WO2023005154A1 - 混合动力系统和控制方法、混合动力车 - Google Patents

混合动力系统和控制方法、混合动力车 Download PDF

Info

Publication number
WO2023005154A1
WO2023005154A1 PCT/CN2022/070333 CN2022070333W WO2023005154A1 WO 2023005154 A1 WO2023005154 A1 WO 2023005154A1 CN 2022070333 W CN2022070333 W CN 2022070333W WO 2023005154 A1 WO2023005154 A1 WO 2023005154A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
gear train
synchronizer
motor
transmission section
Prior art date
Application number
PCT/CN2022/070333
Other languages
English (en)
French (fr)
Inventor
张恒先
周之光
耿丽珍
叶远龙
Original Assignee
奇瑞汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司 filed Critical 奇瑞汽车股份有限公司
Publication of WO2023005154A1 publication Critical patent/WO2023005154A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present disclosure relates to the technical field of automobiles, in particular to a hybrid power system, a control method, and a hybrid power vehicle.
  • Embodiments of the present disclosure provide a hybrid power system, a control method, and a hybrid power vehicle, which can avoid and improve power loss. Described technical scheme is as follows:
  • an embodiment of the present disclosure provides a hybrid power system, including: a power source, a first main shaft, a second main shaft, a hollow shaft, a first gear train, a second gear train, a first synchronizer, and a second synchronizer and a third synchronizer;
  • the first main shaft includes a first transmission section and a second transmission section coaxially arranged at intervals, the power source is in transmission connection with the first transmission section, and the hollow shaft is movably sleeved on the Outside the first transmission section, the first synchronizer is sleeved outside the first transmission section, and is used to connect with at least one of the hollow shaft and the second transmission section;
  • the input gear of the first gear train is fixed It is fitted outside the hollow shaft, the output gear of the first gear train is movably fitted outside the second main shaft, and the second synchronizer is fitted outside the second main shaft, and is used to cooperate with the first gear
  • the output gear of the second gear train is connected or disconnected;
  • the first main shaft as the first transmission section and the second transmission section
  • the first transmission section and the second transmission section are separated, and at the same time, the first transmission section is movable outside the hollow shaft, and the first synchronizer It is sleeved outside the first transmission section, so that the transmission connection between the first transmission section and the hollow shaft can be switched through the first synchronizer, or the transmission connection between the first transmission section and the second transmission section can be switched.
  • the power source outputs power
  • the power is transmitted to the first transmission section, and at this time, the power can be connected to the hollow shaft or the second transmission section through the first synchronizer.
  • it also includes a third gear train, the input gear of the third gear train is fixedly sleeved outside the hollow shaft, the output gear of the third gear train is movably sleeved outside the second main shaft, and is located on The side of the second synchronizer away from the output gear of the first gear train, the second synchronizer is also used to connect or disconnect with the output gear of the third gear train, and the second synchronizer A synchronizer is connected with at most one of the output gear of the first gear train and the output gear of the third gear train.
  • a fourth gear train is also included, the input gear of the fourth gear train is fixedly sleeved outside the second transmission section, and the output gear of the fourth gear train is movably sleeved outside the second main shaft, and located on the side of the third synchronizer away from the output gear of the second gear train, the third synchronizer is also used to connect or disconnect the output gear of the fourth gear train, and the The third synchronizer is connected with at most one of the output gear of the second gear train and the output gear of the fourth gear train.
  • a second motor is also included, and the output shaft of the second motor is in transmission connection with the second transmission section.
  • a transmission gear is also included, the transmission gear is coaxially sleeved on the outside of the second main shaft, and is located between the output gear of the first gear train and the output gear of the second gear train, the The transmission gear is in transmission connection with the wheels.
  • a differential is also included, and the wheels are in transmission connection with the transmission gear through the differential.
  • the output gear of the second gear train is connected.
  • An embodiment of the present disclosure provides a hybrid power system, and the hybrid power system includes: an engine, a first motor, a first main shaft, a second main shaft, a hollow shaft, a first gear train, a third gear train, and a second gear train , the fourth gear train, the first synchronizer, the second synchronizer and the third synchronizer; the output shaft of the engine and the output shaft of the first electric motor are all connected to the first main shaft drive, and the first The main shaft includes a coaxial first transmission section and a second transmission section, the first transmission section and the second transmission section are distributed at intervals, the hollow shaft is movably sleeved outside the first transmission section, and the first The synchronizer is sleeved outside the first transmission section, and the first synchronizer is selectively connected with the hollow shaft or the second transmission section; the input gear of the first gear train and the third gear train The input gears of the first gear train and the output gears of the third gear train are both fixedly fitted outside the hollow shaft, and the output gear
  • the power system further includes a power supply assembly
  • the power supply assembly includes: a battery and two inverters, the two inverters are respectively connected to the battery, The first motor is connected to one of the two inverters, and the second motor is connected to the other of the two inverters.
  • the hybrid power system further includes a transmission gear, the transmission gear is coaxially sleeved outside the second main shaft, and the wheels communicate with the transmission gear through a differential Drive connection.
  • the control method when the power mode is a pure electric mode, includes: controlling the engine, the second motor does not work, and controlling the first synchronizer and The hollow shaft is connected to control the connection between the second synchronizer and the output gear of the first gear train or the output gear of the third gear train, and controls the connection between the third synchronizer and the second gear train
  • the output gear is not connected to the output gear of the fourth gear train, and the first motor is controlled to work; or, the engine is controlled and the second motor is not operated, and the first synchronizer and the second motor are controlled to be inactive.
  • the control method when the power mode is a pure engine mode, includes: controlling the first electric motor, the second electric motor does not work, and controlling the first synchronous
  • the device is connected with the hollow shaft, the second synchronizer is controlled to be connected with the output gear of the first gear train or the output gear of the third gear train, and the third synchronizer is controlled to be connected with the second gear
  • the output gear of the fourth gear train and the output gear of the fourth gear train are not connected, and the engine is controlled to work; or, the first motor and the second motor are controlled not to work, and the first synchronizer and the
  • the second transmission section is connected, the second synchronizer is controlled not to be connected to the output gear of the first gear train and the output gear of the third gear train, and the third synchronizer is controlled to be connected to the second The output gear of the gear train or the output gear of the fourth gear train is connected to control the operation of the engine.
  • the control method when the power mode is a hybrid driving mode, includes: controlling the engine to drive the first motor to generate electricity, controlling the first synchronizer and the The hollow shaft is not connected to the second transmission section, the second synchronizer is controlled to be disconnected from the output gear of the first gear train and the output gear of the third gear train, and the third gear train is controlled to be
  • the synchronizer is connected to the output gear of the second gear train or the output gear of the fourth gear train to control the operation of the second motor; or to control the operation of the engine to control the first motor and the second motor At least one of them works, controls the first synchronizer to be connected to the second transmission section, and controls the second synchronizer to be connected to the output gear of the first gear train and the output gear of the third gear train.
  • the control method when the power mode is the energy recovery mode, includes: controlling the engine and the first motor to not work, and controlling the first synchronizer It is not connected with the hollow shaft and the second transmission section, and the second synchronizer is controlled not to be connected with the output gear of the first gear train and the output gear of the third gear train, and the control of the The third synchronizer is connected with the output gear of the second gear train or the output gear of the fourth gear train to make the second motor generate electricity.
  • the first main shaft is designed as a first transmission section and a second transmission section, the first transmission section and the second transmission section are separated, and the first transmission section is movable outside the hollow shaft.
  • the first synchronizer is set outside the first transmission section, so that the switching of the transmission connection between the first transmission section and the hollow shaft, or the switching of the transmission connection between the first transmission section and the second transmission section can be realized through the first synchronizer.
  • FIG. 1 is a schematic structural diagram of a hybrid power system provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of energy transfer of a hybrid system provided in an embodiment of the present disclosure in pure electric mode
  • Fig. 3 is a schematic diagram of energy transfer of a hybrid power system in pure electric mode provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of energy transfer in a pure electric mode of a hybrid system provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of energy transfer in a pure electric mode of a hybrid system provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of energy transfer of a hybrid system in pure electric mode provided by an embodiment of the present disclosure
  • Fig. 7 is a schematic diagram of energy transfer of a hybrid power system in pure engine mode provided by an embodiment of the present disclosure
  • Fig. 8 is a schematic diagram of energy transfer of a hybrid power system provided in an embodiment of the present disclosure in pure engine mode
  • Fig. 9 is a schematic diagram of energy transfer of a hybrid power system in a hybrid driving mode provided by an embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of energy transfer of a hybrid power system in a hybrid driving mode provided by an embodiment of the present disclosure
  • Fig. 12 is a schematic diagram of energy transfer of a hybrid power system in a hybrid driving mode provided by an embodiment of the present disclosure.
  • the first gear train 31. The input gear of the first gear train; 32. The output gear of the first gear train;
  • Fig. 1 is a schematic structural diagram of a hybrid power system provided by an embodiment of the present disclosure. As shown in Figure 1, the power source, the first main shaft 20, the second main shaft 21, the hollow shaft 22, the first gear train 3, the second gear train 5, the first synchronizer 71, the second synchronizer 72 and the third synchronizer device 73.
  • the input gear of the first gear train 3 is fixedly sleeved outside the hollow shaft 22
  • the output gear of the first gear train 3 is movably sleeved outside the second main shaft 21
  • the second synchronizer 72 is sleeved outside the second main shaft 21 .
  • the second synchronizer 72 is used to connect or disconnect the output gear of the first gear train 3 .
  • the input gear of the second gear train 5 is fixedly set outside the second transmission section 202
  • the output gear of the second gear train 5 is movably set outside the second main shaft 21
  • the third synchronizer 73 is set outside the second main shaft 21 .
  • the third synchronizer 73 is used for connecting or disconnecting the output gear of the second gear train 5
  • the second main shaft 21 is drivingly connected with the wheels.
  • the power When the power is transmitted to the hollow shaft, the power is transmitted to the second main shaft through the first gear train and the second synchronizer, and the third synchronizer is disconnected from the second gear train, so the power will not be transmitted to the second gear train and the second gear train.
  • Second transmission section When the power is transmitted to the second transmission section, the power is transmitted to the second main shaft through the second gear train and the third synchronizer, the second synchronizer is disconnected from the first gear train, and the power will not be transmitted to the first gear train and hollow shaft. Thereby improving the problem of dragging energy consumption and reducing power loss.
  • the gear ratio of the third gear train 4 is different from the gear ratio of the first gear train 3 .
  • the transmission ratio between the hollow shaft 22 and the second main shaft 21 can be changed, so that the vehicle has more gears.
  • the hybrid system also includes a fourth gear train 6, the input gear of the fourth gear train 6 is fixedly set outside the second transmission section 202, the output gear of the fourth gear train 6 is movably set outside the second main shaft 21, and the fourth The output gear of the gear train 6 is located on the side of the third synchronizer 73 away from the output gear of the second gear train 5 .
  • the third synchronizer 73 is also used to connect or disconnect the output gear of the fourth gear train 6, and the third synchronizer 73 is at most connected to the output gear of the second gear train 5 and the output gear of the fourth gear train 6. a connection.
  • the gear ratio of the fourth gear train 6 is different from the gear ratio of the second gear train 5 .
  • the transmission ratio between the second transmission section 202 and the second main shaft 21 can be changed, so that the vehicle has more gears.
  • the hybrid system includes: engine 11, first motor 12, first main shaft 20, second main shaft 21, hollow shaft 22, first gear train 3, third gear train 4, second gear train 5.
  • the fourth gear train 6 the first synchronizer 71 , the second synchronizer 72 and the third synchronizer 73 .
  • the output shaft of the engine 11 and the output shaft of the first motor 12 are all connected to the first main shaft 20 in transmission
  • the first main shaft 20 includes a coaxial first transmission section 201 and a second transmission section 202
  • the first The transmission section 201 and the second transmission section 202 are distributed at intervals
  • the hollow shaft 22 is movably sleeved outside the first transmission section 201
  • the first synchronizer 71 is sleeved outside the first transmission section 201
  • the first synchronizer 71 can be optionally connected with the hollow shaft 22 or the second transmission section 202 transmission connection.
  • the input gear 51 of the second gear train 5 and the input gear 61 of the fourth gear train 6 are all fixedly sleeved outside the second transmission section 202, and the output gear 52 of the second gear train 5 and the fourth gear train
  • the output gears 62 of 6 are all movably fitted outside the second main shaft 21, and the third synchronizer 73 is fitted outside the second main shaft 21, and is located between the output gear 52 of the second gear train 5 and the output gear 62 of the fourth gear train 6.
  • the second synchronizer 72 can be selectively connected in transmission with the output gear 52 of the second gear train 5 or the output gear 62 of the fourth gear train 6, and the second main shaft 21 is in transmission connection with the wheels.
  • the hybrid power system provided by the embodiment of the present disclosure is designed by designing the first main shaft 20 into a first transmission section 201 and a second transmission section 202, the first transmission section 201 and the second transmission section 202 are separated, and at the same time, the first transmission section 201
  • the outer movable sleeve is outside the hollow shaft 22, and the first synchronizer 71 is sleeved outside the first transmission section 201, so that the transmission connection between the first transmission section 201 and the hollow shaft 22 can be switched through the first synchronizer 71, or the first transmission section 201 can be switched.
  • the transmission section 201 is in transmission connection with the second transmission section 202 .
