WO2023273291A1 - 压缩系统的控制方法、装置及空气能热泵热水器 - Google Patents

压缩系统的控制方法、装置及空气能热泵热水器 Download PDF

Info

Publication number
WO2023273291A1
WO2023273291A1 PCT/CN2022/070983 CN2022070983W WO2023273291A1 WO 2023273291 A1 WO2023273291 A1 WO 2023273291A1 CN 2022070983 W CN2022070983 W CN 2022070983W WO 2023273291 A1 WO2023273291 A1 WO 2023273291A1
Authority
WO
WIPO (PCT)
Prior art keywords
steps
expansion valve
preset value
electronic expansion
temperature
Prior art date
Application number
PCT/CN2022/070983
Other languages
English (en)
French (fr)
Inventor
史帆
欧阳光
白国建
吴高灵
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US18/280,491 priority Critical patent/US20240151433A1/en
Priority to EP22831128.8A priority patent/EP4283212A1/en
Publication of WO2023273291A1 publication Critical patent/WO2023273291A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the technical field of water heaters, in particular to a control method and device for a compression system and an air energy heat pump water heater.
  • a method for controlling a compression system includes a compressor arranged between a first outdoor heat exchanger and a second heat exchanger of a water tank, and a compressor arranged in the A first electronic expansion valve between the second heat exchanger and the flash evaporator and a second electronic expansion valve disposed between the flash evaporator and the first heat exchanger; the method includes performing the first control at least once step, performing the first control step each time includes: determining the first target number of steps of the first electronic expansion valve; after controlling the first electronic expansion valve to run at the first target number of steps for a first time, determining the The temperature difference between the current discharge temperature of the compressor and the current maximum water temperature of the water tank; if the temperature difference is less than the first preset value, reduce the first target step by the first correction step , the first preset value is greater than 0 degrees Celsius, and the first corrected step number is greater than 0 steps; the first electronic expansion valve is controlled to operate with the reduced first target step number.
  • the at least one first control step includes N first control steps, each time the temperature difference in the first control step is less than the first preset value, and the ith first control step The number of first correction steps in is greater than the number of first correction steps in the i-1th first control step, where N is greater than or equal to 2, and 2 ⁇ i ⁇ N.
  • the number of first correction steps in the ith first control step is the same as the number of first correction steps in the i-1th first control step
  • the first differences between steps are all the same.
  • the method further includes: after executing the first control step at least once, executing a second control step at least once, and each execution of the second control step includes: determining the value of the first electronic expansion valve The first target number of steps; after controlling the first electronic expansion valve to run at the first target number of steps for a second time, determine the temperature difference; when the temperature difference is greater than or equal to the first preset value and is less than the second preset value, reduce the first target step number by the first corrected step number in the last first control step, and the second preset value is greater than the first preset value Setting value: controlling the first electronic expansion valve to operate with the reduced first target number of steps.
  • the method further includes: after executing the second control step at least once, executing a third control step at least once, and each execution of the third control step includes: determining the value of the first electronic expansion valve The first target number of steps; after controlling the first electronic expansion valve to run at the first target number of steps for a third time, determine the temperature difference; when the temperature difference is greater than or equal to the second preset value, increase the first target step number by the second correction step number, and the second correction step number is greater than 0 steps; control the first electronic expansion valve to increase the first target Steps run.
  • the at least one third control step includes M third control steps, the temperature difference in each third control step is greater than or equal to the second preset value, and the jth third control step The second correction step number in the control step is greater than the second correction step number in the j-1th third control step, wherein M is greater than or equal to 2, 2 ⁇ j ⁇ M.
  • the number of second correction steps in the j-th first control step is the same as the number of second correction steps in the j-th first control step
  • the second differences between steps are all the same.
  • the first preset value is 10 degrees Celsius
  • the second preset value is 15 degrees Celsius
  • before performing the at least one first control step it further includes: in response to starting the compressor, determining the temperature of the first electronic expansion valve according to the current ambient temperature and the current average water temperature of the water tank. The first initial number of steps and the second initial number of steps of the second electronic expansion valve; controlling the first electronic expansion valve to start operating at the first initial number of steps, and controlling the second electronic expansion valve to The above-mentioned second initial steps start running.
  • determining the first initial steps of the first electronic expansion valve and the second initial steps of the second electronic expansion valve includes: when the ambient temperature is less than In the case of the third preset value or greater than or equal to the fourth preset value, the first initial step number is a fixed value, and the third preset value and the fourth preset value are greater than 0 degrees Celsius; When the ambient temperature is greater than or equal to the third preset value and less than the fourth preset value, the first initial number of steps is determined according to the average water temperature.
  • determining the first initial number of steps according to the average water temperature includes: determining the first initial number of steps K1 0 according to the following formula: Among them, K1 0 is an integer, B1 0 , C1 0 , D1 0 and E1 0 are constants, For the average water temperature, B1 0 ranges from 267 to 310, C1 0 ranges from 4.3 to 6.1, D1 0 ranges from -0.17 to -0.09, and E1 0 ranges from 0.0006 to 0.0013.
  • B1 0 is 289
  • C1 0 is 5.2
  • D1 0 is -0.13
  • E1 0 is 0.001.
  • the fixed value ranges from 250 steps to 450 steps; the third preset value is 10 degrees Celsius, and the fourth preset value is 30 degrees Celsius.
  • the fixed value is 300 steps.
  • determining the first initial steps of the first electronic expansion valve and the second initial steps of the second electronic expansion valve includes: when the ambient temperature is greater than or equal to the fifth preset value, the second initial number of steps is positively correlated with the ambient temperature, and the fifth preset value is less than 0 degrees Celsius; when the ambient temperature is less than the fifth preset value In the case of , the second initial number of steps is positively correlated with the average water temperature.
  • A2 0 is 201 and B2 0 is 2.5.
  • the second initial number of steps K20 is determined according to the following formula: Among them, K2 0 is an integer, C2 0 , D2 0 , E2 0 and F2 0 are constants, For the average water temperature, C2 0 ranges from 350 to 382, D2 0 ranges from -4.15 to -3.1, E2 0 ranges from 0.16 to 0.26, and F2 0 ranges from -0.0014 to -0.0007.
  • C2 0 is 366
  • D2 0 is -3.63
  • E2 0 is 0.215
  • F2 0 is -0.001.
  • the fifth preset value is -5 degrees Celsius.
  • the first target number of steps is determined according to the current ambient temperature and the current average water temperature of the water tank.
  • the first target number of steps K1 m is determined according to the following formula: Wherein, a1 m , b1 m , c1 m and d1 m are constants, T e is the ambient temperature, is the average water temperature, a1 m ranges from 217 to 223, b1 m ranges from 5.5 to 5.7, c1 m ranges from -0.2 to -0.1, and d1 m ranges from 0.01 to 0.02.
  • a1 m is 222, b1 m is 5.7, c1 m is -0.16, and d1 m is 0.02.
  • the highest water temperature is the temperature of a temperature-sensing package, and the temperature-sensing package is arranged at a certain position of the water tank, wherein, compared with the water inlet of the water tank, the position is closer to the water outlet of the water tank.
  • a control device for a compression system includes a compressor arranged between the first outdoor heat exchanger and the second heat exchanger of the water tank, a first electronic expansion valve between the second heat exchanger and the flash evaporator and a second electronic expansion valve disposed between the flash evaporator and the first heat exchanger; the device is configured to perform at least one In the first control step, the device includes: a first determination module configured to determine the first target number of steps of the first electronic expansion valve in each execution of the first control step; a second determination module configured to After each execution of the first control step, the first electronic expansion valve is controlled to run at the first target number of steps for the first time, and the difference between the current discharge temperature of the compressor and the current maximum water temperature of the water tank is determined.
  • a correction module configured to reduce the first target step number by a first correction step number when the temperature difference is less than a first preset value in each first control step, The first preset value is greater than 0 degrees Celsius, and the first correction step is greater than 0 steps; the control module is configured to control the first electronic expansion valve to reduce all The above-mentioned first target step number operation.
  • a control device including: a memory; and a processor coupled to the memory, the processor is configured to execute any one of the above-mentioned ones based on instructions stored in the memory The control method of the compression system described in the embodiment.
  • an air source heat pump water heater comprising: the compression system; and the control device for the compression system described in any one of the above embodiments.
  • a computer-readable storage medium including computer program instructions, wherein, when the computer program instructions are executed by a processor, the method described in any one of the foregoing embodiments is implemented.
  • the first electronic expansion valve is controlled to reduce the first The first target number of steps after correcting the number of steps is run.
  • the refrigerant entering the pipeline between the flash evaporator and the first outdoor heat exchanger can be relatively increased, so that the suction pressure of the compressor is prevented from being too low, and the heating efficiency of the compression system is improved. In this way, the reliability of the compression system and the heating efficiency can be taken into consideration.
  • FIG. 1 is a schematic structural diagram of a compression system according to some embodiments of the present disclosure
  • Fig. 2 is a schematic flow diagram of performing a first control step according to some embodiments of the present disclosure
  • Fig. 3 is a schematic flowchart of executing a second control step according to some embodiments of the present disclosure
  • Fig. 4 is a schematic flowchart of executing a third control step according to some embodiments of the present disclosure
  • Fig. 5 is a schematic structural diagram of a control device of a compression system according to some embodiments of the present disclosure
  • Fig. 6 is a schematic structural diagram of a control device of a compression system according to other embodiments of the present disclosure.
