WO2021073035A1 - 空调器及其控制方法、可读存储介质 - Google Patents

空调器及其控制方法、可读存储介质 Download PDF

Info

Publication number
WO2021073035A1
WO2021073035A1 PCT/CN2020/079233 CN2020079233W WO2021073035A1 WO 2021073035 A1 WO2021073035 A1 WO 2021073035A1 CN 2020079233 W CN2020079233 W CN 2020079233W WO 2021073035 A1 WO2021073035 A1 WO 2021073035A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
opening degree
current
target opening
compressor
Prior art date
Application number
PCT/CN2020/079233
Other languages
English (en)
French (fr)
Inventor
李鸿耀
黄志刚
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021073035A1 publication Critical patent/WO2021073035A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes

Definitions

  • the present invention relates to the technical field of air conditioners, in particular to an air conditioner, a control method thereof, and a readable storage medium.
  • the air conditioner needs to have multiple functions at the same time to meet people's needs. For example, in order to overcome the weather with very high humidity, people need air conditioners with dehumidification function.
  • the existing air conditioners with dehumidification function cannot provide sufficient heat energy in a low temperature environment. That is, the heat exchange efficiency of the outdoor heat exchanger fins is greatly reduced after frosting, resulting in a significant decrease in the indoor heat exchange efficiency, and insufficient heat generation, which can not meet the heat demand of users.
  • the main purpose of the present invention is to provide an air conditioner, a control method thereof, and a readable storage medium, which solves the problem that the heat exchange efficiency of the outdoor heat exchanger fins is greatly reduced after frosting, which causes the indoor heat exchange efficiency to be greatly reduced, and the heating capacity is insufficient. The problem.
  • the present invention provides a control method of an air conditioner
  • the air conditioner includes an indoor unit and an outdoor unit
  • the outdoor unit includes a compressor, a heat exchanger, an economizer, a four-way valve, and a throttling device
  • the first port of the economizer is connected to one end of the heat exchanger
  • the second port of the economizer is connected to the heat exchanger via a throttling device
  • the third port of the economizer is connected to the heat exchanger through a return pipe.
  • the high-pressure exhaust port of the compressor is connected to the other end of the heat exchanger through the four-way valve, and the indoor unit is connected to the fourth interface of the economizer and the four-way valve;
  • the control method of the air conditioner includes:
  • the opening degree of the throttle device is adjusted to the target opening degree.
  • the step of determining the target opening degree of the throttling device according to the current outdoor temperature further includes:
  • the target opening degree of the throttle device is determined according to the current outdoor temperature, the current operating frequency, and the current exhaust temperature.
  • the step of determining the target opening degree of the throttle device according to the current outdoor temperature, the current operating frequency, and the current exhaust temperature includes:
  • the method further includes:
  • the method further includes:
  • the throttling device When the drop percentage is greater than a second preset percentage, the throttling device is turned off.
  • the decrease percentage is greater than a second preset percentage, and after the step of turning off the throttling device, the method further includes:
  • the step of adjusting the opening of the throttling device to the target opening includes:
  • the throttle device is controlled to open the number of adjustment steps every adjustment period until the opening degree of the throttle device reaches the target opening degree.
  • the method further includes:
  • the present invention also provides an air conditioner including a memory, a processor, and a control program of the air conditioner stored in the memory and running on the processor.
  • the control program of the air conditioner is executed by the processor, the steps of the control method of the air conditioner as described above are realized.
  • the present invention also provides a readable storage medium having a control program of an air conditioner stored on the readable storage medium, and the control program of the air conditioner is executed by a processor as described above. The steps of the control method of the air conditioner.
  • the air conditioner and the control method thereof, the readable storage medium, and the air conditioner control method provided by the present invention include the following steps: controlling the air conditioner to operate in a heating mode for a preset period of time, and obtaining the current outdoor temperature of the air conditioner;
  • the current outdoor temperature determines the target opening degree of the throttling device;
  • the opening degree of the throttling device is adjusted to the target opening degree, so that the refrigerant vapor in the economizer enters the compression through the throttling device and the return pipe
  • the steam injection port of the engine is to supplement the compressor to increase the refrigerant flow in the heat exchanger, ensure the heating effect of the air conditioner, increase the heating capacity of the heat exchanger, and meet the user's demand for heat.
  • FIG. 1 is a schematic diagram of a terminal structure of a hardware operating environment involved in a solution of an embodiment of the present invention
  • Figure 2 is a schematic diagram of the pipeline structure of the outdoor unit in the air conditioner of the present invention.
  • FIG. 3 is a schematic flowchart of the first embodiment of the control method of the air conditioner according to the present invention.
  • FIG. 4 is a schematic flowchart of a second embodiment of a control method for an air conditioner according to the present invention.
  • Fig. 5 is a schematic flowchart of a third embodiment of a control method of an air conditioner according to the present invention.
  • the main solution of the embodiment of the present invention is to control the air conditioner to operate in the heating mode for a preset period of time, to obtain the current outdoor temperature of the air conditioner; to determine the target opening degree of the throttle device according to the current outdoor temperature ; Adjust the opening of the throttle device to the target opening.
  • the air conditioner needs to have multiple functions at the same time to meet people's needs. For example, in order to overcome the weather with very high humidity, people need air conditioners with dehumidification function.
  • the existing air conditioners with dehumidification function cannot provide sufficient heat energy in a low temperature environment. That is, the heat exchange efficiency of the outdoor heat exchanger fins is greatly reduced after frosting, resulting in a significant decrease in the indoor heat exchange efficiency, and insufficient heat generation, which can not meet the heat demand of users.
  • the embodiment of the present invention provides a solution to control the air conditioner to operate in the heating mode for a preset period of time, to obtain the current outdoor temperature of the air conditioner; to determine the target opening degree of the throttle device according to the current outdoor temperature ; Adjust the opening degree of the throttle device to the target opening degree, so that the refrigerant vapor in the economizer enters the steam injection port of the compressor through the throttle device and the return pipe, that is, by supplementing the compressor, Thereby, the refrigerant flow rate in the heat exchanger is increased, and the heating effect of the air conditioner is ensured, so as to increase the heating capacity of the heat exchanger and meet the heat demand of users.
  • Fig. 1 is a schematic diagram of a hardware operating environment of a terminal involved in a solution of an embodiment of the present invention.
  • the terminal may include: a processor 1001, such as a CPU, a network interface 1004, a user interface 1003, a memory 1005, and a communication bus 1002.
  • the communication bus 1002 is used to implement connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and a remote controller.
  • the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface, a wireless interface (such as a non-volatile memory), such as a disk storage.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • FIG. 1 does not constitute a limitation on the terminal, and may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the memory 1005 which is a computer storage medium, may include an operating system, a network communication module, a user interface module, and a control program of an air conditioner.
  • the network interface 1004 is mainly used to connect to a back-end server and communicate with the back-end server;
  • the user interface 1003 is mainly used to connect to a client (user side) to communicate with the client;
  • the processor 1001 can be used to call the control program of the air conditioner stored in the memory 1005 and perform the following operations:
  • the opening degree of the throttle device is adjusted to the target opening degree.
  • the processor 1001 may call a control program of the air conditioner stored in the memory 1005, and also perform the following operations:
  • the target opening degree of the throttle device is determined according to the current outdoor temperature, the current operating frequency, and the current exhaust temperature.
  • the processor 1001 may call a control program of the air conditioner stored in the memory 1005, and also perform the following operations:
  • the processor 1001 may call a control program of the air conditioner stored in the memory 1005, and also perform the following operations:
  • the processor 1001 may call a control program of the air conditioner stored in the memory 1005, and also perform the following operations:
  • the throttling device When the drop percentage is greater than a second preset percentage, the throttling device is turned off.
  • the processor 1001 may call a control program of the air conditioner stored in the memory 1005, and also perform the following operations:
  • the processor 1001 may call a control program of the air conditioner stored in the memory 1005, and also perform the following operations:
  • the throttle device is controlled to open the number of adjustment steps every adjustment period until the opening degree of the throttle device reaches the target opening degree.
  • the processor 1001 may call a control program of the air conditioner stored in the memory 1005, and also perform the following operations:
  • the target opening degree is greater than the maximum opening degree, the target opening degree is replaced with the maximum opening degree.
  • the control method of the air conditioner provided by the embodiment of the present invention is applied to an air conditioner.
  • the above air conditioner includes an indoor unit and an outdoor unit.
  • the outdoor unit includes a compressor, a heat exchanger, an economizer, a four-way valve, and a throttling device.
  • the first port is connected to one end of the heat exchanger
  • the second port of the economizer is connected to the heat exchanger via a throttling device
  • the third port of the economizer is connected to the medium-pressure suction port of the compressor through a return pipe to connect the
  • the refrigerant vapor in the economizer enters the medium-pressure suction port of the compressor through the third interface and the return pipe
  • the high-pressure exhaust port of the compressor is connected to the other end of the heat exchanger through a four-way valve
  • the indoor unit is connected to the fourth interface of the economizer and the four-way valve.
  • the air conditioner includes an indoor unit (not shown) and an outdoor unit connected to the indoor unit.
  • the present invention provides a structural schematic diagram of the outdoor unit of the air conditioner.
  • the outdoor unit includes a compressor 1, a heat exchanger 2, and an outdoor unit. Economizer 3, four-way valve 4 and throttling device 5.
  • the compressor 1 is a jet enthalpy-enhancing compressor.
  • the compressor 1 also has a medium-pressure suction port M (that is, a steam injection port).
  • the refrigerant vapor enters the compressor 1 through the steam injection port to cool the compressor 1 through the refrigerant vapor.
  • the throttling device 5 is an EVI (Enhanced vapor injection) valve.
  • the above-mentioned economizer 3 is an economizer, and the economizer is provided with four interfaces, including a first interface a, a second interface b, a third interface c, and a fourth interface d.
  • One port a is connected to one end of the heat exchanger 2
  • the second port b of the economizer 3 is connected to the heat exchanger 2 through the throttling device 5
  • the third port c of the economizer 3 is connected to the middle of the compressor 1 through the return pipe 6
  • the pressure suction port M is connected
  • the high-pressure exhaust port P of the compressor 1 is connected to the other end of the heat exchanger 2 through the four-way valve 4
  • the indoor unit is connected to the outdoor unit through the four-way valve 4
  • the indoor unit is connected to the economizer On the fourth interface and the four-way valve.
  • the outdoor unit further includes an electronic expansion valve 7, which is provided between the first interface a of the economizer 3 and the heat exchanger 2, and is used to control the flow of refrigerant in the loop.
  • the outdoor unit further includes a first temperature sensor 8, a second temperature sensor 9, and a third temperature sensor 10.
  • the first temperature sensor 8 is provided at the high-pressure exhaust port P of the compressor 1 for Detect the exhaust temperature of the high-pressure exhaust port P of the compressor 1;
  • the second temperature sensor 9 is provided at the second port b of the economizer 3, and is used to detect the temperature of the second port b of the economizer 3, that is, the economizer 5
  • the third temperature sensor 10 is set at the third interface c of the economizer 3, and is used to detect the temperature of the third interface c of the economizer 3, that is, to detect the outlet temperature of the economizer 3.
  • the outdoor unit further includes an oil separator 11, a filter 12, and a capillary tube 13.
  • the oil separator 11 is provided at the exhaust port of the compressor 1, and the oil separator 11 is connected through the filter 12 and the capillary tube 13.
  • the oil separator 11, the filter 12 and the capillary 13 form an oil separation branch, which is used to separate the compressor oil from the high-pressure exhaust port P of the compressor 1 Return to the low-pressure suction port S of the compressor 1.
  • the outdoor unit further includes a gas-liquid separator 14.
  • One end of the gas-liquid separator 14 is connected to the low-pressure suction port S of the compressor 1, and the other end of the gas-liquid separator 14 is connected to the four-way valve 4 .
  • the first refrigerant flow path is the high-pressure exhaust port P of the compressor 1, the four-way valve 4, the indoor unit, and the fourth port d and the first port a of the economizer 3,
  • the second refrigerant flow path is the high-pressure exhaust port P of the compressor 1, the four-way valve 4, the heat exchanger 2, the electronic expansion valve 7, and the first of the heat exchanger 5.
  • the medium-pressure refrigerant vapor enters the compressor 1 from the medium-pressure suction port M (steam injection port) through the return pipe 6,
  • the compressor 1 is cooled and cooled by refrigerant vapor.
  • the flow path of the refrigerant vapor is the throttling device 6, the second port b and the third port c of the economizer 5, and the medium pressure suction port M of the compressor 1 .
  • the refrigerant vapor will flow back from the economizer 5 to the vapor injection port of the compressor 1 to blow air into the compressor, thereby cooling the compressor, because, At this time, the refrigerant flow rate in the heat exchanger is not reduced, and the cooling capacity is not reduced, that is, the cooling effect of the air conditioner is also guaranteed.
  • the embodiment of the present invention provides a control method of the air conditioner.
  • FIG. 3 is a schematic flowchart of a first embodiment of a control method of an air conditioner according to the present invention.
  • An embodiment of the present invention provides a control method of an air conditioner, and the control method of the air conditioner includes:
  • the operating state of the air conditioner includes a heating mode, and after a preset period of operation, according to the current outdoor temperature of the compressor of the air conditioner.
  • the current outdoor temperature is the temperature in the current working environment of the outdoor unit.
  • the opening degree of the throttle device must be controlled after the air conditioner is stabilized, that is, the preset duration is used to confirm whether the air conditioner is operating in a heating mode stably.
  • the compressor's discharge temperature and supplementary air superheat did not rise to a certain range.
  • the throttle device is turned on, the compressor's discharge temperature and supplementary superheat will deteriorate. , Has been at a low value, that is, the heating capacity of the air conditioner has not been greatly improved.
  • the above-mentioned supplementary air superheat is the difference between the second outlet temperature and the inlet temperature, that is, the second outlet temperature can be obtained through the third temperature sensor, and the second inlet temperature can be obtained through the second temperature sensor; and the second outlet temperature can be obtained through the second outlet.
  • the supplementary air superheat is a value greater than or equal to zero.
  • the temperature detection device when acquiring the current outdoor temperature, it can be detected by other temperatures provided on the outdoor unit.
  • temperature detection devices are installed in different locations and/or areas of the outdoor unit's working environment, and the average value of the temperatures detected by multiple temperature detection devices is used as the current outdoor temperature to improve the accuracy .
  • the temperature detection device includes, but is not limited to, a temperature sensor, a thermometer, and other devices, which are not limited herein.
  • the target opening degree of the throttling device is determined according to the current outdoor temperature; the opening degree of the throttling device is adjusted to the target opening degree.
  • the refrigerant vapor in the economizer enters the steam injection port of the compressor through the throttling device and the return pipe, that is, the compressor is supplemented to increase the refrigerant flow in the heat exchanger and ensure the heating effect of the air conditioner , In order to increase the heating capacity of the heat exchanger to meet the user's demand for heat.
  • the second embodiment of the present invention is proposed based on the first embodiment, and the step of determining the target opening degree of the throttling device according to the current outdoor temperature includes:
  • the current operating frequency and current exhaust temperature of the compressor of the air conditioner may be acquired; the current outdoor temperature, the current operating frequency, and the current exhaust temperature can be used to determine the Describe the target opening of the throttling device.
  • the current operating frequency is the operating frequency after the compressor has been operating in the heating mode for a preset period of time
  • the current operating temperature is the exhaust temperature of the exhaust port after the compressor has been operating in the heating mode for the preset period of time.
  • the high-pressure exhaust port P of the compressor is provided with a temperature detection device for detecting the temperature of the exhaust gas of the compressor.
  • the temperature detection device is a temperature sensor, that is, in this embodiment, the current exhaust temperature of the compressor of the air conditioner can be detected by the temperature sensor.
  • the current compressor operating frequency F, the current exhaust temperature T1, and the outdoor ambient temperature T2 are calculated by the values of F, T1, and T2 to obtain a target opening degree P, and the EVI valve is opened To the target opening P.
  • the target opening degree P can be calculated according to the following formula:
  • a, b, c, and d are the preset parameters of the system.
  • the opening degree of the throttling device is adjusted to the target opening degree. That is, at this time, the opening degree of the throttling device is calculated based on the current compressor operating frequency, the current exhaust temperature and the outdoor ambient temperature to calculate the target opening degree, without the need to control the opening degree of the throttling device through the supplementary air superheat.
  • the air superheat is the temperature difference between the inlet and the outlet of the economizer.
  • the second is that there is some supplemental air that needs to be filled with liquid to ensure the optimal heating capacity. At this time, there is no overheating of the supplementary air, which will cause the method of supplementing air to overheat to fail.
  • the third is when the air supplement superheat is controlled, the opening of the large throttling device must be opened at a relatively slow speed to prevent the air supplement from carrying a large amount of liquid and damaging the compressor. Fourth, the throttling device needs to be constantly adjusted according to the superheat of the supplementary air. The refrigerant flow rate of the supplementary air part will always change, and the flow rate of the main circuit will also change continuously, which will cause the entire air conditioner system to fluctuate and affect the user's comfort.
  • this embodiment can only control the opening of the throttling device with the target opening degree. If the opening degree of the throttling device is too large, at this time, the discharge temperature and operating current of the compressor will be unstable. , For example, the operating current rises very high instantaneously to damage the compressor.
  • the adjustment period is a time period or point in time
  • the number of adjustment steps is the number of steps for adjusting the throttling device, that is, adjusting the opening degree of the throttling device.
  • the number of adjustment steps included is not limited to 5 steps, 10 steps, etc., and there is no limitation here.
  • the opening range of the throttling device in this embodiment is 0 to 500 steps.
  • the opening of the throttle device is calculated based on the current operating frequency, the current exhaust temperature, and the current outdoor temperature.
  • Degree correction value correcting the opening degree value of the throttle device according to the opening degree correction value, and taking the corrected opening degree value as the target opening degree. That is, the opening correction value is used to adjust the opening of the throttle device.
  • the obtained target opening degree value may be relatively large, at this time, obtain the maximum opening degree of the throttling device in the heating mode; the target opening degree is greater than the maximum opening degree, Then the target opening degree is replaced with the maximum opening degree, that is, the maximum opening degree is taken as the target opening degree of the throttle device. That is, when the target opening degree is greater than the maximum opening degree of the throttling device in the heating mode, at this time, the throttling device can only be adjusted to the maximum opening degree to increase the air injection volume of the compressor.
  • the control method of the air conditioner includes the following steps: controlling the air conditioner to operate in a heating mode for a preset period of time, obtaining the current outdoor temperature of the air conditioner; and determining the throttle according to the current outdoor temperature
  • the target opening of the device adjust the opening of the throttling device to the target opening so that the refrigerant vapor in the economizer enters the vapor injection port of the compressor through the throttling device and the return pipe, that is, through the compression
  • the machine performs air supplementation, thereby increasing the refrigerant flow in the heat exchanger, ensuring the heating effect of the air conditioner, so as to increase the heating capacity of the heat exchanger and meeting the heat demand of users.
  • a third embodiment of the present invention is proposed based on the first embodiment.
  • the opening degree of the throttling device is adjusted to that of the target opening degree. After the steps, it also includes:
  • the throttle device is controlled to operate at the target opening for the preset period of time, and the operating frequency and the exhaust temperature of the compressor are acquired.
  • the throttle device since the throttle device opens the target opening degree, at this time, the compressor is jet-cooled through the air jet branch of the indoor unit, that is, the throttle device is operated with the target opening degree to reach the preset duration to determine the operation of the compressor Frequency and exhaust temperature.
  • the preset duration is a preset period, that is, when the throttle device operates at the target opening degree for each preset period, the operating frequency and exhaust temperature of the compressor are acquired once.
  • the operating frequency and exhaust temperature of the compressor are obtained according to the operating frequency and exhaust temperature of the compressor, where the above increase percentage is The currently acquired compressor operating frequency and exhaust temperature are greater than the compressor operating frequency and exhaust temperature acquired in the last preset period, that is, the currently acquired compressor operating frequency is greater than the compressor acquired in the last preset period The operating frequency of the compressor, and the percentage of increase in the compressor exhaust temperature currently acquired that is greater than the compressor exhaust temperature acquired in the last preset period.
  • the heating capacity of the compressor decreases, that is, it is necessary to reconfirm the target opening of the throttling device.
  • the step of determining the target opening degree of the throttling device according to the current outdoor temperature, the current operating frequency and the current exhaust temperature that is, re-determining the target opening degree of the throttling device, so as to reduce the opening of the throttling device. Adjust to the target opening determined this time.
  • the throttle device when the rising percentage is less than or equal to the first preset percentage, the throttle device is controlled to open the preset opening degree.
  • the preset opening is the current opening of the throttling device, that is, when the rising percentage is less than or equal to the first preset percentage, the heating capacity of the compressor is guaranteed to a certain extent. At this time, there is no need to reconfirm the target opening , In order to control the air injection volume of the throttle device, it is only necessary to keep the current opening constant.
  • the operating frequency and exhaust temperature of the compressor are obtained according to the operating frequency and exhaust temperature of the compressor, where the percentage of decrease is
  • the currently acquired compressor operating frequency and exhaust temperature are less than the compressor operating frequency and exhaust temperature acquired in the last preset period, that is, the currently acquired compressor operating frequency is less than the compressor acquired in the last preset period
  • the operating frequency of the compressor, and the currently acquired compressor discharge temperature is less than the percentage drop of the compressor discharge temperature acquired in the previous preset period.
  • the heating capacity of the compressor is greatly improved, and at this time, the throttle device is turned off.
  • the heating capacity of the compressor decreases, and the opening degree of the throttle device needs to be re-adjusted to increase the air injection volume of the compressor, that is, return to the execution of the basis
  • the step of determining the target opening degree of the throttle device by the current outdoor temperature, the current operating frequency, and the current exhaust temperature.
  • the throttle device when the drop percentage is less than or equal to the second preset percentage, the throttle device is controlled to maintain the current opening degree, which is the target opening of the throttle device, that is, when the drop percentage is less than or equal to The second preset percentage, the heating capacity of the compressor is guaranteed to a certain extent. At this time, there is no need to reconfirm the target opening to control the air injection volume of the throttle device, just keep the current opening unchanged. .
  • the control method of the air conditioner in the embodiment of the present invention includes the following steps: controlling the throttle device to operate at the target opening for the preset time period; obtaining the operating frequency of the compressor and the percentage increase of the exhaust temperature; If the increase percentage is greater than the first preset percentage, return to the step of determining the target opening degree of the throttle device based on the current outdoor temperature, the current operating frequency, and the current exhaust temperature to pass compression
  • the operating frequency and exhaust temperature of the machine limit whether it is necessary to re-acquire the target opening of the throttling device, and adjust the opening of the throttling device at a faster speed, so as to increase the refrigerant flow rate in the heat exchanger more quickly.
  • the heating effect of the air conditioner can increase the heating capacity of the heat exchanger and meet the heat demand of users.
  • An embodiment of the present invention also provides an air conditioner, the air conditioner comprising: a memory, a processor, and a control program of the air conditioner stored in the memory and running on the processor.
  • the control of the air conditioner When the program is executed by the processor, the steps of the air conditioner control method as described in the above embodiments are realized.
  • the embodiment of the present invention also provides a readable storage medium having a control program of an air conditioner stored on the readable storage medium.
  • the control program of the air conditioner is executed by a processor, the air conditioner as described in any of the above embodiments is implemented. The steps of the control method of the device.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal device (which can be a mobile phone, a computer, a cloud server, an air conditioner, or a network device, etc.) execute the method of each embodiment of the present invention.
  • a terminal device which can be a mobile phone, a computer, a cloud server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器及其控制方法、可读存储介质,空调器的控制方法包括如下步骤:控制空调器以制热模式运行预设时长,获取空调器的当前室外温度(S10);根据当前室外温度确定节流装置的目标开度(S20);将节流装置的开度调整为目标开度(S30)。

Description

空调器及其控制方法、可读存储介质
相关申请的交叉引用
本申请要求于2019年10月16日提交中国专利局、申请号为201910987364.6、发明名称为“空调器及其控制方法、可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调器技术领域,特别涉及一种空调器及其控制方法、可读存储介质。
背景技术
由于天气的复杂性,使得空调器同时需要具备多种功能才能满足人们的需求。例如,人们为了克服湿度非常高的天气,需要空调器具有除湿功能。但现有具有除湿功能的空调器,无法在温度较低的环境为提供足够的热能。也即室外热交换器翅片结霜后换热效率大幅下降,导致室内换热效率也大幅下降,制热量不足,进而不能满足用户对热量的需求。
发明内容
本发明的主要目的是提供一种空调器及其控制方法、可读存储介质,解决了室外热交换器翅片结霜后换热效率大幅下降,导致室内换热效率也大幅下降,制热量不足的问题。
为实现上述目的,本发明提供一种空调器的控制方法,所述空调器包括室内机和室外机,所述室外机包括压缩机、换热器、经济器、四通阀以及节流装置,所述经济器的第一接口与所述换热器的一端连接,所述经济器的第二接口经节流装置与所述换热器连接,所述经济器的第三接口通过回流管与所述压缩机的中压吸气口连接,以将所述经济器中的冷媒蒸汽通过所述第三接口和所述回流管进入所述压缩机的中压吸气口;
所述压缩机的高压排气口通过所述四通阀与所述换热器的另一端连接,且所述室内机连接于所述经济器的第四接口和所述四通阀上;
所述空调器的控制方法包括:
控制所述空调器以制热模式运行预设时长,获取所述空调器的当前室外温度;
根据所述当前室外温度确定所述节流装置的目标开度;
将所述节流装置的开度调整为所述目标开度。
在某些实施例中,根据所述当前室外温度确定所述节流装置的目标开度的步骤还包括:
获取所述空调器的压缩机的当前运行频率以及当前排气温度;
根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置 的目标开度。
在某些实施例中,所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤包括:
基于所述当前运行频率、所述当前排气温度以及所述当前室外温度确定所述节流装置的开度参考值;
根据预设的开度修正值修正所述节流装置的开度参考值,以得到所述目标开度。
在某些实施例中,所述将所述节流装置的开度调整为所述目标开度的步骤之后还包括:
控制所述节流装置以所述目标开度运行所述预设时长;
获取所述压缩机的运行频率和排气温度的上升百分比;
在所述上升百分比大于第一预设百分比时,返回执行所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤。
在某些实施例中,所述控制所述节流装置以所述目标开度运行所述预设时长的步骤之后,还包括:
获取所述压缩机的运行频率和排气温度的下降百分比;
在所述下降百分比大于第二预设百分比时,关闭所述节流装置。
在某些实施例中,所述下降百分比大于第二预设百分比,关闭所述节流装置的步骤之后还包括:
在所述节流装置关闭所述预设时长后,返回执行所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤。
在某些实施例中,所述将所述节流装置的开度调整为所述目标开度的步骤包括:
获取所述节流装置的调整周期以及调整步数;
控制所述节流装置每隔所述调整周期打开所述调整步数,直到所述节流装置的开度达到所述目标开度。
在某些实施例中,所述根据所述当前室外温度确定所述节流装置的目标开度的步骤之后,还包括:
获取所述制热模式下所述节流装置的最大开度;
当所述目标开度大于所述最大开度时,将所述目标开度替换为所述最大开度
此外,为实现上述目的,本发明还提出一种空调器,所述空调器包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现如以上所述的空调器的控制方法的步骤。
此外,为实现上述目的,本发明还提出一种可读存储介质,所述可读存储介质上存储 有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如以上所述的空调器的控制方法的步骤。
本发明提出的空调器及其控制方法、可读存储介质,空调器的控制方法包括如下步骤:控制所述空调器以制热模式运行预设时长,获取所述空调器的当前室外温度;根据所述当前室外温度确定所述节流装置的目标开度;将所述节流装置的开度调整为所述目标开度,以使经济器中的冷媒蒸汽通过节流装置和回流管进入压缩机的蒸汽喷射口,即通过对压缩机进行补气,从而增加换热器中的冷媒流量,保证空调器的制热效果,以提高换热器的制热量,满足用户对热量的需求。
附图说明
为了更清楚地说明本发明实施例或示例性中的技术方案,下面将对实施例或示例性描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以按照这些附图示出的获得其他的附图。
图1为本发明实施例方案涉及的硬件运行环境的终端结构示意图;
图2为本发明空调器中室外机的管路结构示意图;
图3为本发明空调器的控制方法第一实施例的流程示意图;
图4为本发明空调器的控制方法第二实施例的流程示意图;
图5为本发明空调器的控制方法第三实施例的流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的主要解决方案是:控制所述空调器以制热模式运行预设时长,获取所述空调器的当前室外温度;根据所述当前室外温度确定所述节流装置的目标开度;将所述节流装置的开度调整为所述目标开度。
由于天气的复杂性,使得空调器同时需要具备多种功能才能满足人们的需求。例如,人们为了克服湿度非常高的天气,需要空调器具有除湿功能。但现有具有除湿功能的空调器,无法在温度较低的环境为提供足够的热能。也即室外热交换器翅片结霜后换热效率大幅下降,导致室内换热效率也大幅下降,制热量不足,进而不能满足用户对热量的需求。
本发明实施例提供一种解决方案,控制所述空调器以制热模式运行预设时长,获取所述空调器的当前室外温度;根据所述当前室外温度确定所述节流装置的目标开度;将所述节流装置的开度调整为所述目标开度,以使经济器中的冷媒蒸汽通过节流装置和回流管进 入压缩机的蒸汽喷射口,即通过对压缩机进行补气,从而增加换热器中的冷媒流量,保证空调器的制热效果,以提高换热器的制热量,满足用户对热量的需求。
如图1所示,图1是本发明实施例方案涉及的终端的硬件运行环境示意图。
如图1所示,该终端可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard)、遥控器,可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如存储器(non-volatile memory)),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的终端的结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及空调器的控制程序。
在图1所示的终端中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的空调器的控制程序,并执行以下操作:
控制所述空调器以制热模式运行预设时长,获取所述空调器的当前室外温度;
根据所述当前室外温度确定所述节流装置的目标开度;
将所述节流装置的开度调整为所述目标开度。
在某些实施例中,处理器1001可以调用存储器1005中存储的空调器的控制程序,还执行以下操作:
获取所述空调器的压缩机的当前运行频率以及当前排气温度;
根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度。
在某些实施例中,处理器1001可以调用存储器1005中存储的空调器的控制程序,还执行以下操作:
基于所述当前运行频率、所述当前排气温度以及所述当前室外温度确定所述节流装置的开度参考值;
根据预设的开度修正值修正所述节流装置的开度参考值,以得到所述目标开度。
在某些实施例中,处理器1001可以调用存储器1005中存储的空调器的控制程序,还执行以下操作:
控制所述节流装置以所述目标开度运行所述预设时长;
获取所述压缩机的运行频率和排气温度的上升百分比;
当所述上升百分比大于第一预设百分比时,返回执行所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤。
在某些实施例中,处理器1001可以调用存储器1005中存储的空调器的控制程序,还执行以下操作:
获取所述压缩机的运行频率和排气温度的下降百分比;
当所述下降百分比大于第二预设百分比时,关闭所述节流装置。
在某些实施例中,处理器1001可以调用存储器1005中存储的空调器的控制程序,还执行以下操作:
在所述节流装置关闭所述预设时长后,返回执行所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤。
在某些实施例中,处理器1001可以调用存储器1005中存储的空调器的控制程序,还执行以下操作:
获取所述节流装置的调整周期以及调整步数;
控制所述节流装置每隔所述调整周期打开所述调整步数,直到所述节流装置的开度达到所述目标开度。
在某些实施例中,处理器1001可以调用存储器1005中存储的空调器的控制程序,还执行以下操作:
获取所述制热模式下所述节流装置的最大开度;
当所述目标开度大于所述最大开度时,将所述目标开度替换为所述最大开度。
本发明实施例提供的空调器的控制方法应用于空调器,上述空调器包括室内机和室外机,室外机包括压缩机、换热器、经济器、四通阀以及节流装置,经济器的第一接口与换热器的一端连接,经济器的第二接口经节流装置与换热器连接,经济器的第三接口通过回流管与压缩机的中压吸气口连接,以将所述经济器中的冷媒蒸汽通过所述第三接口和所述回流管进入所述压缩机的中压吸气口,压缩机的高压排气口通过四通阀与换热器的另一端连接,且所述室内机连接于所述经济器的第四接口和所述四通阀上。
下面对空调器的结构进行具体说明:
如图2所示,空调器包括室内机(图未示)以及与室内机连通的室外机,本发明提供了空调器的室外机的结构示意图,室外机包括压缩机1、换热器2、经济器3、四通阀4以及节流装置5。其中,压缩机1为喷气增焓压缩机,该压缩机1除了常规的高压排气口P, 低压吸气口S,还有中压吸气口M(即为蒸汽喷射口),中压的冷媒蒸汽通过蒸汽喷射口进入压缩机1,以通过冷媒蒸汽对压缩机1进行冷却降温。在某些实施例中,节流装置5为EVI(Enhanced vapor injection喷气增焓)阀。
在某些实施例中,上述经济器3为经济器,该经济器设置有四个接口,包括第一接口a、第二接口b、第三接口c以及第四接口d,经济器3的第一接口a与换热器2的一端连接,经济器3的第二接口b经节流装置5与换热器2连接,经济器3的第三接口c通过回流管6与压缩机1的中压吸气口M连接,压缩机1的高压排气口P通过四通阀4与换热器2的另一端连接且室内机通过四通阀4与室外机连通,且室内机连接于经济器的第四接口和四通阀上。
在某些实施例中,室外机包括还包括电子膨胀阀7,电子膨胀阀7设于经济器3的第一接口a与换热器2之间,用于控制回路中的冷媒流量。
在某些实施例中,室外机还包括第一温度传感器8、第二温度传感器9以及第三温度传感器10,其中,第一温度传感器8设于压缩机1的高压排气口P,用于检测压缩机1的高压排气口P的排气温度;第二温度传感器9设于经济器3的第二接口b,用于检测经济器3的第二接口b的温度,即检测经济器5的进口温度;第三温度传感器10设于经济器3的第三接口c,用于检测经济器3的第三接口c的温度,即检测经济器3的出口温度。
在某些实施例中,室外机还包括油分离器11、过滤器12以及毛细管13,油分离器11设于压缩机1的排气口,且油分离器11通过过滤器12以及毛细管13连接至压缩机1的低压吸气口S,油分离器11、过滤器12以及毛细管13组成油分离支路,用于将压缩机1的高压排气口P排气带出的压缩机油分离出来送回压缩机1的低压吸气口S内。
在某些实施例中,室外机还包括气液分离器14,气液分离器14的一端与压缩机1的低压吸气口S连接,气液分离器14的另一端与四通阀4连接。
具体地,在空调器处于制热模式时,第一冷媒流路为压缩机1的高压排气口P、四通阀4、室内机、经济器3的第四接口d和第一接口a、电子膨胀阀7、换热器2、四通阀4、气液分离器14、压缩机1的低压吸气口S。
具体地,在空调器处于制冷/除湿模式时,第二冷媒流路为压缩机1的高压排气口P、四通阀4、换热器2、电子膨胀阀7、换热器5的第一接口a和第四接口d、室内机、四通阀4、气液分离器14、压缩机1的低压吸气口S。
具体地,在空调器处于制冷/制热/除湿模式,且上述节流装置5打开时,中压的冷媒蒸汽通过回流管6从中压吸气口M(蒸汽喷射口)进入压缩机1的,以通过冷媒蒸汽对压缩机1进行冷却降温,此时,冷媒蒸汽的流路为节流装置6、经济器5的第二接口b和第 三接口c、压缩机1的中压吸气口M。可以理解的是,在节流装置5处于打开状态时,冷媒蒸汽才会从经济器5回流至压缩机1的蒸汽喷射口,以对压缩机进行喷气,从而对压缩机进行冷却降温,由于,此时换热器中的冷媒流量并未减少,制冷量也没有减少,即也保证了空调器的制冷效果。
基于上述空调器的实施例,本发明实施例提供一种空调器的控制方法。
参照图3,图3为本发明空调器的控制方法第一实施例的流程示意图。
本发明实施例提出一种空调器的控制方法,该空调器的控制方法包括:
S10,控制所述空调器以制热模式运行预设时长,获取所述空调器的当前室外温度;
S20,根据所述当前室外温度确定所述节流装置的目标开度;
S30,将所述节流装置的开度调整为所述目标开度。
空调器处于运行状态时,且空调器的运行状态包括制热模式,并在运行预设时长后,根据所述空调器的压缩机的当前室外温度。其中,当前室外温度为室外机当前工作环境中的温度。
由于空调器正处于开机状态,此时需要在空调器稳定之后才能控制节流装置的开度打开,即该预设时长用于确认空调器是否稳定运行制热模式。在空调器未稳定运行时,此时,压缩机的排气温度和补气过热度没有上升某个范围,这时候如果打开节流装置,会导致压缩机的排气温度和补气过热度恶化,一直处于较低的数值,即对空调器的制热能力并没有太大提升。其中,上述补气过热度为第二出口温度与进口温度之间的差值,即可以通过第三温度传感器获取第二出口温度,通过第二温度传感器获取第二进口温度;并通过第二出口温度与第二出口温度计算温度差,以该温度差作为压缩机的补气过热度。可选地,补气过热度为大于等于0的值。
在某些实施例中,在获取当前室外温度时,可以通过设于室外机上的其他温度进行检测。为了提高室外温度的准确度,即通过在室外机工作环境的不同位置和/或区域设置温度检测装置,并以多个温度检测装置检测到的温度的平均值作为当前室外温度,以提高精确度。其中,温度检测装置包括但不限于温度传感器、温度计等装置,在此并无限定。
在某些实施例中,根据所述当前室外温度确定所述节流装置的目标开度;将所述节流装置的开度调整为所述目标开度。此时,经济器中的冷媒蒸汽通过节流装置和回流管进入压缩机的蒸汽喷射口,即通过对压缩机进行补气,从而增加换热器中的冷媒流量,保证空调器的制热效果,以提高换热器的制热量,满足用户对热量的需求。
在某些实施例中,如图4所示,基于第一实施例提出本发明的第二实施例,根据所述当前室外温度确定所述节流装置的目标开度的步骤包括:
S40、获取所述空调器的压缩机的当前运行频率以及当前排气温度;
S50、根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度。
为了使获取的目标开度更加准确,可获取所述空调器的压缩机的当前运行频率以及当前排气温度;据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度。其中,当前运行频率为压缩机以制热模式运行预设时长后的运行频率,当前运行温度为压缩机以制热模式运行预设时长后的排气口的排气温度。
在某些实施例中,压缩机的高压排气口P设置有用于检测压缩机的排气温度的温度检测装置。在某些实施例中,该温度检测装置为温度传感器,即本实施例可以通过温度传感器检测空调器的压缩机的当前排气温度。
在某些实施例中,假定,当前压缩机运行频率F、当前排气温度T1和室外环境温度T2,即通过F、T1以及T2的数值计算,得到一个目标开度P,并将EVI阀打开到目标开度P。
在某些实施例中,目标开度P可以根据如下公式进行计算:
P=a*F+b*T-c*T+d;
其中,a、b、c、d为系统的预设参数。
在某些实施例中,在获取到目标开度后,将节流装置的开度调整为目标开度。即此时,节流装置的开度是通过当前压缩机运行频率、当前排气温度和室外环境温度计算目标开度,而不需要通过补气过热度控制节流装置的开度,其中,补气过热度为经济器进口与出口的温差值,由于在实际应用中,通过补气过度热来调节节流装置的开度存在多个缺陷:一是温度传感器检测的温度存在偏差,特别是在低温环境中,这个偏差会导致以补气过热度为控制参数的控制方法不准确。二是存在部分补气需要带液,以保证制热能力达到最优,这个时候的补气不存在过热度,会导致补气过热度的方法失效。三是补气过热度控制时,需以比较慢的速度去打大节流装置的开度,防止补气大量带液,损坏压缩机。四是节流装置需要根据补气过热度不断地调节,补气部分的制冷剂流量会一直变化,主回路流量受影响也一直变化,导致整个空调器系统波动,影响用户舒适度。
在某些实施例中,本实施例只能以目标开度控制节流装置打开,由于节流装置的开度如果太大的话,此时,压缩机的排气温度和运行电流均会不稳定,比如,运行电流瞬间提升得很高,以损坏压缩机。
在某些实施例中,通过获取所述节流装置的调整周期以及调整步数;控制所述节流装置每隔所述调整周期打开所述调整步数,直到所述节流装置的开度达到所述目标开度,并 维持该开度不变。其中,调整周期为时间段或时间点,调整步数为调整所述节流装置的步数,即为调整所述节流装置的开度。
可选地,调整步数包括的那不限于5步,10步的等,在此并无限制。本实施例中所述节流装置的的开度范围为0~500步。
在获取当前排气温度和当前室外温度时,由于温度传感器具有一部分的误差,此时,基于所述当前运行频率、所述当前排气温度以及所述当前室外温度计算所述节流装置的开度修正值;根据所述开度修正值修正所述节流装置的开度值,以修正后的开度值作为所述目标开度。即开度修正值是用于对所述节流装置的开度进行调整。
在某些实施例中,由于得到的目标开度数值可能较大,此时,获取所述制热模式下所述节流装置的最大开度;所述目标开度大于所述最大开度,则将所述目标开度替换为所述最大开度,即以所述最大开度作为所述节流装置的目标开度。即当目标开度大于述制热模式下所述节流装置的最大开度,此时,只能将节流装置调整至最大开度,以增大压缩机的喷气量。
本发明实施例提供的空调器的控制方法包括如下步骤:控制所述空调器以制热模式运行预设时长,获取所述空调器的当前室外温度;根据所述当前室外温度确定所述节流装置的目标开度;将所述节流装置的开度调整为所述目标开度,以使经济器中的冷媒蒸汽通过节流装置和回流管进入压缩机的蒸汽喷射口,即通过对压缩机进行补气,从而增加换热器中的冷媒流量,保证空调器的制热效果,以提高换热器的制热量,满足用户对热量的需求。
在某些实施例中,参照图5,基于第一实施例提出本发明的第三实施例,在本实施例中,所述将所述节流装置的开度调整为所述目标开度的步骤之后还包括:
S60,控制所述节流装置以所述目标开度运行所述预设时长;
S70,获取所述压缩机的运行频率和排气温度的上升百分比;
S80,当所述上升百分比大于第一预设百分比时,返回执行所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤。
控制所述节流装置以所述目标开度运行所述预设时长,获取所述压缩机的运行频率和排气温度。其中,由于所述节流装置打开目标开度,此时,通过室内机的喷气支路对压缩机进行喷气冷却,即通过节流装置运行目标开度达到预设时长,以确定压缩机的运行频率和排气温度。其中,预设时长为预设周期,即在所述节流装置以所述目标开度每运行一个预设周期,即获取一次压缩机的运行频率和排气温度。
在某些实施例中,在获取到压缩机的运行频率和排气温度,根据压缩机的运行频率和排气温度获取压缩机的运行频率和排气温度的上升百分比,其中,上述上升百分比是当前 获取的压缩机的运行频率和排气温度大于上一个预设周期内获取的压缩机的运行频率和排气温度,即当前获取的压缩机的运行频率大于上一个预设周期内获取的压缩机的运行频率,和当前获取的压缩机的排气温度大于上一个预设周期内获取的压缩机的排气温度的上升百分比。
在某些实施例中,当上升百分比大于第一预设百分比时,即此时,压缩机的制热能力下降,即需要重新确认节流装置的目标开度,本实施例中返回执行所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤,即重新确定节流装置的目标开度,以将节流装置的开度调整至本次确定的目标开度。
在某些实施例中,当上升百分比小于或等于第一预设百分比时,控制所述节流装置打开预设开度。这里,预设开度为节流装置的当前开度,即在上升百分比小于或等于第一预设百分比,压缩机的制热能力得到一定的保障,此时,不需要通过重新确认目标开度,以控制所述节流装置的喷气量,只需要保持当前开度不变即可。
在某些实施例中,在获取到压缩机的运行频率和排气温度,根据压缩机的运行频率和排气温度获取压缩机的运行频率和排气温度的下降百分比,其中,上述下降百分比是当前获取的压缩机的运行频率和排气温度小于上一个预设周期内获取的压缩机的运行频率和排气温度,即当前获取的压缩机的运行频率小于上一个预设周期内获取的压缩机的运行频率,和当前获取的压缩机的排气温度小于上一个预设周期内获取的压缩机的排气温度的下降百分比。
在某些实施例中,当下降百分比大于第二预设百分比时,即此时,压缩机的制热能力大大提升,此时,关闭所述节流装置。在所述节流装置关闭所述预设时长后,此时,压缩机的制热能力下降,需要重新调节节流装置的开度,以增大压缩机的喷气量,即返回执行所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤。
在某些实施例中,当下降百分比小于或等于第二预设百分比时,控制所述节流装置保持当前开度,当前开度为节流装置的目标开度,即在下降百分比小于或等于第二预设百分比,压缩机的制热能力得到一定的保障,此时,不需要通过重新确认目标开度,以控制所述节流装置的喷气量,只需要保持当前开度不变即可。
这样,本发明实施例空调器的控制方法包括如下步骤:控制所述节流装置以所述目标开度运行所述预设时长;获取所述压缩机的运行频率和排气温度的上升百分比;所述上升百分比大于第一预设百分比,返回执行所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤,以通过压缩机的运行频率和排 气温度去限定是否需要重新获取节流装置的目标开度,以较快的速度去调节节流装置的开度,从而较快地增加换热器中的冷媒流量,提高空调器的制热效果,以提高换热器的制热量,满足用户对热量的需求。
本发明实施例还提出一种空调器,所述空调器包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现如以上实施例所述的空调器的控制方法的步骤。
本发明实施例还提出一种可读存储介质,该可读存储介质上存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如以上任一实施例所述的空调器的控制方法的步骤。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,云端服务器,空调器,或者网络设备等)执行本发明各个实施例的方法。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种空调器的控制方法,其中,所述空调器包括室内机和室外机,所述室外机包括压缩机、换热器、经济器、四通阀以及节流装置,所述经济器的第一接口与所述换热器的一端连接,所述经济器的第二接口经节流装置与所述换热器连接,所述经济器的第三接口通过回流管与所述压缩机的中压吸气口连接,以将所述经济器中的冷媒蒸汽通过所述第三接口和所述回流管进入所述压缩机的中压吸气口;
    所述压缩机的高压排气口通过所述四通阀与所述换热器的另一端连接,且所述室内机连接于所述经济器的第四接口和所述四通阀上;
    所述空调器的控制方法包括:
    控制所述空调器以制热模式运行预设时长,获取所述空调器的当前室外温度;
    根据所述当前室外温度确定所述节流装置的目标开度;
    将所述节流装置的开度调整为所述目标开度。
  2. 如权利要求1所述的空调器的控制方法,其中,所述根据所述当前室外温度确定所述节流装置的目标开度的步骤包括:
    获取所述空调器的压缩机的当前运行频率以及当前排气温度;
    根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度。
  3. 如权利要求2所述的空调器的控制方法,其中,所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤包括:
    基于所述当前运行频率、所述当前排气温度以及所述当前室外温度确定所述节流装置的开度参考值;
    根据预设的开度修正值修正所述节流装置的开度参考值,以得到所述目标开度。
  4. 如权利要求2所述的空调器的控制方法,其中,所述将所述节流装置的开度调整为所述目标开度的步骤之后还包括:
    控制所述节流装置以所述目标开度运行所述预设时长;
    获取所述压缩机的运行频率和排气温度的上升百分比;
    当所述上升百分比大于第一预设百分比时,返回执行所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤。
  5. 如权利要求4所述的空调器的控制方法,其中,所述控制所述节流装置以所述目标开度运行所述预设时长的步骤之后,还包括:
    获取所述压缩机的运行频率和排气温度的下降百分比;
    当所述下降百分比大于第二预设百分比时,关闭所述节流装置。
  6. 如权利要求5所述的空调器的控制方法,其中,所述当所述下降百分比大于第二预设百分比时,关闭所述节流装置的步骤之后还包括:
    在所述节流装置关闭所述预设时长后,返回执行所述根据所述当前室外温度、所述当前运行频率以及所述当前排气温度确定所述节流装置的目标开度的步骤。
  7. 如权利要求1所述的空调器的控制方法,其中,所述将所述节流装置的开度调整为所述目标开度的步骤包括:
    获取所述节流装置的调整周期以及调整步数;
    控制所述节流装置每隔所述调整周期打开所述调整步数,直到所述节流装置的开度达到所述目标开度。
  8. 如权利要求1所述的空调器的控制方法,其中,所述根据所述当前室外温度确定所述节流装置的目标开度的步骤之后,还包括:
    获取所述制热模式下所述节流装置的最大开度;
    当所述目标开度大于所述最大开度时,将所述目标开度替换为所述最大开度。
  9. 一种空调器,其中,所述空调器包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现如权利要求1~8中任一项所述的空调器的控制方法的步骤。
  10. 一种可读存储介质,其中,所述可读存储介质上存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如权利要求1~8中任一项所述的空调器的控制方法的步骤。
PCT/CN2020/079233 2019-10-16 2020-03-13 空调器及其控制方法、可读存储介质 WO2021073035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910987364.6 2019-10-16
CN201910987364.6A CN112665112B (zh) 2019-10-16 2019-10-16 空调器及其控制方法、可读存储介质

Publications (1)

Publication Number Publication Date
WO2021073035A1 true WO2021073035A1 (zh) 2021-04-22

Family

ID=75400454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079233 WO2021073035A1 (zh) 2019-10-16 2020-03-13 空调器及其控制方法、可读存储介质

Country Status (2)

Country Link
CN (1) CN112665112B (zh)
WO (1) WO2021073035A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353383A (zh) * 2021-12-10 2022-04-15 青岛海尔空调电子有限公司 空气源热泵机组控制方法及空气源热泵机组
CN114674089A (zh) * 2022-03-24 2022-06-28 广东开利暖通空调股份有限公司 多联式制冷系统及其制冷方法
CN115247922A (zh) * 2022-06-27 2022-10-28 浙江中广电器集团股份有限公司 一种防止压缩机冷媒回流到闪蒸罐的自动控制方法
CN115493254A (zh) * 2021-06-18 2022-12-20 佛山市顺德区美的电子科技有限公司 空调器控制方法、空调器和可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117006641A (zh) * 2022-04-28 2023-11-07 广东美的制冷设备有限公司 空调器及其补气控制方法、空调控制器、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677009A (zh) * 2017-11-20 2018-02-09 广东美的制冷设备有限公司 空调器系统、运行控制方法和计算机可读存储介质
CN108375237A (zh) * 2018-02-28 2018-08-07 四川长虹空调有限公司 一种空调系统及经济器电子膨胀阀控制方法
CN108870573A (zh) * 2018-07-16 2018-11-23 珠海格力电器股份有限公司 制冷机组除湿控制方法、装置、制冷机组主板和存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE416380A (zh) * 1935-07-05
JP5395502B2 (ja) * 2009-04-23 2014-01-22 株式会社荏原製作所 吸収ヒートポンプ
CN103411291B (zh) * 2013-08-30 2016-03-09 海信(山东)空调有限公司 一种膨胀阀喷射控制方法及系统
CN105091424B (zh) * 2015-09-10 2019-03-12 Tcl空调器(中山)有限公司 空调器、空调器冷媒调节方法及装置
CN106196721B (zh) * 2016-07-04 2018-02-16 珠海格力电器股份有限公司 一种喷焓压缩机空调系统及其控制方法
CN106468487A (zh) * 2016-09-29 2017-03-01 广东美的制冷设备有限公司 空调系统及其控制方法
EP3361191B1 (en) * 2017-02-10 2022-04-06 Daikin Europe N.V. Heat source unit and air conditioner having the heat source unit
US20200063995A1 (en) * 2017-04-18 2020-02-27 Nortek Air Solutions Canada, Inc. Water recovery in desiccant enhanced evaporative cooling systems
CN107477934B (zh) * 2017-09-18 2020-03-06 广东美的暖通设备有限公司 多联式空调的控制方法、系统及计算机可读存储介质
CN109668357A (zh) * 2017-10-17 2019-04-23 青岛经济技术开发区海尔热水器有限公司 一种热泵机组控制方法
CN108444079B (zh) * 2018-03-22 2021-10-26 广东美的制冷设备有限公司 空调器及其的控制方法和计算机可读存储介质
CN108759029B (zh) * 2018-06-19 2020-11-03 安徽美芝精密制造有限公司 空调系统、空调系统的控制方法及空调器
CN109945440A (zh) * 2019-03-29 2019-06-28 海信(山东)空调有限公司 补气增焓系统的制热控制方法及补气增焓系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677009A (zh) * 2017-11-20 2018-02-09 广东美的制冷设备有限公司 空调器系统、运行控制方法和计算机可读存储介质
CN108375237A (zh) * 2018-02-28 2018-08-07 四川长虹空调有限公司 一种空调系统及经济器电子膨胀阀控制方法
CN108870573A (zh) * 2018-07-16 2018-11-23 珠海格力电器股份有限公司 制冷机组除湿控制方法、装置、制冷机组主板和存储介质

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115493254A (zh) * 2021-06-18 2022-12-20 佛山市顺德区美的电子科技有限公司 空调器控制方法、空调器和可读存储介质
CN114353383A (zh) * 2021-12-10 2022-04-15 青岛海尔空调电子有限公司 空气源热泵机组控制方法及空气源热泵机组
CN114353383B (zh) * 2021-12-10 2024-04-19 青岛海尔空调电子有限公司 空气源热泵机组控制方法及空气源热泵机组
CN114674089A (zh) * 2022-03-24 2022-06-28 广东开利暖通空调股份有限公司 多联式制冷系统及其制冷方法
CN114674089B (zh) * 2022-03-24 2023-10-13 广东开利暖通空调股份有限公司 多联式制冷系统及其制冷方法
CN115247922A (zh) * 2022-06-27 2022-10-28 浙江中广电器集团股份有限公司 一种防止压缩机冷媒回流到闪蒸罐的自动控制方法

Also Published As

Publication number Publication date
CN112665112B (zh) 2022-04-05
CN112665112A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2021073035A1 (zh) 空调器及其控制方法、可读存储介质
CN110094857B (zh) 空调电子膨胀阀的控制方法、装置、计算机产品及空调
WO2023045287A1 (zh) 多联机热泵系统及其控制方法、计算机可读存储介质
EP3467390B1 (en) Multi-split system and method for controlling heating throttling element thereof
WO2021114557A1 (zh) 空调器、空调器的制热控制方法和存储介质
CN110094858B (zh) 空调电子膨胀阀的控制方法、装置、计算机产品及空调
CN107062720B (zh) 一种空调机组控制方法及空调机组
CN108981101B (zh) 一种电子膨胀阀的控制方法、控制装置及一种机组
US20210148588A1 (en) Method for controlling multi-split air conditioner, multi-split air conditioner system, and computer-readable storage medium
WO2021120497A1 (zh) 空调器、空调器的制冷控制方法和存储介质
CN104006445A (zh) 多联式空调器及其控制方法
US20230288114A1 (en) Control method and control device for electronic expansion valve and air source heat pump system
CN106403349B (zh) 一种双缸变容空调系统及控制方法
WO2022227186A1 (zh) 空调器的控制方法、装置、空调器及存储介质
WO2021042666A1 (zh) 空调器中间能力的控制方法、空调器和存储器
CN108224846A (zh) 一种双阀热泵系统的控制方法及系统
US20240230134A1 (en) Control method and device of multi-tube air conditioner, air conditioner and storage medium
CN115046336A (zh) 电子膨胀阀的控制方法、装置、电子设备和存储介质
US12066225B2 (en) Method and device for controlling pressure of units with height drop, and air conditioner device
CN111678240B (zh) 空调设备的运行控制方法、空调设备和可读存储介质
WO2024012144A1 (zh) 多联机系统的控制方法、装置、多联机系统和存储介质
CN110671799B (zh) 一种空调系统及制冷剂流量控制方法
CN204787045U (zh) 制冷空调冷媒流量实时控制装置
CN112665203A (zh) 制冷机组、制冷控制方法及空调器
KR20170095616A (ko) 공기 조화기 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876715

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20876715

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20876715

Country of ref document: EP

Kind code of ref document: A1