  • the input gear 31 of the first gear train 3 and the input gear 41 of the third gear train 4 are fixedly sleeved on the hollow shaft 22, the input gear 51 of the second gear train 5 and the input gear 61 of the fourth gear train 6 It is fixedly set outside the second transmission section 202. In this way, when the engine 11 and the first motor 12 output power, the power is transmitted to the first transmission section 201 , and the power can be selectively connected to the hollow shaft 22 or the second transmission section 202 through the first synchronizer 71 .
  • the end of the second transmission section 202 opposite to the first transmission section 201 is provided with a connecting cylinder 203, the connecting cylinder 203 is coaxial with the second transmission section 202, and one end of the first transmission section 201
  • the connecting cylinder 203 is movably inserted, and when the first synchronizer 71 is in transmission connection with the second transmission section 202 , the first synchronizer 71 connects the connection cylinder 203 and the first transmission section 201 .
  • the connecting cylinder 203 at the end of the second transmission section 202, so that the end of the first transmission section 201 can be directly inserted into the inner hole of the connecting cylinder 203, it is convenient for the first transmission section 201 to It is coaxially connected with the second transmission section 202.
  • the hybrid power system further includes a second electric motor 13 , the output shaft of the second electric motor 13 is in transmission connection with the second transmission section 202 . Setting the second motor 13 in the hybrid system can provide greater power for the hybrid system.
  • the second motor 13 since the second motor 13 is connected to the second transmission section 202 by transmission, the second motor 13 can also transmit the power of the second motor 13 to the second gear under the switching of the third synchronizer 73 5 or the fourth gear train 6, so as to realize the two-speed driving mode of the second motor 13. In this way, by arranging the second motor 13 on the second transmission section 202, the second motor 13 can share part of the gear train with the engine 11, and there is no need for the gear train of the second motor 13, thereby saving costs.
  • the hybrid system also includes a differential 92 .
  • the wheels are in transmission connection with the transmission gear 91 through the differential 92 .
  • the input gear of the differential 92 meshes with the transmission gear 91 installed on the second main shaft 21 so as to receive the power transmitted from the second main shaft to achieve the purpose of driving the wheels to rotate.
  • the differential gear 92 can make the wheels connected with the output shaft of the differential gear 92 rotate at different rotational speeds.
  • the turning radius of the inner wheel of the car and the outer wheel of the car are different, and the turning radius of the outer wheel is larger than that of the inner wheel, which requires that the speed of the outer wheel is higher than that of the inner wheel when turning , using the differential 92 can make the two wheels roll at different speeds, thereby realizing the difference in the speeds of the two wheels.
  • the battery 81 is a rechargeable battery 81
  • the inverter 82 is arranged on the output circuit of the battery 81 for converting the direct current output by the battery 81 into a three-phase alternating current to drive the first motor 12 or the second motor 13.
  • An embodiment of the present disclosure also provides a hybrid vehicle, which includes a hybrid system as shown in FIG. 1 .
  • An embodiment of the present disclosure provides a method for controlling a hybrid power system, which is applicable to the aforementioned hybrid power system.
  • the first synchronizer 71 is controlled to be connected to the second transmission section 202
  • the second synchronizer 72 is controlled to be disconnected from the output gear of the first gear train 3
  • the third synchronizer 73 is connected to the output gear of the second gear train 5 .
  • the power is transmitted to the second main shaft 21 through the second transmission section 202 via the second gear train 5 .
  • control method includes: determining the power mode; controlling the working states of the engine 11, the first motor 12 and the second motor 13 according to the power mode, and the first synchronizer 71, the second synchronizer 72 and the third synchronizer 73 connection status.
  • the power mode includes pure electric mode, pure engine mode, hybrid drive mode or energy recovery mode, and pure electric mode includes single motor mode and dual motor mode.
  • the control method when the power mode of the hybrid system is switched to the single-motor mode of the pure electric mode, the control method includes:
  • the first synchronizer 71 controls the connection between the hollow shaft 22 and the first transmission section 201, the first motor 12 alone drives the vehicle, and the power of the first motor 12 is transmitted to the first gear train 3 and the third gear train 3 through the hollow shaft 22.
  • the gear train 4 is used to realize the two gear driving modes of the first motor 12 .
  • FIG. 2 is a schematic diagram of energy transfer of a hybrid power system provided in an embodiment of the present disclosure in pure electric mode.
  • the first motor 12 outputs power to the first transmission section 201, and then transmits the power to the hollow shaft 22 through the first synchronizer 71, and then transmits the power through the output gear 32 of the first gear train 3 and the second synchronizer 72 To the second main shaft 21, the final power is transmitted to the wheels through the transmission gear 91 and the differential 92 to drive the vehicle. Realize the first gear driving mode when the first motor 12 works.
  • the control method when the power mode of the hybrid system is switched to the single-motor mode of the pure electric mode, the control method includes:
  • the first synchronizer 71 controls the connection between the first transmission section 201 and the second transmission section 202, the first motor 12 alone drives the vehicle, and the power of the first motor 12 is transmitted to the second gear train through the second transmission section 202 5 and the fourth gear train 6 to realize the other two gear drive modes of the first motor 12.
  • FIG. 3 is a schematic diagram of energy transfer of a hybrid power system provided in an embodiment of the present disclosure in pure electric mode.
  • the first motor 12 outputs power to the first transmission section 201, and is transmitted to the second transmission section 202 through the first synchronizer 71, and then the power passes through the output gear 52 of the second gear train 5 and the third synchronizer 73 is transmitted to the second main shaft 21, and the final power is transmitted to the wheels through the transmission gear 91 and the differential 92 to drive the vehicle.
  • the third gear driving mode when the first motor 12 works.
  • the first synchronizer 71 controls the disconnection of the first transmission section 201 and the second transmission section 202, the second motor 13 alone drives the vehicle, and the power of the second motor 13 will be transmitted to the second transmission section 202 through the second transmission section 202.
  • the gear train 5 and the fourth gear train 6 are used to realize two gear driving modes of the second motor 13 .
  • FIG. 4 is a schematic diagram of energy transfer of a hybrid power system in pure electric mode provided by an embodiment of the present disclosure.
  • the second motor 13 outputs power to the second transmission section 202, and the power is transmitted to the second main shaft 21 through the output gear 52 and the third synchronizer 73 of the second gear train 5, and finally the power is transmitted to the second main shaft 21 through the transmission gear 91 and The differential 92 transmits to the wheels to drive the vehicle. Realize the third gear driving mode when the second motor 13 works.
  • control Methods when the power mode of the hybrid system is switched to the dual-motor mode of the pure electric mode, at this time, both the first motor 12 and the second motor 13 work, and the engine 11 does not work, and the control Methods include:
  • the first synchronizer 71 controls the connection between the first transmission section 201 and the second transmission section 202, the first motor 12 and the second motor 13 drive the vehicle together, and the power of the first motor 12 and the second motor 13 will pass through the first
  • the second transmission section 202 is transmitted to the second gear train 5 and the fourth gear train 6 to realize two gear driving modes of the first motor 12 and the second motor 13 .
  • Fig. 5 is a schematic diagram of energy transfer of a hybrid power system provided in an embodiment of the present disclosure in pure electric mode.
  • the first motor 12 outputs power to the first transmission section 201, and transmits it to the second transmission section 202 through the first synchronizer 71
  • the second motor 13 outputs power to the second transmission section 202
  • the power of the second motor 13 is transmitted to the second main shaft 21 through the output gear 52 of the second gear train 5 and the third synchronizer 73, and finally the power is transmitted to the wheels through the transmission gear 91 and the differential 92 to drive the vehicle.
  • the third gear driving mode when the first motor 12 and the second motor 13 are working.
  • control Methods when the power mode of the hybrid system is switched to the dual-motor mode of the pure electric mode, at this time, both the first motor 12 and the second motor 13 work, and the engine 11 does not work, and the control Methods include:
  • the second synchronizer 72 when it is necessary to control the first motor 12 to realize the second gear driving mode, it is enough to control the second synchronizer 72 to connect the output gear 42 of the third gear train 4 to the second main shaft 21; In the fourth gear driving mode, the third synchronizer 73 is controlled to connect the output gear 62 of the fourth gear train 6 to the second main shaft 21 .
  • the first synchronizer 71 controls the connection between the hollow shaft 22 and the first transmission section 201, the engine 11 alone drives the vehicle, and the power of the engine 11 is transmitted to the first gear train 3 and the third gear train 4 through the hollow shaft 22, In order to realize two gear driving modes of the engine 11.
  • the control method when the power mode of the hybrid system is switched to the pure engine 11 mode, the control method includes:
  • Control the first motor 12, the second motor 13 does not work, control the first synchronizer 71 to connect with the second transmission section 202, control the output gear 32 of the second synchronizer 72 and the first gear train 3 and the third gear train 4 None of the output gears 42 is connected, and the third synchronizer 73 is controlled to be connected to the output gear 52 of the second gear train 5 or the output gear 62 of the fourth gear train 6 to control the engine 11 to work.
  • the first synchronizer 71 controls the connection between the first transmission section 201 and the second transmission section 202, the engine 11 alone drives the vehicle, and the power of the engine 11 will be transmitted to the second gear train 5 and the fourth gear train 5 through the second transmission section 202. gear train 6 to realize the other two gear driving modes of the engine 11.
  • FIG. 8 is a schematic diagram of energy transfer of a hybrid power system in pure engine mode provided by an embodiment of the present disclosure.
  • the engine 11 outputs power to the first transmission section 201, and is transmitted to the second transmission section 202 through the first synchronizer 71, and then the power is transmitted through the output gear 62 of the fourth gear train 6 and the third synchronizer 73.
  • the final power is transmitted to the wheels through the transmission gear 91 and the differential 92 to drive the vehicle.
  • the fourth gear driving mode when the engine 11 is working is realized.
  • the control method when the power mode of the hybrid power system is switched to the hybrid drive mode, includes:
  • the output gears 42 of the system 4 are not connected, the third synchronizer 73 is controlled to be connected with the output gear 52 of the second gear train 5 or the output gear 62 of the fourth gear train 6, and the second motor 13 is controlled to work.
  • the first synchronizer 71 controls the hollow shaft 22 and the second transmission section 202 to be disconnected from the first transmission section 201, the engine 11 drives the first motor 12 to generate electricity, and the electric energy generated by the first motor 12 is stored in the power supply assembly 8 , the power supply assembly 8 supplies power to the second motor 13 at the same time, so that the second motor 13 alone drives the vehicle, and the power of the second motor 13 will be transmitted to the second gear train 5 and the fourth gear train 6 through the second transmission section 202, so as to Two gear driving modes of the second motor 13 are realized.
  • FIG. 9 is a schematic diagram of energy transfer of a hybrid power system in a hybrid driving mode provided by an embodiment of the present disclosure.
  • the second motor 13 outputs power to the second transmission section 202, which is transmitted to the second main shaft 21 through the output gear 52 and the third synchronizer 73 of the second gear train 5, and finally the power is transmitted to the second main shaft 21 through the transmission gear 91 and the differential Transmission 92 to the wheels to drive the vehicle.
  • the third gear driving mode when the second motor 13 works.
  • the control method when the power mode of the hybrid power system is switched to the hybrid driving mode, at this time, the engine 11, the first motor 12 and the second motor 13 are all working, and the control method includes:
  • the first synchronizer 71 controls the connection between the first transmission section 201 and the second transmission section 202, the engine 11, the first motor 12 and the second motor 13 jointly drive the vehicle, and the engine 11, the first motor 12 and the second motor
  • the power of 13 will be transmitted to the second gear train 5 and the fourth gear train 6 through the second transmission section 202 to realize two gear driving modes of the engine 11 , the first motor 12 and the second motor 13 .
  • FIG. 10 is a schematic diagram of energy transfer of a hybrid power system in a hybrid driving mode provided by an embodiment of the present disclosure.
  • the engine 11 the first motor 12 output power to the first transmission section 201
  • the first synchronizer 71 transmits the power to the second transmission section 202
  • the second motor 13 outputs power to the second transmission section 202, the engine 11.
  • the output gear 52 of the fourth gear train 6 or the output gear 62 of the fourth gear train 6 is connected.
  • the engine 11 and the first motor 12 output power to the first transmission section 201, and then transmit it to the hollow shaft 22 through the first synchronizer 71, and then the power passes through the output gear 32 of the first gear train 3 and the second synchronous 72 is transmitted to the second main shaft 21, the second motor 13 outputs power to the second transmission section 202, and the power of the second motor 13 is transmitted to the second main shaft 21 through the output gear 52 of the second gear train 5 and the third synchronizer 73 , the final power is transmitted to the wheels through the transmission gear 91 and the differential 92 to drive the vehicle. Realize the first gear driving mode when the engine 11 and the first motor 12 work, and the third gear driving mode when the second motor 13 works.
  • the second synchronizer 72 when it is necessary to control the engine 11 and the first motor 12 to realize the second gear driving mode, the second synchronizer 72 is controlled to connect the output gear 42 of the third gear train 4 to the second main shaft 21;
  • the motor 13 realizes the driving mode of the fourth gear, it only needs to control the third synchronizer 73 to connect the output gear 62 of the fourth gear train 6 to the second main shaft 21 .
  • Both the engine 11 and the first motor 12 are controlled not to work, the first synchronizer 71 is controlled to be disconnected from the hollow shaft 22 and the second transmission section 202, and the second synchronizer 72 is controlled to be connected to the output gear 32 and the first gear train 3 of the first gear train 3.
  • the output gears 42 of the three gear trains 4 are not connected, and the third synchronizer 73 is controlled to be connected to the output gear 52 of the second gear train 5 or the output gear 62 of the fourth gear train 6 to make the second motor 13 generate electricity.
  • Fig. 12 is a schematic diagram of energy transfer of a hybrid power system in a hybrid driving mode provided by an embodiment of the present disclosure. As shown in Figure 12, the power of the wheels is transmitted to the second main shaft 21 through the differential 92 and the transmission gear 91, and is transmitted to the second motor 13 through the second gear train 5 to drive the second motor 13 in the third gear Generating electricity in drive mode.
  • the power mode of the hybrid system may also include a reverse mode, and when the power mode is switched to the reverse mode, the control method includes:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Structure Of Transmissions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本公开提供了一种混合动力系统和控制方法、混合动力车,该混合动力系统包括:动力源、第一主轴、第二主轴、空心轴、若干个齿轮系和若干个同步器;动力源与第一主轴传动连接,第一主轴包括第一传动段和第二传动段,空心轴套装在第一传动段外,第一同步器位于第一传动段,第一同步器用于与空心轴或第二传动段连接;第一齿轮系连接在空心轴和第二主轴上,第二同步器位于第二主轴,用于与第一齿轮系连接;第二齿轮系连接在第二传动段和第二主轴上,第三同步器用于与第二齿轮系连接。本公开能够改善拖曳耗能的问题,减少动力损失。