  • the performance of air-energy heat pump water heaters is greatly affected by the ambient temperature, especially in places where the ambient temperature is very low in winter, and the efficiency of air-energy heat pump water heaters is low when heating higher water temperatures (such as above 60°C).
  • a compression system including a two-stage electronic expansion valve can be used to improve the efficiency of the air energy heat pump water heater.
  • Fig. 1 is a schematic structural diagram of a compression system according to some embodiments of the present disclosure.
  • the compression system includes a compressor arranged between the first outdoor heat exchanger and the second heat exchanger of the water tank, and a first electronic expansion valve arranged between the second heat exchanger and the flash evaporator (one-stage electronic expansion magnetic valve) and a second electronic expansion valve (two-stage electronic expansion magnetic valve) arranged between the flasher and the first heat exchanger.
  • Figure 1 also shows the four-way valve in the compression system, the port C of the four-way valve is connected with the second heat exchanger, the port D of the four-way valve is connected with the air outlet of the compressor, and the port E of the four-way valve is It communicates with the first heat exchanger, and the port S of the four-way valve communicates with the air inlet of the compressor via the gas-liquid separator.
  • the refrigerant vapor from the compressor enters the second heat exchanger of the water tank through the four-way valve.
  • the refrigerant vapor heats the water in the water tank and condenses into a liquid, and then throttling the wet vapor at intermediate pressure through the first electronic expansion valve. into the flasher.
  • part of the refrigerant is flashed to become a saturated refrigerant vapor and the other part becomes a saturated liquid.
  • the saturated refrigerant vapor is sucked into the medium-pressure chamber of the compressor through the enthalpy injection valve, and the saturated liquid is throttled by the second electronic expansion valve and enters the first outdoor heat exchanger to absorb heat and become superheated gas.
  • the superheated gas After passing through the gas-liquid separator, the superheated gas is sucked into the low-pressure chamber of the compressor and compressed, then enters the medium-pressure chamber, and then is mixed with the gas in the medium-pressure chamber to be compressed into high-temperature and high-pressure gas, and then enters the second heat exchanger of the water tank condensed again.
  • Such repeated circulation can heat the water in the water tank.
  • the control method of the compression system includes executing the first control step at least once.
  • the specific implementation manner of executing the first control step will be described below with reference to FIG. 2 .
  • Fig. 2 is a schematic flowchart of performing a first control step according to some embodiments of the present disclosure.
  • step 202 a first target number of steps of the first electronic expansion valve is determined.
  • the first target number of steps may be determined according to the current ambient temperature and the current average water temperature of the water tank. The following will describe in detail in conjunction with some embodiments.
  • step 204 after the first electronic expansion valve is controlled to run at the first target number of steps for a first time, the temperature difference between the current discharge temperature of the compressor and the current maximum water temperature of the water tank is determined.
  • the first time can be adjusted according to actual conditions, for example, it can be greater than or equal to 5 minutes.
  • the current discharge temperature of the compressor can be obtained through the temperature of the discharge temperature sensor installed on the discharge pipe of the compressor.
  • the current maximum water temperature of the water tank can be obtained by setting a temperature sensor package at a specific position of the water tank.
  • the highest water temperature is the temperature of the temperature-sensing package, and the temperature-sensing package is arranged at a certain position of the water tank, which is closer to the water outlet of the water tank than the water inlet of the water tank.
  • the temperature of the water in the upper part of the water tank is higher than the temperature of the water in the lower part of the water tank, the water outlet is located in the upper part of the water tank, and the water inlet is located in the lower part of the water tank, at this time the temperature sensing package can be arranged in the upper part of the water tank.
  • the temperature of the temperature sensing package can reflect the maximum temperature of the water in the upper part of the water tank.
  • the water tank can also be provided with another temperature-sensing package, and the location of the other temperature-sensing package is closer to the water inlet of the water tank than the water outlet of the water tank. the lower part of the tank. It should be understood that the temperature of the other temperature sensing bulb may reflect the temperature of the water in the lower part of the water tank.
  • step 206 if the temperature difference is smaller than the first preset value, the first target step number is reduced by the first corrected step number.
  • the first preset value is greater than 0 degrees Celsius, and the first correction step is greater than 0 steps.
  • the first preset value is 10 degrees Celsius.
  • step 208 the first electronic expansion valve is controlled to operate at the reduced first target step number.
  • the first target step number before correction is K1m
  • the first corrected step number is X1
  • the reduced first target step number is K1m-X1.
  • the first corrected number of steps is smaller than the first target number of steps, that is, the reduced first number of target steps is still greater than 0 steps.
  • the maximum number of first correction steps is 120 steps.
  • the first electronic expansion valve is controlled to reduce the first correction The first target number of steps to run after the number of steps.
  • the refrigerant entering the pipeline between the flash evaporator and the first outdoor heat exchanger can be relatively increased, so that the suction pressure of the compressor is prevented from being too low, and the heating efficiency of the compression system is improved. In this way, the reliability of the compression system and the heating efficiency can be taken into consideration.
  • the temperature difference means the temperature difference between the current discharge temperature of the compressor and the current maximum water temperature of the water tank.
  • the control method of the compression system includes performing the first control step shown in FIG. 2 N times.
  • the temperature difference determined in each first control step is smaller than the first preset value
  • the number of first correction steps in the ith first control step is greater than the number of first correction steps in the i-1 first control step.
  • a number of correction steps, wherein, N is greater than or equal to 2, 2 ⁇ i ⁇ N.
  • the reduced number of first correction steps in the subsequent first control step is larger than the reduced number of first correction steps in the previous first control step.
  • the number of first correction steps in the ith first control step is the same as the number of first correction steps in the i-1th first control step
  • the first differences between steps are all the same.
  • the number of first correction steps in the first control step of the first time is X1
  • the number of first correction steps in the first control step of the second time is 2X1
  • the number of first correction steps in the first control step of the third time is 3X1, and so on.
  • the control can be more convenient, and the correction speed can be increased, so that the opening degree of the first electronic expansion valve can be controlled faster to the target opening degree, that is, the reduced first target step number.
  • the temperature difference between the discharge temperature of the compressor and the maximum temperature of the water tank will gradually change from less than the first preset value to greater than or equal to the first preset value. control will be described.
  • the second control step is performed at least once.
  • Fig. 3 is a schematic flowchart of executing a second control step according to some embodiments of the present disclosure. For some steps in FIG. 3 , reference may be made to the relevant description in FIG. 2 , and details are not repeated here.
  • step 302 a first target number of steps of the first electronic expansion valve is determined.
  • step 304 the temperature difference is determined after the first electronic expansion valve is controlled to run at the first target number of steps for a second time.
  • the second time may be the same as the first time.
  • step 306 if the temperature difference is greater than or equal to the first preset value and smaller than the second preset value, the first target step number is reduced by the first corrected step number in the last first control step.
  • the second preset value is greater than the first preset value. In some embodiments, the second preset value is 15 degrees Celsius, and the first preset value is 10 degrees Celsius.
  • the last first control step is the last first control step executed before.
  • the first corrected step number in the last first control step is reduced. In other words, the number of steps for correcting the first target number of steps in each second control step is the same.
  • step 308 the first electronic expansion valve is controlled to operate at the reduced first target step number.
  • the temperature difference has changed from less than the first preset value to greater than or equal to the first preset value and less than the second preset value through the first control step, at this time, the first correction steps can no longer be increased , so as to prevent the opening of the first electronic expansion valve from being too small and reduce the heating efficiency.
  • the temperature difference between the discharge temperature of the compressor and the maximum temperature of the water tank will gradually become greater than or equal to the second preset value, and the subsequent control will be described below.
  • the third control step is performed at least once.
  • Fig. 4 is a schematic flowchart of executing the third control step according to some embodiments of the present disclosure. Similarly, for some steps in FIG. 4 , reference may be made to the relevant description in FIG. 2 , and details are not repeated here.
  • step 402 a first target number of steps of the first electronic expansion valve is determined.
  • step 404 after the first electronic expansion valve is controlled to run at the first target number of steps for a third time, the temperature difference is determined.
  • the third time may be the same as the first time. In some embodiments, the third time, the second time and the first time are all the same.
  • step 406 in the case that the temperature difference is greater than or equal to the second preset value, the first target step number is increased by the second corrected step number.
  • the second correction step number is greater than 0 steps.
  • step 408 the first electronic expansion valve is controlled to operate at the increased first target step number.
  • the first target step number is increased by the second corrected step number, so as to improve the heating efficiency of the compression system.
  • the third control step is executed M times, where M is an integer greater than or equal to 2.
  • the temperature difference determined in each third control step is greater than or equal to the second preset value, and the number of second correction steps in the j-th third control step is greater than the number of j-1th second correction steps in the j-1th third control step.
  • Two correction steps, 2 ⁇ j ⁇ M In other words, the increased second correction step number in the subsequent third control step is larger than the increased second correction step number in the previous third control step. In this way, when the temperature difference is greater than or equal to the second preset value, the heating efficiency of the compression system can be further improved.
