CN112781266A - 一种喷气增焓热泵系统及其电子膨胀阀的控制方法 - Google Patents

一种喷气增焓热泵系统及其电子膨胀阀的控制方法 Download PDF

Info

Publication number
CN112781266A
CN112781266A CN202011408340.XA CN202011408340A CN112781266A CN 112781266 A CN112781266 A CN 112781266A CN 202011408340 A CN202011408340 A CN 202011408340A CN 112781266 A CN112781266 A CN 112781266A
Authority
CN
China
Prior art keywords
electronic expansion
expansion valve
temperature
valve
vapor injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011408340.XA
Other languages
English (en)
Inventor
廖振华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Jiwei Technology Co Ltd
Original Assignee
Guangdong Jiwei Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Jiwei Technology Co Ltd filed Critical Guangdong Jiwei Technology Co Ltd
Priority to CN202011408340.XA priority Critical patent/CN112781266A/zh
Publication of CN112781266A publication Critical patent/CN112781266A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Abstract

本发明涉及空调控制技术领域,具体而言,涉及一种喷气增焓热泵系统及其电子膨胀阀的控制方法,通过实时周期性检测排气温度、运行频率、出水温度、外环温度值的变化,根据不同运行模式下,对电子膨胀阀的开度进行调节,从而能够保证系统的可靠性,延长了压缩机的使用寿命,且通过对阀体实时调节,有效避免出现系统较大波动,提高了用户的使用舒适度,另外结合了喷气增焓热泵系统,保证了空调机组的可靠性和稳定性。

Description

一种喷气增焓热泵系统及其电子膨胀阀的控制方法
技术领域
本发明涉及空调控制技术领域,具体而言,涉及一种喷气增焓热泵系统及其电子膨 胀阀的控制方法。
背景技术
空调(热泵)器能有效实现室内的制冷和制热,提供舒适的室内环境。而电子膨胀阀作为空调(热泵)器中的关键部位之一,电子膨胀阀结合压缩机变容量技术已得到越来越广泛的应用了。通过调节电子膨胀开度来调节系统制冷剂流量,从而匹配系统工况,提高系统的稳定性和能效比。因此,电子膨胀阀的调节特性和控制策略很大程度上决定了空调系统 的舒适性和节能性。目前,电子膨胀阀的控制是根据压缩机排气温度调节,导致电子膨胀阀 的控制不精准。
发明内容
有鉴于此,本发明旨在至少从一定程度上解决上述技术中的技术问题之一。为此,本发明的第一个目的在于提出一种喷气增焓热泵系统中电子膨胀阀的控制方法,通过获取模 块实时周期性检测排气温度、运行频率、出水温度、外环温度值的变化,根据不同运行模式 下,控制对电子膨胀阀的开度进行调节,从而能够保证系统的可靠性,延长了压缩机的使用 寿命,且通过对阀体实时调节,有效避免出现系统较大波动,提高了用户的使用舒适度。
第二个目的在于一种喷气增焓热泵系统,结合喷气增焓热泵系统保证了空调机组的 可靠性和稳定性。
为达到上述目的,本发明要解决的技术问题是:提供一种喷气增焓热泵系统及其电 子膨胀阀的控制方法。
一种喷气增焓热泵系统及其电子膨胀阀的控制方法,所述喷气增焓热泵系统其中包 括获取模块、控制模块、电子膨胀阀。
一种电子膨胀阀的控制方法,包括以下步骤:
S101根据获取模块周期性检测系统的排气温度、运行频率、出水温度、外环温度值;
S102根据控制模块检测的数据选择目标排气温度控制或频率或出水温度联动阀步控制;
S103根据控制模块通过所述排气温度控制或频率或出水温度联动阀步控制获取所述电子膨 胀阀的开度调节需求,并根据所述电子膨胀阀的开度调节需求判断是否需要对所述电子膨胀 阀的开度进行调节。
优选的,所述一种电子膨胀阀的控制方法,其特征于,所述系统运行模式包括制热模式和制冷模式。
优选的,所述一种电子膨胀阀的控制方法,应用于其特征在于喷气增焓热泵系统,所述方法包括:
根据所述喷气增焓热泵系统的当期工作模式,确定所述电子膨胀阀的开度值;所述根据所述 喷气增焓热泵系统的当期工作模式,确定所述电子膨胀阀的开度值具体包括:
根据所述系统的当期工作模式,确定开度值计算公式;
将所述获取模块检测的排气温度、运行频率、出水温度,参数代入所述开度值计算公式中, 得到所述电子膨胀阀开度值;
根据外环温度不同,区分不同区间控制,其中当所述系统运行制热模式情况下,所述电子膨 胀阀的控制为:
当T4>n(T4:外环温度,n具体温度值)时,所述系统采用根据目标排气温度控制,即根 据目标排气和压缩机运行频率、出水温度联动,具体如下公式:目标排气温度 =a*F+b*Tw_out+c+d;所述a/b/c为系数,所述d为补偿常数;所述F为频率,所述Tw_out 为出水温度;
当T4≤n(T4:外环温度,n具体温度值)时,所述系统采用根据运行频率和出水温度联动 阀步的方式控制;具体公式为:目标开度=y*F+z;所述F为频率;目标开度为实际阀开度 值,如:目标开度为100,则实际阀开度值为100(0-480P);
当所述系统运行制冷模式情况下,所述电子膨胀阀的控制为:
电子膨胀阀按目标排气温度控制,阀的最小开度为90:目标排气温度=a*F+b+T4+THZC所 述F为频率,所述T4为外环温度,所述ab为系数:a=0.6;b=1。THZC:F≤30Hz时,THZC=2;30<F≤50Hz时,THZC=1;F>50Hz时,THZC=0。
优选的,所述一种电子膨胀阀的控制方法,包括通过控制电子膨胀阀的开度,防止冷媒散热管凝露,根据SH3=T4L-T7(T4L取T4和40℃两者中的低值)。
本申请还提供了一种喷气增焓热泵系统,还包括有压缩机、四通阀、冷媒水换热器、 电子膨胀阀、闪蒸器、冷媒散热管、毛细管、换热器、气液分离器,其中所述四通阀分别和 所述压缩机、气液分离器、冷媒水换热器、换热器一端相连接,所述压缩机另一端和气液分 离器另一端连接,其特征在于:还包括喷气增焓辅路,所述喷气增焓辅用于空调处于制热模 式过程中冷媒气体喷回压缩机增焓。
本发明采用上述的方案,其有益效果在于:通过根据排气温度、运行频率、出水温度、外环温度值控制阀步,保证了系统的能力能效和可靠性,并且给控制模块充分散热,并且保证散热模块不会凝露水保证了系统控制模块的可靠性和稳定性,并且可以实现压缩机处 于此工况下的最优运行状态,并使机组稳定、高效运行。
附图说明
图1是一种喷气增焓热泵系统中采集信息的流向图;
图2是一种喷气增焓热泵系统制热模式时的冷媒流向示意图;
图3是一种喷气增焓热泵系统制冷模式时的冷媒流向示意图;
图4是本发明电子膨胀阀的控制方法的流程图;
图5是本发明电子膨胀阀的控制方法的电子膨胀阀变化示意图;
图6是本发明电子膨胀阀的控制方法的电子膨胀阀变化示意图。
图中,1-压缩机,2-四通阀,3-冷媒水换热器,4-电子膨胀阀, 5-闪蒸器,6-冷媒散热管,7-毛细管,8-换热器,9-气液分离器。
具体实施方式
为了能更好地理解本发明的上述技术方案,下面结合附图和实施例进行进一步地详 细描述:
参照图1,一种喷气增焓热泵系统及其电子膨胀阀4的控制方法,所述喷气增焓热泵系统其 中包括获取模块、控制模块、电子膨胀阀4。
参照图4,该实施例提到的电子膨胀阀4的控制方法,包括:
步骤S101根据获取模块周期性检测系统的排气温度、运行频率、出水温度、外环温度值; 运行频率通过系统直接获取,排气温度、出水温度和外环温度值,通过喷气增焓热泵系统设 置的获取模块进行周期性的检测获取。
步骤S102根据控制模块检测的数据选择目标排气温度控制或频率或出水温度联动阀 步控制;
目标排气温度控制和频率或出水温度联动阀步控制通过步骤101中检测的数值进行选择。
步骤S103根据控制模块通过所述排气温度控制或频率或出水温度联动阀步控制获取 所述电子膨胀阀4的开度调节需求,并根据所述电子膨胀阀4的开度调节需求判断是否需要 对所述电子膨胀阀4的开度进行调节;
按预设的模式根据所检测出来的数据,进行调节电子膨胀阀4的开度。
本实施例中,一种电子膨胀阀4的控制方法,其特征于,所述系统运行模式包括制热模式和制冷模式。
本实施例中,一种电子膨胀阀4的控制方法,应用于其特征在于喷气增焓热泵系统, 所述方法包括:
具体的,根据所述喷气增焓热泵系统的当期工作模式,确定所述电子膨胀阀4的开度值;所 述根据所述喷气增焓热泵系统的当期工作模式,确定所述电子膨胀阀4的开度值具体包括: 具体的,根据所述系统的当期工作模式,确定开度值计算公式;
具体的,将所述获取模块检测的排气温度、运行频率、出水温度,参数代入所述开度值计算 公式中,得到所述电子膨胀阀4开度值;
具体的,根据外环温度不同,区分不同区间控制,其中当所述系统运行制热模式情况下,所 述电子膨胀阀4的控制为:
当T4>n(T4:外环温度,n具体温度值)时,所述系统采用根据目标排气温度控制,即根 据目标排气和压缩机1运行频率、出水温度联动,具体如下公式:目标排气温度 =a*F+b*Tw_out+c+d;所述a/b/c为系数,所述d为补偿常数;所述F为频率,所述Tw_out 为出水温度。例如:实际排气温度小于目标排气温度则关小电子膨胀阀4开度;排气温度大 于目标排气温度时开大电子膨胀阀4开度;实际排气温度等于目标排气温度时保持电子膨胀 阀4开度不变;
当T4≤n(T4:外环温度,n具体温度值)时,所述系统采用根据运行频率和出水温度联动 阀步的方式控制;具体公式为:目标开度=y*F+z;所述F为频率;目标开度为实际阀开度 值,如:目标开度为100,则实际阀开度值为100(0-480P)。
参数如下表:
T4温度区间 y z
-17度以下 d g
-17~-3度 e Tw_out+h
-3~n度 f Tw_out+i
所述表中(Tw_out为出水水温度;T5:实际排气温度;d/e/f/g/h/i:均为常数,根据实际系 统得出)。
由于环温较低,调至目标开度存在保证不了排气过热度从而可靠 性得不到保证的问题,从而根据SH4=T5-Tw_out修正阀开度,参考图 5是本发明电子膨胀阀的控制方法的电子膨胀阀变化示意图。
具体的,当所述系统运行制冷模式情况下,所述电子膨胀阀4的 控制为:电子膨胀阀4按目标排气温度控制,阀的最小开度为90: 目标排气温度=a*F+b+T4+THZC所述F为频率,所述T4为外环温度, 所述ab为系数:a=0.6;b=1。THZC:F≤30Hz时,THZC=2;30<F≤50Hz时,THZC=1;F>50Hz时,THZC=0。
具体的,所述一种电子膨胀阀4的控制方法,包括通过控制电子 膨胀阀4的开度,防止冷媒散热管6凝露,根据SH3=T4L-T7(T4L取 T4和40℃两者中的低值),参考图6是本发明电子膨胀阀的控制方法 的电子膨胀阀变化示意图:
Figure BDA0002818067940000052
A区:EXV按正常控制
B区:EXV保持当前开度
C区:EXV在当前开度按:目标排气加5℃控制阀开度。当阀锁定最小开度时,开度按关 4P/20S,直到退出C区。
本实施例中,还设置了一种喷气增焓热泵系统,所述喷气增焓热泵系统还包括通过 管路连接成循环回路的压缩机1、四通阀2、冷媒水换热器3、电子膨胀阀4、闪蒸器5、冷媒散热管6、毛细管7、换热器8、气液分离器9,其中所述四通阀2分别和所述压缩机1、 气液分离器9、冷媒水换热器3、换热器8一端相连接,所述压缩机1另一端和气液分离器 9另一端连接,其特征在于:还包括喷气增焓辅路,所述喷气增焓辅用于空调处于制热过程 中冷媒气体喷回压缩机1增焓。
本实施例的系统运行原理为:在系统制热模式运行过程中,参照图2进行理解,图2中的箭头方向为冷媒的流动方向,压缩机1运行,此时四通阀2和压缩机1、冷媒水换热器 3连通,冷媒通过冷媒换热器8,通过电子膨胀阀4节流、控制喷气量,再到闪蒸器5进行 冷媒分离气体、液体,此时液体过冷媒散热管6,气体喷回压缩机1进行增焓,再经过毛细 管7的节流进入换热器8的蒸发,再经过气液分离器9分离液体保证回气干度,再进入压缩 机1。
在系统制冷模式运行过程中,参照图3进行理解,图3中的箭头方向为冷媒的流动方向,压缩机1运行,四通阀2和换热器8连通,冷媒进入换热器8进行冷凝散热,再通过 毛细管7节流进入冷媒散热管6,再经过闪蒸器5此时闪蒸器5喷气口关闭,经过电子膨胀 阀4,利用电子膨胀阀4的节流和调度控制冷媒散热器进口温度防止凝露,再到冷媒水换热 器3进行蒸发吸热、制冷水,通过四通阀2连接气液分离器9进行分离液体保证回气干度, 再进入压缩机1。
综上所述,通过结合设计的喷气增焓热泵系统不仅考虑了压缩机的排气温度,还考 虑了压缩机的排气压力,使电子膨胀阀的控制更精准,解决电子膨胀阀的控制是根据压缩机 排气温度调节,电子膨胀阀控制不精准的问题,同时通过给系统充分散热扩大运行分为以及 散热组件不会凝露水,保证了空调机组的可靠性和稳定性。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技 术领域,均同理包括在本发明的专利保护范围内。

Claims (5)

1.一种喷气增焓热泵系统及其电子膨胀阀的控制方法,所述喷气增焓热泵系统其中包括:
获取模块、控制模块、电子膨胀阀。
一种电子膨胀阀的控制方法,其特征在于,包括以下步骤:
S101根据获取模块周期性检测系统的排气温度、运行频率、出水温度、外环温度值;
S102根据控制模块检测的数据选择目标排气温度控制或频率或出水温度联动阀步控制;
S103根据控制模块通过所述排气温度控制或频率或出水温度联动阀步控制获取所述电子膨胀阀(4)的开度调节需求,并根据所述电子膨胀阀(4)的开度调节需求判断是否需要对所述电子膨胀阀(4)的开度进行调节。
2.如权利要求1所述一种电子膨胀阀的控制方法,其特征于,所述系统运行模式包括制热模式和制冷模式。
3.如权利要求1和权利要求2所述一种电子膨胀阀的控制方法,应用于其特征在于喷气增焓热泵系统,所述方法包括:
根据所述喷气增焓热泵系统的当期工作模式,确定所述电子膨胀阀(4)的开度值;所述根据所述喷气增焓热泵系统的当期工作模式,确定所述电子膨胀阀(4)的开度值具体包括:
根据所述系统的当期工作模式,确定开度值计算公式;
将所述获取模块检测的排气温度、运行频率、出水温度,参数代入所述开度值计算公式中,得到所述电子膨胀阀(4)开度值;
根据外环温度不同,区分不同区间控制,其中当所述系统运行制热模式情况下,所述电子膨胀阀(4)的控制为:
当T4>n(T4:外环温度,n具体温度值)时,所述系统采用根据目标排气温度控制,即根据目标排气和压缩机运行频率、出水温度联动,具体如下公式:目标排气温度=a*F+b*Tw_out+c+d;所述a/b/c为系数,所述d为补偿常数;所述F为频率,所述Tw_out为出水水温度;
当T4≤n(T4:外环温度,n具体温度值)时,所述系统采用根据运行频率和出水温度联动阀步的方式控制;具体公式为:目标开度=y*F+z;所述F为频率;目标开度为实际阀开度值,如:目标开度为100,则实际阀开度值为100(0-480P);
当所述系统运行制冷模式情况下,所述电子膨胀阀(4)的控制为:
电子膨胀阀(4)按目标排气温度控制,阀的最小开度为90:目标排气温度=a*F+b+T4+THZC所述F为频率,所述T4为外环温度,所述ab为系数:a=0、6;b=1。THZC:F≤30Hz时,THZC=2;30<F≤50Hz时,THZC=1;F>50Hz时,THZC=0。
4.如权利要求1-3所述一种电子膨胀阀的控制方法,包括通过控制电子膨胀阀(4)的开度,防止冷媒散热管(6)凝露,根据SH3=T4L-T7(T4L取T4和40℃两者中的低值)。
5.一种喷气增焓热泵系统,还包括通过管路连接成循环回路的压缩机(1)、四通阀(2)、冷媒水换热器(3)、电子膨胀阀(4)、闪蒸器(5)、冷媒散热管(6)、毛细管(7)、换热器(8)、气液分离器(9),其中所述四通阀(2)分别和所述压缩机(1)、气液分离器(9)、冷媒水换热器(3)、换热器(8)一端相连接,所述压缩机(1)另一端和气液分离器(9)另一端连接,其特征在于:还包括喷气增焓辅路,所述喷气增焓辅用于系统处于制热模式过程中冷媒气体喷回压缩机(1)增焓。
CN202011408340.XA 2020-12-04 2020-12-04 一种喷气增焓热泵系统及其电子膨胀阀的控制方法 Pending CN112781266A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011408340.XA CN112781266A (zh) 2020-12-04 2020-12-04 一种喷气增焓热泵系统及其电子膨胀阀的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011408340.XA CN112781266A (zh) 2020-12-04 2020-12-04 一种喷气增焓热泵系统及其电子膨胀阀的控制方法

Publications (1)

Publication Number Publication Date
CN112781266A true CN112781266A (zh) 2021-05-11

Family

ID=75750771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011408340.XA Pending CN112781266A (zh) 2020-12-04 2020-12-04 一种喷气增焓热泵系统及其电子膨胀阀的控制方法

Country Status (1)

Country Link
CN (1) CN112781266A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114719434A (zh) * 2022-03-30 2022-07-08 浙江中广电器集团股份有限公司 一种带喷气増焓功能热泵热水机排气温度的控制方法
CN115077131A (zh) * 2022-04-29 2022-09-20 浙江中广电器集团股份有限公司 一种装有经济器的空气源热泵系统及排气温度控制方法
WO2023273291A1 (zh) * 2021-06-28 2023-01-05 珠海格力电器股份有限公司 压缩系统的控制方法、装置及空气能热泵热水器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091440A (zh) * 2014-05-20 2015-11-25 Tcl空调器(中山)有限公司 电子膨胀阀的控制方法及装置
CN107560179A (zh) * 2017-10-27 2018-01-09 顺德职业技术学院 变频喷气增焓热泵热水器动态加热压缩机频率优化方法
CN107560173A (zh) * 2017-08-03 2018-01-09 广东美的暖通设备有限公司 热泵热水机及其控制方法、控制装置
CN109282545A (zh) * 2018-09-12 2019-01-29 宁波市海智普智能科技有限公司 低温型直流变频热泵系统的补气增焓控制方法
CN111692774A (zh) * 2020-06-29 2020-09-22 广东积微科技有限公司 一种带喷气增焓的热泵系统及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105091440A (zh) * 2014-05-20 2015-11-25 Tcl空调器(中山)有限公司 电子膨胀阀的控制方法及装置
CN107560173A (zh) * 2017-08-03 2018-01-09 广东美的暖通设备有限公司 热泵热水机及其控制方法、控制装置
CN107560179A (zh) * 2017-10-27 2018-01-09 顺德职业技术学院 变频喷气增焓热泵热水器动态加热压缩机频率优化方法
CN109282545A (zh) * 2018-09-12 2019-01-29 宁波市海智普智能科技有限公司 低温型直流变频热泵系统的补气增焓控制方法
CN111692774A (zh) * 2020-06-29 2020-09-22 广东积微科技有限公司 一种带喷气增焓的热泵系统及其控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273291A1 (zh) * 2021-06-28 2023-01-05 珠海格力电器股份有限公司 压缩系统的控制方法、装置及空气能热泵热水器
CN114719434A (zh) * 2022-03-30 2022-07-08 浙江中广电器集团股份有限公司 一种带喷气増焓功能热泵热水机排气温度的控制方法
CN114719434B (zh) * 2022-03-30 2023-10-27 浙江中广电器集团股份有限公司 一种带喷气増焓功能热泵热水机排气温度的控制方法
CN115077131A (zh) * 2022-04-29 2022-09-20 浙江中广电器集团股份有限公司 一种装有经济器的空气源热泵系统及排气温度控制方法

Similar Documents

Publication Publication Date Title
CN200996753Y (zh) 带经济器的中间补气压缩机制冷系统
CN112781266A (zh) 一种喷气增焓热泵系统及其电子膨胀阀的控制方法
CN103629873B (zh) 双级压缩空调系统的控制方法
US8459051B2 (en) Air conditioner and method of controlling the same
CN107178833B (zh) 热回收外机系统和空调系统
CN102368009B (zh) 变频空调制冷时室内机电子膨胀阀的控制方法
CN109373497B (zh) 温度调节设备的冷媒量调节方法、装置、系统和空调
US20020194857A1 (en) Multiform gas heat pump type air conditioning system
CN109405365A (zh) 冷媒循环系统及其控制方法、空气调节装置
CN110925940B (zh) 一种双级压缩补气空调系统的补气控制方法
CN112797587B (zh) 空调控制方法及空调系统
CN109539623B (zh) 空调系统及其补气增焓控制方法
CN109869941B (zh) 热泵系统、吸气过热度及气液分离器积液蒸发控制方法
KR100378822B1 (ko) 인버터 에어컨의 절전냉방 운전방법
CN108397942A (zh) 一种制冷系统的运行方法
CN109341122B (zh) 一种制冷系统和控制方法
CN106016541A (zh) 自然冷机房空调及其过冷度控制方法
WO2021135277A1 (zh) 热泵系统及空调
CN108800668A (zh) 一种节能除湿的制冷换热装置及其控制方法
CN109341121B (zh) 一种制冷系统和控制方法
CN111006301A (zh) 一种二氧化碳复叠式供暖系统及其控制方法
GB2500546A (en) Cooling system and method for operating same
US11162723B2 (en) Methods and systems for controlling working fluid in HVACR systems
CN115111811A (zh) 一种全天候空气源热泵
CN213514499U (zh) 热泵系统和空调设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210511

RJ01 Rejection of invention patent application after publication