Description

混合动力系统和控制方法、混合动力车
本公开要求于2021年7月28日提交的申请号为202110859812.1、发明名称为“混合动力系统和控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及汽车技术领域,特别涉及一种混合动力系统和控制方法、混合动力车。
背景技术
传统汽车大多使用化石燃料(如汽油、柴油等)为发动机提供动力,其排出的尾气会对环境造成污染。因此,使用无污染的新能源(如电能)来替代化石燃料为汽车提供动力是刻不容缓的。
在混合动力汽车中,通常以发动机和电机作为动力源,相关技术中,发动机或电机驱在工作时,纯在拖拽的情况,会造成较多的动力损失。
发明内容
本公开实施例提供了一种混合动力系统和控制方法、混合动力车,能避改善动力损失。所述技术方案如下:
一方面,本公开实施例提供了一种混合动力系统,包括:动力源、第一主轴、第二主轴、空心轴、第一齿轮系、第二齿轮系、第一同步器、第二同步器和第三同步器;所述第一主轴包括同轴间隔布置的第一传动段和第二传动段,所述动力源与所述第一传动段传动连接,所述空心轴活动套装在所述第一传动段外,所述第一同步器套装在第一传动段外,用于与所述空心轴和所述第二传动段中的至多一个相连;所述第一齿轮系的输入齿轮固定套装在所述空心轴外,所述第一齿轮系的输出齿轮活动套装在所述第二主轴外,所述第二同步器套装在所述第二主轴外,用于与所述第一齿轮系的输出齿轮连接或断开连接;所述 第二齿轮系的输入齿轮固定套装在所述第二传动段外,所述第二齿轮系的输出齿轮活动套装在所述第二主轴外,所述第三同步器套装在所述第二主轴外,用于与所述第二齿轮系的输出齿轮连接或断开连接,所述第二主轴与车轮传动连接。
基于上述特征,通过将第一主轴设计成第一传动段和第二传动段,第一传动段和第二传动段分隔,同时还将第一传动段外活动套装空心轴外,第一同步器是套装在第一传动段外,这样通过第一同步器就能实现切换第一传动段与空心轴传动连接,或者切换第一传动段与第二传动段传动连接。当动力源输出动力时,动力传输至第一传动段,此时可以通过第一同步器将动力接入空心轴或第二传动段。当动力传递至空心轴时,动力再通过第一齿轮系和第二同步器传递至第二主轴,第三同步器与第二齿轮系断开连接,动力不会传递到第二齿轮系和第二传动段。当动力传递至第二传动段时,动力再通过第二齿轮系和第三同步器传递至第二主轴,第二同步器与第一齿轮系断开连接,动力不会传递到第一齿轮系和空心轴。从而改善拖曳耗能的问题,减少动力损失。
可选地,还包括第三齿轮系,所述第三齿轮系的输入齿轮固定套装在所述空心轴外,所述第三齿轮系的输出齿轮活动套装在所述第二主轴外,且位于所述第二同步器远离所述第一齿轮系的输出齿轮的一侧,所述第二同步器还用于与所述第三齿轮系的输出齿轮连接或断开连接,且所述第二同步器至多与所述第一齿轮系的输出齿轮和所述第三齿轮系的输出齿轮中的一个连接。
可选地,还包括第四齿轮系,所述第四齿轮系的输入齿轮固定套装在所述第二传动段外,所述第四齿轮系的输出齿轮活动套装在所述第二主轴外,且位于所述第三同步器远离所述第二齿轮系的输出齿轮的一侧,所述第三同步器还用于与所述第四齿轮系的输出齿轮连接或断开连接,且所述第三同步器至多与所述第二齿轮系的输出齿轮和所述第四齿轮系的输出齿轮中的一个连接。
可选地,所述动力源包括发动机和第一电机,所述发动机的输出轴与所述第一电机的输出轴的一端相连,所述第一电机的输出轴的另一端与所述第一传动段相连。
可选地,还包括第二电机,所述第二电机的输出轴与所述第二传动段传动连接。
可选地,还包括供电组件,所述供电组件包括:电池和两个逆变器,两个 所述逆变器分别与所述电池连接,所述第一电机与两个所述逆变器中的一个连接,所述第二电机与两个所述逆变器中的另一个连接。
可选地,还包括传动齿轮,所述传动齿轮同轴套装在所述第二主轴外,且位于所述第一齿轮系的输出齿轮和所述第二齿轮系的输出齿轮之间,所述传动齿轮与所述车轮传动连接。
可选地,还包括差速器,所述车轮通过所述差速器与所述传动齿轮传动连接。
另一方面,本公开实施例提供了一种混合动力车,包括前一方面所述的混合动力系统。
本公开实施例还提供了一种混合动力系统的控制方法,用于控制前述的混合动力系统,所述方法包括:
控制所述第一同步器与所述空心轴相连,控制所述第二同步器与所述第一齿轮系的输出齿轮连接,所述第三同步器与所述第二齿轮系的输出齿轮断开连接;或者,控制所述第一同步器与所述第二传动段相连,控制所述第二同步器与所述第一齿轮系的输出齿轮断开连接,所述第三同步器与所述第二齿轮系的输出齿轮连接。
本公开实施例提供了一种混合动力系统,所述混合动力系统包括:发动机、第一电机、第一主轴、第二主轴、空心轴、第一齿轮系、第三齿轮系、第二齿轮系、第四齿轮系、第一同步器、第二同步器和第三同步器;所述发动机的输出轴和所述第一电机的输出轴均与所述第一主轴传动连接,所述第一主轴包括同轴的第一传动段和第二传动段,所述第一传动段和所述第二传动段间隔分布,所述空心轴活动套装在所述第一传动段外,所述第一同步器套装在第一传动段外,所述第一同步器可选择地与所述空心轴或所述第二传动段传动连接;所述第一齿轮系的输入齿轮和所述第三齿轮系的输入齿轮均固定套装在所述空心轴外,所述第一齿轮系的输出齿轮和所述第三齿轮系的输出齿轮均活动套装在所述第二主轴外,所述第二同步器套装在所述第二主轴外,且位于所述第一齿轮系的输出齿轮和所述第三齿轮系的输出齿轮之间,所述第二同步器可选择地与所述第一齿轮系的输出齿轮或所述第三齿轮系的输出齿轮传动连接;所述第二齿轮系的输入齿轮和所述第四齿轮系的输入齿轮均固定套装在所述第二传动段外,所述第二齿轮系的输出齿轮和所述第四齿轮系的输出齿轮均活动套装在所 述第二主轴外,所述第三同步器套装在所述第二主轴外,且位于所述第二齿轮系的输出齿轮和所述第四齿轮系的输出齿轮之间,所述第二同步器可选择地与所述第二齿轮系的输出齿轮或所述第四齿轮系的输出齿轮传动连接,所述第二主轴与车轮传动连接。
在本公开实施例的一种实现方式中,所述第二传动段与所述第一传动段相对的端部设有连接筒,所述连接筒与所述第二传动段同轴,所述第一传动段的一端活动插装在所述连接筒,所述第一同步器与所述第二传动段传动连接时,所述第一同步器连接所述连接筒和所述第一传动段。
在本公开实施例的另一种实现方式中,所述混合动力系统还包括第二电机,所述第二电机的输出轴与所述第二传动段传动连接。
在本公开实施例的另一种实现方式中,所述动力系统还包括供电组件,所述供电组件包括:电池和两个逆变器,两个所述逆变器分别与所述电池连接,所述第一电机与两个所述逆变器中的一个连接,所述第二电机与两个所述逆变器中的另一个连接。
在本公开实施例的另一种实现方式中,所述混合动力系统还包括传动齿轮,所述传动齿轮同轴套装在所述第二主轴外,所述车轮通过差速器与所述传动齿轮传动连接。
本公开实施例提供了一种混合动力系统的控制方法,适用于如前文所述的混合动力系统,所述控制方法包括:确定动力模式;根据所述动力模式控制所述发动机、所述第一电机和所述第二电机的工作状态,以及所述第一同步器、所述第二同步器和所述第三同步器的连接状态。
在本公开实施例的另一种实现方式中,所述动力模式为纯电动模式时,所述控制方法包括:控制所述发动机、所述第二电机不工作,控制所述第一同步器与所述空心轴连接,控制所述第二同步器与所述第一齿轮系的输出齿轮或所述第三齿轮系的输出齿轮连接,控制所述第三同步器与所述第二齿轮系的输出齿轮和所述第四齿轮系的输出齿轮均不连接,控制所述第一电机工作;或者,控制所述发动机、所述第二电机不工作,控制所述第一同步器与所述第二传动段连接,控制所述第二同步器与所述第一齿轮系的输出齿轮和所述第三齿轮系的输出齿轮均不连接,控制所述第三同步器与所述第二齿轮系的输出齿轮或所述第四齿轮系的输出齿轮连接,控制所述第一电机工作;或者,控制所述发动 机、所述第一电机不工作,控制所述第一同步器与所述空心轴和所述第二传动段均不连接,控制所述第二同步器与所述第一齿轮系的输出齿轮和所述第三齿轮系的输出齿轮均不连接,控制所述第三同步器与所述第二齿轮系的输出齿轮或所述第四齿轮系的输出齿轮连接,控制所述第二电机工作。
在本公开实施例的另一种实现方式中,所述动力模式为纯发动机模式时,所述控制方法包括:控制所述第一电机、所述第二电机不工作,控制所述第一同步器与所述空心轴连接,控制所述第二同步器与所述第一齿轮系的输出齿轮或所述第三齿轮系的输出齿轮连接,控制所述第三同步器与所述第二齿轮系的输出齿轮和所述第四齿轮系的输出齿轮均不连接,控制所述发动机工作;或者,控制所述第一电机、所述第二电机不工作,控制所述第一同步器与所述第二传动段连接,控制所述第二同步器与所述第一齿轮系的输出齿轮和所述第三齿轮系的输出齿轮均不连接,控制所述第三同步器与所述第二齿轮系的输出齿轮或所述第四齿轮系的输出齿轮连接,控制所述发动机工作。
在本公开实施例的另一种实现方式中,所述动力模式为混合驱动模式时,所述控制方法包括:控制所述发动机驱动所述第一电机发电,控制所述第一同步器与所述空心轴和所述第二传动段均不连接,控制所述第二同步器与所述第一齿轮系的输出齿轮和所述第三齿轮系的输出齿轮均不连接,控制所述第三同步器与所述第二齿轮系的输出齿轮或所述第四齿轮系的输出齿轮连接,控制所述第二电机工作;或者,控制发动机工作,控制所述第一电机和所述第二电机中的至少一个工作,控制所述第一同步器与所述第二传动段连接,控制所述第二同步器与所述第一齿轮系的输出齿轮和所述第三齿轮系的输出齿轮均不连接,控制所述第三同步器与所述第二齿轮系的输出齿轮或所述第四齿轮系的输出齿轮连接;或者,控制发动机工作,控制所述第一电机和所述第二电机中的至少一个工作,控制所述第一同步器与所述空心轴连接,控制所述第二同步器与所述第一齿轮系的输出齿轮或所述第三齿轮系的输出齿轮连接,控制所述第三同步器与所述第二齿轮系的输出齿轮或所述第四齿轮系的输出齿轮连接。
在本公开实施例的另一种实现方式中,所述动力模式为能量回收模式时,所述控制方法包括:控制所述发动机和所述第一电机均不工作,控制所述第一同步器与所述空心轴和所述第二传动段均不连接,控制所述第二同步器与所述第一齿轮系的输出齿轮和所述第三齿轮系的输出齿轮均不连接,控制所述第三 同步器与所述第二齿轮系的输出齿轮或所述第四齿轮系的输出齿轮连接,使所述第二电机发电。
本公开实施例提供的技术方案带来的有益效果至少包括:
本公开实施例提供的混合动力系统通过将第一主轴设计成第一传动段和第二传动段,第一传动段和第二传动段分隔,同时还将第一传动段外活动套装空心轴外,第一同步器是套装在第一传动段外,这样通过第一同步器就能实现切换第一传动段与空心轴传动连接,或者切换第一传动段与第二传动段传动连接。
其中,第一齿轮系的输入齿轮和第三齿轮系的输入齿轮是固定套装在空心轴上的,第二齿轮系的输入齿轮和第四齿轮系的输入齿轮是固定套装在第二传动段外的。这样当发动机和第一电机输出动力时,动力传输至第一传动段,此时可以通过第一同步器选择性地将动力接入空心轴或第二传动段。如此一来,动力就能仅传输至两个齿轮系,而不会传输至四个齿轮系,并且,在动力传输至第二主轴后,由于四个齿轮系中各个输出齿轮均与第二主轴活动套装,因此,动力也不会通过第二主轴回传至其他两个齿轮系。相较于相关技术,发动机和第一电机输出的动力时不会传递至所有齿轮系,改善拖曳耗能的问题,减少动力损失。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种混合动力系统的结构示意图;
图2是本公开实施例提供的一种混合动力系统在纯电动模式下的能量传递示意图;
图3是本公开实施例提供的一种混合动力系统在纯电动模式下的能量传递示意图;
图4是本公开实施例提供的一种混合动力系统在纯电动模式下的能量传递示意图;
图5是本公开实施例提供的一种混合动力系统在纯电动模式下的能量传递 示意图;
图6是本公开实施例提供的一种混合动力系统在纯电动模式下的能量传递示意图;
图7是本公开实施例提供的一种混合动力系统在纯发动机模式下的能量传递示意图;
图8是本公开实施例提供的一种混合动力系统在纯发动机模式下的能量传递示意图;
图9是本公开实施例提供的一种混合动力系统在混合驱动模式下的能量传递示意图;
图10是本公开实施例提供的一种混合动力系统在混合驱动模式下的能量传递示意图;
图11是本公开实施例提供的一种混合动力系统在混合驱动模式下的能量传递示意图;
图12是本公开实施例提供的一种混合动力系统在混合驱动模式下的能量传递示意图。
图中各标记说明如下:
11、发动机;12、第一电机;13、第二电机;
20、第一主轴;201、第一传动段;202、第二传动段;203、连接筒;21、第二主轴;22、空心轴;
3、第一齿轮系;31、第一齿轮系的输入齿轮;32、第一齿轮系的输出齿轮;
4、第三齿轮系;41、第三齿轮系的输入齿轮;42、第三齿轮系的输出齿轮;
5、第二齿轮系;51、第二齿轮系的输入齿轮;52、第二齿轮系的输出齿轮;
6、第四齿轮系;61、第四齿轮系的输入齿轮;62、第四齿轮系的输出齿轮;
71、第一同步器;72、第二同步器;73、第三同步器;
8、供电组件;81、电池;82、逆变器;
91、传动齿轮;92、差速器。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”、“顶”、“底”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
图1是本公开实施例提供的一种混合动力系统的结构示意图。如图1所示,动力源、第一主轴20、第二主轴21、空心轴22、第一齿轮系3、第二齿轮系5、第一同步器71、第二同步器72和第三同步器73。
第一主轴20包括同轴间隔布置的第一传动段201和第二传动段202,动力源与第一传动段201传动连接,空心轴22活动套装在第一传动段201外,第一同步器71套装在第一传动段201外,第一同步器71用于与空心轴22和第二传动段202中的至多一个相连。
第一齿轮系3的输入齿轮固定套装在空心轴22外,第一齿轮系3的输出齿轮活动套装在第二主轴21外,第二同步器72套装在第二主轴21外。第二同步器72用于与第一齿轮系3的输出齿轮连接或断开连接。
第二齿轮系5的输入齿轮固定套装在第二传动段202外,第二齿轮系5的输出齿轮活动套装在第二主轴21外,第三同步器73套装在第二主轴21外。第三同步器73用于与第二齿轮系5的输出齿轮连接或断开连接,第二主轴21与车轮传动连接。
通过将第一主轴设计成第一传动段和第二传动段,第一传动段和第二传动段分隔,同时还将第一传动段外活动套装空心轴外,第一同步器是套装在第一传动段外,这样通过第一同步器就能实现切换第一传动段与空心轴传动连接,或者切换第一传动段与第二传动段传动连接。当动力源输出动力时,动力传输至第一传动段,此时可以通过第一同步器将动力接入空心轴或第二传动段。当 动力传递至空心轴时,动力再通过第一齿轮系和第二同步器传递至第二主轴,第三同步器与第二齿轮系断开连接,动力不会传递到第二齿轮系和第二传动段。当动力传递至第二传动段时,动力再通过第二齿轮系和第三同步器传递至第二主轴,第二同步器与第一齿轮系断开连接,动力不会传递到第一齿轮系和空心轴。从而改善拖曳耗能的问题,减少动力损失。
如图1所示,该混合动力系统还包括第三齿轮系4。第三齿轮系4的输入齿轮固定套装在空心轴22外,第三齿轮系4的输出齿轮活动套装在第二主轴21外,且第三齿轮系4的输出齿轮位于第二同步器72远离第一齿轮系3的输出齿轮的一侧。第二同步器72还用于与第三齿轮系4的输出齿轮连接或断开连接,且第二同步器72至多与第一齿轮系3的输出齿轮和第三齿轮系4的输出齿轮中的一个连接。
第三齿轮系4的传动比与第一齿轮系3的传动比不同。通过设置第三齿轮系4,使得通过切换第二同步器72,能够改变空心轴22与第二主轴21之间的传动比,使车辆具有更多的档位。
该混合动力系统还包括第四齿轮系6,第四齿轮系6的输入齿轮固定套装在第二传动段202外,第四齿轮系6的输出齿轮活动套装在第二主轴21外,且第四齿轮系6的输出齿轮位于第三同步器73远离第二齿轮系5的输出齿轮的一侧。第三同步器73还用于与第四齿轮系6的输出齿轮连接或断开连接,且第三同步器73至多与第二齿轮系5的输出齿轮和第四齿轮系6的输出齿轮中的一个连接。
第四齿轮系6的传动比与第二齿轮系5的传动比不同。通过设置第四齿轮系6,使得通过切换第三同步器73,能够改变第二传动段202与第二主轴21之间的传动比,使车辆具有更多的档位。
动力源包括发动机11和第一电机12,发动机11的输出轴与第一电机12的输出轴的一端相连,第一电机12的输出轴的另一端与第一传动段201相连。从而通过发动机11和第一电机12为车辆提供动力。
如图1所示,该混合动力系统包括:发动机11、第一电机12、第一主轴20、第二主轴21、空心轴22、第一齿轮系3、第三齿轮系4、第二齿轮系5、第四齿轮系6、第一同步器71、第二同步器72和第三同步器73。
如图1所示,发动机11的输出轴和第一电机12的输出轴均与第一主轴20传动连接,第一主轴20包括同轴的第一传动段201和第二传动段202,第一传 动段201和第二传动段202间隔分布,空心轴22活动套装在第一传动段201外,第一同步器71套装在第一传动段201外,第一同步器71可选择地与空心轴22或第二传动段202传动连接。
如图1所示,第一齿轮系3的输入齿轮31和第三齿轮系4的输入齿轮41均固定套装在空心轴22外,第一齿轮系3的输出齿轮32和第三齿轮系4的输出齿轮42均活动套装在第二主轴21外,第二同步器72套装在第二主轴21外,且位于第一齿轮系3的输出齿轮32和第三齿轮系4的输出齿轮42之间,第二同步器72可选择地与第一齿轮系3的输出齿轮32或第三齿轮系4的输出齿轮42传动连接。
如图1所示,第二齿轮系5的输入齿轮51和第四齿轮系6的输入齿轮61均固定套装在第二传动段202外,第二齿轮系5的输出齿轮52和第四齿轮系6的输出齿轮62均活动套装在第二主轴21外,第三同步器73套装在第二主轴21外,且位于第二齿轮系5的输出齿轮52和第四齿轮系6的输出齿轮62之间,第二同步器72可选择地与第二齿轮系5的输出齿轮52或第四齿轮系6的输出齿轮62传动连接,第二主轴21与车轮传动连接。
本公开实施例提供的混合动力系统通过将第一主轴20设计成第一传动段201和第二传动段202,第一传动段201和第二传动段202分隔,同时还将第一传动段201外活动套装空心轴22外,第一同步器71是套装在第一传动段201外,这样通过第一同步器71就能实现切换第一传动段201与空心轴22传动连接,或者切换第一传动段201与第二传动段202传动连接。
其中,第一齿轮系3的输入齿轮31和第三齿轮系4的输入齿轮41是固定套装在空心轴22上的,第二齿轮系5的输入齿轮51和第四齿轮系6的输入齿轮61是固定套装在第二传动段202外的。这样当发动机11和第一电机12输出动力时,动力传输至第一传动段201,此时可以通过第一同步器71选择性地将动力接入空心轴22或第二传动段202。如此一来,动力就能仅传输至两个齿轮系,而不会传输至四个齿轮系,并且,在动力传输至第二主轴21后,由于四个齿轮系中各个输出齿轮均与第二主轴21活动套装,因此,动力也不会通过第二主轴21回传至其他两个齿轮系。相较于相关技术,发动机11和第一电机12输出的动力时不会传递至所有齿轮系,改善拖曳耗能的问题,减少动力损失。
可选地,如图1所示,第二传动段202与第一传动段201相对的端部设有 连接筒203,连接筒203与第二传动段202同轴,第一传动段201的一端活动插装在连接筒203,第一同步器71与第二传动段202传动连接时,第一同步器71连接连接筒203和第一传动段201。
本公开实施例中,通过在第二传动段202的端部设置连接筒203,以使第一传动段201的端部可以直接插设在连接筒203的内孔中,便于第一传动段201和第二传动段202同轴对接。通过将第一传动段201的部分插装在连接筒203内,这样在第一同步器71调整至与连接筒203接触时,第一同步器71还能同时套装在第一传动段201外,以使第一同步器71能连接第一传动段201和连接筒203,从而实现第一传动段201和第二传动段202传动连接。
示例性地,连接筒203内可以设置轴承,轴承的外圈固定在连接筒203的内壁上,轴承的内圈固定套装在第一传动段201外,这样当第一传动段201的端部插装入连接筒203后,第一传动段201能在连接筒203内自由转动,实现第一传动段201和第二传动段202之间的活动连接。
可选地,混合动力系统还包括第二电机13,第二电机13的输出轴与第二传动段202传动连接。在混合动力系统中设置第二电机13,可以为混合动力系统提供更大的动力。
其中,由于第二电机13是传动连接在第二传动段202上的,因此,第二电机13还可以在第三同步器73的切换下,使第二电机13的动力能传输至第二齿轮系5或第四齿轮系6,从而实现第二电机13的两挡位的驱动模式。这样通过将第二电机13设置在第二传动段202上,使得第二电机13能与发动机11公用部分齿轮系,无需再为第二电机13齿轮系,从而节省成本。
可选地,如图1所示,混合动力系统还包括传动齿轮91,传动齿轮91同轴套装在第二主轴21外,且位于第一齿轮系3的输出齿轮和第二齿轮系5的输出齿轮之间,传动齿轮91与车轮传动连接。
该混合动力系统还包括差速器92。车轮通过差速器92与传动齿轮91传动连接。本公开实施例中,差速器92的输入齿轮与安装在第二主轴21上的传动齿轮91啮合,从而能接收从第二主轴传递而来的动力,以实现驱动车轮转动的目的。
其中,差速器92能使与差速器92的输出轴连接的车轮实现以不同转速转动。当汽车转弯行驶时,汽车的内侧车轮和汽车的外侧车轮的转弯半径不同, 外侧车轮的转弯半径要大于内侧车轮的转弯半径,这就要求在转弯时外侧车轮的转速要高于内侧车轮的转速,利用差速器92可以使两个车轮以不同转速滚动,从而实现两个车轮转速的差异。
可选地,如图1所示,供电组件8包括:电池81和两个逆变器82,两个逆变器82分别与电池81连接,第一电机12与两个逆变器82中的一个连接,第二电机13与两个逆变器82中的另一个连接。
通过设置两个逆变器82,其一用于连接电池81和第一电机12,其二用于连接电池81和第二电机13。其中,电池81为可充电电池81,逆变器82设置在电池81的输出电路上,用于将电池81输出的直流电转换成三相交流电后驱动第一电机12或第二电机13。
本公开实施例还提供了一种混合动力车,该混合动力车包括如图1所示的混合动力系统。
本公开实施例提供了一种混合动力系统的控制方法,适用于前文所述的混合动力系统。
该方法包括:
控制第一同步器71与空心轴22相连,控制第二同步器72与第一齿轮系3的输出齿轮连接,第三同步器73与第二齿轮系5的输出齿轮断开连接。
从而通过空心轴22经由第二齿轮系5将动力传输至第二主轴21。
控制第一同步器71与第二传动段202相连,控制第二同步器72与第一齿轮系3的输出齿轮断开连接,第三同步器73与第二齿轮系5的输出齿轮连接。
从而通过第二传动段202经由第二齿轮系5将动力传输至第二主轴21。
示例性地,该控制方法包括:确定动力模式;根据动力模式控制发动机11、第一电机12和第二电机13的工作状态,以及第一同步器71、第二同步器72和第三同步器73的连接状态。
其中,动力模式包括纯电动模式、纯发动机11模式、混合驱动模式或能量回收模式,纯电动模式又包括单电机模式和双电机模式。
在本公开实施例的一些实现方式中,混合动力系统的动力模式切换为纯电动模式的单电机模式时,控制方法包括:
控制发动机11、第二电机13不工作,控制第一同步器71与空心轴22连接,控制第二同步器72与第一齿轮系3的输出齿轮32或第三齿轮系4的输出齿轮 42连接,控制第三同步器73与第二齿轮系5的输出齿轮52和第四齿轮系6的输出齿轮62均不连接,控制第一电机12工作。
此时,第一同步器71控制空心轴22和第一传动段201连接,第一电机12单独驱动车辆行驶,第一电机12的动力会通过空心轴22传输至第一齿轮系3和第三齿轮系4,以实现第一电机12的两种挡位驱动模式。
以第一电机12与第一齿轮系3传动连接为例,简要说明混合动力系统中的能量传递情况。图2是本公开实施例提供的一种混合动力系统在纯电动模式下的能量传递示意图。如图2所示,第一电机12输出动力至第一传动段201,经第一同步器71传递至空心轴22,动力再经第一齿轮系3的输出齿轮32和第二同步器72传递至第二主轴21,最终动力经传动齿轮91和差速器92传递至车轮,以驱动车辆行驶。实现第一电机12工作时的第一挡位驱动模式。
其中,在需要控制第一电机12实现第二挡位驱动模式时,控制第二同步器72使第三齿轮系4的输出齿轮42与第二主轴21连接即可,也即将第一电机12的动力传递至第三齿轮系4,再经第二主轴21传递至车轮,驱动车辆行驶。
在本公开实施例的另一些实现方式中,混合动力系统的动力模式切换为纯电动模式的单电机模式时,控制方法包括:
控制发动机11、第二电机13不工作,控制第一同步器71与第二传动段202连接,控制第二同步器72与第一齿轮系3的输出齿轮32和第三齿轮系4的输出齿轮42均不连接,控制第三同步器73与第二齿轮系5的输出齿轮52或第四齿轮系6的输出齿轮62连接,控制第一电机12工作。
此时,第一同步器71控制第一传动段201和第二传动段202连接,第一电机12单独驱动车辆行驶,第一电机12的动力会通过第二传动段202传输至第二齿轮系5和第四齿轮系6,以实现第一电机12的另外两种挡位驱动模式。
以第一电机12与第二齿轮系5传动连接为例,简要说明混合动力系统中的能量传递情况。图3是本公开实施例提供的一种混合动力系统在纯电动模式下的能量传递示意图。如图3所示,第一电机12输出动力至第一传动段201,经第一同步器71传递至第二传动段202,动力再经第二齿轮系5的输出齿轮52和第三同步器73传递至第二主轴21,最终动力经传动齿轮91和差速器92传递至车轮,以驱动车辆行驶。实现第一电机12工作时的第三挡位驱动模式。
其中,在需要控制第一电机12实现第四挡位驱动模式时,控制第三同步器73使第四齿轮系6的输出齿轮62与第二主轴21连接即可,也即将第一电机12的动力传递至第四齿轮系6,再经第二主轴21传递至车轮,驱动车辆行驶。
在本公开实施例的另一些实现方式中,混合动力系统的动力模式切换为纯电动模式的单电机模式时,控制方法包括:
控制发动机11、第一电机12不工作,控制第一同步器71与空心轴22和第二传动段202均不连接,控制第二同步器72与第一齿轮系3的输出齿轮32和第三齿轮系4的输出齿轮42均不连接,控制第三同步器73与第二齿轮系5的输出齿轮52或第四齿轮系6的输出齿轮62连接,控制第二电机13工作。
此时,第一同步器71控制第一传动段201和第二传动段202断开连接,第二电机13单独驱动车辆行驶,第二电机13的动力会通过第二传动段202传输至第二齿轮系5和第四齿轮系6,以实现第二电机13的两种挡位驱动模式。
以第二电机13与第二齿轮系5传动连接为例,简要说明混合动力系统中的能量传递情况。图4是本公开实施例提供的一种混合动力系统在纯电动模式下的能量传递示意图。如图4所示,第二电机13输出动力至第二传动段202,动力经第二齿轮系5的输出齿轮52和第三同步器73传递至第二主轴21,最终动力经传动齿轮91和差速器92传递至车轮,以驱动车辆行驶。实现第二电机13工作时的第三挡位驱动模式。
其中,在需要控制第二电机13实现第四挡位驱动模式时,控制第三同步器73使第四齿轮系6的输出齿轮62与第二主轴21连接即可,也即将第二电机13的动力传递至第四齿轮系6,再经第二主轴21传递至车轮,驱动车辆行驶。
在本公开实施例的另一些实现方式中,混合动力系统的动力模式切换为纯电动模式的双电机模式时,此时,第一电机12和第二电机13均工作,发动机11不工作,控制方法包括:
控制第一同步器71与第二传动段202连接,控制第二同步器72与第一齿轮系3的输出齿轮32和第三齿轮系4的输出齿轮42均不连接,控制第三同步器73与第二齿轮系5的输出齿轮52或第四齿轮系6的输出齿轮62连接。
此时,第一同步器71控制第一传动段201和第二传动段202连接,第一电 机12和第二电机13共同驱动车辆行驶,第一电机12和第二电机13的动力会通过第二传动段202传输至第二齿轮系5和第四齿轮系6,以实现第一电机12和第二电机13的两种挡位驱动模式。
以第一电机12、第二电机13与第二齿轮系5传动连接为例,简要说明混合动力系统中的能量传递情况。图5是本公开实施例提供的一种混合动力系统在纯电动模式下的能量传递示意图。如图5所示,第一电机12输出动力至第一传动段201,经第一同步器71传递至第二传动段202,第二电机13输出动力至第二传动段202,第一电机12和第二电机13的动力经第二齿轮系5的输出齿轮52和第三同步器73传递至第二主轴21,最终动力经传动齿轮91和差速器92传递至车轮,以驱动车辆行驶。实现第一电机12、第二电机13工作时的第三挡位驱动模式。
其中,在需要控制第一电机12和第二电机13实现第四挡位驱动模式时,控制第三同步器73使第四齿轮系6的输出齿轮62与第二主轴21连接即可,也即将第一电机12和第二电机13的动力传递至第四齿轮系6,再经第二主轴21传递至车轮,驱动车辆行驶。
在本公开实施例的另一些实现方式中,混合动力系统的动力模式切换为纯电动模式的双电机模式时,此时,第一电机12和第二电机13均工作,发动机11不工作,控制方法包括:
控制第一同步器71与空心轴22连接,控制第二同步器72与第一齿轮系3的输出齿轮32或第三齿轮系4的输出齿轮42连接,控制第三同步器73与第二齿轮系5的输出齿轮52或第四齿轮系6的输出齿轮62连接。
此时,第一同步器71控制第一传动段201和空心轴22连接,第一电机12和第二电机13共同驱动车辆行驶,第一电机12的动力通过空心轴22传递至第一齿轮系3和第三齿轮系4,第二电机13的动力会通过第二传动段202传输至第二齿轮系5和第四齿轮系6,以实现第一电机12和第二电机13的两种挡位驱动模式。
以第一电机12与第一齿轮系3传动连接,第二电机13与第二齿轮系5传动连接为例,简要说明混合动力系统中的能量传递情况。图6是本公开实施例提供的一种混合动力系统在纯电动模式下的能量传递示意图。如图6所示,第 一电机12输出动力至第一传动段201,经第一同步器71传递至空心轴22,动力再经第一齿轮系3的输出齿轮32和第二同步器72传递至第二主轴21,第二电机13输出动力至第二传动段202,第二电机13的动力经第二齿轮系5的输出齿轮52和第三同步器73传递至第二主轴21,最终动力经传动齿轮91和差速器92传递至车轮,以驱动车辆行驶。实现第一电机12工作时的第一挡位驱动模式,第二电机13工作时的第三挡位驱动模式。
其中,在需要控制第一电机12实现第二挡位驱动模式时,控制第二同步器72使第三齿轮系4的输出齿轮42与第二主轴21连接即可;在需要第二电机13实现第四挡位驱动模式时,控制第三同步器73使第四齿轮系6的输出齿轮62与第二主轴21连接即可。
在本公开实施例的一些实现方式中,混合动力系统的动力模式切换为纯发动机11模式时,控制方法包括:
控制第一电机12、第二电机13不工作,控制第一同步器71与空心轴22连接,控制第二同步器72与第一齿轮系3的输出齿轮32或第三齿轮系4的输出齿轮42连接,控制第三同步器73与第二齿轮系5的输出齿轮52和第四齿轮系6的输出齿轮62均不连接,控制发动机11工作。
此时,第一同步器71控制空心轴22和第一传动段201连接,发动机11单独驱动车辆行驶,发动机11的动力会通过空心轴22传输至第一齿轮系3和第三齿轮系4,以实现发动机11的两种挡位驱动模式。
以发动机11与第一齿轮系3传动连接为例,简要说明混合动力系统中的能量传递情况。图7是本公开实施例提供的一种混合动力系统在纯发动机模式下的能量传递示意图。如图7所示,发动机11输出动力至第一传动段201,经第一同步器71传递至空心轴22,动力再经第一齿轮系3的输出齿轮32和第二同步器72传递至第二主轴21,最终动力经传动齿轮91和差速器92传递至车轮,以驱动车辆行驶。实现发动机11工作时的第一挡位驱动模式。
其中,在需要控制发动机11实现第二挡位驱动模式时,控制第二同步器72使第三齿轮系4的输出齿轮42与第二主轴21连接即可,也即将发动机11的动力传递至第三齿轮系4,再经第二主轴21传递至车轮,驱动车辆行驶。
在本公开实施例的一些实现方式中,混合动力系统的动力模式切换为纯发动机11模式时,控制方法包括:
控制第一电机12、第二电机13不工作,控制第一同步器71与第二传动段202连接,控制第二同步器72与第一齿轮系3的输出齿轮32和第三齿轮系4的输出齿轮42均不连接,控制第三同步器73与第二齿轮系5的输出齿轮52或第四齿轮系6的输出齿轮62连接,控制发动机11工作。
此时,第一同步器71控制第一传动段201和第二传动段202连接,发动机11单独驱动车辆行驶,发动机11的动力会通过第二传动段202传输至第二齿轮系5和第四齿轮系6,以实现发动机11的另外两种挡位驱动模式。
以发动机11与第四齿轮系6传动连接为例,简要说明混合动力系统中的能量传递情况。图8是本公开实施例提供的一种混合动力系统在纯发动机模式下的能量传递示意图。如图8所示,发动机11输出动力至第一传动段201,经第一同步器71传递至第二传动段202,动力再经第四齿轮系6的输出齿轮62和第三同步器73传递至第二主轴21,最终动力经传动齿轮91和差速器92传递至车轮,以驱动车辆行驶。实现发动机11工作时的第四挡位驱动模式。
其中,在需要控制发动机11实现第三挡位驱动模式时,控制第二同步器72使第二齿轮系5的输出齿轮52与第二主轴21连接即可,也即将发动机11的动力传递至第二齿轮系5,再经第二主轴21传递至车轮,驱动车辆行驶。
在本公开实施例的一些实现方式中,混合动力系统的动力模式切换为混合驱动模式时,控制方法包括:
控制发动机11驱动第一电机12发电,控制第一同步器71与空心轴22和第二传动段202均不连接,控制第二同步器72与第一齿轮系3的输出齿轮32和第三齿轮系4的输出齿轮42均不连接,控制第三同步器73与第二齿轮系5的输出齿轮52或第四齿轮系6的输出齿轮62连接,控制第二电机13工作。
此时,第一同步器71控制空心轴22和第二传动段202均与第一传动段201断开连接,发动机11驱动第一电机12发电,第一电机12发出的电能存储于供电组件8,供电组件8同时为第二电机13供电,使第二电机13单独驱动车辆行驶,第二电机13的动力会通过第二传动段202传输至第二齿轮系5和第四齿轮系6,以实现第二电机13的两种挡位驱动模式。
以第二电机13与第二齿轮系5传动连接为例,简要说明混合动力系统中的能量传递情况。图9是本公开实施例提供的一种混合动力系统在混合驱动模式下的能量传递示意图。如图9所示,第二电机13输出动力至第二传动段202,经第二齿轮系5的输出齿轮52和第三同步器73传递至第二主轴21,最终动力经传动齿轮91和差速器92传递至车轮,以驱动车辆行驶。实现第二电机13工作时的第三挡位驱动模式。
其中,在需要控制第二电机13实现第四挡位驱动模式时,控制第三同步器73使第四齿轮系6的输出齿轮62与第二主轴21连接即可,也即将第二电机13的动力传递至第四齿轮系6,再经第二主轴21传递至车轮,驱动车辆行驶。
在本公开实施例的另一些实现方式中,混合动力系统的动力模式切换为混合驱动模式时,此时,发动机11、第一电机12和第二电机13均工作,控制方法包括:
控制第一同步器71与第二传动段202连接,控制第二同步器72与第一齿轮系3的输出齿轮32和第三齿轮系4的输出齿轮42均不连接,控制第三同步器73与第二齿轮系5的输出齿轮52或第四齿轮系6的输出齿轮62连接。
此时,第一同步器71控制第一传动段201和第二传动段202连接,发动机11、第一电机12和第二电机13共同驱动车辆行驶,发动机11、第一电机12和第二电机13的动力会通过第二传动段202传输至第二齿轮系5和第四齿轮系6,以实现发动机11、第一电机12和第二电机13的两种挡位驱动模式。
以发动机11、第一电机12、第二电机13与第二齿轮系5传动连接为例,简要说明混合动力系统中的能量传递情况。图10是本公开实施例提供的一种混合动力系统在混合驱动模式下的能量传递示意图。如图10所示,发动机11、第一电机12输出动力至第一传动段201,经第一同步器71传递至第二传动段202,第二电机13输出动力至第二传动段202,发动机11、第一电机12和第二电机13的动力经第二齿轮系5的输出齿轮52和第三同步器73传递至第二主轴21,最终动力经传动齿轮91和差速器92传递至车轮,以驱动车辆行驶。实现发动机11、第一电机12、第二电机13工作时的第三挡位驱动模式。
其中,在需要控制发动机11、第一电机12和第二电机13实现第四挡位驱动模式时,控制第三同步器73使第四齿轮系6的输出齿轮62与第二主轴21连接即可,也即将发动机11、第一电机12和第二电机13的动力传递至第四齿轮 系6,再经第二主轴21传递至车轮,驱动车辆行驶。
在本公开实施例的另一些实现方式中,混合动力系统的动力模式切换为混合驱动模式时,此时,发动机11、第一电机12和第二电机13均工作,控制方法包括:
控制第一同步器71与空心轴22连接,控制第二同步器72与第一齿轮系3的输出齿轮32或第三齿轮系4的输出齿轮42连接,控制第三同步器73与第二齿轮系5的输出齿轮52或第四齿轮系6的输出齿轮62连接。
此时,第一同步器71控制第一传动段201和空心轴22连接,发动机11、第一电机12和第二电机13共同驱动车辆行驶,发动机11、第一电机12的动力通过空心轴22传递至第一齿轮系3和第三齿轮系4,第二电机13的动力会通过第二传动段202传输至第二齿轮系5和第四齿轮系6,以实现发动机11、第一电机12和第二电机13的两种挡位驱动模式。
以发动机11、第一电机12与第一齿轮系3传动连接,第二电机13与第二齿轮系5传动连接为例,简要说明混合动力系统中的能量传递情况。图11是本公开实施例提供的一种混合动力系统在混合驱动模式下的能量传递示意图。如图11所示,发动机11、第一电机12输出动力至第一传动段201,经第一同步器71传递至空心轴22,动力再经第一齿轮系3的输出齿轮32和第二同步器72传递至第二主轴21,第二电机13输出动力至第二传动段202,第二电机13的动力经第二齿轮系5的输出齿轮52和第三同步器73传递至第二主轴21,最终动力经传动齿轮91和差速器92传递至车轮,以驱动车辆行驶。实现发动机11、第一电机12工作时的第一挡位驱动模式,第二电机13工作时的第三挡位驱动模式。
其中,在需要控制发动机11、第一电机12实现第二挡位驱动模式时,控制第二同步器72使第三齿轮系4的输出齿轮42与第二主轴21连接即可;在需要第二电机13实现第四挡位驱动模式时,控制第三同步器73使第四齿轮系6的输出齿轮62与第二主轴21连接即可。
在本公开实施例的一些实现方式中,混合动力系统的动力模式切换为能量回收模式时,控制方法包括:
控制发动机11和第一电机12均不工作,控制第一同步器71与空心轴22和第二传动段202均不连接,控制第二同步器72与第一齿轮系3的输出齿轮32和第三齿轮系4的输出齿轮42均不连接,控制第三同步器73与第二齿轮系5的输出齿轮52或第四齿轮系6的输出齿轮62连接,使第二电机13发电。
此时,第一同步器71控制空心轴22和第二传动段202均与第一传动段201断开连接,第二同步器72控制第一齿轮系3和第三齿轮系4均与第二主轴21断开连接,车轮的动力经差速器92和传动齿轮91传递至第二主轴21,并经过第二齿轮系5或第四齿轮系6,传输至第二电机13,以驱动第二电机13在两种挡位驱动模式下发电。
以第二电机13与第四齿轮系6传动连接为例,简要说明混合动力系统中的能量传递情况。图12是本公开实施例提供的一种混合动力系统在混合驱动模式下的能量传递示意图。如图12所示,车轮的动力经差速器92和传动齿轮91传递至第二主轴21,并经过第二齿轮系5传输至第二电机13,以驱动第二电机13在第三挡位驱动模式下发电。
其中,在需要控制第二电机13实现第四挡位驱动模式时,控制第三同步器73使第四齿轮系6的输出齿轮62与第二主轴21连接即可。
本公开实施例中,混合动力系统的动力模式还可以包括倒车模式,动力模式切换为倒车模式时,控制方法包括:
控制发动机11、第一电机12不工作,控制第一同步器71与空心轴22和第二传动段202均不连接,控制第二同步器72与第一齿轮系3的输出齿轮32和第三齿轮系4的输出齿轮42均不连接,控制第三同步器73与第二齿轮系5的输出齿轮52或第四齿轮系6的输出齿轮62连接,控制第二电机13反转。
此时,第一同步器71控制第一传动段201和第二传动段202断开连接,第二电机13单独反转以驱动车辆倒车,第二电机13的动力会通过第二传动段202传输至第二齿轮系5和第四齿轮系6,以实现第二电机13在两种挡位驱动模式下倒车。
其中,在需要控制第二电机13以第四挡位驱动模式倒车时,控制第三同步器73使第四齿轮系6的输出齿轮62与第二主轴21连接即可,也即将第二电机13的动力传递至第四齿轮系6,再经第二主轴21传递至车轮,驱动车辆倒车。
以上,并非对本公开作任何形式上的限制,虽然本公开已通过实施例揭露如上,然而并非用以限定本公开,任何熟悉本专业的技术人员,在不脱离本公开技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本公开技术方案的内容,依据本公开的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本公开技术方案的范围内。

Claims (10)

  1. 一种混合动力系统,其特征在于,包括:动力源、第一主轴(20)、第二主轴(21)、空心轴(22)、第一齿轮系(3)、第二齿轮系(5)、第一同步器(71)、第二同步器(72)和第三同步器(73);
    所述第一主轴(20)包括同轴间隔布置的第一传动段(201)和第二传动段(202),所述动力源与所述第一传动段(201)传动连接,所述空心轴(22)活动套装在所述第一传动段(201)外,所述第一同步器(71)套装在第一传动段(201)外,用于与所述空心轴(22)和所述第二传动段(202)中的至多一个相连;
    所述第一齿轮系(3)的输入齿轮固定套装在所述空心轴(22)外,所述第一齿轮系(3)的输出齿轮活动套装在所述第二主轴(21)外,所述第二同步器(72)套装在所述第二主轴(21)外,用于与所述第一齿轮系(3)的输出齿轮连接或断开连接;
    所述第二齿轮系(5)的输入齿轮固定套装在所述第二传动段(202)外,所述第二齿轮系(5)的输出齿轮活动套装在所述第二主轴(21)外,所述第三同步器(73)套装在所述第二主轴(21)外,用于与所述第二齿轮系(5)的输出齿轮连接或断开连接,所述第二主轴(21)与车轮传动连接。
  2. 根据权利要求1所述的混合动力系统,其特征在于,还包括第三齿轮系(4),所述第三齿轮系(4)的输入齿轮固定套装在所述空心轴(22)外,所述第三齿轮系(4)的输出齿轮活动套装在所述第二主轴(21)外,且位于所述第二同步器(72)远离所述第一齿轮系(3)的输出齿轮的一侧,所述第二同步器(72)还用于与所述第三齿轮系(4)的输出齿轮连接或断开连接,且所述第二同步器(72)至多与所述第一齿轮系(3)的输出齿轮和所述第三齿轮系(4)的输出齿轮中的一个连接。
  3. 根据权利要求1所述的混合动力系统,其特征在于,还包括第四齿轮系(6),所述第四齿轮系(6)的输入齿轮固定套装在所述第二传动段(202)外,所述第四齿轮系(6)的输出齿轮活动套装在所述第二主轴(21)外,且位于所 述第三同步器(73)远离所述第二齿轮系(5)的输出齿轮的一侧,所述第三同步器(73)还用于与所述第四齿轮系(6)的输出齿轮连接或断开连接,且所述第三同步器(73)至多与所述第二齿轮系(5)的输出齿轮和所述第四齿轮系(6)的输出齿轮中的一个连接。
  4. 根据权利要求1~3任一项所述的混合动力系统,其特征在于,所述动力源包括发动机(11)和第一电机(12),所述发动机(11)的输出轴与所述第一电机(12)的输出轴的一端相连,所述第一电机(12)的输出轴的另一端与所述第一传动段(201)相连。
  5. 根据权利要求4所述的混合动力系统,其特征在于,还包括第二电机(13),所述第二电机(13)的输出轴与所述第二传动段(202)传动连接。
  6. 根据权利要求5所述的混合动力系统,其特征在于,还包括供电组件(8),所述供电组件(8)包括:电池(81)和两个逆变器(82),两个所述逆变器(82)分别与所述电池(81)连接,所述第一电机(12)与两个所述逆变器(82)中的一个连接,所述第二电机(13)与两个所述逆变器(82)中的另一个连接。
  7. 根据权利要求1或2所述的混合动力系统,其特征在于,还包括传动齿轮(91),所述传动齿轮(91)同轴套装在所述第二主轴(21)外,且位于所述第一齿轮系(3)的输出齿轮和所述第二齿轮系(5)的输出齿轮之间,所述传动齿轮(91)与所述车轮传动连接。
  8. 根据权利要求7所述的混合动力系统,其特征在于,还包括差速器(92),所述车轮通过所述差速器(92)与所述传动齿轮(91)传动连接。
  9. 一种混合动力车,其特征在于,包括如权利要求1~8任一项所述的混合动力系统。
  10. 一种混合动力系统的控制方法,其特征在于,用于控制如权利要求1~8 任一项所述的混合动力系统,所述方法包括:
    控制所述第一同步器(71)与所述空心轴(22)相连,控制所述第二同步器(72)与所述第一齿轮系(3)的输出齿轮连接,所述第三同步器(73)与所述第二齿轮系(5)的输出齿轮断开连接;或者,
    控制所述第一同步器(71)与所述第二传动段(202)相连,控制所述第二同步器(72)与所述第一齿轮系(3)的输出齿轮断开连接,所述第三同步器(73)与所述第二齿轮系(5)的输出齿轮连接。
PCT/CN2022/070333 2021-07-28 2022-01-05 混合动力系统和控制方法、混合动力车 WO2023005154A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110859812.1 2021-07-28
CN202110859812.1A CN113400921A (zh) 2021-07-28 2021-07-28 混合动力系统和控制方法

Publications (1)

Publication Number Publication Date
WO2023005154A1 true WO2023005154A1 (zh) 2023-02-02

Family

ID=77687899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070333 WO2023005154A1 (zh) 2021-07-28 2022-01-05 混合动力系统和控制方法、混合动力车

Country Status (2)

Country Link
CN (1) CN113400921A (zh)
WO (1) WO2023005154A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113400921A (zh) * 2021-07-28 2021-09-17 奇瑞汽车股份有限公司 混合动力系统和控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006036758A1 (de) * 2006-08-05 2008-02-28 Zf Friedrichshafen Ag Automatisiertes Doppelkupplungsgetriebe eines Kraftfahrzeuges
CN103415410A (zh) * 2011-03-11 2013-11-27 腓特烈斯港齿轮工厂股份公司 机动车混合动力驱动装置和混合动力驱动装置控制方法
CN203427599U (zh) * 2013-07-26 2014-02-12 比亚迪股份有限公司 混合动力系统及具有该混合动力系统的车辆
CN208855415U (zh) * 2018-09-29 2019-05-14 比亚迪股份有限公司 混合动力驱动系统及车辆
CN113400921A (zh) * 2021-07-28 2021-09-17 奇瑞汽车股份有限公司 混合动力系统和控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005001527A1 (de) * 2005-01-13 2006-07-27 Zf Friedrichshafen Ag Getriebevorrichtung
DE102007051473A1 (de) * 2007-10-27 2009-04-30 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug
CN203623363U (zh) * 2013-12-12 2014-06-04 袁一卿 多模式多挡位混合动力系统
CN211195835U (zh) * 2019-10-30 2020-08-07 比亚迪股份有限公司 混合动力系统以及具有其的车辆
CN113022295B (zh) * 2021-03-30 2022-08-12 奇瑞汽车股份有限公司 混合动力系统和控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006036758A1 (de) * 2006-08-05 2008-02-28 Zf Friedrichshafen Ag Automatisiertes Doppelkupplungsgetriebe eines Kraftfahrzeuges
CN103415410A (zh) * 2011-03-11 2013-11-27 腓特烈斯港齿轮工厂股份公司 机动车混合动力驱动装置和混合动力驱动装置控制方法
CN203427599U (zh) * 2013-07-26 2014-02-12 比亚迪股份有限公司 混合动力系统及具有该混合动力系统的车辆
CN208855415U (zh) * 2018-09-29 2019-05-14 比亚迪股份有限公司 混合动力驱动系统及车辆
CN113400921A (zh) * 2021-07-28 2021-09-17 奇瑞汽车股份有限公司 混合动力系统和控制方法

Also Published As

Publication number Publication date
CN113400921A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
CN105644335B (zh) 车辆用双电机动力系统和双电机混合动力系统
CN104972890A (zh) 一种双电机混合动力自动变速器
EP3467346A1 (en) Driving system of dual-motor dual-shaft input gearbox and gear shift control method therefor
CN108839551B (zh) 混合动力系统及控制方法
CN112356647B (zh) 一种多电机灵活扭矩集中驱动合成箱和电动车辆
CN204852264U (zh) 一种单电机混合动力自动变速器
CN204845514U (zh) 一种双电机混合动力自动变速器
WO2023071093A1 (zh) 混合动力系统和车辆
WO2022206147A1 (zh) 混合动力系统及其控制方法、混合动力车
WO2023005153A1 (zh) 纯电动车的动力系统和控制方法、混合动力车
CN103939535A (zh) 电动车用双电机两档变速器及其换挡控制方法
WO2010133155A1 (zh) 电动汽车驱动系统
CN109017264B (zh) 混合动力系统及控制方法
CN107264261A (zh) 一种十一挡混合动力汽车驱动系统
WO2023065624A1 (zh) 双离合器组件、混合动力系统和车辆
WO2023005154A1 (zh) 混合动力系统和控制方法、混合动力车
CN107458207A (zh) 一种汽车混合动力系统及应用
CN108839550B (zh) 混合动力系统
CN203864425U (zh) 用于车辆的动力传动系统及具有该动力传动系统的车辆
CN107187311B (zh) 一种混合动力系统
WO2023273307A1 (zh) 传动结构、纯电动车的动力系统和控制方法
CN203318133U (zh) 一种混合动力汽车的动力耦合器
WO2022111557A1 (zh) 混合动力驱动系统及混合动力汽车
CN110116615B (zh) 一种重型商用汽车用并联混合动力变速器
CN107415673A (zh) 一种汽车混合动力系统及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22847776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22847776

Country of ref document: EP

Kind code of ref document: A1