  • the number of second correction steps in the j-th first control step is the same as the number of second correction steps in the j-th first control step
  • the second differences between steps are all the same.
  • the third correction step number in the first third control step is X2
  • the third correction step number in the second third control step is 2X2
  • the third correction step number in the third third control step is is 3X2, and so on.
  • the control can be more convenient, and the correction speed can be increased, so that the opening degree of the first electronic expansion valve can be controlled faster to the target opening degree, that is, the increased first target step number.
  • the first electronic expansion valve and the second electronic expansion valve are controlled to start running at their respective initial steps, and the specific control is as follows.
  • the first initial number of steps of the first electronic expansion valve and the second initial number of steps of the second electronic expansion valve are determined according to the current ambient temperature and the current average water temperature of the water tank.
  • the current average water temperature of the water tank can be obtained by calculating the average temperature of one or more water temperature sensing bulbs arranged on the water tank.
  • the current ambient temperature can be obtained through an ambient temperature sensing bulb provided at the air inlet of the first heat exchanger on the air side.
  • the real-time ambient temperature at the location of the compression system can be obtained as the current ambient temperature by obtaining the location information of the compression system, and then through networking.
  • the first electronic expansion valve is controlled to start running at the first initial step number
  • the second electronic expansion valve is controlled to start running at the second initial step number
  • the first target number of steps of the first electronic expansion valve and the second target number of steps of the second electronic expansion valve can be determined, and the first electronic expansion valve and the second electronic expansion valve can be respectively controlled at their respective target steps. number of runs. For example, after the first preset time (for example, 2 minutes), the first target number of steps of the first electronic expansion valve can be determined first and the first electronic expansion valve is controlled to run at the first target number of steps, and then after the second preset time Determine the second target number of steps of the second electronic expansion valve after a set time (for example, 1 minute) and control the second electronic expansion valve to run at the second target number of steps.
  • a set time for example, 1 minute
  • the first initial number of steps is a fixed value.
  • the third preset value and the fourth preset value are greater than 0 degrees Celsius, and the fourth preset value is greater than the third preset value.
  • the third preset value is 10 degrees Celsius
  • the fourth preset value is 30 degrees Celsius
  • the fixed value ranges from 250 steps to 450 steps.
  • the fixed value of the initial steps of the first electronic expansion valve is set to 300 steps, so that the opening of the first electronic expansion valve can be at a more suitable opening, so as to better balance the heating efficiency and reliability of the compression system.
  • the first initial number of steps is determined according to the current average water temperature of the water tank.
  • the first initial number of steps K1 0 can be determined according to the following formula:
  • K1 0 is an integer
  • B1 0 , C1 0 , D1 0 and E1 0 are constants
  • the range of B1 0 is 267 to 310
  • the range of C1 0 is 4.3 to 6.1
  • the range of D1 0 is -0.17 to -0.09
  • the range of E1 0 is 0.0006 to 0.0013.
  • the inventor found that it is more reasonable to determine the first initial step number K1 0 according to the above formula, which can reduce the possibility of the compressor running with liquid, and will not make the first heat exchanger entering the outdoor There is too little refrigerant, and at the same time, the first electronic expansion valve can be controlled faster to reach the subsequent target steps.
  • B1 0 is 289
  • C1 0 is 5.2
  • D1 0 is -0.13
  • E1 0 is 0.001, so that the first initial step K1 0 is more reasonable.
  • the following introduces some implementations of determining the second initial number of steps of the second electronic expansion valve according to the current ambient temperature and the current average water temperature of the water tank.
  • the second initial number of steps is positively correlated with the current ambient temperature.
  • the second initial number of steps is positively correlated with the average water temperature.
  • the fifth preset value is less than 0 degrees Celsius. In some embodiments, the fifth preset value is -5 degrees Celsius.
  • Controlling the second initial number of steps in the above manner can make the second electronic expansion valve at a relatively reasonable opening degree, which can take into account both the reliability of the compression system and the heating efficiency.
  • the second initial number of steps K20 is determined according to the following formula:
  • K2 0 is an integer
  • A2 0 and B2 0 are constants
  • T e is the ambient temperature
  • A2 0 ranges from 191 to 210
  • B2 0 ranges from 2.1 to 2.9.
  • A2 0 is 201, and B2 0 is 2.5, so that the reliability and heating efficiency of the compression system can be better balanced.
  • the second initial number of steps K20 is determined according to the following formula:
  • K2 0 is an integer
  • C2 0 , D2 0 , E2 0 and F2 0 are constants
  • the range of C2 0 is 350 to 382
  • the range of D2 0 is -4.15 to -3.1
  • the range of E2 0 is 0.16 to 0.26
  • the range of F2 0 is -0.0014 to -0.0007.
  • C2 0 is 366
  • D2 0 is -3.63
  • E2 0 is 0.215
  • F2 0 is -0.001. In this way, the reliability and heating efficiency of the compression system can be better balanced.
  • the embodiments of the present disclosure propose some implementation manners for determining the first target number of steps of the first electronic expansion valve as follows.
  • the first target number of steps K1 m is determined according to the following formula:
  • a1 m , b1 m , c1 m and d1 m are constants
  • T e is the current ambient temperature
  • the range of a1 m is 217 to 223
  • the range of b1 m is 5.5 to 5.7
  • the range of c1 m is -0.2 to -0.1
  • the range of d1 m is 0.01 to 0.02.
  • Determining the first target number of steps according to the above formula can make the energy efficiency ratio of the compression system higher.
  • a1 m is 222, b1 m is 5.7, c1 m is -0.16, and d1 m is 0.02. In this way, the energy efficiency ratio of the compression system can be further improved.
  • the second target number of steps of the second electronic expansion valve may be determined according to the following formula:
  • K2 m K2 m(last time) + ⁇ K2
  • K2 m is the second target step number determined this time
  • K2 m (last time) is the second target step number determined last time
  • ⁇ K2 T x -T g - target superheat
  • T x is The suction temperature of the compressor
  • T g is the temperature of the tube temperature sensing bulb (see Figure 1 for example) on the intake tube of the air side heat exchanger.
  • the target degree of superheat can be determined according to Table 1 (wherein, G1 to G5 are integers ranging from 0 to 5):
  • Te is the current ambient temperature
  • Tp is the discharge temperature of the compressor.
  • G1, G2, G3, G4, and G5 increase progressively. In the case of such setting, in the case of low temperature, it is beneficial to reduce the possibility of compressor suction operation with liquid and improve the reliability of the compression system; in the case of high temperature, it is beneficial to improve the compression system Heating efficiency.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same or similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related parts, please refer to the part of the description of the method embodiment.
  • Fig. 5 is a schematic structural diagram of a control device of a compression system according to some embodiments of the present disclosure.
  • the compression system includes a compressor arranged between the first outdoor heat exchanger and the second heat exchanger of the water tank, a first electronic expansion valve arranged between the second heat exchanger and the flash evaporator, and a first electronic expansion valve arranged between the flash evaporator.
  • a second electronic expansion valve between the evaporator and the first heat exchanger.
  • the control device of the compression system is configured to perform the first control step at least once.
  • the control device of the compression system includes: a first determination module 501 configured to determine the first target number of steps of the first electronic expansion valve in each execution of the first control step; a second determination module 502, It is configured to determine the temperature difference between the current discharge temperature of the compressor and the current maximum water temperature of the water tank after each execution of the first control step by controlling the first electronic expansion valve to operate at the first target number of steps for a first time;
  • the correction module 503 is configured to reduce the first target step number by a first correction step number when the temperature difference is smaller than a first preset value in each execution of the first control step, and the first preset value is greater than 0 Celsius, the first corrected step number is greater than 0 steps;
  • the control module 504 is configured to control the first electronic expansion valve to operate at the reduced first target step number during each execution of the first control step.
  • Fig. 6 is a schematic structural diagram of a control device of a compression system according to other embodiments of the present disclosure.
  • control device 600 of the compression system includes a memory 601 and a processor 602 coupled to the memory 601, the processor 602 is configured to execute the method of any one of the foregoing embodiments based on instructions stored in the memory 601 .
  • the memory 601 may include, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory may store an operating system, an application program, a boot loader (Boot Loader) and other programs, for example.
  • Boot Loader Boot Loader
  • the control device 600 of the compression system may further include an input and output interface 603, a network interface 604, a storage interface 605, and the like. These interfaces 603 , 604 , and 605 , and between the memory 601 and the processor 602 may be connected via a bus 606 , for example.
  • the input and output interface 603 provides a connection interface for input and output devices such as a display, a mouse, a keyboard, and a touch screen.
  • the network interface 604 provides connection interfaces for various networked devices.
  • the storage interface 605 provides connection interfaces for external storage devices such as SD cards and U disks.
  • An embodiment of the present disclosure also provides an air source heat pump water heater, including: a compression system and a control device for the compression system in any one of the above embodiments.
  • the compression system may be the compression system mentioned in any one of the above embodiments.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, including computer program instructions, and when the computer program instructions are executed by a processor, the method for controlling the compression system in any one of the foregoing embodiments is implemented.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein. .
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本公开提供了一种压缩系统的控制方法、装置及空气能热泵热水器,涉及热水器技术领域,所述压缩系统包括设置在室外的第一换热器和水箱的第二换热器之间的压缩机、设置在第二换热器和闪蒸器之间的第一电子膨胀阀和设置在闪蒸器和第一换热器之间的第二电子膨胀阀;方法包括执行至少一次第一控制步骤,执行每次第一控制步骤包括:确定第一电子膨胀阀的第一目标步数;控制第一电子膨胀阀以第一目标步数运行第一时间后,确定压缩机当前的排气温度和水箱当前的最高水温之间的温度差;在温度差小于第一预设值的情况下,将第一目标步数减小第一修正步数,第一预设值大于0摄氏度,第一修正步数大于0步;控制第一电子膨胀阀以减小后的第一目标步数运行。

Description

压缩系统的控制方法、装置及空气能热泵热水器
相关申请的交叉引用
本申请是以CN申请号为202110718242.4,申请日为2021年6月28日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及热水器技术领域,尤其是一种压缩系统的控制方法、装置及空气能热泵热水器。
背景技术
空气能热泵热水器继燃气热水器、电热水器、太阳能热水器之后,被称为“第四代热水器”。
近年来,空气能热泵热水器因其高效节能、环保、安全、舒适、安装便捷等诸多优势,被越来越广泛应用。
发明内容
根据本公开实施例的一方面,提供一种压缩系统的控制方法,所述压缩系统包括设置在室外的第一换热器和水箱的第二换热器之间的压缩机、设置在所述第二换热器和闪蒸器之间的第一电子膨胀阀和设置在所述闪蒸器和所述第一换热器之间的第二电子膨胀阀;所述方法包括执行至少一次第一控制步骤,执行每次第一控制步骤包括:确定所述第一电子膨胀阀的第一目标步数;控制所述第一电子膨胀阀以所述第一目标步数运行第一时间后,确定所述压缩机当前的排气温度和水箱当前的最高水温之间的温度差;在所述温度差小于第一预设值的情况下,将所述第一目标步数减小第一修正步数,所述第一预设值大于0摄氏度,所述第一修正步数大于0步;控制所述第一电子膨胀阀以减小后的所述第一目标步数运行。
在一些实施例中,所述至少一次第一控制步骤包括N次第一控制步骤,每次第一控制步骤中的所述温度差小于所述第一预设值,第i次第一控制步骤中的第一修正步数大于第i-1次第一控制步骤中的第一修正步数,其中,N大于或等于2,2≤i≤N。
在一些实施例中,在i为2至N中的任意一个整数的情况下,第i次第一控制步 骤中的第一修正步数与第i-1次第一控制步骤中的第一修正步数之间的第一差值均相同。
在一些实施例中,所述方法还包括:在执行所述至少一次第一控制步骤后,执行至少一次第二控制步骤,执行每次第二控制步骤包括:确定所述第一电子膨胀阀的所述第一目标步数;控制所述第一电子膨胀阀以所述第一目标步数运行第二时间后,确定所述温度差;在所述温度差大于或等于所述第一预设值、且小于第二预设值的情况下,将所述第一目标步数减小上一次第一控制步骤中的第一修正步数,所述第二预设值大于所述第一预设值;控制所述第一电子膨胀阀以减小后的所述第一目标步数运行。
在一些实施例中,所述方法还包括:在执行所述至少一次第二控制步骤后,执行至少一次第三控制步骤,执行每次第三控制步骤包括:确定所述第一电子膨胀阀的所述第一目标步数;控制所述第一电子膨胀阀以所述第一目标步数运行第三时间后,确定所述温度差;在所述温度差大于或等于所述第二预设值的情况下,将所述第一目标步数增大第二修正步数,所述第二修正步数大于0步;控制所述第一电子膨胀阀以增大后的所述第一目标步数运行。
在一些实施例中,所述至少一次第三控制步骤包括M次第三控制步骤,每次第三控制步骤中的所述温度差大于或等于所述第二预设值,第j次第三控制步骤中的第二修正步数大于第j-1次第三控制步骤中的第二修正步数,其中,M大于或等于2,2≤j≤M。
在一些实施例中,在j为2至M中的任意一个整数的情况下,第j次第一控制步骤中的第二修正步数与第j-1次第一控制步骤中的第二修正步数之间的第二差值均相同。
在一些实施例中,所述第一预设值为10摄氏度,所述第二预设值为15摄氏度。
在一些实施例中,在执行所述至少一次第一控制步骤之前,还包括:响应于所述压缩机开机,根据当前的环境温度和水箱当前的平均水温,确定所述第一电子膨胀阀的第一初始步数和所述第二电子膨胀阀的第二初始步数;控制所述第一电子膨胀阀以所述第一初始步数开始运行,并控制所述第二电子膨胀阀以所述第二初始步数开始运行。
在一些实施例中,根据当前的环境温度和水箱当前的平均水温,确定第一电子膨胀阀的第一初始步数和第二电子膨胀阀的第二初始步数包括:在所述环境温度小于第三预设值或大于或等于第四预设值的情况下,所述第一初始步数为固定值,所述第三 预设值和所述第四预设值大于0摄氏度;在所述环境温度大于或等于所述第三预设值、且小于所述第四预设值的情况下,根据所述平均水温确定所述第一初始步数。
在一些实施例中,根据所述平均水温确定所述第一初始步数包括:根据如下公式确定所述第一初始步数K1 0
Figure PCTCN2022070983-appb-000001
其中,K1 0为整数,B1 0、C1 0、D1 0和E1 0为常数,
Figure PCTCN2022070983-appb-000002
为所述平均水温,B1 0的范围为267至310,C1 0的范围为4.3至6.1,D1 0的范围为-0.17至-0.09,E1 0的范围为0.0006至0.0013。
在一些实施例中,B1 0为289,C1 0为5.2,D1 0为-0.13,E1 0为0.001。
在一些实施例中,所述固定值的范围为250步至450步;所述第三预设值为10摄氏度,所述第四预设值为30摄氏度。
在一些实施例中,所述固定值为300步。
在一些实施例中,根据当前的环境温度和水箱当前的平均水温,确定第一电子膨胀阀的第一初始步数和第二电子膨胀阀的第二初始步数包括:在所述环境温度大于或等于第五预设值的情况下,所述第二初始步数与所述环境温度正相关,所述第五预设值小于0摄氏度;在所述环境温度小于所述第五预设值的情况下,所述第二初始步数与所述平均水温正相关。
在一些实施例中,在所述环境温度大于或等于所述第五预设值的情况下,所述第二初始步数K2 0根据如下公式确定:K2 0=A2 0+B2 0T e其中,K2 0为整数,A2 0和B2 0为常数,T e为所述环境温度,A2 0的范围为191至210,B2 0的范围为2.1至2.9。
在一些实施例中,A2 0为201,B2 0为2.5。
在一些实施例中,在所述环境温度小于所述第五预设值的情况下,所述第二初始步数K2 0根据如下公式确定:
Figure PCTCN2022070983-appb-000003
其中,K2 0为整数,C2 0、D2 0、E2 0和F2 0为常数,
Figure PCTCN2022070983-appb-000004
为所述平均水温,C2 0的范围为350至382,D2 0的范围为-4.15至-3.1,E2 0的范围为0.16至0.26,F2 0的范围为-0.0014至-0.0007。
在一些实施例中,C2 0为366、D2 0为-3.63、E2 0为0.215,F2 0为-0.001。
在一些实施例中,所述第五预设值为-5摄氏度。
在一些实施例中,所述第一目标步数根据当前的环境温度和水箱当前的平均水温确定。
在一些实施例中,所述第一目标步数K1 m根据如下公式确定:
Figure PCTCN2022070983-appb-000005
Figure PCTCN2022070983-appb-000006
其中,a1 m、b1 m、c1 m和d1 m为常数,T e为所述环 境温度,
Figure PCTCN2022070983-appb-000007
为所述平均水温,a1 m的范围为217至223,b1 m的范围为5.5至5.7,c1 m的范围为-0.2至-0.1,d1 m的范围为0.01至0.02。
在一些实施例中,a1 m为222,b1 m为5.7,c1 m为-0.16,d1 m为0.02。
在一些实施例中,所述最高水温为感温包的温度,所述感温包设置在水箱的某一位置处,其中,相对于水箱的入水口,该位置更靠近水箱的出水口。
根据本公开实施例的另一方面,提供一种压缩系统的控制装置,所述压缩系统包括设置在室外的第一换热器和水箱的第二换热器之间的压缩机、设置在所述第二换热器和闪蒸器之间的第一电子膨胀阀和设置在所述闪蒸器和所述第一换热器之间的第二电子膨胀阀;所述装置被配置为执行至少一次第一控制步骤,所述装置包括:第一确定模块,被配置为在执行每次第一控制步骤中确定所述第一电子膨胀阀的第一目标步数;第二确定模块,被配置为在执行每次第一控制步骤中控制所述第一电子膨胀阀以所述第一目标步数运行第一时间后,确定所述压缩机当前的排气温度和水箱当前的最高水温之间的温度差;修正模块,被配置为在执行每次第一控制步骤中在所述温度差小于第一预设值的情况下,将所述第一目标步数减小第一修正步数,所述第一预设值大于0摄氏度,所述第一修正步数大于0步;控制模块,被配置为在执行每次第一控制步骤中控制所述第一电子膨胀阀以减小后的所述第一目标步数运行。
根据本公开实施例的又一方面,提供一种控制装置,包括:存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行上述任意一个实施例所述的压缩系统的控制方法。
根据本公开实施例的再一方面,提供一种空气能热泵热水器,包括:所述压缩系统;和上述任意一个实施例所述的压缩系统的控制装置。
根据本公开实施例的还一方面,提供一种计算机可读存储介质,包括计算机程序指令,其中,所述计算机程序指令被处理器执行时实现上述任意一个实施例所述的方法。
本公开实施例中,在压缩机当前的排气温度和水箱当前的最高水温之间的温度差小于大于0摄氏度的第一预设值的情况下,控制第一电子膨胀阀以减小第一修正步数后的第一目标步数运行。如此,可以避免过多的制冷剂进入闪蒸器和压缩机之间的管路,减小压缩机带液运行的可能性,提高压缩系统的可靠性。另外,可以相对增加进入闪蒸器和室外的第一换热器之间的管路的制冷剂,避免压缩机的吸气压力过低,提高压缩系统的制热效率。如此,可以兼顾压缩系统的可靠性和制热效率。
下面通过附图和实施例,对本公开的技术方案做进一步的详细描述。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开一些实施例的压缩系统的结构示意图;
图2是根据本公开一些实施例的执行第一控制步骤的流程示意图;
图3是根据本公开一些实施例的执行第二控制步骤的流程示意图;
