WO2023273307A1 - 传动结构、纯电动车的动力系统和控制方法 - Google Patents

传动结构、纯电动车的动力系统和控制方法 Download PDF

Info

Publication number
WO2023273307A1
WO2023273307A1 PCT/CN2022/072034 CN2022072034W WO2023273307A1 WO 2023273307 A1 WO2023273307 A1 WO 2023273307A1 CN 2022072034 W CN2022072034 W CN 2022072034W WO 2023273307 A1 WO2023273307 A1 WO 2023273307A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
transmission
sun gear
clutch
motor
Prior art date
Application number
PCT/CN2022/072034
Other languages
English (en)
French (fr)
Inventor
张恒先
周之光
叶远龙
田蕾
Original Assignee
奇瑞汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司 filed Critical 奇瑞汽车股份有限公司
Publication of WO2023273307A1 publication Critical patent/WO2023273307A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • B60K17/08Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing of mechanical type

Definitions

  • the disclosure relates to the technical field of automobiles, in particular to a transmission structure, a power system and a control method of a pure electric vehicle.
  • the power system of a pure electric vehicle usually uses a synchronizer to switch gears, but when using a synchronizer to switch gears, it is necessary to accurately control the synchronizer to connect to the corresponding gear train, which involves multiple parts.
  • the cooperation has higher requirements for assembly, and the assembly is more difficult.
  • Embodiments of the present disclosure provide a transmission structure, a power system and a control method of a pure electric vehicle, and the structure is simple and easy to assemble. Described technical scheme is as follows:
  • an embodiment of the present disclosure provides a transmission structure, and the transmission structure includes: a planetary gear train and a switching mechanism;
  • the planetary gear train includes: a ring gear, a first sun gear, a second sun gear, a planetary gear and a planet carrier, the first sun gear and the second sun gear are located in the ring gear, and are connected to The ring gear is coaxially arranged, the planetary gear is located in the ring gear, and meshes with the first sun gear, the second sun gear and the ring gear, and the planet carrier and the planetary gear connected;
  • the switching mechanism is used for selectively locking the second sun gear and selectively connecting the second sun gear and the planet carrier.
  • the state of the planetary gear train can be changed, and the planetary gear train is in different
  • the state has different transmission ratios, so as to realize different gears, the structure is simple, and the assembly is convenient.
  • the switching mechanism includes a first clutch and a second clutch, the first clutch is connected with the second sun gear, and the second clutch is connected with the second sun gear and the planet carrier.
  • both the first clutch and the second clutch include a first connecting portion and a second connecting portion, the first connecting portion of the first clutch is connected to the second sun gear, and the first The second connection part of the clutch is used to connect with the vehicle frame, the first connection part of the second clutch is connected with the planet carrier, and the second connection part of the second clutch is connected with the second sun gear.
  • the switching mechanism further includes a transmission shaft, one end of the transmission shaft is connected to the first connecting portion of the first clutch, and the other end of the transmission shaft is connected to the second sun gear, the The second connecting part of the second clutch is coaxially fixed outside the transmission shaft.
  • an embodiment of the present disclosure provides a power system of a pure electric vehicle, the power system includes a first motor and the transmission structure described in the previous aspect;
  • the first motor is in drive connection with the first sun gear, and the ring gear is in drive connection with wheels.
  • the power system further includes a main shaft, a first transmission gear, a second transmission gear and a second motor;
  • the main shaft is in transmission connection with the wheels, the first transmission gear and the second transmission gear are coaxially connected with the main shaft, the first transmission gear meshes with the ring gear, and the second transmission gear and the The transmission connection of the second motor is described.
  • the power system further includes a third transmission gear, the third transmission gear is coaxially connected with the main shaft, and is located between the first transmission gear and the second transmission gear, and the third transmission gear is The three transmission gears are connected with the wheel drive.
  • the power system further includes a one-way clutch connected to the second motor and the second transmission gear.
  • an embodiment of the present disclosure also provides a control method for a power system of a pure electric vehicle, the control method comprising:
  • controlling the switching mechanism to lock the second sun gear, disconnecting the second sun gear and the planet carrier, and controlling the rotation of the first motor;
  • An embodiment of the present disclosure provides a transmission structure, the transmission structure includes: a first clutch, a second clutch and a planetary gear train; the planetary gear train includes: a first sun gear, a second sun gear, a planetary gear, a planetary gear frame and ring gear, the first sun gear, the second sun gear and the ring gear are coaxial, and both the first sun gear and the second sun gear are located in the ring gear, the The planetary gear is rotatably arranged on the planetary carrier, the planetary gear is located between the first sun gear and the ring gear, and between the second sun gear and the ring gear, the The planetary gears are respectively meshed with the first sun gear, the second sun gear and the ring gear; the first clutch is connected with the second sun gear, and the first clutch is used to selectively lock stop the second sun gear, the second clutch is respectively connected with the second sun gear and the planet carrier, and the second clutch is used to switch the coaxial connection between the second sun gear and the planet carrier or disconnect.
  • the planetary gear train
  • both the first clutch and the second clutch include a first connecting portion and a second connecting portion, and the first connecting portion of the first clutch is connected to the second connecting portion.
  • the sun gear is coaxially connected, the second connecting part of the first clutch is in a locked state, the first connecting part of the second clutch is coaxially connected with the planet carrier, and the second connecting part of the second clutch is connected with the The second sun gear is coaxially connected.
  • the transmission structure further includes a transmission shaft, one end of the transmission shaft is coaxially connected to the first connecting portion of the first clutch, and the other end of the transmission shaft It is coaxially connected with the second sun gear, and the second connecting part of the second clutch is coaxially and fixedly sleeved on the outside of the transmission shaft.
  • An embodiment of the present disclosure provides a power system of a pure electric vehicle.
  • the power system includes: a main shaft, a first transmission gear, a first motor, and the transmission structure as described above;
  • the first transmission gear is coaxially and fixedly sleeved on the main shaft, the first transmission gear is in transmission connection with the ring gear, and the first motor is in transmission connection with the first sun gear.
  • the power system further includes: a second transmission gear and a second motor; the second transmission gear is coaxially and fixedly sleeved on the main shaft, and the second The transmission gear is spaced apart from the first transmission gear, and the second motor is in transmission connection with the second transmission gear.
  • the power system further includes a one-way clutch, and the one-way clutch is arranged between the output shaft of the second motor and the second transmission gear and is connected to the The output shaft of the second motor and the second transmission gear.
  • the power system further includes a power supply assembly
  • the power supply assembly includes: a battery and two inverters, the two inverters are respectively connected to the battery, The first motor is connected to one of the two inverters, and the second motor is connected to the other of the two inverters.
  • the power system further includes a third transmission gear, the third transmission gear is coaxially and fixedly sleeved outside the main shaft, and the wheels communicate with the The third transmission gear is in transmission connection.
  • An embodiment of the present disclosure provides a control method for the power system of a pure electric vehicle, the control method is used to control the power system of the pure electric vehicle as described above to switch to single-motor mode, dual-motor mode, reverse mode and energy recovery model.
  • the control method when controlling the power system to switch to a single-motor mode, includes: controlling the first motor to stop, controlling the second motor to work, controlling the The first clutch releases the second sun gear, and controls the second clutch to disconnect the second sun gear from the planet carrier; or, controls the first motor to work, and controls the second motor to stop , control the first clutch to lock the second sun gear, control the second clutch to disconnect the second sun gear from the planet carrier; or control the first motor to work, and control the Stop the second motor, control the first clutch to release the second sun gear, control the second clutch to connect the second sun gear and the planet carrier coaxially; control the power system to switch to dual In motor mode, the control method includes: controlling the first motor and the second motor to work, controlling the first clutch to lock the second sun gear, and controlling the second clutch to make the second The sun gear is disconnected from the planet carrier; or, the first motor and the second motor are controlled to work, the first clutch is controlled to release the second sun gear, and the second clutch is controlled to make
  • the planetary gear train in the transmission structure provided by the embodiment of the present disclosure includes a first sun gear, a second sun gear, a planetary gear, a planetary carrier and a ring gear, and the two sun gears are both meshed with the planetary gear and in the axial direction of the planetary gear interval distribution.
  • the first clutch can be used to lock the second sun gear to control the second sun gear from rotating, and the second clutch can selectively connect the planet carrier and the second sun gear coaxially so that the planet carrier and the second sun gear form a whole and both rotate together.
  • the first clutch can be controlled to lock the second sun gear, so that when the first motor drives the first sun gear to rotate, the planetary gear rotates around the two sun gears at the same time , the power of the first electrode can be transmitted to the ring gear through the planetary gear train, and finally transmitted to the wheel through the ring gear, so that the planetary gear train can drive the wheel to rotate at the speed ratio of the first gear. It is also possible to control the action of the second clutch so that the second sun gear and the planetary carrier are integrated. When the first motor drives the first sun gear to rotate, the planetary wheel only revolves and does not rotate.
  • the second sun gear, the planetary carrier, and the planets The wheel and the ring gear rotate together, so that the power of the first electrode is transmitted to the ring gear through the planetary gear train, and finally transmitted to the wheel through the ring gear, so that the planetary gear train drives the wheel to rotate at the speed ratio of the second gear.
  • the first motor can be driven in two gears.
  • the gear shifting method of using the synchronizer to switch different gear trains does not need to control the synchronizer to accurately switch to different gear trains, so it can quickly and accurately realize multi-gear switching, and the transmission structure, Only the second sun gear is added to the planetary gear train, and two clutches are provided, so the structure is simple and easy to assemble, so as to improve the production efficiency.
  • FIG. 1 is a schematic structural diagram of a transmission structure provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic structural diagram of a power system of a pure electric vehicle provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of a power system of a pure electric vehicle provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in a single-motor mode provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in single-motor mode provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in a single-motor mode provided by an embodiment of the present disclosure
  • Fig. 7 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in dual-motor mode provided by an embodiment of the present disclosure
  • Fig. 8 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in dual-motor mode provided by an embodiment of the present disclosure
  • Fig. 9 is a schematic diagram of energy transfer in a reverse mode of a power system of a pure electric vehicle provided by an embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in an energy recovery mode provided by an embodiment of the present disclosure.
  • Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. “Up”, “Down”, “Left”, “Right”, “Top”, “Bottom” and so on are only used to indicate the relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also be Change accordingly.
  • Fig. 1 is a schematic structural diagram of a transmission structure provided by an embodiment of the present disclosure. As shown in FIG. 1 , the transmission structure includes a planetary gear train 2 and a switching mechanism 10 .
  • the planetary gear train 2 includes a ring gear 25 , a first sun gear 21 , a second sun gear 22 , planetary gears 23 and a planetary carrier 24 . Both the first sun gear 21 and the second sun gear 22 are located in the ring gear 25 , and both the first sun gear 21 and the second sun gear 22 are coaxially arranged with the ring gear 25 .
  • the planetary gear 23 is located in the ring gear 25 , and the planetary gear 23 meshes with the first sun gear 21 , the second sun gear 22 and the ring gear 25 .
  • the planet carrier 24 is connected with the planet gear 23 .
  • the switching mechanism 10 is used to selectively lock the second sun gear 22 and selectively connect the second sun gear 22 to the planet carrier 24 .
  • the state of the planetary gear train can be changed, and the planetary gear train has different transmission ratios in different states, so as to achieve different
  • the gear is simple in structure and easy to assemble.
  • the switching mechanism 10 includes a first clutch 11 and a second clutch 12 .
  • the first clutch 11 is connected with the second sun gear 22
  • the second clutch 12 is connected with the second sun gear 22 and the planet carrier 24 . It is controlled by two clutches, the two clutches are independent of each other, the structure is simple, and the setting is convenient.
  • the planetary gear train 2 includes: a first sun gear 21, a second sun gear 22, a planetary gear 23, a planet carrier 24 and a ring gear 25, the first sun gear 21, the second sun gear 22 and the ring gear 25 are coaxial, and the first sun gear 21 and the second sun gear 22 are located in the ring gear 25, and the planetary gear 23 is rotatably arranged on the planet carrier 24, and the planetary gear 23 is simultaneously located on the first sun gear 21 Between the ring gear 25 and the second sun gear 22 and the ring gear 25 , the planetary gear 23 meshes with the first sun gear 21 , the second sun gear 22 and the ring gear 25 respectively.
  • the first clutch 11 is connected with the second sun gear 22, the first clutch 11 is used to selectively lock the second sun gear 22, the second clutch 12 is connected with the second sun gear 22 and the planet carrier 24 respectively, the second clutch 12 is used to switch the coaxial connection or disconnection of the second sun gear 22 and the planet carrier 24 .
  • the planetary gear train in the transmission structure provided by the embodiment of the present disclosure includes a first sun gear, a second sun gear, a planetary gear, a planetary carrier and a ring gear, and the two sun gears are both meshed with the planetary gear and in the axial direction of the planetary gear interval distribution.
  • the first clutch can be used to lock the second sun gear to control the second sun gear from rotating, and the second clutch can selectively connect the planet carrier and the second sun gear coaxially so that the planet carrier and the second sun gear form a whole and both rotate together.
  • the first clutch can be controlled to lock the second sun gear, so that when the first motor drives the first sun gear to rotate, the planetary gear rotates around the two sun gears at the same time , the power of the first electrode can be transmitted to the ring gear through the planetary gear train, and finally transmitted to the wheel through the ring gear, so that the planetary gear train can drive the wheel to rotate at the speed ratio of the first gear. It is also possible to control the action of the second clutch so that the second sun gear and the planetary carrier are integrated. When the first motor drives the first sun gear to rotate, the planetary wheel only revolves and does not rotate.
  • the second sun gear, the planetary carrier, and the planets The wheel and the ring gear rotate together, so that the power of the first electrode is transmitted to the ring gear through the planetary gear train, and finally transmitted to the wheel through the ring gear, so that the planetary gear train drives the wheel to rotate at the speed ratio of the second gear.
  • the first motor can be driven in two gears.
  • the gear shifting method of using the synchronizer to switch different gear trains does not need to control the synchronizer to accurately switch to different gear trains, so it can quickly and accurately realize multi-gear switching, and the transmission structure, Only the second sun gear is added to the planetary gear train, and two clutches are provided, so the structure is simple and easy to assemble, so as to improve the production efficiency.
  • both the first clutch 11 and the second clutch 12 include a first connecting portion and a second connecting portion, the first connecting portion of the first clutch 11 is connected to the second sun gear 22, and the first The second connecting part of the clutch 11 is used to connect with the vehicle frame, so that the second connecting part is in a locked state.
  • the first connection part of the second clutch 12 is connected with the planet carrier 24
  • the second connection part of the second clutch 12 is connected with the second sun gear 22 .
  • the second connecting portion 14 is used to output the power transmitted from the first connecting portion 13 to components connected to the second connecting portion 14 .
  • the first connecting part 13 may be a flywheel of a clutch
  • the second connecting part 14 may be a driven plate of a clutch.
  • the flywheel of the clutch and the driven plate of the clutch are separated from each other, so that the parts connected to the flywheel and the driven plate cannot perform power transmission;
  • the driven discs of the clutch are combined with each other, and the flywheel can drive the driven discs to rotate, so that the power on the components connected with the flywheel can be transmitted to the components connected with the driven discs.
  • the switching mechanism 10 further includes a transmission shaft 15, one end of the transmission shaft 15 is connected to the first connecting portion 13 of the first clutch 11, and the other end of the transmission shaft 15 is connected to the second sun gear 22 connected.
  • the transmission shaft 15 may be coaxially connected with the first connecting portion 13 of the first clutch 11 and the second sun gear 22 respectively.
  • the second connecting portion 14 of the first clutch 11 is connected to the vehicle frame and is in a locked state.
  • the second sun gear 22 is locked; when the first clutch 11 is in the disengaged state, the second sun gear 22 is released and can rotate freely.
  • the first connecting portion 13 of the second clutch 12 is coaxially connected to the planet carrier 24
  • the second connecting portion 14 of the second clutch 12 is coaxially fixed outside the transmission shaft 15 .
  • the second sun gear 22 and the planet carrier 24 can be coaxially connected or disconnected.
  • the second sun gear 22 is separated from the planet carrier 24, and the second sun gear 22 and the planet carrier 24 can move relative to each other;
  • the second clutch 12 is in the engaged state, the second sun gear 22 Connected with the planet carrier 24, the sun gear 22 and the planet carrier 24 cannot move relative to each other.
  • Fig. 2 is a schematic structural diagram of a power system of a pure electric vehicle provided by an embodiment of the present disclosure.
  • the power system includes a first motor 41 and a transmission structure as shown in FIG. 1 .
  • the first motor 41 is in transmission connection with the first sun gear 21, and the ring gear 25 is in transmission connection with the wheels.
  • the state of the planetary gear train is changed through the switching mechanism 10 in the transmission structure, and the planetary gear train has different transmission ratios in different states, so that the first motor 41 can drive the wheels to rotate in different gears.
  • Fig. 3 is a schematic structural diagram of a power system of a pure electric vehicle provided by an embodiment of the present disclosure.
  • the power system further includes a main shaft 3 , a first transmission gear 31 , a second transmission gear 32 and a second motor 42 .
  • the main shaft 3 is in drive connection with the wheels
  • the first transmission gear 31 and the second transmission gear 32 are coaxially connected with the main shaft 3
  • the first transmission gear 31 meshes with the ring gear 25
  • the second transmission gear 32 is in transmission connection with the second motor 42 .
  • the wheels can work under the drive of the two motors, or under the drive of any one of the motors.
  • the power system also includes a third transmission gear 33, the third transmission gear 33 is coaxially connected with the main shaft 3, and the third transmission gear 33 is located between the first transmission gear 31 and the second transmission gear 32, the third transmission gear 33 and the second transmission gear 32 Wheel drive connection.
  • the third transmission gear 33 By arranging the third transmission gear 33 between the first transmission gear 31 and the second transmission gear 32, the power is transmitted to the wheels, so that the main shaft 3 is stressed more balanced.
  • the power system includes the main shaft 3 , the first transmission gear 31 , the first motor 41 and the above-mentioned transmission structure.
  • the main shaft 3 is in transmission connection with the wheels
  • the first transmission gear 31 is coaxially and fixedly sleeved on the main shaft 3
  • the first transmission gear 31 is in transmission connection with the ring gear 25
  • the first motor 41 is in transmission connection with the first sun gear 21 .
  • the wheels are connected to the main shaft 3 in transmission, and the first transmission gear 31 is also set on the main shaft 3, and the first motor 41 can transmit power to the The first transmission gear 31 drives the wheels to rotate.
  • the first clutch 11 is controlled to brake the second sun gear 22 to lock the second sun gear 22, so that when the first motor 41 drives the first sun gear 21 to rotate, the planetary gear 23 rotates around the two sun gears while rotating, so that the power of the first motor 41 is transmitted to the ring gear 25 through the planetary gear train 2, and finally transmitted to the first transmission gear 31 and the wheels through the ring gear 25, so that the planetary Wheel train 2 drives the wheels to rotate with the speed ratio of the first gear.
  • the action of the second clutch 12 is controlled to connect the second sun gear 22 with the planet carrier 24, so that the second sun gear 22, the planet carrier 24, the planet gear 23 and the ring gear 25 are integrated , when the first motor 41 drives the first sun gear 21 to rotate, the planetary gear 23 only revolves and does not rotate, and the second sun gear 22, the planet carrier 24, the planetary gear 23 and the ring gear 25 rotate together, so that the first motor 41
  • the power of the planetary gear system 2 is transmitted to the ring gear 25, and finally transmitted to the first transmission gear 31 and the wheels through the ring gear 25, so that the planetary gear system 2 drives the wheels to rotate at the speed ratio of the second gear, so that Make the first motor 41 realize two-speed drive.
  • the gear shifting method of using the synchronizer to switch different gear trains does not need to control the synchronizer to accurately switch to different gear trains, so it can quickly and accurately realize multi-gear switching, and the transmission structure, Only the second sun gear is added to the planetary gear train, and two clutches are provided, so the structure is simple and easy to assemble, so as to improve the production efficiency.
  • the second transmission gear 32 is coaxially and fixedly sleeved on the main shaft, and the second transmission gear 32 is spaced apart from the first transmission gear 31 , and the second motor 42 is in transmission connection with the second transmission gear 32 .
  • the wheels are connected to the main shaft 3 in transmission, and the second transmission gear 32 is also set on the main shaft 3, and the output shaft of the second motor 42 and the second transmission gear 32 drive connected to transmit the power output by the second motor 42 to the wheels and drive the wheels to rotate.
  • Setting the second motor 42 in this way can assist the first motor 41 to jointly drive the vehicle, so as to provide sufficient power for the vehicle.
  • the power system further includes a one-way clutch 61, and the one-way clutch 61 is connected with the second motor 42 and the second transmission gear 32.
  • the one-way clutch 61 is disposed between the output shaft of the second motor 42 and the second transmission gear 32 and connects the output shaft of the second motor 42 and the second transmission gear 32 .
  • the one-way clutch 61 can disengage the second motor 42 from the main shaft 3 , preventing the power of the main shaft 3 from being transmitted to the second motor 42 . In this way, the power output from the first motor 41 to the main shaft 3 will not be transmitted to the second motor 42, causing drag loss and further reducing energy consumption.
  • the power system may further include a fourth transmission gear 34 , the fourth transmission gear 34 meshes with the second transmission gear 32 , and the one-way clutch 61 is arranged between the fourth transmission gear 34 and the second motor 42 between the output shafts of the second motor 42 to transmit the power of the second motor 42 to the fourth transmission gear 34 .
  • the third transmission gear 33 is coaxially and fixedly sleeved outside the main shaft 3 , and the wheels are transmission-connected to the third transmission gear 33 through a differential 63 .
  • the input gear of the differential 63 meshes with the third transmission gear 33 installed on the main shaft 3 so as to receive the power transmitted from the output main shaft 3 to achieve the purpose of driving the wheels to rotate.
  • the differential 63 can make the wheels connected with the output shaft of the differential 63 rotate at different speeds.
  • the turning radius of the inner wheel of the car and the outer wheel of the car are different, and the turning radius of the outer wheel is larger than that of the inner wheel, which requires that the speed of the outer wheel is higher than that of the inner wheel when turning , using the differential 63 can make the two wheels roll at different speeds, thereby realizing the difference in the speeds of the two wheels.
  • the power system further includes a power supply assembly 5 .
  • the power supply assembly 5 includes: a battery 51 and two inverters 52, the two inverters 52 are respectively connected to the batteries 51, the first motor 41 is connected to one of the two inverters 52, and the second motor 42 is connected to the two inverters 52. Another connection in inverter 52.
  • the battery 51 is a rechargeable battery 51
  • the inverter 52 is arranged on the output circuit of the battery 51 , and is used to convert the direct current output by the battery 51 into three-phase alternating current to drive the first motor 41 or the second motor 42 .
  • An embodiment of the present disclosure provides a control method for a pure electric vehicle power system, the control method includes:
  • the control switching mechanism 10 locks the second sun gear 22 , disconnects the second sun gear 22 and the planet carrier 24 , and controls the rotation of the first motor 41 .
  • the control switching mechanism 10 releases the second sun gear 22 , connects the second sun gear 22 and the planet carrier 24 , and controls the rotation of the first motor 41 .
  • the power output by the first motor 41 can be output through the ring gear of the planetary gear train.
  • the different states of the planetary gear train there are different transmission ratios, so that there are different transmission ratios in the two states.
  • the power system of a pure electric vehicle can operate in any power mode, and the power mode includes a single-motor mode, a dual-motor mode, a reverse mode, and an energy recovery mode.
  • the power system of the pure electric vehicle when the power system of the pure electric vehicle is in the single-motor mode, it can switch to three gear modes.
  • the control method when the single motor mode is the first gear mode, the control method includes:
  • Fig. 4 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in a single-motor mode provided by an embodiment of the present disclosure.
  • the output shaft of the second motor 42 is driven to rotate after the inverter 52 converts the direct current into a three-phase alternating current, and the output shaft of the second motor 42 is driven to rotate through the one-way clutch 61, the fourth transmission gear 34, the second transmission
  • the gear 32 , the third transmission gear 33 and the differential 63 are transmitted to the wheels to realize the driving mode of the vehicle driven solely by the second motor 42 , that is, the first gear mode of the single motor mode.
  • the control method when the single motor mode is the second gear mode, the control method includes:
  • the first motor 41 is controlled to work
  • the second motor 42 is controlled to stop
  • the first clutch 11 is controlled to lock the second sun gear 22
  • the second clutch 12 is controlled to disconnect the second sun gear 22 from the planet carrier 24 . That is, the second motor 42 stops, the first clutch 11 is engaged, the second clutch 12 is not engaged, and the vehicle is driven by the first motor 41 to run.
  • Fig. 5 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in a single-motor mode provided by an embodiment of the present disclosure.
  • the battery 51 is discharged, the output shaft of the first motor 41 is driven to rotate after the inverter 52 converts the direct current into a three-phase alternating current, and the first sun gear 21, the planetary gear 23, the ring gear 25, The first transmission gear 31 and the differential gear 63 transmit to the wheels to realize the driving mode of the vehicle driven solely by the first motor 41 , that is, the second gear mode of the single motor mode.
  • the control method when the single motor mode is the third gear mode, the control method includes:
  • Fig. 6 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in a single-motor mode provided by an embodiment of the present disclosure.
  • the battery 51 is discharged, the output shaft of the first motor 41 is driven to rotate after the inverter 52 converts the direct current into a three-phase alternating current, and the first sun gear 21, the planetary gear 23, the ring gear 25, The first transmission gear 31 and the differential gear 63 transmit to the wheels to realize the driving mode of the vehicle driven solely by the first motor 41 , that is, the third gear mode of the single motor mode.
  • the power system of the pure electric vehicle when the power system of the pure electric vehicle is in the dual-motor mode, it can switch to three gear modes.
  • the control method when the dual motor mode is the first gear mode, the control method includes:
  • the first motor 41 and the second motor 42 are controlled to work, the first clutch 11 is controlled to lock the second sun gear 22 , and the second clutch 12 is controlled to disconnect the second sun gear 22 from the planet carrier 24 . That is, the two motors work at the same time, the first clutch 11 is engaged, the second clutch 12 is not engaged, and the vehicle is driven by the two motors simultaneously.
  • Fig. 7 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in a dual-motor mode provided by an embodiment of the present disclosure.
  • the battery 51 is discharged, the output shaft of the first motor 41 and the output shaft of the second motor 42 are driven to rotate after the inverter 52 converts the direct current into a three-phase alternating current, and the first motor 41 converts the power through
  • the first sun gear 21, the planetary gear 23, the ring gear 25, and the first transmission gear 31 are transmitted to the main shaft 3;
  • the second motor 42 transmits power to the main shaft through the one-way clutch 61, the fourth transmission gear 34, and the second transmission gear 32 3.
  • the power transmitted by the first motor 41 and the second motor 42 is coupled by the third transmission gear 33, it is then transmitted to the wheels through the differential 63 to realize the first gear mode of the dual-motor mode.
  • the control method when the dual-motor mode is the second gear mode, the control method includes:
  • the first motor 41 and the second motor 42 are controlled to work, the first clutch 11 is controlled to release the second sun gear 22 , and the second clutch 12 is controlled to make the second sun gear 22 and the planet carrier 24 coaxially connected. That is, the two motors work at the same time, the first clutch 11 is not engaged, the second clutch 12 is engaged, and the vehicle is simultaneously driven by the two motors.
  • Fig. 8 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in a dual-motor mode provided by an embodiment of the present disclosure.
  • the battery 51 is discharged, and the output shaft of the first motor 41 and the output shaft of the second motor 42 are driven to rotate after the inverter 52 converts the direct current into a three-phase alternating current, and the first motor 41 converts the power through
  • the first sun gear 21, the planetary gear 23, the ring gear 25, and the first transmission gear 31 are transmitted to the main shaft 3;
  • the second motor 42 transmits power to the main shaft through the one-way clutch 61, the fourth transmission gear 34, and the second transmission gear 32 3.
  • the power transmitted by the first motor 41 and the second motor 42 is coupled by the third transmission gear 33, it is then transmitted to the wheels through the differential 63 to realize the second gear mode of the dual motor mode.
  • the control method when the power system of the pure electric vehicle is in the reverse mode, the control method includes:
  • the first motor 41 is controlled to reverse, the second motor 42 is controlled to stop, the first clutch 11 is controlled to lock the second sun gear 22 , and the second clutch 12 is controlled to disconnect the second sun gear 22 from the planet carrier 24 . That is, the second motor 42 stops, the first clutch 11 is engaged, the second clutch 12 is not engaged, and the vehicle is driven to reverse by the first motor 41 .
  • Fig. 9 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in reverse mode provided by an embodiment of the present disclosure.
  • the battery 51 is discharged, and the output shaft of the first motor 41 is driven to reverse after the inverter 52 converts the direct current into a three-phase alternating current, and the first sun gear 21, the planetary gear 23, and the ring gear 25 , the first transmission gear 31 and the differential 63 are transmitted to the wheels to control the reverse rotation of the wheels and control the power system to be in the reverse mode.
  • the control method when the power system of the pure electric vehicle is in the energy recovery mode, the control method includes:
  • Fig. 10 is a schematic diagram of energy transfer of a power system of a pure electric vehicle in an energy recovery mode provided by an embodiment of the present disclosure.
  • the second motor 42 turns on the power generation mode, and the kinetic energy of the whole vehicle passes through the wheels, the differential 63, the third transmission gear 33, the second transmission gear 32, and then through the second transmission gear 32.
  • the four transmission gears 34 and the one-way clutch 61 drive the second motor 42 to generate electricity, and finally store the electric energy in the battery 51 to realize the energy recovery function.
  • the first motor 41 can also be used as the motor for energy recovery
  • the control method can include: controlling the second motor 42 to stop, controlling the first clutch 11 to release the second sun gear 22, controlling the second The clutch 12 connects the second sun gear 22 and the planet carrier 24 coaxially, controls the first motor 41 to generate electricity; or controls the second motor 42 to stop, controls the first clutch 11 to lock the second sun gear 22, and controls the second clutch 12
  • the second sun gear 22 is disconnected from the planet carrier 24 , and the first motor 41 is controlled to generate electricity, so that the first motor 41 can perform energy recovery in two gear modes.

Abstract

一种传动结构、纯电动车的动力系统和控制方法,该传动结构包括行星轮系(2)和切换机构(10);行星轮系(2)包括:齿圈(25)、第一太阳轮(21)、第二太阳轮(22)、行星轮(23)和行星架(24),第一太阳轮(21)、第二太阳轮(22)均位于齿圈(25)内,且均与齿圈(25)同轴布置,行星轮(23)位于齿圈(25)内,且与第一太阳轮(21)、第二太阳轮(22)和齿圈(25)啮合,行星架(24)与行星轮(23)相连;切换机构(10)用于选择性地锁止第二太阳轮(22),以及选择性地连接第二太阳轮(22)和行星架(24)。通过切换机构(10)锁止或释放第二太阳轮(22),以及连接或断开第二太阳轮(22)和行星架(24),就能够改变行星轮系(2)的状态,而行星轮系(2)在不同状态有不同的传动比,从而实现不同的挡位,结构简单,装配方便。

Description

传动结构、纯电动车的动力系统和控制方法
本公开要求于2021年6月29日提交的申请号为202110729925.X、发明名称为“传动结构、纯电动车的动力系统和控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及汽车技术领域,特别涉及一种传动结构、纯电动车的动力系统和控制方法。
背景技术
由于传统汽车大多使用化石燃料(如汽油、柴油等)为发动机提供动力,其排出的尾气会对环境造成污染。因此,使用无污染的新能源(如电能)的新能源汽车是发展的趋势。
相关技术中,纯电动车的动力系统通常采用同步器进行挡位切换,但采用同步器切换挡位时,需要准确操控同步器接入相应地齿轮系中,这就涉及到多个部件之间的配合,对于装配有较高的要求,装配难度较大。
发明内容
本公开实施例提供了一种传动结构、纯电动车的动力系统和控制方法,结构简单便于装配。所述技术方案如下:
一方面,本公开实施例提供了一种传动结构,所述传动结构包括:行星轮系和切换机构;
所述行星轮系包括:齿圈、第一太阳轮、第二太阳轮、行星轮和行星架,所述第一太阳轮、所述第二太阳轮均位于所述齿圈内,且均与所述齿圈同轴布置,所述行星轮位于所述齿圈内,且与所述第一太阳轮、所述第二太阳轮和所述齿圈啮合,所述行星架与所述行星轮相连;
所述切换机构用于选择性地锁止所述第二太阳轮,选择性地连接所述第二 太阳轮和所述行星架。
基于上述特征,通过所述切换机构锁止或释放第二太阳轮,以及连接或断开所述第二太阳轮和所述行星架,就能够改变行星轮系的状态,而行星轮系在不同状态有不同的传动比,从而实现不同的挡位,结构简单,装配方便。
可选地,所述切换机构包括第一离合器和第二离合器,所述第一离合器与所述第二太阳轮相连,所述第二离合器与所述第二太阳轮和所述行星架相连。
可选地,所述第一离合器和所述第二离合器均包括第一连接部和第二连接部,所述第一离合器的第一连接部与所述第二太阳轮相连,所述第一离合器的第二连接部用于与车架相连,所述第二离合器的第一连接部与所述行星架相连,所述第二离合器的第二连接部与所述第二太阳轮相连。
可选地,所述切换机构还包括传动轴,所述传动轴的一端与所述第一离合器的第一连接部相连,所述传动轴的另一端与所述第二太阳轮相连,所述第二离合器的第二连接部同轴固定在所述传动轴外。
另一方面,本公开实施例提供了一种纯电动车的动力系统,所述动力系统包括第一电机和前一方面所述的传动结构;
所述第一电机与所述第一太阳轮传动连接,所述齿圈与车轮传动连接。
可选地,所述动力系统还包括主轴、第一传动齿轮、第二传动齿轮和第二电机;
所述主轴与车轮传动连接,所述第一传动齿轮和所述第二传动齿轮与所述主轴同轴相连,所述第一传动齿轮与所述齿圈啮合,所述第二传动齿轮与所述第二电机传动连接。
可选地,所述动力系统还包括第三传动齿轮,所述第三传动齿轮与所述主轴同轴相连,且位于所述第一传动齿轮和所述第二传动齿轮之间,所述第三传动齿轮与车轮传动连接。
可选地,所述动力系统还包括单向离合器,所述单向离合器与所述第二电机和所述第二传动齿轮相连。
又一方面,本公开实施例还提供了一种纯电动车动力系统的控制方法,该控制方法包括:
控制所述切换机构锁止所述第二太阳轮,断开所述第二太阳轮和所述行星架,控制所述第一电机转动;或者,
控制所述切换机构释放所述第二太阳轮,连接所述第二太阳轮和所述行星架,控制所述第一电机转动。
本公开实施例提供了一种传动结构,所述传动结构包括:第一离合器和第二离合器和行星轮系;所述行星轮系包括:第一太阳轮、第二太阳轮、行星轮、行星架和齿圈,所述第一太阳轮、所述第二太阳轮和所述齿圈同轴,且所述第一太阳轮和所述第二太阳轮均位于所述齿圈内,所述行星轮可转动地设置在所述行星架上,所述行星轮同时位于所述第一太阳轮和所述齿圈之间,以及所述第二太阳轮和所述齿圈之间,所述行星轮分别与所述第一太阳轮、所述第二太阳轮和所述齿圈啮合;所述第一离合器与所述第二太阳轮连接,所述第一离合器用于可选择性地锁止所述第二太阳轮,所述第二离合器分别与所述第二太阳轮和所述行星架连接,所述第二离合器用于切换所述第二太阳轮和所述行星架同轴连接或者断开。
在本公开实施例的一种实现方式中,所述第一离合器和所述第二离合器均包括第一连接部和第二连接部,所述第一离合器的第一连接部与所述第二太阳轮同轴连接,所述第一离合器的第二连接部处于锁定状态,所述第二离合器的第一连接部与所述行星架同轴连接,所述第二离合器的第二连接部与所述第二太阳轮同轴连接。
在本公开实施例的另一种实现方式中,所述传动结构还包括传动轴,所述传动轴的一端与所述第一离合器的第一连接部同轴连接,所述传动轴的另一端与所述第二太阳轮同轴连接,所述第二离合器的第二连接部同轴固定套装在所述传动轴外。
本公开实施例提供了一种纯电动车的动力系统,所述动力系统包括:主轴、第一传动齿轮、第一电机和如前文所述的传动结构;所述主轴与车轮传动连接,所述第一传动齿轮同轴固定套装在所述主轴上,所述第一传动齿轮与所述齿圈与传动连接,所述第一电机与所述第一太阳轮传动连接。
在本公开实施例的另一种实现方式中,所述动力系统还包括:第二传动齿轮和第二电机;所述第二传动齿轮同轴固定套装在所述主轴上,且所述第二传动齿轮与所述第一传动齿轮间隔排布,所述第二电机与所述第二传动齿轮传动连接。
在本公开实施例的另一种实现方式中,所述动力系统还包括单向离合器, 所述单向离合器设置在所述第二电机的输出轴和所述第二传动齿轮之间且连接所述第二电机的输出轴和所述第二传动齿轮。
在本公开实施例的另一种实现方式中,所述动力系统还包括供电组件,所述供电组件包括:电池和两个逆变器,两个所述逆变器分别与所述电池连接,所述第一电机与两个所述逆变器中的一个连接,所述第二电机与两个所述逆变器中的另一个连接。
在本公开实施例的另一种实现方式中,所述动力系统还包括第三传动齿轮,所述第三传动齿轮同轴固定套装在所述主轴外,所述车轮通过差速器与所述第三传动齿轮传动连接。
本公开实施例提供了一种纯电动车动力系统的控制方法,所述控制方法用于控制如前文所述的纯电动车的动力系统切换为单电机模式、双电机模式、倒车模式和能量回收模式。
在本公开实施例的另一种实现方式中,控制所述动力系统切换为单电机模式时,所述控制方法包括:控制所述第一电机停机,控制所述第二电机工作,控制所述第一离合器释放所述第二太阳轮,控制所述第二离合器使所述第二太阳轮和所述行星架断开连接;或者,控制所述第一电机工作,控制所述第二电机停机,控制所述第一离合器锁止所述第二太阳轮,控制所述第二离合器使所述第二太阳轮和所述行星架断开连接;或者,控制所述第一电机工作,控制所述第二电机停机,控制所述第一离合器释放所述第二太阳轮,控制所述第二离合器使所述第二太阳轮和所述行星架同轴连接;控制所述动力系统切换为双电机模式时,所述控制方法包括:控制所述第一电机和所述第二电机工作,控制所述第一离合器锁止所述第二太阳轮,控制所述第二离合器使所述第二太阳轮和所述行星架断开连接;或者,控制所述第一电机和所述第二电机工作,控制所述第一离合器释放所述第二太阳轮,控制所述第二离合器使所述第二太阳轮和所述行星架同轴连接。
本公开实施例提供的技术方案带来的有益效果至少包括:
本公开实施例提供的传动结构中的行星轮系包括第一太阳轮、第二太阳轮、行星轮、行星架和齿圈,两个太阳轮均与行星轮啮合且在行星轮的轴向上间隔分布。第一离合器可以用于锁止第二太阳轮,以控制第二太阳轮不自转,第二离合器可以选择性地将行星架和第二太阳轮同轴连接,以使得行星架和第二太 阳轮构成一个整体且两者一起转动。
在需要实现不同挡位切换时,可以控制第一离合器动作,以锁止第二太阳轮,这样在第一电机驱动第一太阳轮转动时,行星轮在自转的同时也环绕两个太阳轮转动,就能使得第一电极的动力通过行星轮系传递至齿圈,并最终通过齿圈传递至车轮,使行星轮系以第一种挡位的速比驱动车轮转动。还可以控制第二离合器动作,以使得第二太阳轮和行星架构成一个整体,在第一电机驱动第一太阳轮转动时,行星轮只公转,不自转,第二太阳轮、行星架、行星轮和齿圈一起转动,使得第一电极的动力通过行星轮系传递至齿圈,并最终通过齿圈传递至车轮,使行星轮系以第二种挡位的速比驱动车轮转动。这样就可以使第一电机实现两挡驱动。相较于相关技术中,采用同步器切换不同的齿轮系的换挡方式,无需控制同步器准确切换至不同的齿轮系,因而能快速、准确地实现多挡位的切换,且该传动结构,仅在行星轮系中增设第二太阳轮,并设置两个离合器,结构简单且便于装配,以提高制作效率。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种传动结构的结构示意图;
图2是本公开实施例提供的一种纯电动车的动力系统的结构示意图;
图3是本公开实施例提供的一种纯电动车的动力系统的结构示意图;
图4是本公开实施例提供的一种纯电动车的动力系统在单电机模式下的能量传递示意图;
图5是本公开实施例提供的一种纯电动车的动力系统在单电机模式下的能量传递示意图;
图6是本公开实施例提供的一种纯电动车的动力系统在单电机模式下的能量传递示意图;
图7是本公开实施例提供的一种纯电动车的动力系统在双电机模式下的能量传递示意图;
图8是本公开实施例提供的一种纯电动车的动力系统在双电机模式下的能量传递示意图;
图9是本公开实施例提供的一种纯电动车的动力系统在倒车模式下的能量传递示意图;
图10是本公开实施例提供的一种纯电动车的动力系统在能量回收模式下的能量传递示意图。
图中各标记说明如下:
11、第一离合器;12、第二离合器;13、第一连接部;14、第二连接部;15、传动轴;
2、行星轮系;21、第一太阳轮;22、第二太阳轮;23、行星轮;24、行星架;25、齿圈;
3、主轴;31、第一传动齿轮;32、第二传动齿轮;33、第三传动齿轮;34、第四传动齿轮;
41、第一电机;42、第二电机;
5、供电组件;51、电池;52、逆变器;
61、单向离合器;63、差速器。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”、“顶”、“底”等仅用于表示相对位置关系,当被描述对象的绝对 位置改变后,则所述相对位置关系也可能相应地改变。
图1是本公开实施例提供的一种传动结构的结构示意图。如图1所示,该传动结构包括行星轮系2和切换机构10。
行星轮系2包括齿圈25、第一太阳轮21、第二太阳轮22、行星轮23和行星架24。第一太阳轮21、第二太阳轮22均位于齿圈25内,且第一太阳轮21、第二太阳轮22均与齿圈25同轴布置。行星轮23位于齿圈25内,且行星轮23与第一太阳轮21、第二太阳轮22和齿圈25啮合。行星架24与行星轮23相连。
切换机构10用于选择性地锁止第二太阳轮22,选择性地连接第二太阳轮22和行星架24。
通过切换机构锁止或释放第二太阳轮,以及连接或断开第二太阳轮和行星架,就能够改变行星轮系的状态,而行星轮系在不同状态有不同的传动比,从而实现不同的挡位,结构简单,装配方便。
在第二太阳轮22被锁止,第二太阳轮22和行星架24断开连接时,由第一太阳轮21输入的动力带动行星轮23,行星轮23发生自转和公转,并带动齿圈25转动,由齿圈25输出动力。
在第二太阳轮22被释放,第二太阳轮22和行星架24连接时,由第一太阳轮21输入的动力带动行星轮23,行星轮23仅发生公转,第二太阳轮22、行星轮23、行星架24和齿圈25成为一个整体一起转动,由齿圈25输出动力。
在本公开实施例中,切换机构10包括第一离合器11和第二离合器12。第一离合器11与第二太阳轮22相连,第二离合器12与第二太阳轮22和行星架24相连。通过两个离合器进行控制,两个离合器之间相互独立,结构简单,方便设置。
示例性地,如图1所示,行星轮系2包括:第一太阳轮21、第二太阳轮22、行星轮23、行星架24和齿圈25,第一太阳轮21、第二太阳轮22和齿圈25同轴,且第一太阳轮21和第二太阳轮22均位于齿圈25内,行星轮23可转动地设置在行星架24上,行星轮23同时位于第一太阳轮21和齿圈25之间,以及第二太阳轮22和齿圈25之间,行星轮23分别与第一太阳轮21、第二太阳轮22和齿圈25啮合。第一离合器11与第二太阳轮22连接,第一离合器11用于可选择性地锁止第二太阳轮22,第二离合器12分别与第二太阳轮22和行星架24连接,第二离合器12用于切换第二太阳轮22和行星架24同轴连接或者断开。
本公开实施例提供的传动结构中的行星轮系包括第一太阳轮、第二太阳轮、行星轮、行星架和齿圈,两个太阳轮均与行星轮啮合且在行星轮的轴向上间隔分布。第一离合器可以用于锁止第二太阳轮,以控制第二太阳轮不自转,第二离合器可以选择性地将行星架和第二太阳轮同轴连接,以使得行星架和第二太阳轮构成一个整体且两者一起转动。
在需要实现不同挡位切换时,可以控制第一离合器动作,以锁止第二太阳轮,这样在第一电机驱动第一太阳轮转动时,行星轮在自转的同时也环绕两个太阳轮转动,就能使得第一电极的动力通过行星轮系传递至齿圈,并最终通过齿圈传递至车轮,使行星轮系以第一种挡位的速比驱动车轮转动。还可以控制第二离合器动作,以使得第二太阳轮和行星架构成一个整体,在第一电机驱动第一太阳轮转动时,行星轮只公转,不自转,第二太阳轮、行星架、行星轮和齿圈一起转动,使得第一电极的动力通过行星轮系传递至齿圈,并最终通过齿圈传递至车轮,使行星轮系以第二种挡位的速比驱动车轮转动。这样就可以使第一电机实现两挡驱动。相较于相关技术中,采用同步器切换不同的齿轮系的换挡方式,无需控制同步器准确切换至不同的齿轮系,因而能快速、准确地实现多挡位的切换,且该传动结构,仅在行星轮系中增设第二太阳轮,并设置两个离合器,结构简单且便于装配,以提高制作效率。
可选地,如图1所示,第一离合器11和第二离合器12均包括第一连接部和第二连接部,第一离合器11的第一连接部与第二太阳轮22相连,第一离合器11的第二连接部用于与车架相连,以使第二连接部处于锁定状态。第二离合器12的第一连接部与行星架24相连,第二离合器12的第二连接部与第二太阳轮22相连。
其中,第二连接部14用于将第一连接部13传递而来的动力输出至与第二连接部14连接的部件。例如,第一连接部13可以是离合器的飞轮,第二连接部14可以是离合器的从动盘。在离合器处于分离状态时,离合器的飞轮和离合器的从动盘相互分离,从而使得与飞轮连接的部件和与从动盘连接的部件无法进行动力传递;在离合器处于结合状态时,离合器的飞轮和离合器的从动盘相互结合,飞轮可以带动从动盘转动,从而使得与飞轮连接的部件上的动力可以传导至与从动盘连接的部件上。
可选地,如图1所示,该切换机构10还包括传动轴15,传动轴15的一端 与第一离合器11的第一连接部13相连,传动轴15的另一端与第二太阳轮22相连。例如,传动轴15可以与第一离合器11的第一连接部13以及第二太阳轮22分别同轴相连。
作为示例,如图1所示,第一离合器11的第二连接部14与车架相连,处于锁定状态。这样当第一离合器11处于结合状态时,第二太阳轮22就被锁止;当第一离合器11处于分离状态时,第二太阳轮22被释放,能够自由转动。
示例性地,如图1所示,第二离合器12的第一连接部13与行星架24同轴连接,第二离合器12的第二连接部14同轴固定在传动轴15外。通过控制第二离合器12处于结合或者分离状态,能使得第二太阳轮22和行星架24同轴连接或者断开。当第二离合器12处于分离状态时,第二太阳轮22与行星架24分离,第二太阳轮22和行星架24可以发生相对运动;当第二离合器12处于结合状态时,第二太阳轮22与行星架24相连接,太阳轮22和行星架24无法发生相对运动。
图2是本公开实施例提供的一种纯电动车的动力系统的结构示意图。如图2所示,该动力系统包括第一电机41和如图1所示的传动结构。第一电机41与第一太阳轮21传动连接,齿圈25与车轮传动连接。通过传动结构中的切换机构10改变行星轮系的状态,而行星轮系在不同状态有不同的传动比,使得第一电机41能够在不同的挡位驱动车轮转动。
图3是本公开实施例提供的一种纯电动车的动力系统的结构示意图。如图3所示,该动力系统还包括主轴3、第一传动齿轮31、第二传动齿轮32和第二电机42。主轴3与车轮传动连接,第一传动齿轮31和第二传动齿轮32与主轴3同轴相连,第一传动齿轮31与齿圈25啮合,第二传动齿轮32与第二电机42传动连接。
通过设置两个电机,分别传动连接至主轴3,使得车轮能够在两个电机的驱动下,或是其中任意一个电机的驱动下工作。
该动力系统还包括第三传动齿轮33,第三传动齿轮33与主轴3同轴相连,且第三传动齿轮33位于第一传动齿轮31和第二传动齿轮32之间,第三传动齿轮33与车轮传动连接。
通过在第一传动齿轮31和第二传动齿轮32之间设置第三传动齿轮33,将 动力传递至车轮,使主轴3受力更平衡。
在本公开实施例中,该动力系统包括主轴3、第一传动齿轮31、第一电机41和前文所述的传动结构。主轴3与车轮传动连接,第一传动齿轮31同轴固定套装在主轴3上,第一传动齿轮31与齿圈25与传动连接,第一电机41与第一太阳轮21传动连接。
本公开实施例提供的纯电动车的动力系统中,车轮是和主轴3传动连接的,在主轴3上还套装有第一传动齿轮31,第一电机41通过行星轮系2得以将动力传递至第一传动齿轮31,并驱动车轮转动。在实现一种挡位时,控制第一离合器11动作,以制动第二太阳轮22,使第二太阳轮22锁止,这样在第一电机41驱动第一太阳轮21转动时,行星轮23在自转的同时也环绕两个太阳轮转动,使得第一电机41的动力能通过行星轮系2传递至齿圈25,并最终通过齿圈25传递至第一传动齿轮31和车轮,使行星轮系2以第一种挡位的速比驱动车轮转动。在实现另一种挡位时,控制第二离合器12动作,将第二太阳轮22和行星架24相连,从而导致第二太阳轮22、行星架24、行星轮23和齿圈25成为一个整体,这样在第一电机41驱动第一太阳轮21转动时,行星轮23只公转,不自转,第二太阳轮22、行星架24、行星轮23和齿圈25一起转动,使得第一电机41的动力通过行星轮系2传递至齿圈25,并最终通过齿圈25传递至第一传动齿轮31和车轮,使行星轮系2以第二种挡位的速比驱动车轮转动,这样就可以使第一电机41实现两挡驱动。相较于相关技术中,采用同步器切换不同的齿轮系的换挡方式,无需控制同步器准确切换至不同的齿轮系,因而能快速、准确地实现多挡位的切换,且该传动结构,仅在行星轮系中增设第二太阳轮,并设置两个离合器,结构简单且便于装配,以提高制作效率。
第二传动齿轮32同轴固定套装在主轴上,且第二传动齿轮32与第一传动齿轮31间隔排布,第二电机42与第二传动齿轮32传动连接。
本公开实施例提供的纯电动车的动力系统中,车轮是和主轴3传动连接的,在主轴3上还套装有第二传动齿轮32,第二电机42的输出轴和第二传动齿轮32传动连接,以将第二电机42输出的动力传递至车轮,并驱动车轮转动。这样设置第二电机42可以辅助第一电机41共同驱动车辆,以便于为车辆提供充足的动力。
可选地,如图3所示,动力系统还包括单向离合器61,单向离合器61与第 二电机42和第二传动齿轮32相连。本公开实施例中,单向离合器61设置在第二电机42的输出轴和第二传动齿轮32之间且连接第二电机42的输出轴和第二传动齿轮32。
在仅需要第一电机41工作时,单向离合器61可使第二电机42与主轴3脱离,避免主轴3的动力传递至第二电机42。这样第一电机41输出至主轴3的动力就不会传导至第二电机42,造成拖曳损失,进一步降低能耗。
示例性地,如图3所示,动力系统还可以包括第四传动齿轮34,第四传动齿轮34与第二传动齿轮32啮合,单向离合器61设置在第四传动齿轮34和第二电机42的输出轴之间,以使第二电机42的动力能传递至第四传动齿轮34。
如图3所示,第三传动齿轮33同轴固定套装在主轴3外,车轮通过差速器63与第三传动齿轮33传动连接。本公开实施例中,差速器63的输入齿轮与安装在主轴3上的第三传动齿轮33啮合,从而能接收从输出主轴3传递而来的动力,以实现驱动车轮转动的目的。
其中,差速器63能使与差速器63的输出轴连接的车轮以不同转速转动。当汽车转弯行驶时,汽车的内侧车轮和汽车的外侧车轮的转弯半径不同,外侧车轮的转弯半径要大于内侧车轮的转弯半径,这就要求在转弯时外侧车轮的转速要高于内侧车轮的转速,利用差速器63可以使两个车轮以不同转速滚动,从而实现两个车轮转速的差异。
可选地,如图3所示,该动力系统还包括供电组件5。供电组件5包括:电池51和两个逆变器52,两个逆变器52分别与电池51连接,第一电机41与两个逆变器52中的一个连接,第二电机42与两个逆变器52中的另一个连接。
通过设置两个逆变器52,其一用于连接电池51和第一电机41,其二用于连接电池51和第二电机42。其中,电池51为可充电电池51,逆变器52设置在电池51的输出电路上,用于将电池51输出的直流电转换成三相交流电后驱动第一电机41或第二电机42。
本公开实施例提供了一种纯电动车动力系统的控制方法,该控制方法包括:
控制切换机构10锁止第二太阳轮22,断开第二太阳轮22和行星架24,控制第一电机41转动。
在第二太阳轮22被锁止,第二太阳轮22和行星架24断开连接时,由第一太阳轮21输入的动力带动行星轮23,行星轮23发生自转和公转,并带动齿圈 25转动,由齿圈25输出动力。
控制切换机构10释放第二太阳轮22,连接第二太阳轮22和行星架24,控制第一电机41转动。
在第二太阳轮22被释放,第二太阳轮22和行星架24连接时,由第一太阳轮21输入的动力带动行星轮23,行星轮23仅发生公转,第二太阳轮22、行星轮23、行星架24和齿圈25成为一个整体一起转动,由齿圈25输出动力。
在上述的这两种情况下,第一电机41输出的动力都能通过行星轮系的齿圈向外输出动力。但由于行星轮系所处的状态不同,从而有不同的传动比,使得两种状态下有不同的传动比。
本公开实施例提供的一种纯电动车的动力系统能采用动力模式中的任意一种运行,动力模式包括单电机模式、双电机模式、倒车模式和能量回收模式。
以下对动力系统的不同动力模式的控制方法进行说明:
本公开实施例中,纯电动车的动力系统处于单电机模式时,能切换为三个挡位模式。
在本公开的一些实施例中,单电机模式为第一挡位模式时,该控制方法包括:
控制第一电机41停机,控制第二电机42工作,控制第一离合器11释放第二太阳轮22,控制第二离合器12使第二太阳轮22和行星架24断开连接。即第一电机41停机,两个离合器均不结合,由第二电机42驱动车辆行驶。
图4是本公开实施例提供的一种纯电动车的动力系统在单电机模式下的能量传递示意图。如图4所示,此时电池51放电,经过逆变器52将直流电转换为三相交流电后驱动第二电机42的输出轴旋转,经单向离合器61、第四传动齿轮34、第二传动齿轮32、第三传动齿轮33和差速器63传递给车轮,实现第二电机42单独驱动车辆行驶模式,即单电机模式的第一挡位模式。
在本公开的一些实施例中,单电机模式为第二挡位模式时,该控制方法包括:
控制第一电机41工作,控制第二电机42停机,控制第一离合器11锁止第二太阳轮22,控制第二离合器12使第二太阳轮22和行星架24断开连接。即第二电机42停机,第一离合器11结合,第二离合器12不结合,由第一电机41驱动车辆行驶。
图5是本公开实施例提供的一种纯电动车的动力系统在单电机模式下的能量传递示意图。如图5所示,此时电池51放电,经过逆变器52将直流电转换为三相交流电后驱动第一电机41的输出轴旋转,经第一太阳轮21、行星轮23、齿圈25、第一传动齿轮31和差速器63传递给车轮,实现第一电机41单独驱动车辆行驶模式,即单电机模式的第二挡位模式。
在本公开的一些实施例中,单电机模式为第三挡位模式时,该控制方法包括:
控制第一电机41工作,控制第二电机42停机,控制第一离合器11释放第二太阳轮22,控制第二离合器12使第二太阳轮22和行星架24同轴连接。即第二电机42停机,第二离合器12结合,第一离合器11不结合,由第一电机41驱动车辆行驶。
图6是本公开实施例提供的一种纯电动车的动力系统在单电机模式下的能量传递示意图。如图6所示,此时电池51放电,经过逆变器52将直流电转换为三相交流电后驱动第一电机41的输出轴旋转,经第一太阳轮21、行星轮23、齿圈25、第一传动齿轮31和差速器63传递给车轮,实现第一电机41单独驱动车辆行驶模式,即单电机模式的第三挡位模式。
本公开实施例中,纯电动车的动力系统处于双电机模式时,能切换为三个挡位模式。
在本公开的一些实施例中,双电机模式为第一挡位模式时,该控制方法包括:
控制第一电机41和第二电机42工作,控制第一离合器11锁止第二太阳轮22,控制第二离合器12使第二太阳轮22和行星架24断开连接。即两个电机同时工作,第一离合器11结合,第二离合器12不结合,由两个电机同时驱动车辆行驶。
图7是本公开实施例提供的一种纯电动车的动力系统在双电机模式下的能量传递示意图。如图7所示,此时电池51放电,经过逆变器52将直流电转换为三相交流电后驱动第一电机41的输出轴和第二电机42的输出轴旋转,第一电机41将动力经第一太阳轮21、行星轮23、齿圈25、第一传动齿轮31传递到主轴3;第二电机42将动力经单向离合器61、第四传动齿轮34、第二传动齿轮 32传递至主轴3,第一电机41和第二电机42传递的动力在第三传动齿轮33耦合后,再经差速器63传递给车轮,实现双电机模式的第一挡位模式。
在本公开的一些实施例中,双电机模式为第二挡位模式时,该控制方法包括:
控制第一电机41和第二电机42工作,控制第一离合器11释放第二太阳轮22,控制第二离合器12使第二太阳轮22和行星架24同轴连接。即两个电机同时工作,第一离合器11不结合,第二离合器12结合,由两个电机同时驱动车辆行驶。
图8是本公开实施例提供的一种纯电动车的动力系统在双电机模式下的能量传递示意图。如图8所示,此时电池51放电,经过逆变器52将直流电转换为三相交流电后驱动第一电机41的输出轴和第二电机42的输出轴旋转,第一电机41将动力经第一太阳轮21、行星轮23、齿圈25、第一传动齿轮31传递到主轴3;第二电机42将动力经单向离合器61、第四传动齿轮34、第二传动齿轮32传递至主轴3,第一电机41和第二电机42传递的动力在第三传动齿轮33耦合后,再经差速器63传递给车轮,实现双电机模式的第二挡位模式。
本公开实施例中,纯电动车的动力系统处于倒车模式时,该控制方法包括:
控制第一电机41反转,控制第二电机42停机,控制第一离合器11锁止第二太阳轮22,控制第二离合器12使第二太阳轮22和行星架24断开连接。即第二电机42停机,第一离合器11结合,第二离合器12不结合,由第一电机41驱动车辆倒车。
图9是本公开实施例提供的一种纯电动车的动力系统在倒车模式下的能量传递示意图。如图9所示,此时电池51放电,经过逆变器52将直流电转换为三相交流电后驱动第一电机41的输出轴反转,经第一太阳轮21、行星轮23、齿圈25、第一传动齿轮31和差速器63传递给车轮,以控制车轮反转,控制动力系统处于倒车模式。
本公开实施例中,纯电动车的动力系统处于能量回收模式时,该控制方法包括:
控制第一电机41停机,控制第一离合器11释放第二太阳轮22,控制第二 离合器12使第二太阳轮22和行星架24断开连接,控制第二电机42发电。即车辆滑行或者制动时,动力系统给车辆提供反向力矩,将车辆的部分动能经由第二电机42转换为电能,存入电池51中备用。
图10是本公开实施例提供的一种纯电动车的动力系统在能量回收模式下的能量传递示意图。如图10所示,在滑行和制动工况下,第二电机42开启发电工作模式,整车动能通过车轮、差速器63、第三传动齿轮33、第二传动齿轮32、再经第四传动齿轮34和单向离合器61,驱动第二电机42进行发电,最终将电能储存至电池51中,实现能量回收功能。
需要说明的是,本公开实施例中也可以采用第一电机41作为能量回收的电机,控制方法可以包括:控制第二电机42停机,控制第一离合器11释放第二太阳轮22,控制第二离合器12使第二太阳轮22和行星架24同轴连接,控制第一电机41发电;或者,控制第二电机42停机,控制第一离合器11锁止第二太阳轮22,控制第二离合器12使第二太阳轮22和行星架24断开连接,控制第一电机41发电,以通过第一电机41在两种挡位模式下进行能量回收。
以上,并非对本公开作任何形式上的限制,虽然本公开已通过实施例揭露如上,然而并非用以限定本公开,任何熟悉本专业的技术人员,在不脱离本公开技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本公开技术方案的内容,依据本公开的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本公开技术方案的范围内。

Claims (10)

  1. 一种传动结构,其特征在于,所述传动结构包括:行星轮系(2)和切换机构(10);
    所述行星轮系(2)包括齿圈(25)、第一太阳轮(21)、第二太阳轮(22)、行星轮(23)和行星架(24),所述第一太阳轮(21)、所述第二太阳轮(22)均位于所述齿圈(25)内,且均与所述齿圈(25)同轴布置,所述行星轮(23)位于所述齿圈(25)内,且与所述第一太阳轮(21)、所述第二太阳轮(22)和所述齿圈(25)啮合,所述行星架(24)与所述行星轮(23)相连;
    所述切换机构(10)用于选择性地锁止所述第二太阳轮(22),选择性地连接所述第二太阳轮(22)和所述行星架(24)。
  2. 根据权利要求1所述的传动结构,其特征在于,所述切换机构(10)包括第一离合器(11)和第二离合器(12),所述第一离合器(11)与所述第二太阳轮(22)相连,所述第二离合器(12)与所述第二太阳轮(22)和所述行星架(24)相连。
  3. 根据权利要求2所述的传动结构,其特征在于,所述第一离合器(11)和所述第二离合器(12)均包括第一连接部和第二连接部,所述第一离合器(11)的第一连接部与所述第二太阳轮(22)相连,所述第一离合器(11)的第二连接部用于与车架相连,所述第二离合器(12)的第一连接部与所述行星架(24)相连,所述第二离合器(12)的第二连接部与所述第二太阳轮(22)相连。
  4. 根据权利要求3所述的传动结构,其特征在于,所述切换机构(10)还包括传动轴(15),所述传动轴(15)的一端与所述第一离合器(11)的第一连接部相连,所述传动轴(15)的另一端与所述第二太阳轮(22)相连,所述第二离合器(12)的第二连接部同轴固定在所述传动轴(15)外。
  5. 一种纯电动车的动力系统,其特征在于,包括第一电机(41)和如权利要求1至3任一项所述的传动结构;
    所述第一电机(41)与所述第一太阳轮(21)传动连接,所述齿圈(25)与车轮传动连接。
  6. 根据权利要求5所述的动力系统,其特征在于,还包括主轴(3)、第一传动齿轮(31)、第二传动齿轮(32)和第二电机(42);
    所述主轴(3)与车轮传动连接,所述第一传动齿轮(31)和所述第二传动齿轮(32)与所述主轴(3)同轴相连,所述第一传动齿轮(31)与所述齿圈(25)啮合,所述第二传动齿轮(32)与所述第二电机(42)传动连接。
  7. 根据权利要求6所述的动力系统,其特征在于,所述动力系统还包括第三传动齿轮(33),所述第三传动齿轮(33)与所述主轴(3)同轴相连,且位于所述第一传动齿轮(31)和所述第二传动齿轮(32)之间,所述第三传动齿轮(33)与车轮传动连接。
  8. 根据权利要求6所述的动力系统,其特征在于,所述动力系统还包括单向离合器(61),所述单向离合器(61)与所述第二电机(42)和所述第二传动齿轮(32)相连。
  9. 根据权利要求6所述的动力系统,其特征在于,所述动力系统还包括供电组件(5),所述供电组件(5)包括:电池(51)和两个逆变器(52),两个所述逆变器(52)分别与所述电池(51)连接,所述第一电机(41)与两个所述逆变器(52)中的一个连接,所述第二电机(42)与两个所述逆变器(52)中的另一个连接。
  10. 一种纯电动车动力系统的控制方法,用于控制权利要求5~9任一项所述的纯电动车的动力系统,其特征在于,包括:
    控制所述切换机构(10)锁止所述第二太阳轮(22),断开所述第二太阳轮(22)和所述行星架(24),控制所述第一电机(41)转动;或者,
    控制所述切换机构(10)释放所述第二太阳轮(22),连接所述第二太阳轮(22)和所述行星架(24),控制所述第一电机(41)转动。
PCT/CN2022/072034 2021-06-29 2022-01-14 传动结构、纯电动车的动力系统和控制方法 WO2023273307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110729925.X 2021-06-29
CN202110729925.XA CN113335059B (zh) 2021-06-29 2021-06-29 传动结构、纯电动车的动力系统和控制方法

Publications (1)

Publication Number Publication Date
WO2023273307A1 true WO2023273307A1 (zh) 2023-01-05

Family

ID=77481432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072034 WO2023273307A1 (zh) 2021-06-29 2022-01-14 传动结构、纯电动车的动力系统和控制方法

Country Status (2)

Country Link
CN (1) CN113335059B (zh)
WO (1) WO2023273307A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113335059B (zh) * 2021-06-29 2022-05-03 奇瑞汽车股份有限公司 传动结构、纯电动车的动力系统和控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104875598A (zh) * 2015-06-30 2015-09-02 天津清源电动车辆有限责任公司 一种混合动力系统和有该系统的混合动力车辆及驱动方法
JP2020112224A (ja) * 2019-01-15 2020-07-27 株式会社豊田中央研究所 電動車両の駆動装置
CN212400870U (zh) * 2020-08-07 2021-01-26 广州汽车集团股份有限公司 双电机动力系统及电动汽车
CN112848872A (zh) * 2021-03-10 2021-05-28 苏州亚太金属有限公司 一种便于调节车速的低成本混合动力系统及其驱动方法
CN113335059A (zh) * 2021-06-29 2021-09-03 奇瑞汽车股份有限公司 传动结构、纯电动车的动力系统和控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU766974B2 (en) * 1999-12-28 2003-10-30 Hyundai Motor Company Power train for automatic transmissions
CN104924889B (zh) * 2015-06-30 2017-08-22 天津清源电动车辆有限责任公司 一种混合动力系统和混合动力车辆及混合驱动方法
CN106183780B (zh) * 2016-08-30 2023-07-25 上海交通大学 双行星齿轮系双电机同轴耦合驱动系统
CN106976389B (zh) * 2017-02-14 2019-03-26 北京理工大学 双模式混合动力传动装置
CN207315992U (zh) * 2017-09-28 2018-05-04 安徽江淮汽车集团股份有限公司 一种三挡混合动力变速器
EP3805029B1 (en) * 2018-07-09 2022-05-04 Ningbo Umd Automatic Transmission Co., Ltd. Power system for hybrid vehicles
CN209839075U (zh) * 2019-04-02 2019-12-24 广州市新域动力技术有限公司 电动双太阳轮锁止式动力总成

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104875598A (zh) * 2015-06-30 2015-09-02 天津清源电动车辆有限责任公司 一种混合动力系统和有该系统的混合动力车辆及驱动方法
JP2020112224A (ja) * 2019-01-15 2020-07-27 株式会社豊田中央研究所 電動車両の駆動装置
CN212400870U (zh) * 2020-08-07 2021-01-26 广州汽车集团股份有限公司 双电机动力系统及电动汽车
CN112848872A (zh) * 2021-03-10 2021-05-28 苏州亚太金属有限公司 一种便于调节车速的低成本混合动力系统及其驱动方法
CN113335059A (zh) * 2021-06-29 2021-09-03 奇瑞汽车股份有限公司 传动结构、纯电动车的动力系统和控制方法

Also Published As

Publication number Publication date
CN113335059B (zh) 2022-05-03
CN113335059A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2018177380A1 (zh) 动力系统用混合动力、纯电动传动装置及操作方法
WO2009056042A1 (en) Hybrid power driving system and driving method thereof
CN107599823B (zh) 差动多模混合动力车辆驱动系统
CN109484155B (zh) 双电机双行星排多模式机电耦合传动装置
CN107054049B (zh) 用于车辆的混合动力系统
CN210174607U (zh) 混合动力汽车及其传动系统
JP2014105860A (ja) ハイブリッド自動車の動力伝達装置
CN112677751A (zh) 一种基于单行星齿轮机构的单电机多档混合动力电驱系统
JP2014104969A (ja) ハイブリッド自動車の動力伝達装置
WO2023065624A1 (zh) 双离合器组件、混合动力系统和车辆
WO2023071093A1 (zh) 混合动力系统和车辆
CN109017264B (zh) 混合动力系统及控制方法
WO2023005153A1 (zh) 纯电动车的动力系统和控制方法、混合动力车
CN210174606U (zh) 混合动力汽车及其传动系统
WO2023273307A1 (zh) 传动结构、纯电动车的动力系统和控制方法
CN109203972B (zh) 一种双电机混合动力系统传动装置
JP2014104970A (ja) ハイブリッド自動車の動力伝達装置
WO2024045403A1 (zh) 变速箱、混合动力系统和汽车
WO2024045402A1 (zh) 变速箱、混合动力系统和汽车
CN107719097B (zh) 一种混合动力系统及应用
WO2023284141A1 (zh) 双电机驱动系统及应用
WO2023005154A1 (zh) 混合动力系统和控制方法、混合动力车
CN112829575B (zh) 双电机双星齿轮机构混合电驱动系统
CN211995136U (zh) 一种双电机两档混合动力传动机构
CN108819698B (zh) 单电机混合动力汽车多模耦合动力传动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE