流开关的灭弧性能提出了更高的要求。
现有诸多用于直流开关灭弧的方案,例如,增加动触部的直径来加大开距来拉长电弧、加快分断速度、增设磁体灭弧等。但这些灭弧方案或多多少都存在一定的缺陷,例如,增大动触部的直径会导致直流开关的整体尺寸的增加,这与当下开关的小型化发展趋势相违背、分断速度的加快存在明显的速度极限且分断速度的加快会导致直流开关的控制稳定性和寿命的下降,而增设磁体的灭弧效果却不显著,常无法满足应用要求。
因此,期待一种新型的用于直流开关的灭弧方案、适用于光伏直流开关的灭弧方案。
发明内容
本申请的一优势在于提供了一种电气隔离开关及其开关层和灭弧方法,其中,所述电气隔离开关在传统的磁体灭弧的方案基础上对所述电气隔离开关的结构进行微调以在电弧的偏转路径上形成作用于电弧的窄空间,所述窄空间能够迫使进入其内的电弧变细变长以加速电弧的拉断和消灭,通过这样的方式,增强所述电气隔离开关的灭弧能力。
本申请的另一优势在于提供了一种电气隔离开关及其灭弧方法,其中,通过配置所述窄空间,所述电气隔离开关能够在不大幅增大其整体尺寸或者不增大其整体尺寸的前提下增强所述电气隔离开关的灭弧能力。也就是,本申请所提供的电气隔离开关能够在满足开关小型化的发展趋势的同时具有相对较强的灭弧性能。
本申请的又一优势在于提供了一种电气隔离开关及其灭弧方法,其中,所述电气隔离开关能够通过对传统的直流开关进行结构改造来获得,例如,可通过更换传统直流开关的壳体来实现改装。
本申请的又一优势在于提供了一种电气隔离开关及其灭弧方法,其中,在本申请一些示例中,所述窄空间由凹陷地形成于承载壳体的至少一灭弧槽形成,特别地,在一些示例中,所述至少一个灭弧槽包括具有不同宽度尺寸的至少两个槽体部分,以通过所述灭弧槽的静态变径结构来加快灭弧速度。
本申请的又一优势在于提供了一种电气隔离开关及其开关层和灭弧方法,其中,在本申请的一些实施方式中,所述电气隔离开关能够动态地改变允许电弧进入的窄空间的宽度尺寸,通过“动态变径”的方式使得进入所述窄空间的电弧进一步变细,通过这样的方式,加快灭弧速度。
本申请的一优势在于提供了一种电气隔离开关及其开关层,其中,所述电气隔离开关能够结合磁体对电弧的作用特点和接触面积对灭弧效果的影响,充分利用两者的优势协同作用于电弧,加快灭弧速度,增强所述电气隔离开关的灭弧能力。
本申请的另一优势在于提供了一种电气隔离开关及其开关层和多层开关层组件,其中,通过调整电弧的偏转路径上的部件的接触面积,所述电气隔离开关能够在不大幅增大其整体尺寸或者不增大其整体尺寸的前提下增强所述电气隔离开关的灭弧能力。也就是,本申请所提供的电气隔离开关能够在满足开关小型化的发展趋势的同时具有相对较强的灭弧性能。
本申请的又一优势在于提供了一种电气隔离开关及其开关层和多层开关层组件,其中,所述电气隔离开关既能够利用窄缝原理将电弧快速地拉细拉长以实现快速灭弧,还能够通过设计磁性元件的位置延长电弧的偏转路径,使得电弧在窄缝效应和磁场偏转的双重作用下较为快速地被熄灭。
本申请的又一优势在于提供了一种电气隔离开关及其开关层和多层开关层组件,其中,所述电气隔离开关将磁性元件与可动触头导电组件在同一横向空间内设置,以使得开关层可以更加扁平化,即,电气隔离开关的整体高度尺寸可以得到缩减。
根据本申请的一个方面,提供了一种电气隔离开关,其包括:壳体组件;被安装于所述壳体组件的电气接触组件,其中,所述电气接触组件包括至少一个静态接触部和至少一个动态接触部,所述动态接触部相对于所述静态接触部可移动,以适于控制所述电气隔离开关在导通态和断开态之间切换,当所述电气隔离开关被切换至所述导通态时,所述动态接触部与 所述静态接触部相接触,当所述电气隔离开关被切换至所述断开态时,所述动触接触部与所述静态接触部相分开;以及用于对所述电气隔离开关在状态切换时产生的电弧进行偏转的至少一磁场产生元件;其中,所述壳体组件形成至少一窄空间,所述至少一窄空间位于所述电弧的偏转路径上。
在根据本申请的电气隔离开关中,所述至少一磁场产生元件包括对应于所述动触接触部的运动路径的第一磁性元件。
在根据本申请的电气隔离开关中,所述至少一磁场产生元件包括沿着所述电气接触组件的径向方向远离所述动触接触部的运动路径的第一磁性元件。
在根据本申请的电气隔离开关中,所述第一磁性元件具有相对的第一磁极和第二磁极,其中,所述第一磁极朝向所述动态接触部的运动路径,所述第二磁极沿着所述电气接触组件的轴向方向远离所述第一磁极。
在根据本申请的电气隔离开关中,所述至少一窄空间包括第一窄空间,所述第一窄空间位于所述动触接触部的运动路径的外侧。
在根据本申请的电气隔离开关中,所述至少一窄空间还包括第二窄空间,所述第二窄空间位于所述动触接触部的运动路径的内侧。
在根据本申请的电气隔离开关中,所述壳体组件包括承载壳体,所述承载壳体具有用于安装所述电气接触组件于其内的第一安装腔,其中,所述承载壳体还具有凹陷地形成于其内的第一灭弧槽,所述第一灭弧槽形成所述第一窄空间。
在根据本申请的电气隔离开关中,所述承载壳体还具有凹陷地形成于其内的第二灭弧槽,所述第二灭弧槽形成所述第二窄空间。
在根据本申请的电气隔离开关中,所述第一磁性元件具有相对的第一磁极和第二磁极,其中,所述第一磁极朝向所述动态接触部的运动路径,所述第二磁极沿着所述电气接触组件的径向方向远离所述第一磁极。
在根据本申请的电气隔离开关中,所述至少一窄空间包括第一窄空间,所述第一窄空间位于所述动触接触部的运动路径的上侧。
在根据本申请的电气隔离开关中,所述至少一窄空间还包括第二窄空间,所述第二窄空间位于所述动触接触部的运动路径的下侧。
在根据本申请的电气隔离开关中,所述第一磁性元件具有沿着所述动态接触部的运动路径延伸的弧形结构。
在根据本申请的电气隔离开关中,所述第一窄空间和/或所述第二窄空间的延伸方式与所述第一磁性元件的延伸方式相一致。
在根据本申请的电气隔离开关中,所述壳体组件包括承载壳体与所述承载壳体相盖合的封装壳体,所述承载壳体具有用于安装所述电气接触组件于其内的第一安装腔和用于安装所述第一磁性元件于其内的第二安装腔,所述第二安装腔位于所述第一安装腔的外侧,其中,所述第一窄空间形成所述封装壳体和所述承载壳体之间且位于所述第一磁性元件的上侧。
在根据本申请的电气隔离开关中,所述第二窄空间形成于所述封装壳体和所述承载壳体之间且位于所述第一磁性元件的下侧。
根据本申请的一个方面,提供了一种电气隔离开关,其包括:至少一开关层;以及可操作地连接于所述至少一开关层的作动控制组件,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间切换。
其中,每一所述开关层,包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件包括一对动态接触部,所述动触导电元件适于被移动以可选择地使得一对动态接触部与一对所述静触导电元件接合或脱开以使得所述开关层在所述闭合状态和所述断开状态之间切换;以及用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转的第一磁性元件;其中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽,所述第一灭弧槽包括第一槽体部分和第二槽体部分,所述第一槽体部分的宽度尺寸不同于所述第二槽体部分的宽度尺寸。
在上述电气隔离开关中,所述第二槽体部分的宽度尺寸小于所述第一槽体部分的宽度尺寸,且所述第二槽体部分与所述静触导电元件的距离大于所述第一槽体部分与所述静触导电元件的距离。
在上述电气隔离开关中,所述第二槽体部分与所述静触导电元件在所述第一灭弧槽的深度方向上的距离大于所述第一槽体部分与所述静触导电元件在所述第一灭弧槽的深度方向上的距离。
在上述电气隔离开关中,所述第二槽体部分与所述静触导电元件在所述第一灭弧槽的长度方向上的距离大于所述第一槽体部分与所述静触导电 元件在所述第一灭弧槽的长度方向上的距离。
在上述电气隔离开关中,所述第一磁性元件具有相对的第一磁极和第二磁极,其中,所述第一磁极朝向所述动态接触部的运动路径,所述第二磁极沿着所述可动触头导电组件的轴向方向远离所述第一磁极。
在上述电气隔离开关中,所述第一灭弧槽形成于所述第一磁性元件的外侧,所述承载壳体具有位于所述电弧的偏转路径上的第二灭弧槽,所述第二灭弧槽形成于所述第一磁性元件的内侧。
在上述电气隔离开关中,所述第二灭弧槽包括第三槽体部分和第四槽体部分,所述第四槽体部分的宽度尺寸小于所述第三槽体部分的宽度尺寸。
在上述电气隔离开关中,所述第四槽体部分与所述静触导电元件的距离大于所述第三槽体部分与所述静触导电元件的距离。
在上述电气隔离开关中,所述第四槽体部分与所述静触导电元件在所述第二灭弧槽的深度方向上的距离大于所述第三槽体部分与所述静触导电元件在所述第二灭弧槽的深度方向上的距离。
在上述电气隔离开关中,所述第四槽体部分与所述静触导电元件在所述第二灭弧槽的长度方向上的距离大于所述第三槽体部分与所述静触导电元件在所述第二灭弧槽的长度方向上的距离。
根据本申请的一个方面,提供了一种电气隔离开关,其包括:至少一开关层;以及可操作地连接于所述至少一开关层的作动控制组件,其中,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间进行切换;其中,每一所述开关层,包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,所述可动触头导电组件包括绝缘转盘和安装于所述绝缘转盘的动触导电元件,所述可动触头导电组件相对于一对所述静触导电元件可转动以使得所述动触导电元件可选择与一对所述静触导电元件接合或脱开以控制所述开关层在所述闭合状态和所述断开状态之间进行切换;以及竖直设置且对应于所述动触导电元件的运动路径的第一磁性元件,所述第一磁性元件适于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述承载壳体具有邻近于所述第一磁性元件的至少一灭弧槽,所述绝缘转盘具有缺口结构;其中,在所述可动触头导电组件相对于一对所述静触导电元件 进行移动的过程中,所述绝缘转盘的所述缺口结构的周缘部在所述开关层所设定的径向方向上伸入所述至少一灭弧槽内。
在上述电气隔离开关中,所述第一磁性元件具有相对的第一磁极与第二磁极,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述可动触头导电组件的轴向方向远离所述第一磁极。
在上述电气隔离开关中,所述缺口结构的周缘部具有内边缘,其中,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述内边缘在所述开关层所设定的径向方向上伸入所述至少一灭弧槽内。
在上述电气隔离开关中,所述缺口结构的周缘部具有内边缘和与所述内边缘相对的外边缘,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述缺口结构的周缘部的内边缘和/或外边缘在所述开关层所设定的径向方向上伸入所述至少一灭弧槽内。
在上述电气隔离开关中,所述缺口结构的周缘部的延伸方式与所述第一灭弧槽的延伸方式不一致。
在上述电气隔离开关中,所述缺口结构的周缘部包括第一边缘部和第二边缘部,所述第二边缘部突出于所述第一边缘部。
在上述电气隔离开关中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽和第二灭弧槽,所述第一灭弧槽形成于所述第一磁性元件的外侧,所述第二灭弧槽形成于所述第一磁性元件的内侧,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的缺口结构的周缘部在所述开关层所设定的径向方向上伸入所述第一灭弧槽和/或所述第二灭弧槽。
在上述电气隔离开关中,所述缺口结构的周缘部具有内边缘,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述缺口结构的周缘部的内边缘在所述开关层所设定的径向方向上伸入所述第二灭弧槽内。
在上述电气隔离开关中,所述缺口结构的周缘部具有内边缘和与所述内边缘相对的外边缘,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述缺口结构的周缘部的内边缘在所述开关层所设定的径向方向上伸入所述第二灭弧槽内,和/或,所述缺口结构的周缘部 的外边缘在所述开关层所设定的径向方向上伸入所述第一灭弧槽内。
在上述电气隔离开关中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽,所述第一灭弧槽形成于所述第一磁性元件的外侧,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的外边缘在所述开关层所设定的径向方向上伸入所述第一灭弧槽。
根据本申请的一个方面,提供了一种开关层,其包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开;以及设置于所述动触导电元件的运动路径上的第一磁性元件,用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述承载壳体具有至少一灭弧槽,所述至少一灭弧槽位于所述电弧的偏转路径上。
在根据本申请的开关层中,所述第一磁性元件具有相对的第一磁极与第二磁极,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述动触头导电组件的轴向方向远离所述第一磁极。
在根据本申请的开关层中,所述至少一灭弧槽包括位于所述第一磁性元件的内侧的第一灭弧槽。
在根据本申请的开关层中,所述至少一灭弧槽还包括位置与所述第一磁性元件的外侧的第二灭弧槽。
在根据本申请的开关层中,所述承载壳体具有对应于所述动触导电元件的运动路径的突起部,所述第一磁性元件被嵌合地安装于所述突起部内,所述第一灭弧槽形成于所述突起部的内侧,所述第二灭弧槽形成于所述突起部的外侧。
在根据本申请的开关层中,所述第一磁性元件沿着所述动触导电元件的运动路径延伸。
在根据本申请的开关层中,所述第一灭弧槽和/或所述第二灭弧槽的延伸方式与所述第一磁性元件的延伸方式相一致。
在根据本申请的开关层中,所述第一磁性元件为扇形磁铁。
在根据本申请的开关层中,所述第一灭弧槽与所述第一磁性元件之间 的距离为大于0且小于等于9mm,和/或所述第二灭弧槽与所述第一磁性元件之间的距离大于0且小于等于9mm。
在根据本申请的开关层中,所述第一灭弧槽与外界相连通。
在根据本申请的开关层中,所述第二灭弧槽连通于所述第一灭弧槽。
根据本申请的一个方面,提供了一种开关层,其包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开;以及设置于所述动触导电元件的运动路径上的第一磁性元件,用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽,所述第一灭弧槽包括第一槽体部分和第二槽体部分,所述第一槽体部分的宽度尺寸和所述第二槽体部分的宽度尺寸不同。
在根据本申请的开关层中,所述第二槽体部分从所述第一槽体部分沿所述第一灭弧槽的深度方向延伸,所述第二槽体部分的宽度尺寸小于所述第一槽体部分的宽度尺寸。
在根据本申请的开关层中,所述第一灭弧槽的截面形状为梯形,或者,三角形。
在根据本申请的开关层中,所述第二槽体部分从所述第一槽体部分沿所述第一灭弧槽的长度方向延伸,所述第二槽体部分的宽度尺寸小于所述第一槽体部分的宽度尺寸。
在根据本申请的开关层中,所述第二槽体部分与所述静触导电元件在所述第一灭弧槽的长度方向上的距离大于所述第一槽体部分与所述静触导电元件在所述第一灭弧槽的长度方向上的距离。
在根据本申请的开关层中,所述第一磁性元件具有相对的第一磁极和第二磁极,其中,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述可动触头导电组件的轴向方向远离所述第一磁极。
在根据本申请的开关层中,所述第一灭弧槽形成于所述第一磁性元件的内侧。
在根据本申请的开关层中,所述承载壳体形成位于所述电弧的偏转路 径上的第二灭弧槽,所述第二灭弧槽形成于所述第一磁性元件的外侧。
在根据本申请的开关层中,所述第二灭弧槽包括第三槽体部分和第四槽体部分,所述第三槽体部分的宽度尺寸和所述第四槽体部分的宽度尺寸不同。
在根据本申请的开关层中,所述第四槽体部分从所述第三槽体部分沿所述第二灭弧槽的深度方向延伸,所述第四槽体部分的宽度尺寸小于所述第三槽体部分的宽度尺寸。
在根据本申请的开关层中,所述第四槽体部分从所述第三槽体部分沿所述第二灭弧槽的长度方向延伸,所述第四槽体部分的宽度尺寸小于所述第三槽体部分的宽度尺寸。
在根据本申请的开关层中,所述第四槽体部分与所述静触导电元件在所述第二灭弧槽的长度方向上的距离大于所述第三槽体部分与所述静触导电元件在所述第二灭弧槽的长度方向上的距离。
在根据本申请的开关层中,所述第一磁性元件沿着所述动触导电元件的运动路径延伸。
根据本申请的一个方面,提供了一种开关层,其包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括绝缘转盘和安装于所述绝缘转盘的动触导电元件,所述可动触头导电组件相对于一对所述静触导电元件可转动以使得所述动触导电元件可选择与一对所述静触导电元件接合或脱开;以及对应于所述动触导电元件的运动路径的第一磁性元件,所述第一磁性元件适于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述承载壳体具有位于所述电弧的偏转路径上的至少一灭弧槽,所述绝缘转盘具有预定形状配置以使得在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的至少一部分在所述开关层所设定的轴向方向上与所述至少一灭弧槽部分地重叠。
在根据本申请的开关层中,所述第一磁性元件具有相对的第一磁极与第二磁极,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述可动触头导电组件的轴向方向远离所述第一磁极。
在根据本申请的开关层中,所述绝缘转盘具有一缺口结构,其中,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中, 所述绝缘转盘的所述缺口结构的周缘部在所述开关层所设定的径向方向上伸入所述至少一灭弧槽内。
在根据本申请的开关层中,所述缺口结构的周缘部具有内边缘,以使得在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述缺口结构的内边缘在所述开关层所设定的径向方向上伸入所述至少一灭弧槽内。
在根据本申请的开关层中,所述缺口结构的周缘部具有内边缘和形成于所述内边缘和形成于所述内边缘外侧的外边缘,以使得在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述缺口结构的周缘部的内边缘和/或外边缘在所述开关层所设定的径向方向上伸入所述至少一灭弧槽内。
在根据本申请的开关层中,所述缺口结构的周缘部的延伸方式与所述第一灭弧槽的延伸方式不一致。
在根据本申请的开关层中,所述缺口结构的周缘部包括第一边缘部和第二边缘部,所述第二边缘部突出于所述第一边缘部。
在根据本申请的开关层中,所述缺口结构为扇形缺口结构。
在根据本申请的开关层中,所述扇形缺口结构的圆心角的角度值小于所述开关层的动作角度。
在根据本申请的开关层中,所述开关层的动作角度为85°至95°。
在根据本申请的开关层中,所述扇形的圆心角与所述动作角度之间的差值小于所述动作角度的5%-15%。
在根据本申请的开关层中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽和第二灭弧槽,所述第一灭弧槽形成于所述第一磁性元件的外侧,所述第二灭弧槽形成于所述第一磁性元件的内侧,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的缺口结构的周缘部在所述开关层所设定的径向方向上伸入所述第一灭弧槽和/或所述第二灭弧槽。
在根据本申请的开关层中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽,所述第一灭弧槽形成于所述第一磁性元件的外侧,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的外边缘在所述开关层所设定的径向方向上伸入所述第 一灭弧槽。
根据本申请的一个方面,提供了一种开关层,其包括:壳体组件;被安装于所述壳体组件的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开;以及设置于所述动触导电元件的外侧的第一磁性元件,用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述壳体组件形成位于所述电弧的偏转路径上的至少一狭缝。
在根据本申请的开关层中,所述第一磁性元件具有相对的第一磁极和第二磁极,其中,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述可动触头导电组件的径向方向远离所述第一磁极。
在根据本申请的开关层中,所述至少一狭缝包括位于所述动触导电元件的运动路径的下侧的第一狭缝。
在根据本申请的开关层中,所述至少一狭缝包括位于所述动触导电元件的运动路径的上侧的第二狭缝。
在根据本申请的开关层中,所述第一狭缝和/或所述第二狭缝的宽度尺寸沿着所述开关层所设定的径向方向逐渐减小。
在根据本申请的开关层中,所述壳体组件包括承载壳体和与所述承载壳体相盖合的封装壳体,所述承载壳体具有用于安装所述可动触头导电组件于其内的第一安装腔和用于安装所述第一磁性元件于其内的第二安装腔,所述第二安装腔位于所述第一安装腔的外侧,其中,所述承载壳体与所述第一磁性元件之间的间隙中位于所述开关层所设定的轴向方向上的部分形成所述第一狭缝,所述封装壳体与所述第一磁性元件之间的间隙中位于所述开关层所设定的轴向方向上的部分形成所述第二狭缝。
在根据本申请的开关层中,所述第一磁性元件具有沿着所述动触导电元件的运动路径延伸的弧形结构。
在根据本申请的开关层中,所述第一狭缝和/或所述第二狭缝的延伸方式与所述第一磁性元件的延伸方式相一致。
根据本申请的一个方面,提供了一种开关层,其包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述 可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开;以及设置于所述动触导电元件的运动路径上的第一磁性元件,用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述承载壳体设有形成于所述电弧的偏转路径上的至少一凸起。
在根据本申请的开关层中,所述第一磁性元件具有相对的第一磁极和第二磁极,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述动触头导电组件的轴向方向远离所述第一磁极。
在根据本申请的开关层中,所述至少一凸起包括形成于所述第一磁性元件的内侧的至少一第一凸起。
在根据本申请的开关层中,所述至少一凸起包括形成于所述第一磁性元件的外侧的至少一第二凸起。
在根据本申请的开关层中,所述至少一凸起还包括形成于至少一所述第一凸起和至少一所述第二凸起之间的至少一第三凸起。
在根据本申请的开关层中,所述第一磁性元件具有沿着所述动触导电元件的运动路径延伸的弧形结构。
在根据本申请的开关层中,所述至少一第一凸起包括多个第一凸起,所述多个第一凸起沿着所述第一磁性元件的延伸方向呈弧形排列。
在根据本申请的开关层中,所述至少一第二凸起包括多个第二凸起,所述多个第二凸起沿着所述第一磁性元件的延伸方向呈弧形排列。
在根据本申请的开关层中,所述至少一第一凸起和所述至少一第二凸起在所述承载壳体的径向方向上相互错开。
根据本申请的一个方面,提供了一种开关层,其包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件包括一对动态接触部,所述动触导电元件适于被移动以可选择地使得一对动态接触部与一对所述静触导电元件接合或脱开;以及对应于所述动触导电元件的运动路径上的第一磁性元件,用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述第一磁性元件的至少一部分沿着所述开关层所设定的轴向 对应于所述动触导电元件的运动路径,所述承载壳体具有至少一灭弧槽,所述至少一灭弧槽位于所述电弧的偏转路径上。
在根据本申请的开关层中,所述第一磁性元件具有相对的第一磁极与第二磁极,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述动触头导电组件的轴向方向远离所述第一磁极。
在根据本申请的开关层中,所述至少一灭弧槽包括位于所述第一磁性元件的外侧的至少一第一灭弧槽。
在根据本申请的开关层中,所述至少一灭弧槽还包括位置与所述第一磁性元件的内侧的至少一第二灭弧槽。
在根据本申请的开关层中,至少一所述第一灭弧槽位于所述动触导电元件的下侧,至少一所述第二灭弧槽位于所述动触导电元件的下侧。
在根据本申请的开关层中,所述第一灭弧槽与外界相连通。
在根据本申请的开关层中,所述第二灭弧槽连通于所述第一灭弧槽。
在根据本申请的开关层中,所述第一磁性元件沿着所述动触导电元件的运动路径延伸。
在根据本申请的开关层中,所述第一灭弧槽和/或所述第二灭弧槽的延伸方式与所述第一磁性元件的延伸方式相一致。
在根据本申请的开关层中,所述第一磁性元件具有沿着所述动触导电元件的运动路径延伸的弧形结构。
在根据本申请的开关层中,所述第一灭弧槽与所述第一磁性元件之间的距离为大于0且小于等于9mm,和/或所述第二灭弧槽与所述第一磁性元件之间的距离大于0且小于等于9mm。
根据本申请的另一方面,还提供了一种电气隔离开关,其包括:如上所述的开关层;以及可操作地连接于所述至少一开关层的作动控制组件,其中,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间切换。
根据本申请的另一方面,还提供了一种多层开关层组件,其包括:相互叠置的至少二如上所述的开关层。
在根据本申请的多层开关层组件中,位于上层的所述开关层的第一磁性元件与位于下层的所述开关层的第一磁性元件的磁极朝向相反。
根据本申请的另一方面,还提供了一种电气隔离开关的灭弧方法,其 包括:通过磁场产生元件将电气隔离开关在状态切换时产生的电弧导引至至少一窄空间内。
根据本申请的又一方面,还提供了一种灭弧方法,其包括:在动触导电元件的运动路径上设置至少一磁性元件,以对所述动触导电元件与一对静触导电元件接合或脱开过程中产生的电弧进行偏转;以及在所述电弧的偏转路径上设置至少一灭弧槽。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1图示了本申请实施例的电气隔离开关的框图示意图。
图2图示了根据本申请实施例的所述电气隔离开关的一个具体示例的局部立体示意图。
图3图示了根据本申请实施例的所述电气隔离开关的另一个具体示例的局部立体示意图。
图4图示了根据本申请实施例的所述电气隔离开关的内部结构立体示意图。
图5图示了根据本申请实施例的所述电气隔离开关的开关切换单元的局部拆解示意图。
图6A图示了根据本申请实施例的所述电气隔离开关的一个实施方式的局部立体示意图。
图6B图示了根据本申请实施例的所述电气隔离开关的另一个实施方式的局部立体示意图。
图7图示了本申请实施例的电气隔离开关的立体示意图。
图8图示了根据本申请实施例的所述电气隔离开关的一个实施方式的 内部结构立体示意图。
图9图示了图8所示意的根据本申请实施例的所述电气隔离开关的局部拆解立体示意图。
图10图示了根据本申请实施例的所述电气隔离开关的另一个实施方式的局部爆炸立体示意图。
图11A图示了根据本申请实施例的所述电气隔离开关的又一个实施方式的多个开关层的立体示意图。
图11B图示了图11A所示意的根据本申请实施例的所述电气隔离开关的多个开关层的另一立体示意图。
图12图示了图11A所示意的根据本申请实施例的所述电气隔离开关的多个开关层的拆解示意图。
图13A图示了图11A所示意的根据本申请实施例的所述电气隔离开关的一个开关层的立体示意图。
图13B图示了图11A所示意的根据本申请实施例的所述电气隔离开关的另一个开关层的立体示意图。
图14A图示了图8所示意的根据本申请实施例的所述电气隔离开关的开关层的一个实施方式的平面示意图。
图14B图示了图8所示意的根据本申请实施例的所述电气隔离开关的开关层的另一个实施方式的平面示意图。
图15A图示了图8所示意的根据本申请实施例的所述电气隔离开关的开关层的一侧的结构示意图。
图15B图示了图8所示意的根据本申请实施例的所述电气隔离开关的开关层的另一侧的结构示意图。
图16图示了图8所示意的根据本申请实施例的所述电气隔离开关的开关层的承载壳体的平面示意图。
图17A图示了图11A所示意的根据本申请实施例的所述电气隔离开关的一个开关层的局部平面示意图。
图17B图示了图11A所示意的根据本申请实施例的所述电气隔离开关的一个开关层的变形实施方式的另一平面示意图。
图18图示了图11A所示意的根据本申请实施例的所述电气隔离开关的一个开关层的承载壳体的平面示意图。
图19图示了图11A所示意的根据本申请实施例的所述电气隔离开关的另一个开关层的局部平面示意图。
图20图示了图11A所示意的根据本申请实施例的所述电气隔离开关的另一个开关层的承载壳体的平面示意图。
图21图示了根据本申请实施例的所述电气隔离开关的开关层的状态切换过程示意图。
图22图示了根据本申请实施例的所述电气隔离开关的开关层的另一状态切换过程示意图。
图23A图示了根据本申请实施例的所述开关层的安装有动触导电元件的绝缘转盘的立体示意图。
图23B图示了根据本申请实施例的所述开关层的安装有动触导电元件的绝缘转盘的另一立体示意图。
图24A图示了根据本申请实施例的所述开关层的绝缘转盘和灭弧槽之间的一种位置关系的平面示意图。
图24B图示了根据本申请实施例的所述开关层的绝缘转盘和灭弧槽之间的另一种位置关系的平面示意图。
图25A图示了根据本申请实施例的所述开关层的绝缘转盘的变形实施方式的平面示意图。
图25B图示了根据本申请实施例的所述开关层的绝缘转盘和灭弧槽之间的又一位置关系的平面示意图。
图26图示了根据本申请实施例的所述电气隔离开关的开关层中动触导电元件、静触导电元件和磁性元件之间的位置关系的平面示意图。
图27A图示了根据本申请实施例的所述电气隔离开关中电弧的受力示意图。
图27B图示了根据本申请实施例的所述电气隔离开关中电弧的另一受力示意图。
图28图示了本申请实施例的电气隔离开关的立体示意图。
图29图示了根据本申请实施例的所述电气隔离开关的局部拆解示意图。
图30图示了根据本申请实施例的所述电气隔离开关的开关层的一个实施方式的局部立体示意图。
图31图示了根据本申请实施例的所述开关层的另一个实施方式的局部立体示意图。
图32图示了本申请实施例的电气隔离开关的立体示意图。
图33图示了根据本申请实施例的所述电气隔离开关的局部拆解示意图。
图34图示了根据本申请实施例的所述电气隔离开关的单个开关层的立体拆解示意图。
图35图示了根据本申请实施例的所述电气隔离开关的单个开关层的结构示意图。
图36图示了根据本申请实施例的所述电气隔离开关的另一单个开关层的结构示意图。
图37图示了根据本申请实施例的所述电气隔离开关的两个相邻的开关层的结构示意图。
图38图示了根据本申请实施例的所述电气隔离开关的开关层的平面示意图。
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
申请概述
如上所述,现有诸多用于直流开关灭弧的方案,例如,增加动触部的直径来加大开距来拉长电弧、加快分断速度、增设磁体灭弧等。但这些灭弧方案或多多少都存在一定的缺陷,例如,增大动触部的直径会导致直流开关的整体尺寸的增加,这与当下开关的小型化发展趋势相违背、分断速度的加快存在明显的速度极限且分断速度的加快会导致直流开关的控制稳定性和寿命的下降,而增设磁体的灭弧效果却不显著,常无法满足应用要求。
因此,期待一种新型的用于直流开关的灭弧方案。
具体地,经本申请发明人对磁体灭弧的方案研究发现:在通过磁体来偏转电弧从而拉长电弧进而拉断电弧的方案中,为了将电弧拉得足够长且细以将其拉断,需要为电弧拉伸提供足够的空间,这无疑会增大直流开关 的整体尺寸。也就是说,在磁体灭弧的方案中,壳体空间是一个技术矛盾,如果不增大壳体内部空间以提供足够的电弧拉断空间,则磁体灭弧的性能不佳,而如果增大了壳体内部空间,则会导致直流开关的整体尺寸的增大,这不符合当下直流开关小型化的发展趋势。
基于此,本申请发明人尝试在磁体灭弧的基础上对偏转的电弧配置干预机制,以通过适当的干预机制来增强直流开关的灭弧能力。应注意到,在传统的通过磁体灭弧的直流开关中,电弧的熄灭是依赖电弧在被拉长的过程中不断变细的自然规律而没有外加干预机制。相应地,在本申请的技术方案中,在电弧的偏转路径上配置能够作用于电弧的窄空间,其中,所述窄空间能够基于“窄缝原理”迫使进入其内的电弧变细变长以加速电弧的拉断和消灭,通过这样的方式,增强所述电气隔离开关的灭弧能力。这里,所述窄空间为新设的干预机制。
更具体地,在传统的磁体灭弧的方案中,电弧在磁场的作用下将向特定的方向偏转,也就是说,磁体产生的磁场能够控制电弧的偏转方式。这样,可在直流开关内配置磁场产生元件(例如,磁铁或者线圈等)以通过其所产生的特定磁场域对电弧进行特定方式的引导以使其发生以预定方式进行偏转,同时,在电弧的偏转路径上配置能够干预所述电弧的窄空间,以通过所述窄空间的物理干预将所述电弧快速地拉细和拉长以实现快速灭弧。值得一提的是,由于磁场能够对电弧进行特定方向的偏转,可凭此有选择性地、灵活地规划电弧的偏转路径和位于电弧的偏转路径上的窄空间的位置。
通过配置所述窄空间,所述电气隔离开关能够在不大幅增大其整体尺寸或者不增大其整体尺寸的前提下增强所述电气隔离开关的灭弧能力。也就是,本申请所提供的电气隔离开关能够在满足开关小型化的发展趋势的同时具有相对较强的灭弧性能。并且,所述电气隔离开关能够通过对传统的直流开关进行结构改造来获得,例如,可通过更换传统直流开关的壳体来实现改装。
基于此,本申请提供了一种电气隔离开关,其包括:壳体组件、被安装于所述壳体组件的电气接触组件,以及,至少一磁场产生元件。所述电气接触组件包括至少一个静态接触部和至少一个动态接触部,所述动态接触部相对于所述静态接触部可移动,以适于控制所述电气隔离开关在导通 态和断开态之间切换,当所述电气隔离开关被切换至所述导通态时,所述动态接触部与所述静态接触部相接触,当所述电气隔离开关被切换至所述断开态时,所述动态接触部与所述静态接触部相分开。所述壳体组件形成至少一窄空间,所述至少一窄空间位于所述电弧的偏转路径上。
本申请提供了一种开关层,其包括:承载壳体、安装于所述承载壳体的一对静触导电元件和可动触头导电组件,以及,设置于所述动触导电元件的运动路径上的第一磁性元件。所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开,所述第一磁性元件用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转,所述承载壳体具有至少一灭弧槽,所述至少一灭弧槽位于所述电弧的偏转路径上。
本申请提供了一种开关层,其包括:承载壳体、安装于所述承载壳体的一对静触导电元件和可动触头导电组件,以及,设置于所述动触导电元件的运动路径上的第一磁性元件。所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开,所述第一磁性元件用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽,所述第一灭弧槽包括第一槽体部分和第二槽体部分,所述第一槽体部分的宽度尺寸和所述第二槽体部分的宽度尺寸不同。
本申请提供了一种开关层,其包括:承载壳体、安装于所述承载壳体的一对静触导电元件和可动触头导电组件,以及,对应于所述动触导电元件的运动路径上的第一磁性元件。所述可动触头导电组件包括绝缘转盘和安装于所述绝缘转盘的动触导电元件,所述可动触头导电组件相对于一对所述静触导电元件可转动以使得所述动触导电元件可选择与一对所述静触导电元件接合或脱开,所述第一磁性元件用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转,所述承载壳体具有位于所述电弧的偏转路径上的至少一灭弧槽,所述绝缘转盘具有预定形状配置以使得在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的至少一部分在所述开关层所设定的轴向方向 上与所述至少一灭弧槽部分地重叠。
在本申请的技术方案中,在电弧的偏转路径上配置能够作用于所述电弧的凸起,其中,所述凸起能够通过增大电弧和与其接触的部件的接触面积提高灭弧效率,通过这样的方式,增强所述电气隔离开关的灭弧能力。这里,所述凸起为新设的干预机制。
更具体地,在传统的磁体灭弧的方案中,电弧在磁场的作用下将向特定的方向偏转,也就是说,磁体产生的磁场能够控制电弧的偏转方式。这样,可在直流开关内配置磁性元件以通过其所产生的特定磁场域对电弧进行特定方式的引导以使其发生以预定方式进行偏转,同时,在电弧的偏转路径上配置能够干预所述电弧的凸起,以通过所述凸起的物理干预将增大所述电弧和与其接触的部件的接触面积以实现快速灭弧。值得一提的是,由于磁场能够对电弧进行特定方向的偏转,可凭此有选择性地、灵活地规划电弧的偏转路径和位于电弧的偏转路径上的凸起的位置。
基于此,本申请提供了一种开关层,其包括:承载壳体、安装于所述承载壳体的一对静触导电元件和可动触头导电组件,以及,至少一第一磁性元件。所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开,所述第一磁性元件设置于所述动触导电元件的运动路径上,用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转,所述承载壳体设有形成于所述电弧的偏转路径上的至少一凸起。
此外,可通过控制所述磁体的位置来延长电弧的偏转路径,进一步将电弧拉长,通过这样的方式加快灭弧速度。
基于此,本申请提供了一种开关层,其包括:壳体组件、安装于所述承载壳体的一对静触导电元件和可动触头导电组件,以及,设置于所述可动触头导电组件的动触导电元件的运动路径上的第一磁性元件。所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开,所述第一磁性元件用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转,所述壳体组件形成位于所述电弧的偏转路径上的至少一狭缝。
相应地,本申请还提供了一种电气隔离开关,其包括至少一如上所述的开关层,以及,可操作地连接于所述至少一开关层的作动控制组件,其中,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间切换。
本申请还提供了一种电气隔离开关的灭弧方法,其包括:通过磁场产生元件将电气隔离开关在状态切换时产生的电弧导引至至少一窄空间内。
本申请还提供了一种灭弧方法,其包括:在动触导电元件的运动路径上设置至少一磁性元件,以对所述动触导电元件与一对静触导电元件接合或脱开过程中产生的电弧进行偏转;以及,在所述电弧的偏转路径上设置至少一灭弧槽。
在介绍了本申请的基本原理之后,下面将参考附图来具体介绍本申请的各种非限制性实施例。
示意性电气隔离开关
如图1至图6B所示,根据本申请实施例的所述电气隔离开关被阐明,其用于控制直流电开断,例如,用于控制光伏系统中光伏电池板和逆变器之间的电气开断。根据本申请实施例的所述电气隔离开关包括至少一开关切换单元650和用于控制所述开关切换单元650的状态切换的控制单元660。
具体地,在本申请实施例中,所述电气隔离开关包括壳体组件610、被安装于所述壳体组件610的电气接触组件620,以及,至少一磁场产生元件630,所述壳体组件610、所述电气接触组件620和至少一磁场产生元件630形成至少一所述开关切换单元650,其中,所述壳体组件610形成用于作用于电弧的至少一窄空间640。在本申请一个具体的示例中,所述壳体组件610形成至少一承载壳体611和与至少一所述承载壳体611相盖合的至少一封装壳体612,并且所述壳体组件610的承载壳体611和/或所述封装壳体612形成至少一窄空间640,关于此部分会于后续的描述中展开。
在本申请实施例中,所述壳体组件610中一个承载壳体611和与其盖合的一个封装壳体612形成一个开关切换单元650的壳体结构。
值得一提的是,当所述电气隔离开关包括多个(大于或等于62个)开关切换单元650时,各个开关切换单元650的壳体结构可以是相互独立的,以通过所述壳体组件610实现各个开关切换单元650之间的电绝缘。 当然,在本申请一些实施例中,所述电气隔离开关的至少部分开关切换单元650的壳体结构也可以是共用的,只需要在不影响安全的前提下,对此,并不为本申请所局限。
进一步地,在本申请实施例中,当所述电气隔离开关包括至少两个开关切换单元650时,所述至少两个开关切换单元650之间的组合方式并不为本申请所局限。例如,在本申请一个具体的示例中,所述至少两个开关切换单元650以上下叠置的方式被组合在一起,如图2所示。在本申请另一个具体的示例中,所述至少两个开关切换单元650以边对边横向连接的方式被组合在一起,如图3所示。
更具体地,在如图2所示意的示例中,所述电气隔离开关中的一个开关切换单元650和与其相邻的另一个开关切换单元650沿所述电气隔离开关的轴向上下叠置,其中,如图5所示,每一所述开关切换单元650的封装壳体612位于所述承载壳体611的上方,且位于上层的开关切换单元650的承载壳体611形成与其相邻且位于其下层的开关切换单元650的封装壳体612。这样,相互叠置的两个开关切换单元650的壳体组件610部分共用,可节省轴向空间,缩减所述电气隔离开关的轴向尺寸。
在本申请实施例中,所述壳体组件610形成用于安装所述电气接触组件620于其内的第一安装腔6101。相应地,所述第一安装腔6101的形成方式和形成位置并不为本申请所局限。例如,在本申请的一个实施方式中,所述承载壳体611具有用于安装所述电气接触组件620于其内的第一安装腔6101。在本申请的另一个实施方式中,所述封装壳体612具有用于安装所述电气接触组件620于其内的第一安装腔6101。在本申请的又一个实施方式中,所述壳体组件610的承载壳体611具有一腔体,所述封装壳体612具有与该腔体对应的另一腔体,所述承载壳体611的腔体和与其对应的所述封装壳体612的腔体相配合以形成所述第一安装腔6101。
所述电气接触组件620包括至少一个静态接触部622和至少一个动态接触部621,所述动态接触部621在所述控制单元660的作动下相对于所述静态接触部622可移动,以适于控制所述电气隔离开关在导通态和断开态之间切换。当所述电气隔离开关被切换至所述导通态时,所述动态接触部621与所述静态接触部622相接触,当所述电气隔离开关被切换至所述断开态时,所述动态接触部621与所述静态接触部622相分开。
本申请一个具体的示例中,所述控制单元660包括至少一操作件661,所述操作件661可传动地连接于所述动态接触部621。当所述电气隔离开关被切换至所述导通态时,所述操作件661被驱动以带动所述动态接触部621相对于所述静态接触部622进行移动直到所述动态接触部621与所述静态接触部622相接触。特别地,在本申请的技术方案中,当所述电气隔离开关中至少一个开关切换单元650被导通时,认为所述电气隔离开关处于所述导通态。当所述电气隔离开关被切换至所述断开态时,所述动态接触部621被所述操作件661所带动以与所述静态接触部622相分离。
在本申请一个实施例中,所述电气隔离开关的多个开关切换单元650相互可联动地连接以使得所述多个开关切换单元650的状态可被同步地改变,即,所述多个开关切换单元650可同时被切换至导通态或者同时被切换至断开态,如图4所示。
在本申请的一个实施方式中,所述电气隔离开关中相邻的两个开关切换单元650中每个开关切换单元650包括一个设有动态接触部621的动态导电组件670,当动态导电组件670被驱动移动时,所述动触接触部621相对于所述静态接触部622移动。如图4所示,所述电气隔离开关中相邻的两个开关切换单元650中的一个开关切换单元650的动态导电组件670与另一个开关切换单元650的动态导电组件670可传动地连接。当可传动地连接于所述两个开关切换单元650中的一个开关切换单元650的操作件661带动该开关切换单元650的动态导电组件670移动时,该开关切换单元650的动态导电组件670将带动另一个开关切换单元650的动态导电组件670移动,通过这样的方式,所述控制单元660对所述两个开关切换单元650进行协同控制。
值得一提的是,当所述电气隔离开关包括多个开关切换单元650时,各个开关切换单元650可被所述控制单元660分别独立控制着进行状态切换,对此,并不为本申请所局限。
在本申请的另一个实施方式中,所述电气隔离开关包括动态导电组件670相互独立的两个开关切换单元650,也就是,所述两个开关切换单元650的动态导电组件670相互独立,其中一个开关切换单元650的动态导电组件670的运动不影响另一个开关切换单元650的动态导电组件670的运动。所述控制单元660包括用于控制所述两个开关切换单元650中一个开 关切换单元650的动态导电组件670的一个操控件以及用于控制两个开关切换单元650中另一个开关切换单元650的动态导电组件670的另一个操控件,通过这样的方式,所述控制单元660对所述两个开关切换单元650进行独立控制。
在本申请中,每一个开关切换单元650中,所述静态接触部622(或,所述动态接触部621)的数量大于或等于61。例如,在本申请的一个实施方式中,一个开关切换单元650包括两个静态接触部622和两个动态接触部621,即,所述静态接触部622的数量为62,所述动态接触部621的数量为62,且在该实施方式中,两个动态接触部621一体地连接,即,所述两个动态接触部621具有一体式结构。具体地,所述开关切换单元650包括一个动触接触元件,所述动触接触元件具有两个相对的导电端部,所述两个相对的导电端部形成所述两个动态接触部621,通过这样的方式,两个动态接触部621一体地连接。在本申请的其他实施方式中,两个动态接触部621还可以为分体式结构,对此,并不为本申请所局限。
值得一提的是,在本申请实施例中,所述操作件661带动所述动态接触部621的方式并不为本申请所局限。在本申请的一个实施方式中,所述操作件661被配置为通过旋转运动来带动所述动态接触部621进行转动。在本申请的另一个实施方式中,所述操作件661被配置为通过直线运动来带动所述动态接触部621进行转动。在本申请的又一个实施方式中,所述操作件661被配置为通过线性运动来带动所述动态接触部621做线性运动,对此,并不为本申请所局限。
如前所述,当直流电路中电压和/或电流大于预设范围时,在通过直流开关切断被导通的直流电路的过程中,直流开关的动触部与静触部分离的瞬间两者之间会形成电弧。直流回路中电压或电流越大,在通过直流开关开断直流电路的过程中产生的电弧越多。也就是,电路回路中的压或电流越大,所述电气隔离开关在进行状态切换时产生的电弧越多。当产生的电弧超过一定的极限时会导致所述电气隔离开关被烧毁,或者,无法正常工作。
现有诸多用于直流开关灭弧的方案,例如,增加动触部的直径来加大开距来拉长电弧、加快分断速度、增设磁体灭弧等。但这些灭弧方案或多或少都存在一定的缺陷,例如,增大动触部的直径会导致直流开关的整体 尺寸的增加,这与当下开关的小型化发展趋势相违背、分断速度的加快存在明显的速度极限且分断速度的加快会导致直流开关的控制稳定性和寿命的下降,而增设磁体的灭弧效果却不显著,常无法满足应用要求。
经本申请发明人对磁体灭弧方案的研究发现:在通过磁体来偏转电弧从而拉长电弧进而拉断电弧的方案中,为了将电弧拉得足够长且细以将其拉断,需要为电弧拉伸提供足够的空间,这无疑会增大直流开关的整体尺寸。也就是说,在磁体灭弧的方案中,壳体空间是一个技术矛盾,如果不增大壳体内部空间以提供足够的电弧拉断空间,则磁体灭弧的性能不佳,而如果增大了壳体内部空间,则会导致直流开关的整体尺寸的增大,这不符合当下直流开关小型化的发展趋势。
基于此,本申请发明人尝试在磁体灭弧的基础上对偏转的电弧配置干预机制,以通过适当的干预机制来增强直流开关的灭弧能力。应注意到,在传统的通过磁体灭弧的直流开关中,电弧的熄灭是依赖电弧在被拉长的过程中不断变细的自然规律而没有外加干预机制。相应地,在本申请的技术方案中,在电弧的偏转路径上配置能够作用于电弧的窄空间640,其中,所述窄空间640能够基于“窄缝原理”迫使进入其内的电弧变细变长以加速电弧的拉断和消灭,通过这样的方式,增强所述电气隔离开关的灭弧能力。这里,所述窄空间为新设的干预机制。
更具体地,在传统的磁体灭弧的方案中,电弧在磁场的作用下将向特定的方向偏转,也就是说,磁体产生的磁场能够控制电弧的偏转方式。这样,可在直流开关内配置磁场产生元件(例如,磁铁或者线圈等)以通过其所产生的特定磁场域对电弧进行特定方式的引导以使其发生以预定方式进行偏转,同时,在电弧的偏转路径上配置能够干预所述电弧的窄空间640,以通过所述窄空间640的物理干预将所述电弧快速地拉细和拉长以实现快速灭弧。值得一提的是,由于磁场能够对电弧进行特定方向的偏转,可凭此有选择性地、灵活地规划电弧的偏转路径和位于电弧的偏转路径上的窄空间640的位置。
也就是说,在通过磁体灭弧的过程中,电弧在磁场的作用下将向特定的方向偏转,从而可在电弧的偏转路径上配置约束电弧的窄空间640,将电弧拉细、拉长,以实现快速灭弧。且由于磁场能够对电弧进行特定方向的偏转,可凭此有选择性、灵活地规划电弧的偏转路径和位于电弧的偏转路 径上的窄空间640的位置,以在不大幅增大直流开关的整体尺寸的条件下实现灭弧。较窄的空间不仅有利于快速灭弧,还可以节省其占用的空间,有利于电气隔离开关的小型化。
相应地,在本申请实施例中,所述电气隔离开关包括用于对所述电气隔离开关在状态切换时产生的电弧进行偏转的至少一磁场产生元件630和位于所述电弧的偏转路径上的至少一窄空间640。
具体地,所述电弧产生于所述静态接触部622和所述动态接触部621之间,并且在没有磁场的作用下,电弧的运动轨迹几乎与所述动态接触部621的运动路径相一致。因此,在本申请实施例中,以所述动态接触部621的运动轨迹作为位置参考来说明其他元件的布设方式。
在本申请的一些实施方式中,所述磁场产生元件630的至少一部分沿着所述电气接触组件620的轴向方向上对应于所述动态接触部621的运动轨迹。在本申请的另一些实施方式中,所述磁场产生元件630沿着所述电气接触组件620的径向方向远离所述动态接触部621的运动路径,例如,所述磁场产生元件630沿着所述电气接触组件620的径向方向在一定距离范围内远离所述动态接触部621的运动路径,以保证所述磁场产生元件630产生的磁场能够作用于所述电弧。
应可以理解,在本申请实施例中,所述磁场产生元件630的设置位置并不为本申请所局限,仅需满足所述磁场产生元件630所产生的磁场能够作用于所述电弧以使得所述电弧沿着预定方向进行偏移。值得一提的是,在本申请实施例中,所述磁场产生元件630可被实施为任何能够产生磁场的元件,例如,永磁体、软磁体等磁性元件、通电线圈等。
在本申请的一个实施方式中,所述至少一磁场产生元件630包括沿着所述电气接触组件620的轴向方向至少一部分对应于所述动态接触部621的运动路径的第一磁性元件631,如图6A所示。在本申请的另一个实施方式中,所述至少一磁场产生元件630包括沿着所述电气接触组件620的径向方向远离所述动态接触部621的运动路径的第一磁性元件631,如图6B所示。
应可以理解,所述磁性元件的磁极朝向将影响所述电弧的偏转路径,进而影响所述窄空间640的位置。在本申请的一个实施方式中所述第一磁性元件631具有相对的第一磁极和第二磁极,所述第一磁极朝向所述动态 接触部621的运动路径,所述第二磁极沿着所述电气接触组件620的轴向方向远离所述第一磁极。所述承载壳体611具有用于安装所述第一磁性元件631于其内的第二安装腔6102,所述第二安装腔6102的至少一部分在所述壳体组件610的轴向方向上对应于所述第一安装腔6101,所述第二安装腔6102的腔壁由绝缘材料制成。
可根据所述第一磁性元件631的磁极朝向确定所述电弧的偏转路径,进而决定所述窄空间640的布设位置和布设方式。这样,所述电气隔离开关通过所述第一磁性元件631产生的磁场引导所述电弧按照预设的路径发生偏转,进而通过设置在所述电弧的偏转路径上的窄空间640进行捕捉,将所述电弧拉细、拉长,以实现灭弧。
在该实施方式中,所述电气隔离开关的窄空间640包括第一窄空间641和第二窄空间642,所述第一窄空间641位于所述动态接触部621的运动路径的外侧,所述第二窄空间642位于所述动态接触部621的运动路径的内侧。这里,内侧是指向靠近所述壳体组件610的中心的一侧,外侧是指靠近所述壳体组件610的外周缘的一侧。所述第一窄空间641的数量大于或者等于61,所述第二窄空间642的数量大于或者等于61。所述第一窄空间641可形成于所述动态接触部621的上侧和/或下侧,所述第二窄空间642也可形成于所述动态接触部621的上侧和/或下侧,对此,并不为本申请所局限。
在本申请的其他实施方式中,所述电气隔离开关也可仅设有位于所述动态接触部621的运动路径的外侧的第一窄空间641,或者,仅设有位于所述动态接触部621的运动路径的内侧的第二窄空间642。在本申请的其他实施方式中,还可在所述第一磁性元件631的左侧和/或右侧设置窄空间640。
在该实施方式中,所述承载壳体611本身具有的槽体形成所述第一窄空间641和所述第二窄空间642。具体地,所述承载壳体611具有凹陷地形成于其内的第一灭弧槽,所述第一灭弧槽形成所述第一窄空间641,所述承载壳体611还具有凹陷地形成于其内的第二灭弧槽,所述第二灭弧槽形成所述第二窄空间642。所述第一灭弧槽的开口和所述第二灭弧槽的开口均朝向所述动态接触部621,所述第一灭弧槽的深度方向和所述第二灭弧槽的深度方向与所述壳体组件610的轴向相一致。在本申请的其他实施方式中, 可通过其他方式形成所述第一窄空间641和所述第二窄空间642。
值得一提的是,在该实施方式中,所述第二灭弧槽形成于所述动态接触部621的运动路径的内侧,且是所述承载壳体611本身具有的,未占用多余的径向空间。且可通过控制所述第一灭弧槽和所述第二灭弧槽的形状和宽度尺寸约束电弧的形状,将电弧拉细拉长,加快灭弧速度。这样,所述第一灭弧槽的布设方式使得所述电气隔离开关在不增大其径向尺寸的条件下加快灭弧速度,改善灭弧性能。
在本申请的另一个实施方式中,所述第一磁性元件631设置于所述动态接触部621的外侧,所述第一磁性元件631具有相对的第一磁极和第二磁极,其中,所述第一磁极朝向所述动态接触部621的运动路径,所述第二磁极沿着所述电气接触组件620的径向方向远离所述第一磁极。所述承载壳体611具有用于安装所述第一磁性元件631于其内的第二安装腔6102,所述第二安装腔6102位于所述第一安装腔6101的外侧,所述第二安装腔6102的腔壁由绝缘材料制成。
在该实施方式中,所述电气隔离开关包括第一窄空间641和第二窄空间642,所述第一窄空间641位于所述动态接触部621的运动路径的下侧,所述第二窄空间642位于所述动态接触部621的运动路径的上侧。
具体地,所述第一窄空间641形成于所述封装壳体612和所述承载壳体611之间,且位于所述第一磁性元件631的下侧,所述第二窄空间642形成于所述封装壳体612和所述承载壳体611之间且位于所述第一磁性元件631的上侧。
更具体地,在该实施方式中,所述承载壳体611和所述第一磁性元件631之间的间隙形成所述第一窄空间641,所述封装壳体612和所述第一磁性元件631之间的间隙形成所述第二窄空间642。所述第一窄空间641的开口和所述第二窄空间642的开口均朝向所述动态接触部621,所述第一窄空间641的深度方向和所述第二窄空间642的深度方向与所述壳体组件610的径向方向一致。
在本申请的其他实施方式中,所述电气隔离开关也可仅设有位于所述动态接触部621的运动路径的上侧的第一窄空间641,或者,仅设有位于所述动态接触部621的运动路径的下侧的第二窄空间642。在本申请的其他实施方式中,所述第一窄空间641和所述第二窄空间642还可以通过其他方 式形成。
值得一提的是,在该实施方式中,所述第一窄空间641的宽度尺寸和所述第二窄空间642的宽度尺寸与所述壳体组件610的轴向方向一致,为了约束电弧的形状,将所述电弧拉细,所述第一窄空间641的宽度尺寸和所述第二窄空间642的宽度尺寸较窄,这样,可缩减所述电气隔离开关的轴向尺寸。
值得一提的是,为了使得所述磁性元件产生的磁场尽可能地覆盖所述动态接触部621的运动路径,进而作用于所述电弧。优选地,所述第一磁性元件631的形状与所述动态接触部621的运动路径一致。相应地,在本申请的一些实施方式中,所述第一磁性元件631具有沿着所述动态接触部621的运动路径延伸的弧形结构。在本申请的其他一些实施方式中,所述第一磁性元件631的形状也可以与所述动态接触部621的运动路径不完全一致,例如,所述第一磁性元件631具有截面形状为三角形,或者,矩形,或者,梯形的结构,对此,并不为本申请所局限。当然,也可以通过增加所述第一磁性元件631的数量,或者,增大所述第一磁性元件631的体积来使得所述第一磁性元件631产生的磁场尽可能地覆盖所述动态接触部621的运动路径,进而作用于所述电弧。
进一步地,为了让所述电弧在磁场作用下顺利进入所述窄空间640,优选地,所述第一窄空间641和所述第二窄空间642的延伸方式与所述第一磁性元件631的延伸方式相一致。
在本申请中,所述电气隔离开关能够在磁场产生元件630和所述窄空间640的配合下实现灭弧,相应地,根据本申请的另一个方面,还提供了一种电气隔离开关的灭弧方法,其包括:通过磁场产生元件630将电气隔离开关在状态切换时产生的电弧导引至至少一窄空间640内。
在本申请中,所述电气隔离开关能够在磁性元件和所述灭弧槽的配合下实现灭弧,相应地,根据本申请的另一个方面,还提供了一种电气隔离开关的灭弧方法,其包括:在动触导电元件6123的运动路径上设置至少一磁性元件,以对所述动触导电元件6123与一对静触导电元件613接合或脱开过程中产生的电弧进行偏转;以及,在所述电弧的偏转路径上设置至少一灭弧槽。
如图7至图38所示,根据本申请实施例的所述电气隔离开关被阐明, 其适用于被应用于光伏系统以控制光伏电池板和逆变器之间的电气开断。应可以理解,虽然以所述电气隔离开关被应用于光伏系统为示例,但在本申请其他实施例中,所述电气隔离开关还可以被应用于其他场合,例如风电系统,对此,并不为本申请所局限。
如图7至图12所示,根据本申请实施例的所述电气隔离开关包括至少一开关层710以及被配置为控制所述至少一开关层710在闭合状态和断开状态之间切换的作动控制组件720,其中,所述作动控制组件720可操作性地连接于所述至少一开关层710。为了提升所述旋转式电气开关的性能,在本申请一些实施例中,所述旋转式电气开关通常包括相互叠置的多个开关层710,即,所述至少一开关层710包括至少二开关层710,所述至少二开关层710中各个开关层710相互叠置以形成多层开关层结构。在本申请一些实施例中,所述电气隔离开关还包括用于承载所述至少一开关层710和所述作动控制组件720于其上的底部安装结构,以通过所述底部安装结构将所述电气隔离开关安装到诸如配电柜的安装轨的相应位置上。
所述作动控制组件720被安装于所述至少二开关层710的顶部,并用于控制所述至少二开关层710的电气状态的切换,即,控制所述至少二开关层710的闭合或断开。如图10所示,在本申请一些实施例中,所述作动控制组件720包括作动壳体721、储能组件722和转动组件723,其中,所述储能组件722和所述转动组件723被收容于所述作动壳体721内,所述至少二开关层710可转动地连接于所述储能组件722的下端,所述转动组件723设置于所述储能组件722的上端且用于转动所述储能组件722,从而带动所述至少二开关层710以实现所述至少二开关层710的状态切换。同时,在本申请实施例中,各个所述开关层710之间相互可传动地组装在一起,也就是,当位于最顶层的所述开关层710被所述储能组件722所转动时,位于底层的所述开关层710会被带动。
具体地,在本申请实施例中,所述转动组件723包括贯穿入所述作动壳体721内且与所述储能组件722插接固定的转动轴7231和用于驱动所述转动轴7231的旋钮7232。在本申请一个具体的示例中,所述旋钮7232被安装于所述转动轴7231的上端部。在本申请一些实施例中,所述转动组件723还包括固定于所述作动壳体721的螺母7233,其中,所述转动轴7231穿过所述螺母7233并延伸入所述作动壳体721内,应可以理解,所述转动 轴7231相对于所述螺母7233可发生转动。为了提高密封性,在本申请的一个具体示例中,所述转动组件723还包括设置于所述作动壳体721和所述螺母7233之间的密封垫7234。
所述储能组件722包括驱动转盘7221、转座7223和储能元件7222,其中,所述转座7223的下端与最顶部的所述开关层710可转动地连接,所述储能元件7222被设置于所述转座7223内,所述驱动转盘7221被安装于所述转座7223上。相应地,在本申请实施例中,所述驱动转盘7221的上端固定有所述转动轴7231,即,当所述转动轴7231在所述旋钮7232的作用下发生转动时,其能够带动所述驱动转盘7221相对于所述转座7223发生转动。也就是说,在本申请实施例中,所述转动轴7231的下端部固定有所述驱动转盘7221,所述转动轴7231的上端部固定有所述旋钮7232,这样通过所述转动轴7231的传导,所述旋钮7232能够控制所述驱动转盘7221的运动状态。
在本申请实施例中,所述驱动转盘7221包括具有插入头的转盘主体和自所述转盘主体往下延伸的作动件72211和释放件72212,所述作动件72211和所述释放件72212自所述转盘主体的外周缘往下延伸。所述作动件72211和所述释放件72212相对于所述转盘主体的中心所设定的夹角影响着所述旋转式电气开关的操作控制。在本申请的一些实施方式中,所述作动件72211和所述释放件72212相对于所述转盘主体的中心所设定的夹角范围为170°至175°,可通过以预定方向旋转所述旋钮7232大概80°至100°以实现所述至少二开关层710的状态的切换,相应地,所述开关层710的动作角度为80°至100°。在本申请的一些实施方式中,所述作动件72211和所述释放件72212相对于所述转盘主体的中心所设定的夹角范围为175°至180°,所述开关层710的动作角度为85°至95°。
如图7所示,在本申请一些实施例中,所述电气隔离开关包括相互叠置的多个开关层710。在本申请实施例中,每一开关层710包括承载壳体711、安装于所述承载壳体711的一对静触导电元件713和可动触头导电组件712,以及,至少一磁性元件,其中,所述可动触头导电组件712适于在所述转动组件723和所述储能组件722的作用下与所述一对静触导电元件713可切换地导通或者断开以实现各个所述开关层710的状态的切换。所述电气隔离开关中最靠近所述作动控制组件720的开关层710(即,最顶层的 开关层710)的可动触头导电组件712与所述作动控制组件720的储能组件722可传动地连接,所述电气隔离开关中每相邻两个开关层710的可动触头导电组件712可传动地连接,这样,在所述作动控制组件720的控制下,每一开关层710的可动触头导电组件712可选择地与其静触导电元件713进行接合或者脱开,以实现所述开关层710的状态切换(闭合/断开)。
如图10、图14A和图14B所示,所述承载壳体711具有第一安装腔71101,所述可动触头导电组件712的被适配地嵌合于所述承载壳体711的第一安装腔71101内。具体地,所述可动触头导电组件712包括绝缘转盘7121、用于驱动所述绝缘转盘7121的拨盘元件7122,以及,形成于所述第一绝缘转盘7121和所述第一拨盘元件7122之间的动触导电元件7123,如图12至图13B。
更具体地,在本申请实施例中,所述动触导电元件7123沿着所述绝缘转盘7121的中心轴线被嵌合地设置于所述绝缘转盘7121,且所述动触导电元件7123的长度尺寸与所述绝缘转盘7121的直径相近,这样,在所述动触导电元件7123被沿所述绝缘转盘7121的中心线安装于所述绝缘转盘7121后,所述动触导电元件7123的边缘与所述绝缘转盘7121的边缘近乎齐平。相应地,所述动触导电元件7123具有形成于其第一端部的第一动触导电端71231和形成于其第二端部(与所述第一端部相对)的第二动触导电端71232,也就是,在本申请实施例中,所述动触导电元件7123的第一动触导电端71231形成于所述绝缘转盘7121的边缘,所述动触导电元件7123的第二动触导电端71232形成于所述绝缘转盘7121的边缘。所述第一动触导电端71231和所述第二动触导电端71232形成一对动态接触部,所述动触导电元件7123适于被移动以可选择地使得一对动态接触部与一对静触导电元件713接合或脱开以实现各个所述开关层710的状态的切换。
值得一提的是,在本申请的一些实施方式中,所述绝缘转盘7121还设有一分断隔挡部71212,如图23B所示,用于隔离所述动触导电元件7123的一个动触导电端和一对所述静触导电元件713中在所述开关层710的状态切换过程中未与之配合的静触导电元件713,避免在所述开关层710的状态切换过程中,所述动触导电元件7123和所述静触导电元件713距离较近,爬电距离较短,导致短路。
所述动触导电元件7123的形态和所述动触导电元件7123的设置方式 并不为本申请所局限,例如,所述动触导电元件7123可包括分别独立的两个动态接触部,且两个所述动态接触部相互电连接。在一个具体的示例中,所述绝缘转盘7121和两个所述动态接触部通过一体成型工艺制备而成,例如,通过模塑工艺制备而成,以使得所述绝缘转盘7121和所述动触导电元件7123具有一体式结构。
在本申请实施例中,所述开关层710的拨盘元件7122以卡合于所述储能组件722的方式可传动地连接于所述作动控制组件720,所述拨盘元件7122被定位地卡合于所述绝缘转盘7121,当所述拨盘元件7122被所述作动控制组件720驱动转动时,带动安装有所述动触导电元件7123的绝缘转盘7121发生转动。所述拨盘元件7122也可通过其他方式可传动地连接于所述绝缘转盘7121,例如,固定于所述绝缘转盘7121、一体地连接于所述绝缘转盘7121。在本申请示例中,所述电气隔离开关中最接近所述作动控制组件720的开关层710的拨盘元件7122可传动地连接于所述作动控制组件720的储能组件722,且位于上层的开关层710的绝缘转盘7121与位于下层开关层710的拨盘元件7122相互卡合,通过这样的方式,所述电气隔离开关中每相邻两个开关层710的可动触头导电组件712可传动地连接,以使得通过所述作动控制组件720可协同地控制所述电气隔离开关的多个开光层710的状态切换。
在本申请实施例中,一对所述静触导电元件713被安装于所述承载壳体711,每一个所述静触导电元件713具有静触导电端7131,所述静触导电端7131形成静态接触部。一对所述静触导电元件713安装于所述承载壳体711的安装位置使得一对所述静触导电元件713的静触导电端7131相对于所述承载壳体711的中轴线对称地布置且邻近于所述绝缘转盘7121的边缘,通过这样的位置和结构配置使得所述可动触头导电组件712的动触导电元件7123的第一动触导电端71231和第二动触导电端71232能够在所述作动控制组件720的转动组件723和储能组件722的作用下同时与一对所述静触导电元件713的静触导电端7131相接合或者相脱开,以实现所述开关层710的状态切换。当所述开关层710被切换至所述闭合态时,所述动触导电元件7123与所述静触导电元件713相接触,当所述开关层710被切换至所述断开态时,所述动触导电元件7123与所述静触导电元件713相分开。
如图8所示,在本申请实施例中,一对所述静触导电元件713设置于所述承载壳体711的第一安装腔71101的相对的两侧,其中,一对所述静触导电元件713均安装于所述承载壳体711的外围。具体地,所述静触导电元件713中用于电连接其他电气设备的部分定位为接电端7132,相应地,所述静触导电元件713具有静触导电端7131、接电端7132,以及,延伸于所述静触导电端7131和所述接电端7132的静触延伸部7133。在本申请的一些实施方式中,一对所述静触导电元件713中至少一个静触导电元件713的接电端7132伸出所述承载壳体711。应可以理解,一对所述静触导电元件713的接电端7132也可不伸出所述承载壳体711,对此,并不为本申请所局限。
在本申请实施例的变形实施方式中,一对所述静触导电元件713可以其他方式安装于所述承载壳体711,例如,一对所述静触导电元件713均嵌合地安装于所述承载壳体711,或者,一对所述静触导电元件713中一个静触导电元件713嵌合地安装于所述承载壳体711。
如图8和图25B所示,在本申请实施例中,所述电气隔离开关的每一开关层710包括用于对所述动触导电元件7123与所述静触导电元件713接合或脱开过程中产生的电弧进行偏转的至少一第一磁性元件714和所述电弧的偏转路径上至少一灭弧槽,其中,所述至少一灭弧槽形成位于所述电弧的偏转路径上的窄空间。
具体地,所述电弧产生于所述静触导电元件713和所述动触导电元件7123之间,并且在没有磁场的作用下,电弧的运动轨迹几乎与所述动触导电元件7123的运动路径相一致。因此,在本申请实施例中,以所述动触导电元件7123的运动轨迹作为位置参考来说明其他元件的布设方式。
在本申请实施例中,所述第一磁性元件714被安装于所述承载壳体711,且设置于所述动触导电元件7123的运动路径上。所述第一磁性元件714的具体安装方式并不为本申请所局限。例如,在本申请的一个实施方式中,所述承载壳体711包括一底板,所述承载壳体711具有形成于所述底板且对应于所述动触导电元件7123的运动路径的突起部71102,所述第一磁性元件714被嵌合地安装于所述突起部71102内,所述突起部71102的周壁由绝缘材料制成。在本申请的另一个实施方式中,所述承载壳体711具有一凹槽,所述突出部71102突出地形成于所述凹槽内。
更具体地,如图14A和图14B所示,在本申请实施例中,所述突起部71102形成于所述动触导电元件7123的下方,所述突起部71102的至少一部分沿着所述开关层710所设定的轴向对应于所述动触导电元件7123,即,所述突起部71102的至少一部分在所述开关层710所设定的轴向上与所述动触导电元件7123重叠。相应地,被嵌合于所述突起部71102的第一磁性元件714的至少一部分沿着所述开关层710所设定的轴向对应于所述动触导电元件7123的运动路径,即,所述第一磁性元件714的至少一部分在所述开关层710所设定的轴向上与所述动触导电元件7123的运动路径重叠。
进一步地,所述第一磁性元件714具有相对的第一磁极与第二磁极,所述第一磁极朝向所述动触导电元件7123的运动路径,所述第二磁极沿着所述动触头导电组件的轴向方向远离所述第一磁极。
值得一提的是,所述动触导电元件7123与所述静触导电元件713接合或脱开过程中产生的电弧受到所述第一磁性元件714产生的磁场的作用后,至少部分会相对于所述动触导电元件7123向上或者向下偏转。为此,在本申请的一些实施方式中,安装于所述动触导电元件7123的绝缘转盘7121设有至少一缺口结构71211,如图24A和图24B所示。
可根据所述第一磁性元件714的磁极朝向确定所述电弧的偏转路径,进而决定所述灭弧槽的布设位置和布设方式。这样,所述电气隔离开关通过所述第一磁性元件714产生的磁场引导所述电弧按照预设的路径发生偏转,进而通过设置在所述电弧的偏转路径上的灭弧槽,利用狭缝效应将进入其内的电弧拉细、拉长,实现快速灭弧。
值得一提的是,由于磁性元件的磁极朝向确定,因此,电弧在磁性元件的作用下偏转的路径是确定的,灭弧槽的布设位置也可随着偏转路径的确定被确定,那么,可以通过选择磁性元件的位置和磁极朝向决定所述灭弧槽的位置,或者通过选择灭弧槽的位置决定磁性元件的位置和磁极朝向,以在不大幅增大直流开关的整体尺寸的条件下实现灭弧。
在本申请实施例中,所述动触导电元件7123与所述静触导电元件713接合或脱开过程中产生的电弧受到所述第一磁性元件714产生的磁场的作用后,至少部分会相对于所述动触导电元件7123向内或者向外偏转,如图26至图27B所示。所述至少一灭弧槽包括第一灭弧槽7111和第二灭弧槽 7112,如图16所示。所述第一灭弧槽7111形成于所述动触导电元件7123的外侧,所述第二灭弧槽7112形成于所述动触导电元件7123的内侧。由于所述第一磁性元件714被设置于所述动触导电元件7123的运动路径上,相应地,所述第一灭弧槽7111位于所述第一磁性元件714的外侧,所述第二灭弧槽7112位于所述第一磁性元件714的内侧。
值得一提的是,当大量的电弧长期积累于所述开关层710的内部时可能损伤所述开关层710的内部结构,影响所述电气隔离开关的寿命。在本申请的一些实施方式中,所述第一灭弧槽7111与外界相连通,这里,外界是相对于开关层710而言的,即,外界指的是所述电气隔离开关的外界空间。这样,可通过所述第一灭弧槽7111将所述开关层710在状态切换的过程中产生的电弧导引至外界,以提高所述电气隔离开关的结构稳定性和可靠性。具体地,所述第一灭弧槽7111的至少一端延伸至所述开关层710的壳体的边缘,以使得所述第一灭弧槽7111与外界相连通,如图17A至图22所示。
进一步地,在本申请的一些实施方式中,所述第二灭弧槽7112连通于所述第一灭弧槽7111。这样,可延长电弧的运动路径,且当所述第一灭弧槽7111与外界相连通时,进入所述第二灭弧槽7112的电弧也可以通过所述第一灭弧槽7111被导引至外界。
所述第一灭弧槽7111和所述第二灭弧槽7112的数量并不为本申请所局限,可为71,72,73,或者,更多,对此,并不为本申请所局限。例如,在本申请的一个具体示例中,所述至少一灭弧槽包括两个第二灭弧槽7112和两个第二灭弧槽7112,其中,一个第一灭弧槽7111和一个第二灭弧槽7112均邻近于一对所述静触导电元件713中的一个所述静触导电元件713,另一个第一灭弧槽7111和第二灭弧槽7112均邻近于一对所述静触导电元件713中的另一个所述静触导电元件713。
值得一提的是,所述第一灭弧槽7111或所述第二灭弧槽7112与所述第一磁性元件714的距离应保持在一定范围内,以使得所述电弧尽可能多地进入所述第一灭弧槽7111和所述第二灭弧槽7112。在本申请实施例中,所述第一灭弧槽7111与所述第一磁性元件714之间的距离为大于70且小于等于9mm,和/或,所述第二灭弧槽7112与所述第一磁性元件714之间的距离大于0且小于等于9mm。具体地,所述第一灭弧槽7111与所述第一 磁性元件714之间在所述承载壳体711的径向上的距离为大于0且小于等于9mm,和/或,所述第二灭弧槽7112与所述第一磁性元件714之间在所述承载壳体711的径向上的距离大于0且小于等于9mm。
进一步地,在本申请的一些实施方式中,所述第一灭弧槽7111和所述第二灭弧槽7112形成于其所在开关层710的所述承载壳体711,也就是,所述承载壳体711具有第一灭弧槽7111和第二灭弧槽7112,其中,所述第一灭弧槽7111形成于所述突起部71102的内侧,所述第二灭弧槽7112形成于所述突起部71102的外侧,所述第一灭弧槽7111和所述第二灭弧槽7112位于所述动触导电元件7123的下侧。
所述第一灭弧槽7111和所述第二灭弧槽7112的形成方式并不为本申请所局限。例如,在本申请的一个具体示例中,所述承载壳体711具有一凹槽,所述凸起部71102形成于所述凹槽内,所述凹槽的周壁与所述凸起部71102的周壁之间的空隙形成所述第一灭弧槽7111和所述第二灭弧槽7112。
所述第一灭弧槽7111的开口和所述第二灭弧槽7112的开口均朝向所述动触接触元件,所述第一灭弧槽7111的深度方向和所述第二灭弧槽7112的深度方向与所述开关层710所设定的轴向相一致,所述第一灭弧槽7111的宽度方向和所述第二灭弧槽7112的宽度方向与所述承载壳体711的径向相一致。应可以理解,所述第一灭弧槽7111和/或所述第二灭弧槽7112也可以形成于所述动触导电元件7123的上侧。
在本申请的另一些实施方式中,每一开关层710还包括盖合于其承载壳体711的上方的封装壳体,所述第一灭弧槽7111中至少部分第一灭弧槽7111形成于所述封装壳体,所述第二灭弧槽7112中至少部分第二灭弧槽7112形成于所述封装壳体。在本申请的一个具体示例中,相邻两层开关层710中位于上方的开关层710的承载壳体711的下侧部分形成位于其下方的开关层710的封装壳体。所述第一灭弧槽7111中部分第一灭弧槽7111形成于其所在开关层710的承载壳体711,所述第一灭弧槽7111中另一部分第一灭弧槽7111形成于所述封装壳体,即,所述第一灭弧槽7111中另一部分第一灭弧槽7111形成于其所在开关层710的上方的开关层710的承载壳体711。所述第二灭弧槽7112中部分第二灭弧槽7112形成于其所在开关层710的承载壳体711,所述第二灭弧槽7112中另一部分第二灭弧槽7112形 成于所述封装壳体,即,所述第二灭弧槽7112中另一部分第二灭弧槽7112形成于其所在开关层710的上方的开关层710的承载壳体711。在本申请的其他具体示例中,各个开关层710的封装壳体可相互独立。
值得一提的是,在本申请实施方式中,所述第二灭弧槽7112形成于所述动触导电元件7123的运动路径的内侧,且是所述承载壳体711本身具有的,未占用多余的径向空间。这样,所述第二灭弧槽7112的布设方式使得所述电气隔离开关在不增大其径向尺寸的条件下加快灭弧速度,改善灭弧性能。
还值得一提的是,所述第一灭弧槽7111和所述第二灭弧槽7112均形成于所述电气隔离开关的壳体结构,本申请的所述电气隔离开关能够通过对传统的直流开关的壳体进行结构改造来获得。
为了使得所述第一磁性元件714产生的磁场尽可能地覆盖所述动触导电元件7123的运动路径,进而作用于所述电弧。优选地,所述第一磁性元件714的形状与所述动触导电元件7123的运动路径一致。相应地,在本申请的一些实施方式中,所述第一磁性元件714具有沿着所述动触导电元件7123的运动路径延伸的弧形结构,在本申请的一个具体示例中,所述第一磁性元件714为扇形磁铁。在本申请的其他示例中,所述第一磁性元件714的形状可以为其他形状,例如,矩形、梯形、三角形、弓形、拱桥形。当然,也可以通过增加所述第一磁性元件714的数量,或者,增大所述第一磁性元件714的体积来使得所述第一磁性元件714产生的磁场尽可能地覆盖所述动触导电元件7123的运动路径,进而作用于所述电弧。例如,在本申请的一些实施方式中,所述第一磁性元件714的数量为72、73、74,或者更多,对此,并不为本申请所局限。
进一步地,为了让所述电弧在磁场作用下顺利进入所述灭弧槽,优选地,所述第一灭弧槽7111和所述第二灭弧槽7112的延伸方式与所述第一磁性元件714的延伸方式相一致,具体地,所述第一灭弧槽7111和所述第二灭弧槽7112的长度延伸方式与所述第一磁性元件714的长度延伸方式相一致。优选地,所述第一灭弧槽7111和所述第二灭弧槽7112的延伸方也相一致。在本申请的一些实施方式中,所述第一灭弧槽7111和所述第二灭弧槽7112均以弧形延伸。当然,所述第一灭弧槽7111或所述第二灭弧槽7112的长度延伸方式也可与所述第一磁性元件714的长度延伸方式不一致。所 述第一灭弧槽7111和所述第二灭弧槽7112也可以其他方式延伸,例如,沿直线延伸、沿拱桥形延伸,对此,并不为本申请所局限。
值得一提的是,进入灭弧槽的电弧不仅能够沿灭弧槽的长度方向延伸,还能够沿灭弧槽的深度方向延伸,这样,可通过调节灭弧槽的深度来控制灭弧槽占用的长度方向空间。
还值得一提的是,所述电弧进入所述灭弧槽后,灭弧槽的宽度尺寸越小,所述电弧被拉得越细,越容易被熄灭。因此,可通过缩减所述灭弧槽中允许电弧通过的空间的宽度尺寸(即,在所述承载壳体711的径向方向的尺寸)来加快灭弧速度。
基于此,本申请的发明人提出,可通过“静态变径”和/或“动态变径”的方式来缩减所述灭弧槽中允许电弧通过的空间的宽度尺寸。具体地,“静态变径”是指所述灭弧槽本身具有尺寸变化结构,“动态变径”是指所述灭弧槽中允许电弧通过的空间的宽度尺寸发生动态变化。
相应地,在本申请的一些实施方式中,所述开关层710通过“静态变径”的方式来缩减所述灭弧槽中允许电弧通过的空间的宽度尺寸。具体地,在这些实施方式中,所述第一灭弧槽7111包括第一槽体部分71111和第二槽体部分71112,所述第一槽体部分71111的宽度尺寸和所述第二槽体部分71112的宽度尺寸不同,所述第二灭弧槽7112包括第三槽体部分71121和第四槽体部分71122,所述第三槽体部分71121的宽度尺寸和所述第四槽体部分71122的宽度尺寸不同。
更具体地,一方面,所述第一灭弧槽7111和/或所述第二灭弧槽7112可沿其深度方向形成渐缩结构,另一方面,所述第一灭弧槽7111和/或所述第二灭弧槽7112可沿其长度方向形成渐缩结构,以将所述电弧快速熄灭。
相应地,在本申请的一个具体示例中,所述第一灭弧槽7111和所述第二灭弧槽7112沿其深度方向形成渐缩结构。所述第二槽体部分71112从所述第一槽体部分71111沿所述第一灭弧槽7111的深度方向延伸,所述第二槽体部分71112的宽度尺寸小于所述第一槽体部分71111的宽度尺寸,所述第四槽体部分71122从所述第三槽体部分71121沿所述第二灭弧槽7112的深度方向延伸,所述第四槽体部分71122的宽度尺寸小于所述第三槽体部分71121的宽度尺寸,也就是,所述第一灭弧槽7111的至少一部分的宽度尺寸在其深度方向上逐渐减小,所述第二灭弧槽7112的宽度尺寸在其深度 方向上逐渐减小。这样,所述电弧进入所述第一灭弧槽7111后沿所述第一灭弧槽7111的深度方向逐渐被拉细,所述电弧进入所述第二灭弧槽7112后沿所述第二灭弧槽7112的深度方向逐渐被拉细,能够快速被熄灭。相应地,所述第一灭弧槽7111的截面形状为梯形,或者,三角形,所述第二灭弧槽7112的截面形状为梯形,或者,三角形。所述第一灭弧槽7111和所述第二灭弧槽7112的截面形状也可为其他形状,例如,台阶形、半月牙形等。
值得一提是,在所述电气隔离开关状态切换过程中,所述静触导电元件713和所述动触导电元件7123相接合或者相断开时,所述静触导电元件713和所述动触导电元件7123之间容易产生电弧,邻近于所述静触导电元件713的区域将形成起弧区。当所述电弧从邻近于所述静触导电元件713的起弧区被偏转至所述第一灭弧槽7111和/或所述第二灭弧槽7112后,所述电弧被沿着远离所述静触导电元件713的方向拉伸,如图21和图22所示。优选地,所述第一灭弧槽7111和所述第二灭弧槽7112的宽度尺寸沿着远离所述静触导电元件713的方向逐渐减小,所述电弧将更加容易被拉断。也就是,优选地,所述第一灭弧槽7111和/或所述第二灭弧槽7112的与其所邻近的所述静触导电元件713距离较大的部分的宽度尺寸小于与其所邻近的所述静触导电元件713距离较小的部分的宽度尺寸。也就是,所述第一灭弧槽7111或所述第二灭弧槽7112的与其所邻近的所述静触导电元件713距离较小的部分的宽度尺寸大于与其所邻近的所述静触导电元件713距离较大的部分的宽度尺寸,这样,在邻近于所述静触导电元件713处产生的电弧更加容易进入所述第一灭弧槽7111和/或所述第二灭弧槽7112。
相应地,在该具体示例中,所述至少一灭弧槽中的一个所述第一灭弧槽7111和所述第二灭弧槽7112邻近于所述一对静触导电元件713中一个静触导电元件713,所述第二槽体部分71112与一对所述静触导电元件713中的一个静触导电元件713(和所述第一灭弧槽7111相邻近的静触导电元件713)的距离大于所述第一槽体部分71111与所述静触导电元件713的距离,所述第四槽体部分71122与一对静触导电元件713中一个静触导电元件713(与所述第二灭弧槽7112相邻近的静触导电元件713)的距离大于所述第三槽体部分71121与所述静触导电元件713的距离。具体地,所述第二槽体部分71112与所述静触导电元件713在所述第一灭弧槽7111的深 度方向上的距离大于所述第一槽体部分71111与所述静触导电元件713在所述第一灭弧槽7111的深度方向上的距离。所述第三槽体部分71121与所述静触导电元件713在所述第二灭弧槽7112的深度方向上的距离大于所述第四槽体部分71122与所述静触导电元件713在所述第二灭弧槽7112的深度方向上的距离。
在本申请的另一个具体示例中,所述第一灭弧槽7111和所述第二灭弧槽7112沿其长度方向形成渐缩结构。所述第二槽体部分71112从所述第一槽体部分71111沿所述第一灭弧槽7111的长度方向延伸,所述第二槽体部分71112的宽度尺寸小于所述第一槽体部分71111的宽度尺寸,如图17A至图20所示。所述第四槽体部分71122从所述第三槽体部分71121沿所述第二灭弧槽7112的长度方向延伸,所述第四槽体部分71122的宽度尺寸小于所述第三槽体部分71121的宽度尺寸,如图17B所示。这样,所述电弧进入所述第一灭弧槽7111后沿所述第一灭弧槽7111的长度方向逐渐被拉细,所述电弧进入所述第二灭弧槽7112后沿所述第二灭弧槽7112的长度方向逐渐被拉细,能够快速被熄灭。
进一步地,所述第二槽体部分71112与所述静触导电元件713在所述第一灭弧槽7111的长度方向上的距离大于所述第一槽体部分71111与所述静触导电元件713在所述第一灭弧槽7111的长度方向上的距离,如图17A和图17B、图19所示。所述第三槽体部分71121与所述静触导电元件713在所述第二灭弧槽7112的长度方向上的距离大于所述第四槽体部分71122与所述静触导电元件713在所述第二灭弧槽7112的长度方向上的距离,如图17B所示。
在本申请的另一些实施方式中,所述开关层710通过“动态变径”的方式来缩减所述灭弧槽中允许电弧通过的空间的宽度尺寸。具体地,所述绝缘转盘7121具有预定形状配置以使得在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述绝缘转盘7121的至少一部分在所述开关层710所设定的轴向方向上与至少一灭弧槽部分地重叠,通过这样的方式,动态地改变所述灭弧槽中允许所述电弧通过的空间的宽度尺寸。
在本申请的一些实施方式中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述绝缘转盘7121的缺口结 构71211的周缘部和/或所述绝缘转盘7121的外边缘在所述开关层710所设定的径向方向上伸入至少一灭弧槽内,使得至少一所述灭弧槽中允许所述电弧通过的空间的宽度尺寸(即,径向尺寸)被缩减。
相应地,在本申请的一个具体示例中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述绝缘转盘7121的外边缘在所述开关层710所设定的径向方向上未伸入至少一灭弧槽内,所述绝缘转盘7121的缺口结构71211的周缘部在所述开关层710所设定的径向方向上伸入至少一灭弧槽内,使得至少一所述灭弧槽中允许所述电弧通过的空间的宽度尺寸(即,径向尺寸)被缩减,如图15A至图25B所示。也就是,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,主要通过所述绝缘转盘7121的缺口结构71211的周缘部与所述灭弧槽之间的位置关系的动态变化实现“动态变径”,以使得所述灭弧槽中允许所述电弧通过的空间的径向尺寸被动态地改变。
在本申请的另一个具体示例中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述绝缘转盘7121的缺口结构71211的周缘部在所述开关层710所设定的径向方向上未伸入至少一灭弧槽内,所述绝缘转盘7121的外边缘在所述开关层710所设定的径向方向上伸入至少一灭弧槽内,使得至少一所述灭弧槽中允许所述电弧通过的空间的宽度尺寸(即,径向尺寸)被缩减。具体地,在该具体示例中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述绝缘转盘7121的外边缘在所述开关层710所设定的径向方向上伸入所述第一灭弧槽7111内,使得所述第一灭弧槽7111中允许所述电弧通过的空间的宽度尺寸(即,径向尺寸)被缩减。也就是,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,主要通过所述绝缘转盘7121的外边缘与所述灭弧槽之间的位置关系的动态变化实现“动态变径”。
在本申请的又一个具体示例中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述绝缘转盘7121的缺口结构71211的周缘部在所述开关层710所设定的径向方向上和所述绝缘转盘7121的外边缘分别伸入至少一灭弧槽内,使得至少一所述灭弧槽中允许所述电弧通过的空间的宽度尺寸(即,径向尺寸)被缩减。具体地,在该 具体示例中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述绝缘转盘7121的外边缘在所述开关层710所设定的径向方向上伸入所述第一灭弧槽7111内,使得所述第一灭弧槽7111中允许所述电弧通过的空间的宽度尺寸(即,径向尺寸)被缩减,所述绝缘转盘7121的缺口结构71211的周缘部在所述开关层710所设定的径向方向上伸入所述第二灭弧槽7112内,使得所述第二灭弧槽7112中允许所述电弧通过的空间的宽度尺寸(即,径向尺寸)被缩减,如图24A所示。也就是,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,主要通过所述绝缘转盘7121的外边缘与所述灭弧槽之间的位置关系的动态变化实现“动态变径”。
进一步地,在本申请实施例中,可通过对所述绝缘转盘7121的缺口结构71211的形态进行调整来调整实现“动态变径”的方式。具体地,在本申请的一些实施方式中,所述缺口结构71211从所述绝缘转转盘7121的外边缘沿着所述开关层710所设定的径向向内延伸,使得所述缺口结构71211形成相对于所述绝缘转转盘7121的外边缘向内凹陷的内边缘。在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述缺口结构71211的内边缘在所述开关层710所设定的径向方向上伸入至少一所述灭弧槽内,通过这样的方式,所述缺口结构71211的周缘部在所述开关层710所设定的轴向方向上与至少一所述灭弧槽部分地重叠,如图15A、图24A和图24B所示。
在本申请的另一些实施方式中,所述缺口结构71211从所述绝缘转转盘7121的外边缘沿着所述开关层710所设定的径向以内的位置沿着所述开关层710所设定的径向向内延伸,使得所述缺口结构71211形成相对于所述绝缘转转盘7121的外边缘向内凹陷的内边缘和位于所述内边缘的外侧的外边缘。在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述缺口结构71211的内边缘和/或外边缘在所述开关层710所设定的径向方向上伸入至少一所述灭弧槽内,通过这样的方式,所述缺口结构71211的周缘部在所述开关层710所设定的轴向方向上与至少一所述灭弧槽部分地重叠,如图25A和图25B所示。
相应地,在本申请的一个具体示例中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述缺口结构71211 的内边缘在所述开关层710所设定的径向方向上伸入至少一灭弧槽内。具体地,在该具体示例中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述缺口结构71211的内边缘在所述开关层710所设定的径向方向上伸入所述第二灭弧槽7112内,使得所述第二灭弧槽7112中允许所述电弧通过的空间的宽度尺寸(即,径向尺寸)被缩减,如图25A所示。
在本申请的另一个具体示例中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述缺口结构71211的外边缘在所述开关层710所设定的径向方向上伸入至少一灭弧槽内。具体地,在该具体示例中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述缺口结构71211的外边缘在所述开关层710所设定的径向方向上伸入所述第一灭弧槽7111内,使得所述第一灭弧槽7111中允许所述电弧通过的空间的宽度尺寸(即,径向尺寸)被缩减,如图25B所示。
在本申请的又一个具体示例中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述缺口结构71211的内边缘和外边缘在所述开关层710所设定的径向方向上分别伸入至少一灭弧槽内。具体地,在该具体示例中,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述缺口结构71211的内边缘在所述开关层710所设定的径向方向上伸入所述第二灭弧槽7112内,所述缺口结构71211的外边缘在所述开关层710所设定的径向方向上伸入所述第一灭弧槽7111内,使得所述第一灭弧槽7111和所述第二灭弧槽7112中允许所述电弧通过的空间的宽度尺寸(即,径向尺寸)被缩减。
更进一步地,在本申请实施例中,可通过对所述绝缘转盘7121的缺口结构71211的周缘部或者所述绝缘转盘7121的外边缘的形状的调整来调整实现“动态变径”的方式。具体地,在本申请的一些实施方式中,所述绝缘转盘7121的外边缘和/或所述缺口结构71211的周缘部的延伸方式与所述灭弧槽的延伸方式不一致,例如,所述灭弧槽以弧形延伸,所述缺口结构71211的内边缘和/或外边缘以非弧形延伸,或者,所述缺口结构71211的内边缘和/或外边缘的至少一部分以与所述灭弧槽的弧度不一致的弧形延伸。这样,所述缺口结构71211的内边缘和/或外边缘在所述开关层710所 设定的径向方向上伸入灭弧槽内的程度随着所述可动触头导电组件712相对于一对所述静触导电元件713移动将发生变化,通过这样的方式来实现“动态变径”。
相应地,在本申请的一些实施方式中,所述缺口结构71211的周缘部的内边缘和/或外边缘以弧形延伸,然而,所述缺口结构71211的周缘部的内边缘和/或外边缘在所述开关层710所设定的径向方向上伸入灭弧槽内的程度随着所述可动触头导电组件712相对于一对所述静触导电元件713移动变化。
在本申请的一个具体示例中,所述缺口结构71211的内边缘和/或外边缘的弧度与至少一所述灭弧槽的弧度不一致,如图24A所示。这样,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述缺口结构71211的内边缘和/或外边缘的不同部分伸入所述灭弧槽的程度不同。
在本申请的另一个具体示例中,所述缺口结构71211的周缘部包括至少一第一边缘部712111和至少一第二边缘部712112,所述第二边缘部712112突出于所述第一边缘部712111在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述缺口结构71211的第一边缘部712111和所述第二边缘部712112在所述开关层710所设定的径向方向上伸入所述灭弧槽内的程度不同,如图24A至图25B所示。所述第一边缘部712111和所述第二边缘部712112可形成于所述缺口结构71211的内边缘(如图24A至图25B所示),也可形成于所述缺口结构71211的外边缘,对此,并不为本申请所局限。所述第一边缘部712111和所述第二边缘部712112的数量并不为本申请所局限,当所述缺口结构71211的内边缘或外边缘具有多个第一边缘部712111和所述第二边缘部712112时,所述缺口结构71211的内边缘或外边缘的形状为锯齿形,可在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中实现多次“动态变径”。
值得一提的是,当所述灭弧槽和所述缺口结构71211均沿弧形延伸时,所述缺口结构71211为扇形缺口结构71211。优选地,所述扇形缺口结构71211的圆心角的角度值小于所述开关层710的动作角度,这样,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过 程中,所述缺口结构71211整体被转过所述灭弧槽后,在所述动触导电元件7123和所述静触导电元件713进行下一次接合前,所述静触导电元件713将被收容于所述绝缘盘7121内,这样,可避免所述静触导电元件713被电弧伤及。在本申请的一个具体示例中,所述扇形的圆心角与所述动作角度之间的差值小于所述动作角度的5%-15%。应可以理解,所述缺口结构71211也可为其他形状的缺口结构,例如,矩形、梯形、三角形等。
在本申请的一些实施方式中,所述缺口结构71211的周缘部的内边缘和/或外边缘以非弧形延伸,例如,直线形、坡形等,这样,在所述可动触头导电组件712相对于一对所述静触导电元件713进行移动的过程中,所述缺口结构71211的内边缘和/或外边缘的不同部分在所述开关层710所设定的径向方向上伸入灭弧槽内的程度不同,通过这样的方式可实现“动态变径”。
应可以理解,在本申请的其他实施方式中所述缺口结构71211的内边缘和/或外边缘的延伸方式可与所述灭弧槽的延伸方式相一致,对此,并不为本申请所局限。
同样地,在本申请的一些实施方式中,所述绝缘转盘7121的外边缘的形状也可以为弧度与至少一所述灭弧槽的弧度不一致的弧形;或者,所述绝缘转盘7121的外边缘也可以包括至少一第一外边缘部和相对于至少一所述第一外边缘部突出的至少一第二外边缘部,如图25A和图25B;再或者,所述绝缘转盘7121的外边缘也可以非弧形延伸,例如,直线形、坡形等,通过这样的方式可实现“动态变径”。
在本申请的技术方案中,在电弧的偏转路径上配置能够作用于所述电弧的凸起,其中,所述凸起能够通过增大电弧和与其接触的部件的接触面积提高灭弧效率,通过这样的方式,增强所述电气隔离开关的灭弧能力。这里,所述凸起可作为新设的干预机制。
更具体地,在传统的磁体灭弧的方案中,电弧在磁场的作用下将向特定的方向偏转,也就是说,磁体产生的磁场能够控制电弧的偏转方式。这样,可在直流开关内配置磁性元件以通过其所产生的特定磁场域对电弧进行特定方式的引导以使其发生以预定方式进行偏转,同时,在电弧的偏转路径上配置能够干预所述电弧的凸起,以通过所述凸起的物理干预将增大所述电弧和与其接触的部件的接触面积以实现快速灭弧。也就是,可结合 磁体对电弧的作用特点和接触面积对灭弧效果的影响,充分利用两者的优势协同作用于电弧来加快灭弧速度。值得一提的是,由于磁场能够对电弧进行特定方向的偏转,可凭此有选择性地、灵活地规划电弧的偏转路径和位于电弧的偏转路径上的凸起的位置。
相应地,在本申请实施例中,所述电气隔离开关的每一开关层710包括用于对所述动触导电元件7123与所述述静触导电元件713接合或脱开过程中产生的电弧进行偏转的至少一第一磁性元件714,且所述第一磁性元件714设置于所述动触导电元件7123的运动路径上。在本申请实施例中,所述电气隔离开关的每一开关层710的承载壳体711设有形成于所述电弧的偏转路径上的至少一凸起,以增大所述电弧与其被偏转后途径的区域之间的接触面积,加快灭弧速度。
具体地,所述承载壳体711具有用于安装所述第一磁性元件714的第一容置腔41211,所述第一容置腔41211的周壁由绝缘材料制成所述第一磁性元件714被包覆于所述第一容置腔41211内。
进一步地,所述第一磁性元件714具有相对的第一磁极和第二磁极,所述第一磁极朝向所述动触导电元件7123的运动路径,所述第二磁极沿着所述可动触头导电组件712的轴向方向远离所述第一磁极。
可根据所述第一磁性元件714的磁极朝向确定所述电弧的偏转路径,进而决定所述凸起的布设位置和布设方式。这样,所述电气隔离开关通过所述第一磁性元件714产生的磁场引导所述电弧按照预设的路径发生偏转,进而途径设置在所述电弧的偏转路径上的布置有凸起的区域,可增大所述电弧与该区域的接触面积,加快灭弧速度。
值得一提的是,由于磁性元件的磁极朝向确定,因此,电弧在磁性元件的作用下偏转的路径是确定的,所述凸起的布设位置也可随着偏转路径的确定被确定,那么,可以通过选择磁性元件的位置和磁极朝向决定所述凸起的位置,或者通过选择凸起的位置决定磁性元件的位置和磁极朝向,以在不大幅增大直流开关的整体尺寸的条件下实现灭弧。
在本申请实施例中,所述动触导电元件7123与所述述静触导电元件713接合或脱开过程中产生的电弧受到所述第一磁性元件714产生的磁场的作用后,至少部分会相对于所述动触导电元件7123向内或向外偏转。所述至少一凸起包括至少一第一凸起41212和至少一第二凸起41213,如图30 所示。所述第一凸起41212形成于所述动触导电元件7123的运动路径的内侧,所述第二凸起41213形成于所述动触导电元件7123的运动路径的外侧。由于所述第一磁性元件714位于所述动触导电元件7123的运动路径上,所述第一凸起41212可布设于所述第一磁性元件714的内侧,所述第二凸起41213可布设于所述第一磁性元件714的外侧。在本申请的一些实施方式中,所述至少一凸起还包括形成于至少一所述第一凸起41212和至少一所述第二凸起41213之间的至少一第三凸起41214,如图31所示。
在本申请的一些实施方式中,主要通过增加所述凸起的个数或密度来增大其所处区域的粗糙度,所述至少一第一凸起41212包括沿多个第一凸起41212,所述至少一第二凸起41213包括多个第二凸起41213。为了使得所述第一磁性元件714产生的磁场尽可能地覆盖所述动触导电元件7123的运动路径,进而作用于所述电弧。优选地,所述第一磁性元件714的形状与所述动触导电元件7123的运动路径一致。相应地,在本申请的一些实施方式中,所述第一磁性元件714具有沿着所述动触导电元件7123的运动路径延伸的弧形结构,在本申请的一个具体示例中,所述第一磁性元件714为扇形磁铁,即,所述第一磁性元件714的形状为扇形,或者,近似扇形。在本申请的其他示例中,所述第一磁性元件714的形状可以为其他形状,例如,矩形、梯形、三角形。当然,也可以通过增加所述第一磁性元件714的数量,或者,增大所述第一磁性元件714的体积来使得所述第一磁性元件714产生的磁场尽可能地覆盖所述动态接触部的运动路径,进而作用于所述电弧。
为了让所述电弧途径所述第一凸起41212和/或所述第二凸起41213,所述多个第一凸起41212的排布方式与所述第一磁性元件714的延伸方式相一致,所述多个第二凸起41213的排布方式与所述第一磁性元件714的延伸方式相一致。例如,多个第一凸起41212沿着所述第一磁性元件714的延伸方向呈弧形排列,多个第二凸起41213沿着所述第一磁性元件714的延伸方向呈弧形排列。
此外,根据所述第一磁性元件714的磁极布置方式可知,大部分所述电弧在受到所述第一磁性元件714的作用力发生偏转时,其偏转方向与所述承载壳体711的径向存在夹角。相应地,优选地,所述第一凸起41212和所述第二凸起41213在所述承载壳体711的径向方向上相互错开,以增 加被所述电弧途径的概率。
如图32所示,根据本申请实施例的所述电气隔离开关包括至少一开关层521以及被配置为控制所述至少一开关层521在闭合状态和断开状态之间切换的作动控制组件510,其中,所述作动控制组件510可操作性地连接于所述至少一开关层521。为了提升所述旋转式电气开关的性能,在本申请一些实施例中,所述旋转式电气开关通常包括相互叠置的多个开关层521,即,所述至少一开关层521包括至少二开关层521,所述至少二开关层521中各个开关层521相互叠置以形成多层开关层组件520。
在本申请实施例中,所述作动控制组件510被安装于所述至少二开关层521的顶部,并用于控制所述至少二开关层521的电气状态的切换,即,控制所述至少二开关层521的闭合或断开。所述作动控制组件510控制所述至少二开关层521的方式并不为本申请所局限。例如,在本申请一些实施例中,所述作动控制组件510可传动地连接于所述至少二开关层521中最顶层的中开关层521,各个所述开关层521之间相互可传动地组装在一起,当位于最顶层的所述开关层521被所述作动控制组件510控制转动时,位于底层的所述开关层521会被带动,通过这样的方式来控制所述至少二开关层521的电气状态的切换。在本申请的其他实施例中,所述作动控制组件510可通过其他方式控制所述至少二开关层521的状态切换。
具体地,在本申请实施例中,每一所述开关层521包括壳体组件5211、安装于所述壳体组件5211的至少一静触导电元件5213和可动触头导电组件5212,其中,所述可动触头导电组件5212适于在所述作动控制组件510的作用下与至少一所述静触导电元件5213可切换地导通或者断开以实现各个所述开关层521的状态的切换。
更具体地,每一开关层521的所述壳体组件5211包括承载壳体52111和与所述承载壳体52111相盖合的封装壳体52112,所述封装壳体52112形成于所述承载壳体52111的上方。在本申请实施例中,相邻两个开关层521的壳体组件5211部分共用,以缩减所述电气隔离开关的整体尺寸。
具体地,在本申请的一些实施方式中,每一开关层521的所述承载壳体52111包括主壳体52113和连接于所述主壳体52113的承接壳体52114,所述承接壳体52114的上侧部分连接于该开关层521的主壳体52113,所述承接壳体52114的下侧部分形成该开关层521的下侧部分,且形成盖合于 位于其下侧的开关层521的承载壳体52111的封装壳体52112。在本申请的一个具体示例中,所述承载壳体52111的承接壳体52114扣合于所述主壳体52113,且所述承载壳体52111具有一收容腔,所述主壳体52113的至少一部分被收容于所述承接壳体52114的收容腔内。在本申请的其他方式中,各个开关层521的壳体组件5211可相互独立形成,对此,并不为本申请所局限。
在本申请实施例中,每个开关层521的可动触头导电组件5212包括可活动地安装于所述壳体组件5211内的至少一动触导电元件52123,以使得至少一所述动触导电元件52123能够相对于至少一所述静触导电元件5213活动,进而与至少一所述静触导电元件5213可切换地导通和断开。在本申请中,所述动触导电元件52123的被驱动相对于所述静触导电元件5213活动的具体驱动方式并不为本申请所局限。
例如,在本申请的一个具体示例中,所述可动触头导电组件5212包括绝缘转盘52121、用于驱动所述绝缘转盘52121的拨盘元件52122,如图33所示,以及,形成于所述绝缘转盘52121的动触导电元件52123。在该具体示例中,所述拨盘元件52122可传动地连接于所述作动控制组件510,以使得所述拨盘元件52122在所述作动控制组件510的驱动下相对于所述静触导电元件5213移动,进而带动所述绝缘转盘52121相对于所述静触导电元件5213移动,进而使得形成于所述绝缘转盘52121的的动触导电元件52123相对于所述静触导电元件5213移动。所述动触导电元件52123形成于所述绝缘转盘52121的方式不为本申请所局限,例如,所述动触导电元件52123可以嵌合于所述绝缘转盘52121,所述动触导电元件52123也可以一体地结合于所述绝缘转盘52121。
在本申请的另一个具体示例中,所述可动触头导电组件5212包括至少一动触导电元件52123和可传动地连接于至少一所述动触导电元件52123和所述作动控制组件510的绝缘传动件,以使得所述绝缘传动件在所述作动控制组件510的驱动下带动至少一所述动触导电元件52123相对于所述静触导电元件5213移动。在本申请的其他具体示例中,还可以通过其他方式驱动所述动触导电元件52123相对于所述静触导电元件5213活动。
在本申请实施例中,所述静触导电元件5213和所述动触导电元件52123的数量大于或等于51,对此,并不为本申请所局限。例如,在本申 请的一个实施方式中,所述静触导电元件5213的数量为52,所述动触导电元件52123的数量为51,即,所述开关层521包括一对静触导电元件5213和一个动触导电元件52123。在本申请的另一个实施方式中,所述静触导电元件5213的数量为52,所动触导电元件52123的数量为52。
在开关层521状态切换的过程中将产生电弧,电弧过多时可能损坏直流开关。在本申请实施例中,所述电气隔离开关的每一开关层521包括用于对所述动触导电元件52123与所述静触导电元件5213接合或脱开过程中产生的电弧进行偏转的至少一第一磁性元件5220,且所述第一磁性元件5220设置于所述动触导电元件52123的外侧,以延长所述电弧的偏转路径,将电弧拉长,以加快灭弧速度,如图35至图36所示。在本申请实施例中,所述电气隔离开关的每一开关层521具有至少一狭缝,所述至少一狭缝位于所述电弧的偏转路径上,用于约束电弧,实现对所述电弧的去游离,以将所述电弧快速去除。
值得一提的是,所述电气隔离开关将所述第一磁性元件与所述可动触头导电组件5212在同一横向空间内设置,使得开关层521可以更加扁平化,即,所述电气隔离开关的整体高度尺寸可以得到缩减。
在本申请实施例中,所述第一磁性元件5220被安装于所述承载壳体52111。具体地,所述承载壳体52111具有用于安装所述可动触头导电组件5212于其内的第一安装腔5210和用于安装所述第一磁性元件5220于其内的第二安装腔5250,所述第二安装腔5250位于所述第一安装腔5210的外侧,如图34至图38所示,通过这样的方式,将所述动触导电元件52123设置于所述动触导电元件52123的外侧,其中,所述第二安装腔5250的腔壁由绝缘材料制成。
更具体地,在本申请实施例中,所述第二安装腔5250沿所述开关层521所设定的径向方向对应于所述动触导电元件52123,所述第二安装腔5250具有在所述开关层521所设定的轴向方向上相对的上表面和下表面。优选地,所述第二安装腔5250的上表面高于所述动触导电元件52123的上表面,所述第二安装腔5250的下表面低于所述动触导电元件52123的下表面,以在所述开关层521所设定的轴向方向上完全覆盖电弧的产生范围。相应地,被安装于所述第二安装腔5250的第一磁性元件5220沿所述开关层521所设定的径向方向对应于所述动触导电元件52123,所述第一磁性元 件5220在所述开关层521所设定的轴向方向上完全覆盖所述电弧的产生范围。应可以理解,所述第一磁性元件5220也可在所述开关层521所设定的轴向方向上仅部分对应所述电弧的产生范围,对此并不为本申请所局限。
进一步地,所述第一磁性元件5220具有相对的第一磁极和第二磁极,所述第一磁极朝向所述动触导电元件52123的运动路径,所述第二磁极沿着所述可动触头导电组件5212的径向方向远离所述第一磁极。所述可动触头导电组件5212的径向方向与所述开关层521所设定的径向方向相一致,所述可动触头导电组件5212的轴向方向与所述开关层521所设定的轴向方向相一致。
可根据所述第一磁性元件5220的磁极朝向确定所述电弧的偏转路径,进而决定所述狭缝的布设位置和布设方式。这样,所述电气隔离开关通过所述第一磁性元件5220产生的磁场引导所述电弧按照预设的路径发生偏转,进而通过设置在所述电弧的偏转路径上的狭缝,利用狭缝效应将进入其内的电弧拉细、拉长,对所述电弧进行去游离,实现快速灭弧。
值得一提的是,由于磁性元件的磁极朝向确定,因此,电弧在磁性元件的作用下偏转的路径是确定的,狭缝的布设位置也可随着偏转路径的确定被确定,那么,可以通过选择磁性元件的位置和磁极朝向决定所述狭缝的位置,或者通过选择狭缝的位置决定磁性元件的位置和磁极朝向,以在不大幅增大直流开关的整体尺寸的条件下实现灭弧。
在本申请实施例中,所述动触导电元件52123与所述静触导电元件5213接合或脱开过程中产生的电弧受到所述第一磁性元件5220产生的磁场的作用后,至少部分会相对于所述动触导电元件52123向上或向下偏转。所述至少一狭缝包括第一狭缝5230和第二狭缝5240。所述第一狭缝5230形成于所述动触导电元件52123的运动路径的下侧,所述第二狭缝5240形成于所述动触导电元件52123的运动路径的上侧。
在本申请实施例中,所述壳体组件5211的承载壳体52111和封装壳体52112形成所述第一狭缝5230和所述第二狭缝5240。具体地,所述承载壳体52111与所述第一磁性元件5220之间的间隙中位于所述开关层521所设定的轴向方向上的部分形成所述第一狭缝5230,所述封装壳体52112与所述第一磁性元件5220之间的间隙中位于所述开关层521所设定的轴向方向上的部分形成所述第二狭缝5240,所述第一狭缝5230和所述第二狭缝 5240的深度方向与所述壳体组件5211的径向方向一致,所述第一狭缝5230的宽度尺寸和所述第二狭缝5240的宽度尺寸与所述开关层521所设定的轴向方向一致。
值得一提的是,所述电弧进入所述狭缝后,狭缝的宽度尺寸越小,所述电弧被拉得越细,去游离效果越佳,越容易被熄灭。因此,可通过缩减所述狭缝的宽度尺寸来加快灭弧速度。相应地,在本申请的一些实施方式中,所述第一狭缝5230和/或所述第二狭缝5240的宽度尺寸沿所述壳体组件5211的径向方向逐渐减小,即,所述第一狭缝5230和/或所述第二狭缝5240的宽度尺寸沿所述壳体组件5211的深度方向逐渐减小,如图36所示。在本申请的其他实施方式中,所述第一狭缝5230和/或所述第二狭缝5240的宽度尺寸在所述壳体组件5211的径向方向上可保持不变,对此,并不为本申请所局限。
为了使得所述第一磁性元件5220产生的磁场尽可能地覆盖所述动触导电元件52123的运动路径,进而作用于所述电弧。优选地,所述第一磁性元件5220的形状与所述动触导电元件52123的运动路径一致。相应地,在本申请的一些实施方式中,所述第一磁性元件5220具有沿着所述动触导电元件52123的运动路径延伸的弧形结构,在本申请的一个具体示例中,所述第一磁性元件5220为扇形磁铁。在本申请的其他示例中,所述第一磁性元件5220的形状可以为其他形状,例如,矩形、梯形、三角形、弓形、拱桥形。当然,也可以通过增加所述第一磁性元件5220的数量,或者,增大所述第一磁性元件5220的体积来使得所述第一磁性元件5220产生的磁场尽可能地覆盖所述动态接触部的运动路径,进而作用于所述电弧。
值得一提的是,在所述多层开关层组件520中,每一开关层521内的磁性元件可能会影响其相邻的开关层521中产生的电弧所受到的作用力。例如,当相邻两层的开关层521的磁性元件的磁极朝向相同时,两层开关层521的磁性元件将对形成于两者之间的电弧产生相反方向的作用力,使得所述电弧受到的与其所在开关层521的磁性元件对其产生的作用力同向的作用力被削弱。当相邻两层的开关层521的磁性元件的磁极朝向相反时,两层开关层521的磁性元件将对形成于两者之间的电弧产生相同方向作用力,使得所述电弧受到的与其所在开关层521的磁性元件对其产生的作用力同向的作用力被增强。因此,优选地,所述位于上层的所述开关层 521的第一磁性元件5220与位于下层的所述开关层521的第一磁性元件5220的磁极朝向相反。
在本申请中,所述电气隔离开关能够在磁性元件和所述灭弧槽的配合下实现灭弧,相应地,根据本申请的另一个方面,还提供了一种电气隔离开关的灭弧方法,其包括:在动触导电元件7123的运动路径上设置至少一磁性元件,以对所述动触导电元件7123与一对静触导电元件713接合或脱开过程中产生的电弧进行偏转;以及,在所述电弧的偏转路径上设置至少一灭弧槽。
在本申请中,所述电气隔离开关能够在磁性元件和所述凸起的配合下实现灭弧,相应地,根据本申请的另一个方面,还提供了一种电气隔离开关的灭弧方法,其包括:在动触导电元件7123的运动路径上设置至少一磁性元件,以对所述动触导电元件7123与一对静触导电元件713接合或脱开过程中产生的电弧进行偏转;以及,在所述电弧的偏转路径上设置至少一凸起。
在本申请中,所述电气隔离开关能够在磁性元件和所述狭缝的配合下实现灭弧,相应地,根据本申请的另一个方面,还提供了一种电气隔离开关的灭弧方法,其包括:在动触导电元件52123的外侧设置至少一磁性元件,以对所述动触导电元件52123与一对静触导电元件5213接合或脱开过程中产生的电弧进行偏转;以及,在所述电弧的偏转路径上设置至少一狭缝。
综上,基于本申请实施例的电气隔离开关及其灭弧方法被阐明,所述电气隔离开关通过磁场引导电弧按照预设的方式发生偏转,进而通过配置在所述电弧的偏转路径上的窄空间640进行物理干预将所述电弧快速地拉细和拉长以实现快速灭弧。且由于磁场能够对电弧进行特定方向的偏转,可凭此有选择性地、灵活地规划电弧的偏转路径和位于电弧的偏转路径上的窄空间640的位置。电气隔离开关通过磁场引导电弧按照预设的路径发生偏转,进而通过设置在所述电弧的偏转路径上的灭弧槽将电弧拉长、拉细,能够在不大幅增大直流开关的整体尺寸的条件下实现灭弧,还能够加快灭弧速度。所述电气隔离开关能够利用磁性元件的引导作用将电弧引至设有所述至少一凸起的区域,增大所述开关层与所述电弧的接触面积,加快灭弧速度。所述电气隔离开关既能够利用磁性元件的引导作用将电弧引 入狭缝中,将电弧拉细、拉长,还能够通过设计磁性元件的位置延长电弧的偏转路径,使得电弧在狭缝效应和磁场偏转的双重作用下较为快速地被熄灭。
以上对本申请及其实施方式进行了描述,这种描述没有限制性,附图中所示的也只是本申请的实施方式之一,实际的结构并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本申请创造宗旨的情况下,不经创造性地设计出与该技术方案相似的结构方式及实施例,均应属于本申请的保护范围。
Claims (106)
- 一种电气隔离开关,其特征在于,包括:壳体组件;被安装于所述壳体组件的电气接触组件,其中,所述电气接触组件包括至少一个静态接触部和至少一个动态接触部,所述动态接触部相对于所述静态接触部可移动,以适于控制所述电气隔离开关在导通态和断开态之间切换,当所述电气隔离开关被切换至所述导通态时,所述动态接触部与所述静态接触部相接触,当所述电气隔离开关被切换至所述断开态时,所述动态接触部与所述静态接触部相分开;以及用于对所述电气隔离开关在状态切换时产生的电弧进行偏转的至少一磁场产生元件;其中,所述壳体组件形成至少一窄空间,所述至少一窄空间位于所述电弧的偏转路径上。
- 根据权利要求1所述的电气隔离开关,其中,所述至少一磁场产生元件包括沿着所述电气接触组件的轴向方向至少一部分对应于所述动态接触部的运动路径的第一磁性元件。
- 根据权利要求1所述的电气隔离开关,其中,所述至少一磁场产生元件包括沿着所述电气接触组件的径向方向远离所述动态接触部的运动路径的第一磁性元件。
- 根据权利要求2所述的电气隔离开关,其中,所述第一磁性元件具有相对的第一磁极和第二磁极,其中,所述第一磁极朝向所述动态接触部的运动路径,所述第二磁极沿着所述电气接触组件的轴向方向远离所述第一磁极。
- 根据权利要求4所述的电气隔离开关,其中,所述至少一窄空间包括第一窄空间,所述第一窄空间位于所述动态接触部的运动路径的外侧。
- 根据权利要求5所述的电气隔离开关,其中,所述至少一窄空间还包括第二窄空间,所述第二窄空间位于所述动态接触部的运动路径的内侧。
- 根据权利要求6所述的电气隔离开关,其中,所述壳体组件包括承载壳体,所述承载壳体具有用于安装所述电气接触组件于其内的第一安装腔,其中,所述承载壳体还具有凹陷地形成于其内的第一灭弧槽,所述第一灭弧槽形成所述第一窄空间。
- 根据权利要求7所述的电气隔离开关,其中,所述承载壳体还具有凹陷地形成于其内的第二灭弧槽,所述第二灭弧槽形成所述第二窄空间。
- 根据权利要求3所述的电气隔离开关,其中,所述第一磁性元件具有相对的第一磁极和第二磁极,其中,所述第一磁极朝向所述动态接触部的运动路径,所述第二磁极沿着所述电气接触组件的径向方向远离所述第一磁极。
- 根据权利要求9所述的电气隔离开关,其中,所述至少一窄空间包括第一窄空间,所述第一窄空间位于所述动态接触部的运动路径的下侧。
- 根据权利要求10所述的电气隔离开关,其中,所述至少一窄空间还包括第二窄空间,所述第二窄空间位于所述动态接触部的运动路径的上侧。
- 根据权利要求6或11所述的电气隔离开关,其中,所述第一磁性元件具有沿着所述动态接触部的运动路径延伸的弧形结构。
- 根据权利要求12所述的电气隔离开关,其中,所述第一窄空间和/或所述第二窄空间的延伸方式与所述第一磁性元件的延伸方式相一致。
- 根据权利要求11所述的电气隔离开关,其中,所述壳体组件包括承载壳体和与所述承载壳体相盖合的封装壳体,所述承载壳体具有用于安装所述电气接触组件于其内的第一安装腔和用于安装所述第一磁性元件于其内的第二安装腔,所述第二安装腔位于所述第一安装腔的外侧,其中,所述第一窄空间形成所述封装壳体和所述承载壳体之间且位于所述第一磁性元件的下侧。
- 根据权利要求14所述的电气隔离开关,其中,所述第二窄空间形成于所述封装壳体和所述承载壳体之间且位于所述第一磁性元件的上侧。
- 一种电气隔离开关的灭弧方法,其特征在于,包括:通过磁场产生元件将电气隔离开关在状态切换时产生的电弧导引至窄空间内。
- 一种开关层,其特征在于,包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开;以及设置于所述动触导电元件的运动路径上的第一磁性元件,用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述承载壳体具有至少一灭弧槽,所述至少一灭弧槽位于所述电弧的偏转路径上。
- 根据权利要求17所述的开关层,其中,所述第一磁性元件具有相对的第一磁极与第二磁极,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述动触头导电组件的轴向方向远离所述第一磁极。
- 根据权利要求18所述的开关层,其中,所述至少一灭弧槽包括位于所述第一磁性元件的外侧的第一灭弧槽。
- 根据权利要求19所述的开关层,其中,所述至少一灭弧槽还包括位置与所述第一磁性元件的内侧的第二灭弧槽。
- 根据权利要求20所述的开关层,其中,所述承载壳体具有对应于所述动触导电元件的运动路径的突起部,所述第一磁性元件被嵌合地安装于所述突起部内,所述第一灭弧槽形成于所述突起部的内侧,所述第二灭弧槽形成于所述突起部的外侧。
- 根据权利要求20所述的开关层,其中,所述第一磁性元件沿着所述动触导电元件的运动路径延伸。
- 根据权利要求22所述的开关层,其中,所述第一灭弧槽和/或所述第二灭弧槽的延伸方式与所述第一磁性元件的延伸方式相一致。
- 根据权利要求22所述的开关层,其中,所述第一磁性元件为扇形磁铁。
- 根据权利要求23所述的开关层,其中,所述第一灭弧槽与所述第一磁性元件之间的距离为大于0且小于等于9mm,和/或所述第二灭弧槽与所述第一磁性元件之间的距离大于0且小于等于9mm。
- 根据权利要求19所述的开关层,其中,所述第一灭弧槽与外界相连通。
- 根据权利要求20所述的开关层,其中,所述第二灭弧槽连通于所述第一灭弧槽。
- 一种电气隔离开关,其特征在于,包括:至少一如权利要求17至27任一所述的开关层;以及可操作地连接于所述至少一开关层的作动控制组件,其中,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间切换。
- 一种灭弧方法,其特征在于,包括:在动触导电元件的运动路径上设置至少一磁性元件,以对所述动触导电元件与一对静触导电元件接合或脱开过程中产生的电弧进行偏转;以及在所述电弧的偏转路径上设置至少一灭弧槽。
- 一种开关层,其特征在于,包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开;以及设置于所述动触导电元件的运动路径上的第一磁性元件,用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽,所述第一灭弧槽包括第一槽体部分和第二槽体部分,所述第一槽体部分的宽度尺寸和所述第二槽体部分的宽度尺寸不同。
- 根据权利要求30所述的开关层,其中,所述第二槽体部分从所述第一槽体部分沿所述第一灭弧槽的深度方向延伸,所述第二槽体部分的宽度尺寸小于所述第一槽体部分的宽度尺寸。
- 根据权利要求31所述的开关层,其中,所述第一灭弧槽的截面形状为梯形,或者,三角形。
- 根据权利要求30所述的开关层,其中,所述第二槽体部分从所述 第一槽体部分沿所述第一灭弧槽的长度方向延伸,所述第二槽体部分的宽度尺寸小于所述第一槽体部分的宽度尺寸。
- 根据权利要求33所述的开关层,其中,所述第二槽体部分与所述静触导电元件在所述第一灭弧槽的长度方向上的距离大于所述第一槽体部分与所述静触导电元件在所述第一灭弧槽的长度方向上的距离。
- 根据权利要求30所述的开关层,其中,所述第一磁性元件具有相对的第一磁极和第二磁极,其中,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述可动触头导电组件的轴向方向远离所述第一磁极。
- 根据权利要求35所述的开关层,其中,所述第一灭弧槽形成于所述第一磁性元件的外侧。
- 根据权利要求36所述的开关层,其中,所述承载壳体形成位于所述电弧的偏转路径上的第二灭弧槽,所述第二灭弧槽形成于所述第一磁性元件的内侧。
- 根据权利要求37所述的开关层,其中,所述第二灭弧槽包括第三槽体部分和第四槽体部分,所述第三槽体部分的宽度尺寸和所述第四槽体部分的宽度尺寸不同。
- 根据权利要求38所述的开关层,其中,所述第四槽体部分从所述第三槽体部分沿所述第二灭弧槽的深度方向延伸,所述第四槽体部分的宽度尺寸小于所述第三槽体部分的宽度尺寸。
- 根据权利要求38所述的开关层,其中,所述第四槽体部分从所述第三槽体部分沿所述第二灭弧槽的长度方向延伸,所述第四槽体部分的宽度尺寸小于所述第三槽体部分的宽度尺寸。
- 根据权利要求40所述的开关层,其中,所述第四槽体部分与所述静触导电元件在所述第二灭弧槽的长度方向上的距离大于所述第三槽体部分与所述静触导电元件在所述第二灭弧槽的长度方向上的距离。
- 一种电气隔离开关,其特征在于,包括:至少一如权利要求30至41任一所述的开关层;以及可操作地连接于所述至少一开关层的作动控制组件,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间切换。
- 一种开关层,其特征在于,包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括绝缘转盘和安装于所述绝缘转盘的动触导电元件,所述可动触头导电组件相对于一对所述静触导电元件可转动以使得所述动触导电元件可选择与一对所述静触导电元件接合或脱开;以及对应于所述动触导电元件的运动路径的第一磁性元件,所述第一磁性元件适于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述承载壳体具有位于所述电弧的偏转路径上的至少一灭弧槽,所述绝缘转盘具有预定形状配置以使得在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的至少一部分在所述开关层所设定的轴向方向上与所述至少一灭弧槽部分地重叠。
- 根据权利要求43所述的开关层,其中,所述第一磁性元件具有相对的第一磁极与第二磁极,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述可动触头导电组件的轴向方向远离所述第一磁极。
- 根据权利要求44所述的开关层,其中,所述绝缘转盘具有一缺口结构,其中,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的所述缺口结构的周缘部在所述开关层所设 定的径向方向上伸入所述至少一灭弧槽内。
- 根据权利要求45所述的开关层,其中,所述缺口结构的周缘部具有内边缘,以使得在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述缺口结构的内边缘在所述开关层所设定的径向方向上伸入所述至少一灭弧槽内。
- 根据权利要求45所述的开关层,其中,所述缺口结构的周缘部具有内边缘和与所述内边缘相对的外边缘,以使得在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述缺口结构的周缘部的内边缘和/或外边缘在所述开关层所设定的径向方向上伸入所述至少一灭弧槽内。
- 根据权利要求45所述的开关层,其中,所述缺口结构的周缘部的延伸方式与所述第一灭弧槽的延伸方式不一致。
- 根据权利要求48所述的开关层,其中,所述缺口结构的周缘部包括第一边缘部和第二边缘部,所述第二边缘部突出于所述第一边缘部。
- 根据权利要求45所述的开关层,其中,所述缺口结构为扇形缺口结构。
- 根据权利要求50所述的开关层,其中,所述扇形缺口结构的圆心角的角度值小于所述开关层的动作角度。
- 根据权利要求51所述的开关层,其中,所述开关层的动作角度为85°至95°。
- 根据权利要求51所述的开关层,其中,所述扇形的圆心角与所述动作角度之间的差值小于所述动作角度的5%-15%。
- 根据权利要求45所述的开关层,其中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽和第二灭弧槽,所述第一灭弧槽形成于所述第一磁性元件的外侧,所述第二灭弧槽形成于所述第一磁性元件的内侧,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的缺口结构的周缘部在所述开关层所设定的径向方向上伸入所述第一灭弧槽和/或所述第二灭弧槽。
- 根据权利要求43所述的开关层,其中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽,所述第一灭弧槽形成于所述第一磁性元件的外侧,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的外边缘在所述开关层所设定的径向方向上伸入所述第一灭弧槽。
- 一种电气隔离开关,其特征在于,包括:至少一如权利要求43至55任一所述的开关层;以及可操作地连接于所述至少一开关层的作动控制组件,其中,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间切换。
- 一种开关层,其特征在于,包括:壳体组件;被安装于所述壳体组件的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开;以及设置于所述动触导电元件的外侧的第一磁性元件,用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述壳体组件形成位于所述电弧的偏转路径上的至少一狭缝。
- 根据权利要求57所述的开关层,其中,所述第一磁性元件具有相对的第一磁极和第二磁极,其中,所述第一磁极朝向所述动触导电元件的 运动路径,所述第二磁极沿着所述可动触头导电组件的径向方向远离所述第一磁极。
- 根据权利要求58所述的开关层,其中,所述至少一狭缝包括位于所述动触导电元件的运动路径的下侧的第一狭缝。
- 根据权利要求59所述的开关层,其中,所述至少一狭缝包括位于所述动触导电元件的运动路径的上侧的第二狭缝。
- 根据权利要求60所述的开关层,其中,所述第一狭缝和/或所述第二狭缝的宽度尺寸沿着所述开关层所设定的径向方向逐渐减小。
- 根据权利要求60所述的开关层,其中,所述壳体组件包括承载壳体和与所述承载壳体相盖合的封装壳体,所述承载壳体具有用于安装所述可动触头导电组件于其内的第一安装腔和用于安装所述第一磁性元件于其内的第二安装腔,所述第二安装腔位于所述第一安装腔的外侧,其中,所述承载壳体与所述第一磁性元件之间的间隙中位于所述开关层所设定的轴向方向上的部分形成所述第一狭缝,所述封装壳体与所述第一磁性元件之间的间隙中位于所述开关层所设定的轴向方向上的部分形成所述第二狭缝。
- 根据权利要求60所述的开关层,其中,所述第一磁性元件具有沿着所述动触导电元件的运动路径延伸的弧形结构。
- 根据权利要求63所述的开关层,其中,所述第一狭缝和/或所述第二狭缝的延伸方式与所述第一磁性元件的延伸方式相一致。
- 一种多层开关层组件,其特征在于,包括:相互叠置的至少二如权利要求57至64任一所述的开关层。
- 根据权利要求65所述的多层开关层组件,其中,位于上层的所述 开关层的第一磁性元件与位于下层的所述开关层的第一磁性元件的磁极朝向相反。
- 一种电气隔离开关,其特征在于,包括:至少一如权利要求57至64任一所述的开关层;以及可操作地连接于所述至少一开关层的作动控制组件,其中,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间切换。
- 一种开关层,其特征在于,包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件适于被移动以可选择地使得所述动触导电元件与一对所述静触导电元件接合或脱开;以及设置于所述动触导电元件的运动路径上的第一磁性元件,用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述承载壳体设有形成于所述电弧的偏转路径上的至少一凸起。
- 根据权利要求68所述的开关层,其中,所述第一磁性元件具有相对的第一磁极和第二磁极,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述动触头导电组件的轴向方向远离所述第一磁极。
- 根据权利要求69所述的开关层,其中,所述至少一凸起包括形成于所述第一磁性元件的内侧的至少一第一凸起。
- 根据权利要求70所述的开关层,其中,所述至少一凸起包括形成于所述第一磁性元件的外侧的至少一第二凸起。
- 根据权利要求71所述的开关层,其中,所述至少一凸起还包括形成于至少一所述第一凸起和至少一所述第二凸起之间的至少一第三凸起。
- 根据权利要求71所述的开关层,其中,所述第一磁性元件具有沿着所述动触导电元件的运动路径延伸的弧形结构。
- 根据权利要求73所述的开关层,其中,所述至少一第一凸起包括多个第一凸起,所述多个第一凸起沿着所述第一磁性元件的延伸方向呈弧形排列。
- 根据权利要求74所述的开关层,其中,所述至少一第二凸起包括多个第二凸起,所述多个第二凸起沿着所述第一磁性元件的延伸方向呈弧形排列。
- 根据权利要求75所述的开关层,其中,所述至少一第一凸起和所述至少一第二凸起在所述承载壳体的径向方向上相互错开。
- 一种电气隔离开关,其特征在于,包括:至少一如权利要求68至76任一所述的开关层;以及可操作地连接于所述至少一开关层的作动控制组件,其中,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间切换。
- 一种开关层,其特征在于,包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件包括一对动态接触部,所述动触导电元件适于被移动以可选择地使得一对动态接触部与一对所述静触导电元件接合或脱开;以及对应于所述动触导电元件的运动路径上的第一磁性元件,用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述承载壳体具有至少一灭弧槽,所述至少一灭弧槽位于所述电弧的偏转路径上。
- 根据权利要求78所述的开关层,其中,所述第一磁性元件具有相对的第一磁极与第二磁极,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述动触头导电组件的轴向方向远离所述第一磁极。
- 根据权利要求79所述的开关层,其中,所述至少一灭弧槽包括位于所述第一磁性元件的外侧的第一灭弧槽,所述至少一灭弧槽还包括位置与所述第一磁性元件的内侧的第二灭弧槽,所述第一灭弧槽位于所述动触导电元件的下侧,所述第二灭弧槽位于所述动触导电元件的下侧。
- 根据权利要求80所述的开关层,其中,所述第一灭弧槽与外界相连通。
- 根据权利要求81所述的开关层,其中,所述第二灭弧槽连通于所述第一灭弧槽。
- 根据权利要求80所述的开关层,其中,所述第一磁性元件具有沿着所述动触导电元件的运动路径延伸的弧形结构。
- 根据权利要求83所述的开关层,其中,所述第一灭弧槽和/或所述第二灭弧槽的延伸方式与所述第一磁性元件的延伸方式相一致。
- 根据权利要求84所述的开关层,其中,所述第一灭弧槽与所述第一磁性元件之间的距离为大于0且小于等于9mm,和/或所述第二灭弧槽与所述第一磁性元件之间的距离大于0且小于等于9mm。
- 一种电气隔离开关,其特征在于,包括:至少一如权利要求78至85任一所述的开关层;以及可操作地连接于所述至少一开关层的作动控制组件,其中,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间切换。
- 一种电气隔离开关,其特征在于,包括:至少一开关层;以及可操作地连接于所述至少一开关层的作动控制组件,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间切换。其中,每一所述开关层,包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,其中,所述可动触头导电组件包括相对于一对所述静触导电元件可移动的动触导电元件,所述动触导电元件包括一对动态接触部,所述动触导电元件适于被移动以可选择地使得一对动态接触部与一对所述静触导电元件接合或脱开以使得所述开关层在所述闭合状态和所述断开状态之间切换;以及用于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转的第一磁性元件;其中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽,所述第一灭弧槽包括第一槽体部分和第二槽体部分,所述第一槽体部分的宽度尺寸不同于所述第二槽体部分的宽度尺寸。
- 根据权利要求87所述的电气隔离开关,其中,所述第二槽体部分的宽度尺寸小于所述第一槽体部分的宽度尺寸,且所述第二槽体部分与所述静触导电元件的距离大于所述第一槽体部分与所述静触导电元件的距离。
- 根据权利要求88所述的电气隔离开关,其中,所述第二槽体部分与所述静触导电元件在所述第一灭弧槽的深度方向上的距离大于所述第一 槽体部分与所述静触导电元件在所述第一灭弧槽的深度方向上的距离。
- 根据权利要求88所述的电气隔离开关,其中,所述第二槽体部分与所述静触导电元件在所述第一灭弧槽的长度方向上的距离大于所述第一槽体部分与所述静触导电元件在所述第一灭弧槽的长度方向上的距离。
- 根据权利要求87所述的电气隔离开关,其中,所述第一磁性元件具有相对的第一磁极和第二磁极,其中,所述第一磁极朝向所述动态接触部的运动路径,所述第二磁极沿着所述可动触头导电组件的轴向方向远离所述第一磁极。
- 根据权利要求91所述的电气隔离开关,其中,所述第一灭弧槽形成于所述第一磁性元件的外侧,所述承载壳体具有位于所述电弧的偏转路径上的第二灭弧槽,所述第二灭弧槽形成于所述第一磁性元件的内侧。
- 根据权利要求92所述的电气隔离开关,其中,所述第二灭弧槽包括第三槽体部分和第四槽体部分,所述第四槽体部分的宽度尺寸小于所述第三槽体部分的宽度尺寸。
- 根据权利要求93所述的电气隔离开关,其中,所述第四槽体部分与所述静触导电元件的距离大于所述第三槽体部分与所述静触导电元件的距离。
- 根据权利要求94所述的电气隔离开关,其中,所述第四槽体部分与所述静触导电元件在所述第二灭弧槽的深度方向上的距离大于所述第三槽体部分与所述静触导电元件在所述第二灭弧槽的深度方向上的距离。
- 根据权利要求94所述的电气隔离开关,其中,所述第四槽体部分与所述静触导电元件在所述第二灭弧槽的长度方向上的距离大于所述第三槽体部分与所述静触导电元件在所述第二灭弧槽的长度方向上的距离。
- 一种电气隔离开关,其特征在于,包括:至少一开关层;以及可操作地连接于所述至少一开关层的作动控制组件,其中,所述作动控制组件被配置为控制所述至少一开关层在闭合状态和断开状态之间进行切换;其中,每一所述开关层,包括:承载壳体;安装于所述承载壳体的一对静触导电元件和可动触头导电组件,所述可动触头导电组件包括绝缘转盘和安装于所述绝缘转盘的动触导电元件,所述可动触头导电组件相对于一对所述静触导电元件可转动以使得所述动触导电元件可选择与一对所述静触导电元件接合或脱开以控制所述开关层在所述闭合状态和所述断开状态之间进行切换;以及竖直设置且对应于所述动触导电元件的运动路径的第一磁性元件,所述第一磁性元件适于对所述动触导电元件与所述静触导电元件接合或脱开过程中产生的电弧进行偏转;其中,所述承载壳体具有邻近于所述第一磁性元件的至少一灭弧槽,所述绝缘转盘具有一缺口结构;其中,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的所述缺口结构的周缘部在所述开关层所设定的径向方向上伸入所述至少一灭弧槽内。
- 根据权利要求97所述的电气隔离开关,其中,所述第一磁性元件具有相对的第一磁极与第二磁极,所述第一磁极朝向所述动触导电元件的运动路径,所述第二磁极沿着所述可动触头导电组件的轴向方向远离所述第一磁极。
- 根据权利要求98所述的电气隔离开关,其中,所述缺口结构的周缘部具有内边缘,其中,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述内边缘在所述开关层所设定的径向方向上伸入所述至少一灭弧槽内。
- 根据权利要求98所述的电气隔离开关,其中,所述缺口结构的 周缘部具有内边缘和与所述内边缘相对的外边缘,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述缺口结构的周缘部的内边缘和/或外边缘在所述开关层所设定的径向方向上伸入所述至少一灭弧槽内。
- 根据权利要求98所述的电气隔离开关,其中,所述缺口结构的周缘部的延伸方式与所述第一灭弧槽的延伸方式不一致。
- 根据权利要求101所述的电气隔离开关,其中,所述缺口结构的周缘部包括第一边缘部和第二边缘部,所述第二边缘部突出于所述第一边缘部。
- 根据权利要求98所述的电气隔离开关,其中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽和第二灭弧槽,所述第一灭弧槽形成于所述第一磁性元件的外侧,所述第二灭弧槽形成于所述第一磁性元件的内侧,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的缺口结构的周缘部在所述开关层所设定的径向方向上伸入所述第一灭弧槽和/或所述第二灭弧槽。
- 根据权利要求103所述的电气隔离开关,其中,所述缺口结构的周缘部具有内边缘,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述缺口结构的周缘部的内边缘在所述开关层所设定的径向方向上伸入所述第二灭弧槽内。
- 根据权利要求103所述的电气隔离开关,其中,所述缺口结构的周缘部具有内边缘和与所述内边缘相对的外边缘,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述缺口结构的周缘部的内边缘在所述开关层所设定的径向方向上伸入所述第二灭弧槽内,和/或,所述缺口结构的周缘部的外边缘在所述开关层所设定的径向方向上伸入所述第一灭弧槽内。
- 根据权利要求97所述的电气隔离开关,其中,所述承载壳体具有形成于所述电弧的偏转路径上的第一灭弧槽,所述第一灭弧槽形成于所述第一磁性元件的外侧,在所述可动触头导电组件相对于一对所述静触导电元件进行移动的过程中,所述绝缘转盘的外边缘在所述开关层所设定的径向方向上伸入所述第一灭弧槽。
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110719544.3A CN113345747A (zh) | 2021-06-28 | 2021-06-28 | 一种新型隔离开关 |
CN202110719544.3 | 2021-06-28 | ||
CN202122753193 | 2021-11-11 | ||
CN202122753193.6 | 2021-11-11 | ||
CN202210722935.5 | 2022-06-24 | ||
CN202221594080.4U CN218038993U (zh) | 2021-06-28 | 2022-06-24 | 一种电气隔离开关及其开关层和多层开关层组件 |
CN202210721834.6A CN115602473A (zh) | 2021-06-28 | 2022-06-24 | 一种电气隔离开关及其开关层 |
CN202210722412.0 | 2022-06-24 | ||
CN202210721813.4A CN115602484A (zh) | 2021-06-28 | 2022-06-24 | 一种电气隔离开关及其灭弧方法 |
CN202210721813.4 | 2022-06-24 | ||
CN202221594080.4 | 2022-06-24 | ||
CN202221593168.4U CN218038968U (zh) | 2021-06-28 | 2022-06-24 | 一种电气隔离开关及其开关层 |
CN202210722935.5A CN115602475A (zh) | 2021-06-28 | 2022-06-24 | 一种电气隔离开关及其开关层 |
CN202210721834.6 | 2022-06-24 | ||
CN202221593168.4 | 2022-06-24 | ||
CN202210722412.0A CN115602474A (zh) | 2021-06-28 | 2022-06-24 | 一种电气隔离开关及其开关层和灭弧方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023274174A1 true WO2023274174A1 (zh) | 2023-01-05 |
Family
ID=84690086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/101645 WO2023274174A1 (zh) | 2021-06-28 | 2022-06-27 | 电气隔离开关及其开关层和多层开关层组件、灭弧方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023274174A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10154458A (ja) * | 1996-11-25 | 1998-06-09 | Matsushita Electric Works Ltd | 直流遮断器 |
JP2014222566A (ja) * | 2013-05-13 | 2014-11-27 | 三菱電機株式会社 | 開閉装置 |
CN205810645U (zh) * | 2016-06-23 | 2016-12-14 | 常熟开关制造有限公司(原常熟开关厂) | 一种具有灭弧装置的旋转开关 |
CN212750658U (zh) * | 2020-08-04 | 2021-03-19 | 上海良信电器股份有限公司 | 一种灭弧装置和隔离开关 |
CN113345747A (zh) * | 2021-06-28 | 2021-09-03 | 北京光华世通科技有限公司 | 一种新型隔离开关 |
CN216412926U (zh) * | 2021-06-28 | 2022-04-29 | 北京光华世通科技有限公司 | 一种新型隔离开关 |
-
2022
- 2022-06-27 WO PCT/CN2022/101645 patent/WO2023274174A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10154458A (ja) * | 1996-11-25 | 1998-06-09 | Matsushita Electric Works Ltd | 直流遮断器 |
JP2014222566A (ja) * | 2013-05-13 | 2014-11-27 | 三菱電機株式会社 | 開閉装置 |
CN205810645U (zh) * | 2016-06-23 | 2016-12-14 | 常熟开关制造有限公司(原常熟开关厂) | 一种具有灭弧装置的旋转开关 |
CN212750658U (zh) * | 2020-08-04 | 2021-03-19 | 上海良信电器股份有限公司 | 一种灭弧装置和隔离开关 |
CN113345747A (zh) * | 2021-06-28 | 2021-09-03 | 北京光华世通科技有限公司 | 一种新型隔离开关 |
CN216412926U (zh) * | 2021-06-28 | 2022-04-29 | 北京光华世通科技有限公司 | 一种新型隔离开关 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021258895A1 (zh) | 一种直流接触器及车辆 | |
WO2017173819A1 (zh) | 用于旋转隔离开关的触头模块和旋转隔离开关 | |
CN112420462B (zh) | 一种断路器的触头灭弧装置 | |
CN111816500B (zh) | 一种真空断路器的灭弧装置 | |
JP2007329031A (ja) | 回路遮断器 | |
CN218004705U (zh) | 一种电气隔离开关 | |
WO2024007845A1 (zh) | 灭弧机构 | |
WO2020241397A1 (ja) | 直流遮断器 | |
WO2023274174A1 (zh) | 电气隔离开关及其开关层和多层开关层组件、灭弧方法 | |
WO2022156816A9 (zh) | 框架断路器 | |
CN114999838A (zh) | 旋转式电气开关及其开关层 | |
CN219832465U (zh) | 一种dc1500v无极性磁吹灭弧式直流隔离开关 | |
CN209418334U (zh) | 双断点触头的灭弧结构 | |
CN218038993U (zh) | 一种电气隔离开关及其开关层和多层开关层组件 | |
CN217544514U (zh) | 断路器的灭弧系统以及断路器 | |
CN213304049U (zh) | 一种断路器的触头灭弧装置 | |
CN115188615A (zh) | 一种开关单元、隔离开关及供电系统 | |
CN220963130U (zh) | 一种双灭弧室直流塑壳断路器 | |
CN216957864U (zh) | 一种旋转式隔离开关灭弧结构 | |
CN106098459B (zh) | 断路器 | |
CN217086445U (zh) | 旋转式电器开关 | |
CN219778764U (zh) | 一种隔离开关及其开关腔体电弧减压结构 | |
CN220021026U (zh) | 一种灭弧机构及断路器 | |
KR100364825B1 (ko) | 배선용차단기의 아크가스 배기장치 | |
CN215869253U (zh) | 塑壳断路器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22831988 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/04/2024) |