图4是根据本公开一些实施例的执行第三控制步骤的流程示意图;
图5是根据本公开一些实施例的压缩系统的控制装置的结构示意图;
图6是根据本公开另一些实施例的压缩系统的控制装置的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
空气能热泵热水器的性能受环境温度影响较大,尤其是在冬季环境温度很低的地 方,加热较高水温(如60℃以上)时空气能热泵热水器的效率较低。
发明人知晓的技术中,可以采用包括两级电子膨胀阀的压缩系统来提高空气能热泵热水器的效率。
图1是根据本公开一些实施例的压缩系统的结构示意图。
如图1所示,压缩系统包括设置在室外的第一换热器和水箱的第二换热器之间的压缩机、设置在第二换热器和闪蒸器之间的第一电子膨胀阀(一级电子膨胀磁阀)和设置在闪蒸器和第一换热器之间的第二电子膨胀阀(二级电子膨胀磁阀)。另外,图1还示出了压缩系统中的四通阀,四通阀的端口C与第二换热器连接,四通阀的端口D与压缩机的出气口连通,四通阀的端口E与第一换热器连通,四通阀的端口S经由气液分离器与压缩机的进气口连通。
下面结合图1介绍压缩系统的制热过程。
从压缩机出来的制冷剂蒸气经过四通阀进入水箱的第二换热器,制冷剂蒸气加热水箱内的水后冷凝成液体,再通过第一电子膨胀阀节流至中间压力的湿蒸气后进入闪蒸器。在闪蒸器中,一部分制冷剂被闪发,成为饱和制冷剂蒸气,另一部分则成为饱和液体。饱和制冷剂蒸气经由喷焓阀被压缩机的中压腔吸入,饱和液体则经由第二电子膨胀阀节流后进入室外的第一换热器中吸热成为过热气体。过热气体经由气液分离器后被压缩机的低压腔吸入并压缩后进入中压腔,进而与中压腔内的气体混合后被压缩成高温高压的气体,然后进入水箱的第二换热器中再次冷凝。如此反复循环,即可对水箱中的水进行加热。
发明人注意到,在水箱中剩余的水的温度较高,而室外环境温度较低的情况下,制冷剂容易迁移到室外的第一换热器和压缩机。此时,如果对水箱注水并加热,压缩系统可能会带液运行,影响压缩系统的可靠性;并且,进入室外的第一换热器的制冷剂不足,造成压缩系统的制热效率较低。
有鉴于此,本公开实施例提出了如下技术方案。
本公开一些实施例提供的压缩系统的控制方法包括执行至少一次第一控制步骤,下面结合图2说明执行第一控制步骤的具体实现方式。
图2是根据本公开一些实施例的执行第一控制步骤的流程示意图。
在步骤202,确定第一电子膨胀阀的第一目标步数。
在一些实施例中,可以根据当前的环境温度和水箱当前的平均水温确定第一目标步数。后文将结合一些实施例进行详细说明。
在步骤204,控制第一电子膨胀阀以第一目标步数运行第一时间后,确定压缩机当前的排气温度和水箱当前的最高水温之间的温度差。
应理解,第一时间可以根据实际情况进行调整,例如可以大于或等于5分钟。
例如,参见图1,压缩机当前的排气温度可以通过设置在压缩机的排气管上的排气感温包的温度来获取。
水箱当前的最高水温可以通过在水箱的特定位置设置感温包来获取。在一些实施例中,最高水温为感温包的温度,该感温包设置在水箱的某一位置处,相对于水箱的入水口,该位置更靠近水箱的出水口。例如,水箱的上部的水的温度高于水箱的下部的水的温度,出水口位于水箱的上部,而入水口位于水箱的下部,此时感温包可以设置在水箱的上部。这里,该感温包的温度可以反映水箱上部的水的最高温度。
在一些实施例中,水箱还可以设置有另一感温包,该另一感温包设置的位置相对于水箱的出水口更靠近水箱的入水口,例如,该另一感温包可以设置在水箱的下部。应理解,该另一感温包的温度可以反映水箱下部的水的温度。
在步骤206,在温度差小于第一预设值的情况下,将第一目标步数减小第一修正步数。这里,第一预设值大于0摄氏度,第一修正步数大于0步。
在一些实施例中,第一预设值为10摄氏度。
在步骤208,控制第一电子膨胀阀以减小后的第一目标步数运行。
例如,修正前的第一目标步数为K1m,第一修正步数为X1,则减小后的第一目标步数为K1m-X1。应理解,第一修正步数小于第一目标步数,即减小后的第一目标步数仍大于0步。在一些实施例中,第一修正步数的最大值为120步。
上述实施例中,在压缩机当前的排气温度和水箱当前的最高水温之间的温度差小于大于0摄氏度的第一预设值的情况下,控制第一电子膨胀阀以减小第一修正步数后的第一目标步数运行。如此,可以避免过多的制冷剂进入闪蒸器和压缩机之间的管路,减小压缩机带液运行的可能性,提高压缩系统的可靠性。另外,可以相对增加进入闪蒸器和室外的第一换热器之间的管路的制冷剂,避免压缩机的吸气压力过低,提高压缩系统的制热效率。如此,可以兼顾压缩系统的可靠性和制热效率。
在下文中,除非特别说明,否则,为了简洁,温度差表示压缩机当前的排气温度和水箱当前的最高水温之间的温度差。
在一些实施例中,压缩系统的控制方法包括执行N次图2所示的第一控制步骤。这里,每次第一控制步骤中确定的温度差均小于第一预设值,并且,第i次第一控制 步骤中的第一修正步数大于第i-1次第一控制步骤中的第一修正步数,其中,N大于或等于2,2≤i≤N。换言之,后一次的第一控制步骤中减小的第一修正步数比前一次第一控制步骤中减小的第一修正步数更大。如此,在温度差小于第一预设值的情况下,可以更快地对水箱进行加热,并且进一步减小压缩机带液运行的可能性,从而进一步提高压缩系统的可靠性。
在一些实施例中,在i为2至N中的任意一个整数的情况下,第i次第一控制步骤中的第一修正步数与第i-1次第一控制步骤中的第一修正步数之间的第一差值均相同。例如,第1次第一控制步骤中的第一修正步数为X1,第2次第一控制步骤中的第一修正步数为2X1,第3次第一控制步骤中的第一修正步数为3X1,以此类推。如此,可以更便于控制,提高修正速度,从而可以更快地控制第一电子膨胀阀的开度为目标开度,即减小后的第一目标步数。
随着压缩机的排气温度的逐渐上升,压缩机的排气温度和水箱的最高温度的温度差会从小于第一预设值逐渐变为大于或等于第一预设值,下面对后续的控制进行说明。
在一些实施例中,在执行前述的至少一次第一控制步骤后,执行至少一次第二控制步骤。
图3是根据本公开一些实施例的执行第二控制步骤的流程示意图。图3中的某些步骤可以参照图2的相关说明,在此不再赘述。
在步骤302,确定第一电子膨胀阀的第一目标步数。
在步骤304,控制第一电子膨胀阀以第一目标步数运行第二时间后,确定温度差。
在一些实施例中,第二时间可以与第一时间相同。
在步骤306,在温度差大于或等于第一预设值、且小于第二预设值的情况下,将第一目标步数减小上一次第一控制步骤中的第一修正步数。
这里,第二预设值大于第一预设值。在一些实施例中,第二预设值为15摄氏度,第一预设值为10摄氏度。
应理解,对于第二控制步骤来说,上一次第一控制步骤即为之前执行的最后一次第一控制步骤。在每次第二控制步骤中,每次确定第一目标步数后,均减小上一次第一控制步骤中的第一修正步数。换言之,每次第二控制步骤中对第一目标步数进行修正的步数均相同。
在步骤308,控制第一电子膨胀阀以减小后的第一目标步数运行。
上述实施例中,通过第一控制步骤已经使得温度差从小于第一预设值变为大于或 等于第一预设值且小于第二预设值,此时可以不再增加第一修正步数,从而避免第一电子膨胀阀的开度过小,降低制热效率。
随着压缩机的排气温度的进一步上升,压缩机的排气温度和水箱的最高温度的温度差会从逐渐变为大于或等于第二预设值,下面对后续的控制进行说明。
在一些实施例中,在执行前述的至少一次第二控制步骤后,执行至少一次第三控制步骤。
图4是根据本公开一些实施例的执行第三控制步骤的流程示意图。类似地,图4中的某些步骤可以参照图2的相关说明,在此不再赘述。
在步骤402,确定第一电子膨胀阀的第一目标步数。
在步骤404,控制第一电子膨胀阀以第一目标步数运行第三时间后,确定温度差。
在一些实施例中,第三时间可以与第一时间相同。在一些实施例中,第三时间、第二时间和第一时间均相同。
在步骤406,在温度差大于或等于第二预设值的情况下,将第一目标步数增大第二修正步数。这里,第二修正步数大于0步。
在步骤408,控制第一电子膨胀阀以增大后的第一目标步数运行。
上述实施例中,在温度差大于或等于第二预设值的情况下,将第一目标步数增大第二修正步数,从而可以提高压缩系统的制热效率。
在一些实施例中,执行M次第三控制步骤,M大于或等于2的整数。每次第三控制步骤中确定的温度差均大于或等于第二预设值,并且,第j次第三控制步骤中的第二修正步数大于第j-1次第三控制步骤中的第二修正步数,2≤j≤M。换言之,后一次的第三控制步骤中增大的第二修正步数比前一次第三控制步骤中增大的第二修正步数更大。如此,在温度差大于或等于第二预设值的情况下,可以进一步提高压缩系统的制热效率。
在一些实施例中,在j为2至M中的任意一个整数的情况下,第j次第一控制步骤中的第二修正步数与第j-1次第一控制步骤中的第二修正步数之间的第二差值均相同。例如,第1次第三控制步骤中的第三修正步数为X2,第2次第三控制步骤中的第三修正步数为2X2,第3次第三控制步骤中的第三修正步数为3X2,以此类推。如此,可以更便于控制,提高修正速度,从而可以更快地控制第一电子膨胀阀的开度为目标开度,即,增大后的第一目标步数。
发明人还注意到,在控制压缩系统时,第一电子膨胀阀和第二电子膨胀阀的初始 开度会影响压缩系统的制热效率和可靠性。为了更好地兼顾压缩系统的制热效率和可靠性,本公开实施例还提出了如下技术方案。
在一些实施例中,在执行前述的至少一次第一控制步骤之前,先控制第一电子膨胀阀和第二电子膨胀阀以各自的初始步数开始运行,具体控制如下。
首先,响应于压缩机开机,根据当前的环境温度和水箱当前的平均水温,确定第一电子膨胀阀的第一初始步数和第二电子膨胀阀的第二初始步数。
例如,可以通过计算设置在水箱上的一个或多个水温感温包的温度的平均值来得到水箱当前的平均水温。
例如,可以通过空气侧第一换热器的进风处设置的环境感温包来得到当前的环境温度。或者,可以通过获取压缩系统的位置信息,进而通过联网得到压缩系统所在地的实时环境温度作为当前的环境温度。
然后,控制第一电子膨胀阀以第一初始步数开始运行,并控制第二电子膨胀阀以第二初始步数开始运行。
后续在经过一段时间后可以确定第一电子膨胀阀的第一目标步数和第二电子膨胀阀第二目标步数,并分别控制第一电子膨胀阀和第二电子膨胀阀以各自的目标步数运行。例如,在经过第一预设时间(例如2分钟)后可以先确定第一电子膨胀阀的第一目标步数并控制第一电子膨胀阀以第一目标步数运行,然后再经过第二预设时间(例如1分钟)后确定第二电子膨胀阀的第二目标步数并控制第二电子膨胀阀以第二目标步数运行。
下面介绍根据当前的环境温度和水箱当前的平均水温,确定第一电子膨胀阀的第一初始步数的一些实现方式。
在当前的环境温度小于第三预设值,或者,当前的环境温度大于或等于第四预设值的情况下,第一初始步数为固定值。这里,第三预设值和第四预设值大于0摄氏度,并且第四预设值大于第三预设值。在一些实施例中,第三预设值为10摄氏度,第四预设值为30摄氏度,并且,固定值的范围为250步至450步。在当前的环境温度处于上述温度范围内时将第一电子膨胀阀的第一初始步数设置在上述步数范围内,可以使得第一电子膨胀阀的开度处于合适的开度,避免过大或过小,从而更好地兼顾压缩系统的制热效率和可靠性。在一些实施例中,在当前的环境温度处于上述温度范围内时将第一电子膨胀阀的初始步数的固定值设置为300步,从而可以使得第一电子膨胀阀的开度处于更合适的开度,从而更好地兼顾压缩系统的制热效率和可靠性。
在当前的环境温度大于或等于第三预设值、且小于第四预设值的情况下,根据水箱当前的平均水温确定第一初始步数。
在一些实施例中,可以根据如下公式确定第一初始步数K1 0
Figure PCTCN2022070983-appb-000008
在上式中,K1 0为整数,B1 0、C1 0、D1 0和E1 0为常数,
Figure PCTCN2022070983-appb-000009
为水箱当前的平均水温,B1 0的范围为267至310,C1 0的范围为4.3至6.1,D1 0的范围为-0.17至-0.09,E1 0的范围为0.0006至0.0013。
发明人通过拟合分析和实验验证,按照上式确定第一初始步数K1 0比较合理,既可以减小压缩机带液运行的可能性,又不会使得进入室外的第一换热器的制冷剂过少,同时可以更快地控制第一电子膨胀阀达到后续的目标步数。
在一些实施例中,B1 0为289,C1 0为5.2,D1 0为-0.13,E1 0为0.001,如此可以使得第一初始步数K1 0更合理。
下面介绍根据当前的环境温度和水箱当前的平均水温,确定第二电子膨胀阀的第二初始步数的一些实现方式。
在当前的环境温度大于或等于第五预设值的情况下,第二初始步数与当前的环境温度正相关。在当前的环境温度小于第五预设值的情况下,第二初始步数与平均水温正相关。这里,第五预设值小于0摄氏度。在一些实施例中,第五预设值为-5摄氏度。
按照以上方式控制第二初始步数可以使得第二电子膨胀阀处于比较合理的开度,可以兼顾压缩系统的可靠性和制热效率。
作为一些实现方式,在环境温度大于或等于第五预设值的情况下,第二初始步数K2 0根据如下公式确定:
K2 0=A2 0+B2 0T e
在上式中,K2 0为整数,A2 0和B2 0为常数,T e为环境温度,A2 0的范围为191至210,B2 0的范围为2.1至2.9。
按照上式确定第二初始步数更加合理,避免第二初始步数过大或过小,从而更好地兼顾压缩系统的可靠性和制热效率,也可以更快地控制第二电子膨胀阀达到后续的目标步数。
在一些实施例中,A2 0为201,B2 0为2.5,如此可以进一步更好地兼顾压缩系统的可靠性和制热效率。
作为一些实现方式,在当前的环境温度小于第五预设值的情况下,第二初始步数 K2 0根据如下公式确定:
Figure PCTCN2022070983-appb-000010
在上式中,K2 0为整数,C2 0、D2 0、E2 0和F2 0为常数,
Figure PCTCN2022070983-appb-000011
为水箱的平均水温,C2 0的范围为350至382,D2 0的范围为-4.15至-3.1,E2 0的范围为0.16至0.26,F2 0的范围为-0.0014至-0.0007。
按照上式确定第二初始步数更加合理,避免第二初始步数过大或过小,从而更好地兼顾压缩系统的可靠性和制热效率。
在一些实施例中,C2 0为366、D2 0为-3.63、E2 0为0.215,F2 0为-0.001。如此,可以使得进一步更好地兼顾压缩系统的可靠性和制热效率。
发明人通过分析,制冷剂经过第一电子膨胀阀后的中间压力基本等于压缩机的吸气压力和排气压力的乘积的平方根的情况下,第一电子膨胀阀的开度比较合理。经过分析和拟合,本公开实施例提出了如下确定第一电子膨胀阀的第一目标步数的一些实现方式。
作为一些实现方式,第一目标步数K1 m根据如下公式确定:
Figure PCTCN2022070983-appb-000012
在上式中,a1 m、b1 m、c1 m和d1 m为常数,T e为当前的环境温度,
Figure PCTCN2022070983-appb-000013
为水箱的平均水温,a1 m的范围为217至223,b1 m的范围为5.5至5.7,c1 m的范围为-0.2至-0.1,d1 m的范围为0.01至0.02。
按照上式确定第一目标步数可以使得压缩系统的能效比更高。
在一些实施例中,a1 m为222,b1 m为5.7,c1 m为-0.16,d1 m为0.02。如此,可以进一步提高压缩系统的能效比。
下面介绍确定第二电子膨胀阀的第二目标步数的一些实现方式。
作为一些实现方式,第二电子膨胀阀的第二目标步数可以根据如下公式来确定:
K2 m=K2 m(上一次)+ΔK2
在上式中,K2 m为本次确定的第二目标步数,K2 m(上一次)为上一次确定的第二目标步数,ΔK2=T x-T g-目标过热度,T x为压缩机的吸气温度,T g为在空气侧换热器进气管上的管温感温包(例如参见图1)的温度。
在一些实施例中,目标过热度可以按照表1来确定(其中,G1至G5取值为0至5的整数):
表1
Figure PCTCN2022070983-appb-000014
在表1中,Te为当前的环境温度,Tp为压缩机的排气温度。在一些实施例中,G1、G2、G3、G4和G5逐渐增大。如此设置的情况下,在温度较低的情况下,有利于减小压缩机吸气带液运行的可能性,提高压缩系统的可靠性;在温度较高的情况下,有利于提高压缩系统的制热效率。
本说明书中各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似的部分相互参见即可。对于装置实施例而言,由于其与方法实施例基本对应,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
图5是根据本公开一些实施例的压缩系统的控制装置的结构示意图。
这里,压缩系统包括设置在室外的第一换热器和水箱的第二换热器之间的压缩机、设置在第二换热器和闪蒸器之间的第一电子膨胀阀和设置在闪蒸器和第一换热器之间的第二电子膨胀阀。
压缩系统的控制装置被配置为执行至少一次第一控制步骤。如图5所示,压缩系统的控制装置包括:第一确定模块501,被配置为在执行每次第一控制步骤中确定第一电子膨胀阀的第一目标步数;第二确定模块502,被配置为在执行每次第一控制步骤中控制第一电子膨胀阀以第一目标步数运行第一时间后,确定压缩机当前的排气温度和水箱当前的最高水温之间的温度差;修正模块503,被配置为在执行每次第一控制步骤中在温度差小于第一预设值的情况下,将第一目标步数减小第一修正步数,第一预设值大于0摄氏度,第一修正步数大于0步;控制模块504,被配置为在执行每次第一控制步骤中控制第一电子膨胀阀以减小后的第一目标步数运行。
图6是根据本公开另一些实施例的压缩系统的控制装置的结构示意图。
如图6所示,压缩系统的控制装置600包括存储器601以及耦接至该存储器601的处理器602,处理器602被配置为基于存储在存储器601中的指令,执行前述任意一个实施例的方法。
存储器601例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如可以存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。
压缩系统的控制装置600还可以包括输入输出接口603、网络接口604、存储接口605等。这些接口603、604、605之间、以及存储器601与处理器602之间例如可以通过总线606连接。输入输出接口603为显示器、鼠标、键盘、触摸屏等输入输出设备提供连接接口。网络接口604为各种联网设备提供连接接口。存储接口605为SD卡、U盘等外置存储设备提供连接接口。
本公开实施例还提供了一种空气能热泵热水器,包括:压缩系统和上述任意一个实施例的压缩系统的控制装置。压缩系统可以是上述任意一个实施例提到的压缩系统。
本公开实施例还提供了一种计算机可读存储介质,包括计算机程序指令,该计算机程序指令被处理器执行时实现上述任意一个实施例的压缩系统的控制方法。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
本领域内的技术人员应当明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解,可由计算机程序指令实现流程图中一个流程或多个流程和/或方框图中一个方框或多个方框中指定的功能。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (28)

  1. 一种压缩系统的控制方法,所述压缩系统包括设置在室外的第一换热器和水箱的第二换热器之间的压缩机、设置在所述第二换热器和闪蒸器之间的第一电子膨胀阀和设置在所述闪蒸器和所述第一换热器之间的第二电子膨胀阀;
    所述方法包括执行至少一次第一控制步骤,执行每次第一控制步骤包括:
    确定所述第一电子膨胀阀的第一目标步数;
    控制所述第一电子膨胀阀以所述第一目标步数运行第一时间后,确定所述压缩机当前的排气温度和水箱当前的最高水温之间的温度差;
    在所述温度差小于第一预设值的情况下,将所述第一目标步数减小第一修正步数,所述第一预设值大于0摄氏度,所述第一修正步数大于0步;
    控制所述第一电子膨胀阀以减小后的所述第一目标步数运行。
  2. 根据权利要求1所述的方法,其中,所述至少一次第一控制步骤包括N次第一控制步骤,每次第一控制步骤中的所述温度差小于所述第一预设值,第i次第一控制步骤中的第一修正步数大于第i-1次第一控制步骤中的第一修正步数,其中,N大于或等于2,2≤i≤N。
  3. 根据权利要求2所述的方法,其中,在i为2至N中的任意一个整数的情况下,第i次第一控制步骤中的第一修正步数与第i-1次第一控制步骤中的第一修正步数之间的第一差值均相同。
  4. 根据权利要求1-3任意一项所述的方法,还包括:在执行所述至少一次第一控制步骤后,执行至少一次第二控制步骤,执行每次第二控制步骤包括:
    确定所述第一电子膨胀阀的所述第一目标步数;
    控制所述第一电子膨胀阀以所述第一目标步数运行第二时间后,确定所述温度差;
    在所述温度差大于或等于所述第一预设值、且小于第二预设值的情况下,将所述第一目标步数减小上一次第一控制步骤中的第一修正步数,所述第二预设值大于所述第一预设值;
    控制所述第一电子膨胀阀以减小后的所述第一目标步数运行。
  5. 根据权利要求4所述的方法,还包括:在执行所述至少一次第二控制步骤后,执行至少一次第三控制步骤,执行每次第三控制步骤包括:
    确定所述第一电子膨胀阀的所述第一目标步数;
    控制所述第一电子膨胀阀以所述第一目标步数运行第三时间后,确定所述温度差;
    在所述温度差大于或等于所述第二预设值的情况下,将所述第一目标步数增大第二修正步数,所述第二修正步数大于0步;
    控制所述第一电子膨胀阀以增大后的所述第一目标步数运行。
  6. 根据权利要求5所述的方法,其中,所述至少一次第三控制步骤包括M次第三控制步骤,每次第三控制步骤中的所述温度差大于或等于所述第二预设值,第j次第三控制步骤中的第二修正步数大于第j-1次第三控制步骤中的第二修正步数,其中,M大于或等于2,2≤j≤M。
  7. 根据权利要求6所述的方法,其中,在j为2至M中的任意一个整数的情况下,第j次第一控制步骤中的第二修正步数与第j-1次第一控制步骤中的第二修正步数之间的第二差值均相同。
  8. 根据权利要求4所述的方法,其中,所述第一预设值为10摄氏度,所述第二预设值为15摄氏度。
  9. 根据权利要求1所述的方法,其中,在执行所述至少一次第一控制步骤之前,还包括:
    响应于所述压缩机开机,根据当前的环境温度和水箱当前的平均水温,确定所述第一电子膨胀阀的第一初始步数和所述第二电子膨胀阀的第二初始步数;
    控制所述第一电子膨胀阀以所述第一初始步数开始运行,并控制所述第二电子膨胀阀以所述第二初始步数开始运行。
  10. 根据权利要求9所述的方法,其中,根据当前的环境温度和水箱当前的平均水温,确定第一电子膨胀阀的第一初始步数和第二电子膨胀阀的第二初始步数包括:
    在所述环境温度小于第三预设值或大于或等于第四预设值的情况下,所述第一初始步数为固定值,所述第三预设值和所述第四预设值大于0摄氏度;
    在所述环境温度大于或等于所述第三预设值、且小于所述第四预设值的情况下,根据所述平均水温确定所述第一初始步数。
  11. 根据权利要求10所述的方法,其中,根据所述平均水温确定所述第一初始步数包括:
    根据如下公式确定所述第一初始步数K1 0
    Figure PCTCN2022070983-appb-100001
    其中,K1 0为整数,B1 0、C1 0、D1 0和E1 0为常数,
    Figure PCTCN2022070983-appb-100002
    为所述平均水温,B1 0的范 围为267至310,C1 0的范围为4.3至6.1,D1 0的范围为-0.17至-0.09,E1 0的范围为0.0006至0.0013。
  12. 根据权利要求11所述的方法,其中,B1 0为289,C1 0为5.2,D1 0为-0.13,E1 0为0.001。
  13. 根据权利要求10所述的方法,其中:
    所述固定值的范围为250步至450步;
    所述第三预设值为10摄氏度,所述第四预设值为30摄氏度。
  14. 根据权利要求13所述的方法,其中,所述固定值为300步。
  15. 根据权利要求9-14任意一项所述的方法,其中,根据当前的环境温度和水箱当前的平均水温,确定第一电子膨胀阀的第一初始步数和第二电子膨胀阀的第二初始步数包括:
    在所述环境温度大于或等于第五预设值的情况下,所述第二初始步数与所述环境温度正相关,所述第五预设值小于0摄氏度;
    在所述环境温度小于所述第五预设值的情况下,所述第二初始步数与所述平均水温正相关。
  16. 根据权利要求15所述的方法,其中,在所述环境温度大于或等于所述第五预设值的情况下,所述第二初始步数K2 0根据如下公式确定:
    K2 0=A2 0+B2 0T e
    其中,K2 0为整数,A2 0和B2 0为常数,T e为所述环境温度,A2 0的范围为191至210,B2 0的范围为2.1至2.9。
  17. 根据权利要求16所述的方法,其中,A2 0为201,B2 0为2.5。
  18. 根据权利要求15所述的方法,其中,在所述环境温度小于所述第五预设值的情况下,所述第二初始步数K2 0根据如下公式确定:
    Figure PCTCN2022070983-appb-100003
    其中,K2 0为整数,C2 0、D2 0、E2 0和F2 0为常数,
    Figure PCTCN2022070983-appb-100004
    为所述平均水温,C2 0的范围为350至382,D2 0的范围为-4.15至-3.1,E2 0的范围为0.16至0.26,F2 0的范围为-0.0014至-0.0007。
  19. 根据权利要求18所述的方法,其中,C2 0为366、D2 0为-3.63、E2 0为0.215,F2 0为-0.001。
  20. 根据权利要求15所述的方法,其中,所述第五预设值为-5摄氏度。
  21. 根据权利要求1所述的方法,其中,所述第一目标步数根据当前的环境温度和水箱当前的平均水温确定。
  22. 根据权利要求21所述的方法,其中,所述第一目标步数K1 m根据如下公式确定:
    Figure PCTCN2022070983-appb-100005
    其中,a1 m、b1 m、c1 m和d1 m为常数,T e为所述环境温度,
    Figure PCTCN2022070983-appb-100006
    为所述平均水温,a1 m的范围为217至223,b1 m的范围为5.5至5.7,c1 m的范围为-0.2至-0.1,d1 m的范围为0.01至0.02。
  23. 根据权利要求22所述的方法,其中,a1 m为222,b1 m为5.7,c1 m为-0.16,d1 m为0.02。
  24. 根据权利要求1所述的方法,其中,所述最高水温为感温包的温度,所述感温包设置在水箱的某一位置处,其中,相对于水箱的入水口,该位置更靠近水箱的出水口。
  25. 一种压缩系统的控制装置,所述压缩系统包括设置在室外的第一换热器和水箱的第二换热器之间的压缩机、设置在所述第二换热器和闪蒸器之间的第一电子膨胀阀和设置在所述闪蒸器和所述第一换热器之间的第二电子膨胀阀;
    所述装置被配置为执行至少一次第一控制步骤,所述装置包括:
    第一确定模块,被配置为在执行每次第一控制步骤中确定所述第一电子膨胀阀的第一目标步数;
    第二确定模块,被配置为在执行每次第一控制步骤中控制所述第一电子膨胀阀以所述第一目标步数运行第一时间后,确定所述压缩机当前的排气温度和水箱当前的最高水温之间的温度差;
    修正模块,被配置为在执行每次第一控制步骤中在所述温度差小于第一预设值的情况下,将所述第一目标步数减小第一修正步数,所述第一预设值大于0摄氏度,所述第一修正步数大于0步;
    控制模块,被配置为在执行每次第一控制步骤中控制所述第一电子膨胀阀以减小后的所述第一目标步数运行。
  26. 一种压缩系统的控制装置,包括:
    存储器;和
    耦接至所述存储器的处理器,被配置为基于存储在所述存储器中的指令,执行权利要求1-24任意一项所述的压缩系统的控制方法。
  27. 一种空气能热泵热水器,包括:
    所述压缩系统;和
    根据权利要求25或26所述的压缩系统的控制装置。
  28. 一种计算机可读存储介质,包括计算机程序指令,其中,所述计算机程序指令被处理器执行时实现权利要求1-24任意一项所述的方法。
PCT/CN2022/070983 2021-06-28 2022-01-10 压缩系统的控制方法、装置及空气能热泵热水器 WO2023273291A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/280,491 US20240151433A1 (en) 2021-06-28 2022-01-10 Control Method and Apparatus for Compression System, and Air Energy Heat Pump Water Heater
EP22831128.8A EP4283212A1 (en) 2021-06-28 2022-01-10 Control method and apparatus for compression system, and air energy heat pump water heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110718242.4 2021-06-28
CN202110718242.4A CN113432298B (zh) 2021-06-28 2021-06-28 压缩系统的控制方法、装置及空气能热泵热水器

Publications (1)

Publication Number Publication Date
WO2023273291A1 true WO2023273291A1 (zh) 2023-01-05

Family

ID=77755017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070983 WO2023273291A1 (zh) 2021-06-28 2022-01-10 压缩系统的控制方法、装置及空气能热泵热水器

Country Status (4)

Country Link
US (1) US20240151433A1 (zh)
EP (1) EP4283212A1 (zh)
CN (1) CN113432298B (zh)
WO (1) WO2023273291A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432298B (zh) * 2021-06-28 2022-03-22 珠海格力电器股份有限公司 压缩系统的控制方法、装置及空气能热泵热水器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090199581A1 (en) * 2008-02-07 2009-08-13 Miitsubishi Electric Corporation Heat pump water heater outdoor unit and heat pump water heater
JP2012233626A (ja) * 2011-04-28 2012-11-29 Noritz Corp ヒートポンプ給湯機
CN103808010A (zh) * 2012-11-15 2014-05-21 珠海格力电器股份有限公司 准二级压缩热泵热水器及其控制方法
CN104024763A (zh) * 2011-11-30 2014-09-03 夏普株式会社 空气调节机以及空气调节机的膨胀阀的开度控制方法
CN104807183A (zh) * 2014-01-23 2015-07-29 海尔集团公司 空气源热泵热水器及其电子膨胀阀的控制方法
WO2017158782A1 (ja) * 2016-03-17 2017-09-21 三菱電機株式会社 ヒートポンプ給湯機
CN107388623A (zh) * 2017-08-30 2017-11-24 合肥美的暖通设备有限公司 电子膨胀阀的控制方法、控制系统和热泵系统
CN109668350A (zh) * 2018-12-12 2019-04-23 广东华天成新能源科技股份有限公司 高稳定性热泵系统
CN112781266A (zh) * 2020-12-04 2021-05-11 广东积微科技有限公司 一种喷气增焓热泵系统及其电子膨胀阀的控制方法
CN113432298A (zh) * 2021-06-28 2021-09-24 珠海格力电器股份有限公司 压缩系统的控制方法、装置及空气能热泵热水器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3700474B2 (ja) * 1999-06-01 2005-09-28 松下電器産業株式会社 ヒートポンプ給湯機
JP4766256B2 (ja) * 2006-07-24 2011-09-07 株式会社富士通ゼネラル 空気調和機の制御方法
CN102345915B (zh) * 2011-08-02 2013-11-27 宁波奥克斯电气有限公司 直流变频空调的故障运行控制方法
CN102374714B (zh) * 2011-11-09 2014-04-23 江苏天舒电器有限公司 热泵热水机的电子膨胀阀控制方法及其控制装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090199581A1 (en) * 2008-02-07 2009-08-13 Miitsubishi Electric Corporation Heat pump water heater outdoor unit and heat pump water heater
JP2012233626A (ja) * 2011-04-28 2012-11-29 Noritz Corp ヒートポンプ給湯機
CN104024763A (zh) * 2011-11-30 2014-09-03 夏普株式会社 空气调节机以及空气调节机的膨胀阀的开度控制方法
CN103808010A (zh) * 2012-11-15 2014-05-21 珠海格力电器股份有限公司 准二级压缩热泵热水器及其控制方法
CN104807183A (zh) * 2014-01-23 2015-07-29 海尔集团公司 空气源热泵热水器及其电子膨胀阀的控制方法
WO2017158782A1 (ja) * 2016-03-17 2017-09-21 三菱電機株式会社 ヒートポンプ給湯機
CN107388623A (zh) * 2017-08-30 2017-11-24 合肥美的暖通设备有限公司 电子膨胀阀的控制方法、控制系统和热泵系统
CN109668350A (zh) * 2018-12-12 2019-04-23 广东华天成新能源科技股份有限公司 高稳定性热泵系统
CN112781266A (zh) * 2020-12-04 2021-05-11 广东积微科技有限公司 一种喷气增焓热泵系统及其电子膨胀阀的控制方法
CN113432298A (zh) * 2021-06-28 2021-09-24 珠海格力电器股份有限公司 压缩系统的控制方法、装置及空气能热泵热水器

Also Published As

Publication number Publication date
CN113432298B (zh) 2022-03-22
US20240151433A1 (en) 2024-05-09
CN113432298A (zh) 2021-09-24
EP4283212A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
CN110595020B (zh) 空调系统的补气控制方法、装置及计算机可读存储介质
CN109140826B (zh) 增焓热泵、其补气量控制方法、系统、计算机设备及存储介质
CN105757888B (zh) 一种精密空调内外机联动的控制方法及装置
EP3101369B1 (en) Heat recovery variable-frequency multi-split heat pump system and control method thereof
US10309705B2 (en) Two-stage compression air conditioning system and method of controlling gas replenishment thereof
CN110030676B (zh) 空调控制方法、装置及计算机可读存储介质
WO2023273291A1 (zh) 压缩系统的控制方法、装置及空气能热泵热水器
CN108800562B (zh) 热水热泵系统的制热控制方法、装置及系统
WO2021073035A1 (zh) 空调器及其控制方法、可读存储介质
CN110094858B (zh) 空调电子膨胀阀的控制方法、装置、计算机产品及空调
CN110595123A (zh) 一种空气源变频热泵系统中的电子膨胀阀的控制方法
WO2020107721A1 (zh) 热泵热水器控制方法及热泵热水器
CN105864920B (zh) 一种轻载除湿方法及空调
CN114279046B (zh) 适用于模块化多联机系统的化霜控制方法、控制器及空调
CN110440489A (zh) 一种可调节压差的化霜控制方法、装置及采暖机组
CN206269418U (zh) 具有三级离心式压缩机的多联机热泵系统
WO2019080277A1 (zh) 变频热泵热水器动态加热压缩机频率优化方法
JP6656400B2 (ja) 空気調和装置の室内機及び空気調和装置
WO2022227267A1 (zh) 多组管空调器的控制方法、装置、空调器及存储介质
CN112484182A (zh) 一种数据中心空调制冷系统、节流控制方法、设备、产品
CN206269419U (zh) 一种基于三级离心式压缩机的多联机热泵系统
CN116085950A (zh) 节能控制方法和控制装置、空调系统及存储介质
CN205261920U (zh) 一种新型的空气源热泵超低温热水机
CN107101372A (zh) 一种空气源二级提热式热泵高温热风机组
Shahamiri et al. Application of binary fluid ejector in thermal vapor compression distillation systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831128

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022831128

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022831128

Country of ref document: EP

Effective date: 20230825

WWE Wipo information: entry into national phase

Ref document number: 18280491

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE