WO2021114557A1 - 空调器、空调器的制热控制方法和存储介质 - Google Patents

空调器、空调器的制热控制方法和存储介质 Download PDF

Info

Publication number
WO2021114557A1
WO2021114557A1 PCT/CN2020/088767 CN2020088767W WO2021114557A1 WO 2021114557 A1 WO2021114557 A1 WO 2021114557A1 CN 2020088767 W CN2020088767 W CN 2020088767W WO 2021114557 A1 WO2021114557 A1 WO 2021114557A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion valve
electronic expansion
enthalpy
refrigerant
injection
Prior art date
Application number
PCT/CN2020/088767
Other languages
English (en)
French (fr)
Inventor
邹大枢
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021114557A1 publication Critical patent/WO2021114557A1/zh
Priority to US17/749,351 priority Critical patent/US20220275964A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators

Definitions

  • This application relates to the technical field of air conditioners, and in particular to an air conditioner, a heating control method of an air conditioner, and a computer-readable storage medium.
  • the air-conditioning system uses high-frequency operation at low temperatures to increase the heating capacity, but this will cause the low pressure to be relatively low, and the output heating capacity is limited, which cannot meet the needs of users. Moreover, during high-frequency operation, the noise generated by the air conditioner is increased and the user experience is reduced.
  • the main purpose of this application is to provide an air conditioner, a heating control method of an air conditioner, and a computer readable storage medium, which aims to solve the problem of low heating output of the current air conditioner under high-frequency operation in a low temperature environment and high noise of the air conditioner. technical problem.
  • the present application provides a heating control method for an air conditioner.
  • the heating control method of the air conditioner is applied to the heating control system of the air conditioner, and the heating control system includes a shunt module and An enthalpy injection electronic expansion valve is used to divide the refrigerant passing through the evaporator into two paths through the splitting module, and the heating control method of the air conditioner includes the following steps:
  • the opening parameter of the enthalpy injection electronic expansion valve is determined to control the amount of refrigerant output by the enthalpy injection electronic expansion valve, and the output of a refrigerant is processed through the injection enthalpy electronic expansion valve. Throttling and reducing pressure; and
  • one refrigerant exchanges heat with another refrigerant to generate heat, so as to increase the heating capacity of the air conditioner.
  • the steps for the electronic expansion valve to throttle and reduce the pressure of the output refrigerant include:
  • the second difference is not less than the first threshold, increase the opening parameter of the injection enthalpy electronic expansion valve to increase the amount of refrigerant output by the injection enthalpy electronic expansion valve, and pass the injection enthalpy
  • the electronic expansion valve throttles and reduces the pressure of the output refrigerant.
  • the step of "increasing the opening parameter of the injection enthalpy electronic expansion valve” includes:
  • the opening parameter of the electronic enthalpy injection expansion valve is controlled to increase from the current value to the maximum opening parameter by a fixed value.
  • the step of "determining whether the second difference is greater than a first threshold" includes:
  • the opening parameter of the injection enthalpy electronic expansion valve is reduced to reduce the amount of refrigerant output by the injection enthalpy electronic expansion valve, and pass the injection enthalpy
  • the electronic expansion valve throttles and reduces the pressure of the output refrigerant.
  • the method further includes:
  • the enthalpy injection electronic expansion valve is controlled to maintain the current opening parameter to maintain the refrigerant currently output by the enthalpy injection electronic expansion valve Through the injection enthalpy electronic expansion valve, the output refrigerant is throttled and pressure-reduced.
  • the method further includes:
  • control the injection enthalpy electronic expansion valve to maintain the current opening parameter to maintain the amount of refrigerant currently output by the injection enthalpy electronic expansion valve, and pass the injection
  • the enthalpy electronic expansion valve throttles and reduces the pressure of the output refrigerant.
  • the method further includes:
  • the second difference is less than the first threshold
  • the amount of refrigerant output by the enthalpy electronic expansion valve is used to throttle and reduce the pressure of one refrigerant output through the injection enthalpy electronic expansion valve, wherein the first threshold is greater than the second threshold
  • the enthalpy injection electronic expansion valve is controlled to maintain the current opening parameter to maintain the refrigerant currently output by the enthalpy injection electronic expansion valve Through the injection enthalpy electronic expansion valve, the output refrigerant is throttled and pressure-reduced.
  • the method further includes:
  • the enthalpy injection electronic expansion valve When the first difference is less than the second temperature threshold and greater than the third temperature threshold, the enthalpy injection electronic expansion valve is closed, and the operating frequency of the compressor is reduced.
  • the present application also provides an air conditioner, the air conditioner including a shunt module, an enthalpy electronic expansion valve, a memory, a processor, and an air conditioner stored in the memory and running on the processor.
  • the heating control program of the air conditioner is used to divide the refrigerant passing through the evaporator into two paths through the splitting module, and the heating control program of the air conditioner is executed by the processor to realize the heating control method of the air conditioner as described above.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium includes a heating control program of an air conditioner, the heating control program of the air conditioner is executed by a processor to achieve the above The heating control method of the air conditioner described.
  • the air conditioner, the heating control method of the air conditioner, and the computer-readable storage medium provided by the present application is applied to the heating control system of the air conditioner, and the heating control system includes a shunt Module and enthalpy injection electronic expansion valve to divide the refrigerant passing through the evaporator into two paths through the splitting module.
  • the heating control method of the air conditioner obtains the current indoor temperature and calculates the current indoor temperature and the preset temperature When the first difference is greater than the first temperature threshold, obtain the indoor pipeline temperature of the evaporator and the compressor discharge temperature, and calculate the indoor pipeline temperature and the A second difference in exhaust temperature; based on the second difference, determine the opening parameter of the injection enthalpy electronic expansion valve to control the amount of refrigerant output by the injection enthalpy electronic expansion valve, and pass the injection enthalpy
  • the electronic expansion valve throttles and depressurizes the output of a refrigerant; the throttling and depressurizing refrigerant exchanges heat with another refrigerant to generate heat, so as to increase the heating capacity of the air conditioner.
  • the application divides the refrigerant passing through the evaporator into two paths through the splitting module, and throttling and depressurizing one of the refrigerant through the enthalpy injection electronic expansion valve, and then based on the indoor pipeline temperature and the compressor discharge temperature
  • the difference is to control the opening parameter of the injection enthalpy electronic expansion valve, thereby controlling the amount of refrigerant output by the injection enthalpy electronic expansion valve, and then controlling the amount of refrigerant of the throttling and depressurizing refrigerant, thereby controlling the throttling and depressurizing refrigerant and refrigerant.
  • the amount of refrigerant used for heat exchange by the other refrigerant achieves the enthalpy effect, which increases the heating capacity of the air conditioner, reduces the noise during high frequency operation of the air conditioner, and improves the user experience.
  • FIG. 1 is a schematic diagram of the hardware structure of an air conditioner involved in an embodiment of the application
  • FIG. 2 is a schematic flowchart of a first embodiment of a heating control method for an air conditioner according to the present application
  • FIG. 3 is a schematic diagram of the working principle of the air conditioner of this application.
  • FIG. 4 is a schematic flowchart of a second embodiment of a heating control method for an air conditioner according to the present application.
  • Fig. 5 is a schematic flowchart of a third embodiment of a heating control method for an air conditioner according to the present application.
  • the main solution of the embodiment of the present application is that the heating control method of the air conditioner is applied to the heating control system of the air conditioner, and the heating control system includes a splitter module and an electronic expansion valve with spray enthalpy to pass the heating control system.
  • the shunt module divides the refrigerant passing through the evaporator into two paths, obtains the current indoor temperature, and calculates a first difference between the current indoor temperature and a preset temperature value; when the first difference is greater than a first temperature threshold , Obtain the indoor pipeline temperature of the evaporator and the compressor exhaust temperature, and calculate the second difference between the indoor pipeline temperature and the exhaust temperature; based on the second difference, determine the
  • the opening parameter of the injection enthalpy electronic expansion valve is used to control the amount of refrigerant output by the injection enthalpy electronic expansion valve, and through the injection enthalpy electronic expansion valve, the output of a refrigerant is throttled and pressure-reduced; One refrigerant exchanges heat with another refrig
  • the refrigerant passing through the evaporator is divided into two paths through the splitter module, and one of the refrigerants is throttled and pressure-reduced through the injection enthalpy electronic expansion valve, and then the injection enthalpy is controlled based on the difference between the indoor pipeline temperature and the compressor discharge temperature
  • the opening parameter of the electronic expansion valve which controls the amount of refrigerant output by the enthalpy injection electronic expansion valve, and then controls the amount of refrigerant of the throttling and depressurization refrigerant, so as to control the throttling and depressurization of the refrigerant and the other refrigerant for heat exchange
  • the amount of refrigerant that achieves the effect of spray enthalpy increases the heating capacity of the air conditioner, reduces the noise of the air conditioner during high-frequency operation, and improves the user experience.
  • the air conditioner can be as shown in Figure 1.
  • the solution of the embodiment of the present application relates to an air conditioner.
  • the air conditioner includes a processor 1001 (for example, a CPU), a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005.
  • the communication bus 1002 is used to implement connection and communication between these components.
  • the memory 1005 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a magnetic disk memory. As shown in Figure 1, the memory 1005 as a computer storage medium may include a heating control program of an air conditioner; and the processor 1001 may be used to call the heating control program of an air conditioner stored in the memory 1005 and execute the following operating:
  • the opening parameter of the enthalpy injection electronic expansion valve is determined to control the amount of refrigerant output by the enthalpy injection electronic expansion valve, and the output of a refrigerant is processed through the injection enthalpy electronic expansion valve. Throttling and reducing pressure; and
  • one refrigerant exchanges heat with another refrigerant to generate heat, so as to increase the heating capacity of the air conditioner.
  • the processor 1001 may be used to call the heating control program of the air conditioner stored in the memory 1005, and perform the following operations:
  • the second difference is not less than the first threshold, increase the opening parameter of the injection enthalpy electronic expansion valve to increase the amount of refrigerant output by the injection enthalpy electronic expansion valve, and pass the injection enthalpy
  • the electronic expansion valve throttles and reduces the pressure of the output refrigerant.
  • the processor 1001 may be used to call the heating control program of the air conditioner stored in the memory 1005, and perform the following operations:
  • the opening parameter of the electronic enthalpy injection expansion valve is controlled to increase from the current value to the maximum opening parameter by a fixed value.
  • the processor 1001 may be used to call the heating control program of the air conditioner stored in the memory 1005, and perform the following operations:
  • the opening parameter of the injection enthalpy electronic expansion valve is reduced to reduce the amount of refrigerant output by the injection enthalpy electronic expansion valve, and pass the injection enthalpy
  • the electronic expansion valve throttles and reduces the pressure of the output refrigerant.
  • the processor 1001 may be used to call the heating control program of the air conditioner stored in the memory 1005, and perform the following operations:
  • the enthalpy injection electronic expansion valve is controlled to maintain the current opening parameter to maintain the refrigerant currently output by the enthalpy injection electronic expansion valve Through the injection enthalpy electronic expansion valve, the output refrigerant is throttled and pressure-reduced.
  • the processor 1001 may be used to call the heating control program of the air conditioner stored in the memory 1005, and perform the following operations:
  • control the injection enthalpy electronic expansion valve to maintain the current opening parameter to maintain the amount of refrigerant currently output by the injection enthalpy electronic expansion valve, and pass the injection
  • the enthalpy electronic expansion valve throttles and reduces the pressure of the output refrigerant.
  • the processor 1001 may be used to call the heating control program of the air conditioner stored in the memory 1005, and perform the following operations:
  • the second difference is less than the first threshold
  • the amount of refrigerant output by the enthalpy electronic expansion valve is used to throttle and reduce the pressure of one refrigerant output through the injection enthalpy electronic expansion valve, wherein the first threshold is greater than the second threshold
  • the enthalpy injection electronic expansion valve is controlled to maintain the current opening parameter to maintain the refrigerant currently output by the enthalpy injection electronic expansion valve Through the injection enthalpy electronic expansion valve, the output refrigerant is throttled and pressure-reduced.
  • the processor 1001 may be used to call the heating control program of the air conditioner stored in the memory 1005, and perform the following operations:
  • the enthalpy injection electronic expansion valve When the first difference is less than the second temperature threshold and greater than the third temperature threshold, the enthalpy injection electronic expansion valve is closed, and the operating frequency of the compressor is reduced.
  • the refrigerant passing through the evaporator is divided into two paths through the splitter module, and one of the refrigerants is throttled and depressurized through the enthalpy injection electronic expansion valve, and then based on the indoor pipeline temperature and the compressor discharge temperature
  • the difference of controls the opening parameter of the injection enthalpy electronic expansion valve, thereby controlling the amount of refrigerant output by the injection enthalpy electronic expansion valve, and then controlling the amount of refrigerant of the throttling and depressurizing refrigerant, thereby controlling the throttling and depressurizing refrigerant of the refrigerant.
  • the amount of refrigerant that exchanges heat with another refrigerant realizes the enthalpy effect, increases the heating capacity of the air conditioner, reduces the noise during high-frequency operation of the air conditioner, and improves the user experience.
  • FIG. 2 is a first embodiment of a heating control method for an air conditioner according to the present application.
  • the heating control method of the air conditioner is applied to the heating control system of the air conditioner, and the heating control system includes A flow dividing module and an electronic enthalpy injection expansion valve are used to divide the refrigerant passing through the evaporator into two paths through the flow dividing module.
  • the heating control method of the air conditioner includes the following steps:
  • Step S10 Obtain the current indoor temperature, and calculate the first difference between the current indoor temperature and a preset temperature value.
  • the executive body is an air conditioner.
  • the principle diagram of the air conditioner is shown in Figure 3.
  • 1 is an enthalpy injection compressor, or other inverter compressors
  • 1-1 is an exhaust temperature sensor TP
  • 2 is a four-way valve
  • 3 is a condenser
  • 31 It is the upper fan
  • 32 is the lower fan
  • 33 is the pipeline temperature sensor T3
  • 34 is the external environment temperature sensor T4
  • 4 is the filter
  • 5 is the heating electronic expansion valve
  • 6 is the electric control of the refrigerant tube
  • 7 is the cooling throttling Valve
  • 8 is a plate heat exchanger, or a splittable heat exchanger
  • 9 is an evaporator
  • 91 is an internal fan
  • 92 is an indoor pipeline temperature sensor T2
  • 93 is an indoor temperature sensor T1
  • 10 is a gas-liquid separator
  • 11 is the spray enthalpy electronic expansion valve.
  • the high-temperature and high-pressure gas refrigerant discharged from the enthalpy compressor 1 flows through the four-way valve 2, enters the condenser 3 side for heat dissipation, passes through the filter 4, the heating electronic expansion valve 5, and is electrically controlled by the refrigerant tube 6.
  • the air conditioner When the air conditioner is heating: the high temperature and high pressure gas refrigerant discharged from the enthalpy compressor 1 flows through the four-way valve 2, enters the evaporator 9 side for heat dissipation, passes through the filter 4, the refrigeration throttle valve 7, and flows through the plate heat exchange
  • the main flow path of the diverter of the condenser 8 passes through the electric control 6 of the refrigerant tube to realize the cooling of the electric heating components, and then throttling through the heating electronic expansion valve 5 to form a low-temperature and low-pressure refrigerant, and the refrigerant enters the outdoor condenser 3 for processing.
  • the gas-liquid separator 10 After absorbing heat and evaporating, it flows into the gas-liquid separator 10 for gas-liquid separation, the gaseous refrigerant returns to the compressor for circulation, and the liquid refrigerant is stored in the gas-liquid separator 10.
  • the enthalpy injection electronic expansion valve 11 When the enthalpy injection electronic expansion valve 11 is opened, the refrigerant in the main flow path passes through the plate heat exchanger 8, and is divided into two paths. One way continues to pass through the refrigerant tube electric control 6, and then enters the condenser 3 to absorb heat, and then returns to the injection nozzle.
  • the enthalpy compressor 1 performs a compression cycle, and the other path passes through the auxiliary flow path.
  • the opening parameter of the injection enthalpy electronic expansion valve 11 will affect the amount of refrigerant output by the injection enthalpy electronic expansion valve 11, thereby affecting the amount of heat exchanged between the auxiliary flow path and the main flow path.
  • the mechanism runs for a preset time with the initial operating parameters, and the current indoor temperature T1 is detected by the indoor temperature sensor 93. And calculate the difference between T1 and the preset temperature threshold TS, where the preset temperature threshold TS can be set according to the actual required heat value.
  • Step S20 when the first difference is greater than the first temperature threshold, the indoor pipeline temperature of the evaporator 9 and the exhaust temperature of the compressor 1 are acquired, and the indoor pipeline temperature and the exhaust gas temperature are calculated.
  • the indoor pipe temperature sensor 92 detects the heating pipe temperature T2
  • the exhaust temperature sensor 1-1 detects the temperature TP of the exhaust port of the enthalpy compressor 1, and calculates the second difference between T2 and TP.
  • Step S30 based on the second difference, determine the opening parameter of the injection enthalpy electronic expansion valve 11 to control the amount of refrigerant output by the injection enthalpy electronic expansion valve 11, and pass the injection enthalpy electronic expansion valve 11 Throttling and reducing the pressure of a refrigerant output;
  • the second difference value is compared with the first threshold value and the second threshold value to determine whether the heat value of the heat exchange meets the requirement based on the temperature difference between the exhaust port and the indoor pipeline. It is determined whether the amount of refrigerant in the auxiliary flow path meets the requirement, thereby determining whether the opening parameter of the enthalpy injection electronic expansion valve 11 of the output refrigerant is appropriate.
  • step S40 heat is generated by performing heat exchange between one refrigerant that is throttled and pressure-reduced and another refrigerant, so as to increase the heating capacity of the air conditioner.
  • the refrigerant in the main flow path passes through the plate heat exchanger 8, and then divides into two paths. After passing through the refrigerant tube electric control 6, the refrigerant enters the condenser 3 to absorb heat. Then return to the injection enthalpy compressor 1 for the compression cycle, and the other way through the auxiliary flow path, after throttling and pressure reduction by the injection enthalpy electronic expansion valve 11, it exchanges heat with the refrigerant in the main flow path, and then forms a medium temperature and medium pressure refrigerant , And then return to the injection enthalpy compressor 1 to realize the injection enthalpy effect and greatly increase the heating capacity.
  • the refrigerant passing through the evaporator is divided into two paths by the splitting module, and one of the refrigerants is throttled and depressurized through the enthalpy electronic expansion valve 11, and then based on the indoor pipeline temperature and the compressor
  • the difference in the exhaust gas temperature controls the opening parameter of the injection enthalpy electronic expansion valve 11, thereby controlling the amount of refrigerant output by the injection enthalpy electronic expansion valve 11, and then controlling the refrigerant amount of the throttled and pressure-reduced path of refrigerant, thereby controlling the throttle
  • the amount of refrigerant that is used for heat exchange between the decompressed refrigerant and the other refrigerant realizes the enthalpy effect, increases the heating capacity of the air conditioner, reduces the noise during high-frequency operation of the air conditioner, and improves the user experience.
  • FIG. 4 is a second embodiment of the heating control method of an air conditioner according to the present application. Based on the first embodiment, the step S30 specifically includes:
  • Step S31 judging whether the second difference value is not less than a first threshold value
  • Step S32 if the second difference is not less than the first threshold, increase the opening parameter of the enthalpy injection electronic expansion valve 11 to increase the amount of refrigerant output by the enthalpy injection electronic expansion valve 11, and Through the injection enthalpy electronic expansion valve 11, the output refrigerant is throttled and pressure-reduced.
  • the second difference value is not less than the first threshold value, for example, it is judged whether 10 ⁇ TP-T2 is established.
  • 10 ⁇ TP-T2 the current amount of refrigerant is insufficient, and the opening of the enthalpy injection electronic expansion valve 11 is increased, thereby increasing the amount of refrigerant output by the enthalpy injection electronic expansion valve 11.
  • the step of increasing the opening parameter of the enthalpy injection electronic expansion valve 11 specifically includes: controlling the opening parameter of the enthalpy injection electronic expansion valve 11 to be fixed from the current value according to a preset time interval. The value increases to the maximum opening parameter.
  • the enthalpy injection electronic expansion valve 11 is opened by the initial opening parameter P, and then opened for 5 steps every 30s, and its opening range is 60-480.
  • step S31 after the step S31, it further specifically includes: if the second difference is less than the first threshold and not less than the second threshold, controlling the enthalpy injection electronic expansion valve 11 to maintain the current
  • the opening parameter is used to maintain the amount of refrigerant currently output by the enthalpy injection electronic expansion valve 11, and through the enthalpy injection electronic expansion valve 11, the output refrigerant is throttled and pressure-reduced.
  • the second difference is less than the first threshold and not less than the second threshold, such as 5 ⁇ TP-T2 ⁇ 10, that is, the current amount of heat exchange refrigerant meets the requirements, that is, the injection enthalpy electron
  • the opening parameter of the valve expansion valve 11 is appropriate.
  • the enthalpy injection electronic expansion valve 11 can be controlled to maintain the current opening parameters to maintain the amount of refrigerant currently output by the enthalpy injection electronic expansion valve 11, that is, the enthalpy injection compressor 1 can be controlled to run at a preset frequency F and the injection enthalpy can be controlled
  • the electronic expansion valve 11 maintains the current opening degree of operation.
  • the opening parameter of the enthalpy injection electronic expansion valve 11 is controlled, thereby controlling the refrigerant output by the enthalpy injection electronic expansion valve 11 Then control the amount of refrigerant of the throttling and depressurizing refrigerant, thereby controlling the refrigerant quantity of the throttling and depressurizing refrigerant and the other refrigerant for heat exchange, realizing the spray enthalpy effect, increasing the heating capacity of the air conditioner, and reducing The noise during high-frequency operation of the air conditioner improves the user experience.
  • FIG. 5 is a third embodiment of a heating control method for an air conditioner according to the present application. Based on the first embodiment, after the step S31, the method further includes:
  • Step S33 if the second difference value is less than the first threshold value, determine whether the second difference value is less than a second threshold value, where the first threshold value is greater than the second threshold value;
  • Step S34 if the second difference is less than the second threshold, decrease the opening parameter of the enthalpy injection electronic expansion valve 11 to reduce the amount of refrigerant output by the enthalpy injection electronic expansion valve 11, and Through the injection enthalpy electronic expansion valve 11, the output refrigerant is throttled and pressure-reduced.
  • TP-T2 ⁇ 5 reduce the opening parameter of the injection enthalpy electronic expansion valve 11 to reduce the amount of refrigerant output by the injection enthalpy electronic expansion valve 11, such as controlling
  • the injection enthalpy compressor 1 runs at a preset frequency F, and the injection enthalpy electronic expansion valve 11 is closed by 10 degrees every 20s from the current opening, and then the value of TP-T2 is detected every 3 minutes.
  • the method further includes: when the first difference is not greater than the first temperature threshold and not less than the second temperature threshold, judging whether the second difference is not less than the first temperature threshold.
  • a threshold wherein the second temperature threshold is less than the first temperature threshold; if the second difference is not less than the first threshold, the enthalpy injection electronic expansion valve 11 is controlled to maintain the current opening parameter, In order to maintain the amount of refrigerant currently output by the enthalpy injection electronic expansion valve 11, the output of the refrigerant is throttled and pressure-reduced through the enthalpy injection electronic expansion valve 11.
  • the second difference is less than the first threshold
  • reduce the opening parameter of the enthalpy electronic expansion valve 11 to reduce the The amount of refrigerant output by the enthalpy injection electronic expansion valve 11, through the injection enthalpy electronic expansion valve 11, the output of a refrigerant is throttled and depressurized, wherein the first threshold is greater than the second threshold; if the second If the difference is less than the first threshold and not less than the second threshold, the enthalpy injection electronic expansion valve 11 is controlled to maintain the current opening parameter to maintain the amount of refrigerant currently output by the enthalpy injection electronic expansion valve 11, and Through the injection enthalpy electronic expansion valve 11, the output refrigerant is throttled and pressure-reduced.
  • the heating output needs to be moderate. It is further judged whether the second difference value is not less than a first threshold value, wherein the second temperature threshold value is less than the first temperature threshold value, that is, it is judged whether 10 ⁇ TP-T2 holds.
  • step S10 after the step S10, it further includes: when the first difference is less than the second temperature threshold and greater than the third temperature threshold, closing the enthalpy injection electronic expansion valve 11 and reducing The operating frequency of the enthalpy injection compressor 1.
  • the enthalpy injection electronic expansion valve 11 is closed, and the compression frequency of the enthalpy injection compressor 1 is controlled to decrease from the initial value F to the lowest frequency F0 to operate.
  • the present application also provides an air conditioner, the air conditioner including the heating control of the air conditioner including a shunt module, an enthalpy injection electronic expansion valve, a memory, a processor, and the air conditioner stored in the memory and running on the processor
  • the program is used to divide the refrigerant passing through the evaporator into two paths through the splitting module, and the heating control program of the air conditioner is executed by the processor to realize the steps of the heating control method of the air conditioner as described in the above embodiment.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium includes a heating control program of an air conditioner.
  • the heating control program of the air conditioner is executed by a processor, the air conditioner described in the above embodiment is implemented. The steps of the heating control method of the heater.

Abstract

本申请公开了一种空调器、空调器的制热控制方法和存储介质,所述空调器的制热控制方法通过分流模块将通过蒸发器的冷媒分成两路,并通过喷焓电子膨胀阀对其中一路冷媒进行节流降压,然后基于室内管路温度与压缩机的排气温度的差值,控制喷焓电子膨胀阀的开度参数,由此控制喷焓电子膨胀阀输出的冷媒量,继而控制节流降压的一路冷媒的冷媒量,从而控制节流降压的一路冷媒与另一路冷媒进行热交换的冷媒量,实现喷焓作用。

Description

空调器、空调器的制热控制方法和存储介质
本申请要求于2019年12月9日申请的、申请号为201911262568.X、名称为“空调器、空调器的制热控制方法和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调器技术领域,尤其涉及一种空调器、空调器的制热控制方法和计算机可读存储介质。
背景技术
在低温环境下,如-15度、-20度甚至更低的环境下,美国和加拿大等部分地区需要很大的制热量输出。目前空调系统,在低温下通过进行高频运行来提升制热量,但是这样会造成低压比较低,输出的制热量有限,无法满足用户的需求。而且高频运行时,增大了空调产生的噪声,降低了用户体验。
发明概述
技术问题
问题的解决方案
技术解决方案
本申请的主要目的在于提供一种空调器、空调器的制热控制方法和计算机可读存储介质,旨在解决目前空调器在低温环境下高频运行输出的制热量少且空调器噪声大的技术问题。
为实现上述目的,本申请提供的一种空调器的制热控制方法,所述空调器的制热控制方法应用于所述空调器的制热控制系统,所述制热控制系统包括分流模块和喷焓电子膨胀阀,以通过所述分流模块将通过蒸发器的冷媒分成两路,所述空调器的制热控制方法包括以下步骤:
获取当前室内温度,并计算所述当前室内温度与预设温度值的第一差值;
在所述第一差值大于第一温度阈值时,获取所述蒸发器的室内管路温度以及压缩机的排气温度,并计算所述室内管路温度与所述排气温度的第二差值;
基于所述第二差值,确定所述喷焓电子膨胀阀的开度参数,以控制所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压;及
通过节流降压的一路冷媒与另一路冷媒进行热交换产生热量,以增大所述空调器的制热量。
在一实施例中,所述“基于所述第二差值,确定所述喷焓电子膨胀阀的开度参数,以控制所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压”的步骤包括:
判断所述第二差值是否不小于第一阈值;及
若所述第二差值不小于所述第一阈值,则增大所述喷焓电子膨胀阀的开度参数,以增加所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
在一实施例中,所述“增大所述喷焓电子膨胀阀的开度参数”的步骤包括:
根据预设时间间隔,控制所述喷焓电子膨胀阀的开度参数由当前值以固定值增大至最大开度参数。
在一实施例中,所述“判断所述第二差值是否大于第一阈值”的步骤包括:
若所述第二差值小于所述第一阈值,则判断所述第二差值是否小于第二阈值,其中,所述第一阈值大于所述第二阈值;及
若所述第二差值小于所述第二阈值,则减小所述喷焓电子膨胀阀的开度参数,以减小所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
在一实施例中,在所述“若所述第二差值小于所述第一阈值,则判断所述第二差值是否小于第二阈值”的步骤之后,所述方法还包括:
若所述第二差值小于所述第一阈值且不小于所述第二阈值,则控制所述喷焓电子膨胀阀保持当前开度参数,以维持所述喷焓电子膨胀阀当前输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
在一实施例中,在所述“获取当前室内温度,并计算所述当前室内温度与预设温度值的第一差值”的步骤之后,所述方法还包括:
在所述第一差值不大于所述第一温度阈值且不小于第二温度阈值时,判断所述第二差值是否不小于第一阈值,其中,所述第二温度阈值小于所述第一温度阈值;及
若所述第二差值不小于所述第一阈值,则控制所述喷焓电子膨胀阀保持当前开度参数,以维持所述喷焓电子膨胀阀当前输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
在一实施例中,在所述“在所述第一差值不大于所述第一温度阈值且不小于第二温度阈值时,判断所述第二差值是否不小于第一阈值,其中,所述第二温度阈值小于所述第一温度阈值”的步骤之后,所述方法还包括:
若所述第二差值小于所述第一阈值,则在所述第二差值小于所述第二阈值时,减小所述喷焓电子膨胀阀的开度参数,以减小所述喷焓电子膨胀阀输出的冷媒量,通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压,其中,所述第一阈值大于所述第二阈值;及
若所述第二差值小于所述第一阈值且不小于所述第二阈值,则控制所述喷焓电子膨胀阀保持当前开度参数,以维持所述喷焓电子膨胀阀当前输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
在一实施例中,在所述“获取当前室内温度,并计算所述当前室内温度与预设温度值的第一差值”的步骤之后,所述方法还包括:
在所述第一差值小于所述第二温度阈值且大于第三温度阈值时,关闭所述喷焓电子膨胀阀,并减小所述压缩机的工作频率。
为实现上述目的,本申请还提供一种空调器,所述空调器包括包括分流模块、喷焓电子膨胀阀、存储器、处理器以及存储在所述存储器并可在所述处理器上运行的空调器的制热控制程序,以通过所述分流模块将通过蒸发器的冷媒分成两路,所述空调器的制热控制程序被处理器执行时实现如上所述的空调器的制热控制方法。
为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质包括空调器的制热控制程序,所述空调器的制热控制程序被处理器执行时实现如上所述的空调器的制热控制方法。
本申请提供的空调器、空调器的制热控制方法和计算机可读存储介质,所述空调器的制热控制方法应用于所述空调器的制热控制系统,所述制热控制系统包括分流模块和喷焓电子膨胀阀,以通过所述分流模块将通过蒸发器的冷媒分成两路,所述空调器的制热控制方法通过获取当前室内温度,并计算所述当前室内温度与预设温度值的第一差值;在所述第一差值大于第一温度阈值时,获取所述蒸发器的室内管路温度以及压缩机的排气温度,并计算所述室内管路温度与所述排气温度的第二差值;基于所述第二差值,确定所述喷焓电子膨胀阀的开度参数,以控制所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压;通过节流降压的一路冷媒与另一路冷媒进行热交换产生热量,以增大所述空调器的制热量。通过上述方式,本申请通过分流模块将通过蒸发器的冷媒分成两路,并通过喷焓电子膨胀阀对其中一路冷媒进行节流降压,然后基于室内管路温度与压缩机的排气温度的差值,控制喷焓电子膨胀阀的开度参数,由此控制喷焓电子膨胀阀输出的冷媒量,继而控制节流降压的一路冷媒的冷媒量,从而控制节流降压的一路冷媒与另一路冷媒进行热交换的冷媒量,实现喷焓作用,提升了空调器的制热量,降低了空调器高频运行时的噪音,提升了用户体验。
发明的有益效果
对附图的简要说明
附图说明
图1为本申请实施例涉及的空调器硬件结构示意图;
图2为本申请空调器的制热控制方法第一实施例的流程示意图;
图3为本申请空调器的工作原理示意图;
图4为本申请空调器的制热控制方法第二实施例的流程示意图;
图5为本申请空调器的制热控制方法第三实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
发明实施例
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例的主要解决方案是:所述空调器的制热控制方法应用于所述空调器的制热控制系统,所述制热控制系统包括分流模块和喷焓电子膨胀阀,以通过所述分流模块将通过蒸发器的冷媒分成两路,通过获取当前室内温度,并计算所述当前室内温度与预设温度值的第一差值;在所述第一差值大于第一温度阈值时,获取所述蒸发器的室内管路温度以及压缩机的排气温度,并计算所述室内管路温度与所述排气温度的第二差值;基于所述第二差值,确定所述喷焓电子膨胀阀的开度参数,以控制所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压;通过节流降压的一路冷媒与另一路冷媒进行热交换产生热量,以增大所述空调器的制热量。通过分流模块将通过蒸发器的冷媒分成两路,并通过喷焓电子膨胀阀对其中一路冷媒进行节流降压,然后基于室内管路温度与压缩机的排气温度的差值,控制喷焓电子膨胀阀的开度参数,由此控制喷焓电子膨胀阀输出的冷媒量,继而控制节流降压的一路冷媒的冷媒量,从而控制节流降压的一路冷媒与另一路冷媒进行热交换的冷媒量,实现喷焓作用,提升了空调器的制热量,降低了空调器高频运行时的噪音,提升了用户体验。
作为一种实现方案,空调器可以如图1所示。
本申请实施例方案涉及的是空调器,空调器包括:处理器1001(例如CPU),通信总线1002,用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。
存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatilememory),例如磁盘存储器。如图1所示,作为一种计算机存储介质的存储器1005中可以包括空调器的制热控制程序;而处理器1001可以用于调用存储器1005中存储的空调器的制热控制程序,并执行以下操作:
获取当前室内温度,并计算所述当前室内温度与预设温度值的第一差值;
在所述第一差值大于第一温度阈值时,获取所述蒸发器的室内管路温度以及压缩机的排气温度,并计算所述室内管路温度与所述排气温度的第二差值;
基于所述第二差值,确定所述喷焓电子膨胀阀的开度参数,以控制所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压;及
通过节流降压的一路冷媒与另一路冷媒进行热交换产生热量,以增大所述空调器的制热量。
在一实施例中,处理器1001可以用于调用存储器1005中存储的空调器的制热控制程序,并执行以下操作:
判断所述第二差值是否不小于第一阈值;及
若所述第二差值不小于所述第一阈值,则增大所述喷焓电子膨胀阀的开度参数,以增加所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
在一实施例中,处理器1001可以用于调用存储器1005中存储的空调器的制热控制程序,并执行以下操作:
根据预设时间间隔,控制所述喷焓电子膨胀阀的开度参数由当前值以固定值增大至最大开度参数。
在一实施例中,处理器1001可以用于调用存储器1005中存储的空调器的制热控制程序,并执行以下操作:
若所述第二差值小于所述第一阈值,则判断所述第二差值是否小于第二阈值,其中,所述第一阈值大于所述第二阈值;及
若所述第二差值小于所述第二阈值,则减小所述喷焓电子膨胀阀的开度参数,以减小所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
在一实施例中,处理器1001可以用于调用存储器1005中存储的空调器的制热控制程序,并执行以下操作:
若所述第二差值小于所述第一阈值且不小于所述第二阈值,则控制所述喷焓电子膨胀阀保持当前开度参数,以维持所述喷焓电子膨胀阀当前输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
在一实施例中,处理器1001可以用于调用存储器1005中存储的空调器的制热控 制程序,并执行以下操作:
在所述第一差值不大于所述第一温度阈值且不小于第二温度阈值时,判断所述第二差值是否不小于第一阈值,其中,所述第二温度阈值小于所述第一温度阈值;及
若所述第二差值不小于所述第一阈值,则控制所述喷焓电子膨胀阀保持当前开度参数,以维持所述喷焓电子膨胀阀当前输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
在一实施例中,处理器1001可以用于调用存储器1005中存储的空调器的制热控制程序,并执行以下操作:
若所述第二差值小于所述第一阈值,则在所述第二差值小于所述第二阈值时,减小所述喷焓电子膨胀阀的开度参数,以减小所述喷焓电子膨胀阀输出的冷媒量,通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压,其中,所述第一阈值大于所述第二阈值;及
若所述第二差值小于所述第一阈值且不小于所述第二阈值,则控制所述喷焓电子膨胀阀保持当前开度参数,以维持所述喷焓电子膨胀阀当前输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
在一实施例中,处理器1001可以用于调用存储器1005中存储的空调器的制热控制程序,并执行以下操作:
在所述第一差值小于所述第二温度阈值且大于第三温度阈值时,关闭所述喷焓电子膨胀阀,并减小所述压缩机的工作频率。
本实施例根据上述方案,通过分流模块将通过蒸发器的冷媒分成两路,并通过喷焓电子膨胀阀对其中一路冷媒进行节流降压,然后基于室内管路温度与压缩机的排气温度的差值,控制喷焓电子膨胀阀的开度参数,由此控制喷焓电子膨胀阀输出的冷媒量,继而控制节流降压的一路冷媒的冷媒量,从而控制节流降压的一路冷媒与另一路冷媒进行热交换的冷媒量,实现喷焓作用,提升了空调器的制热量,降低了空调器高频运行时的噪音,提升了用户体验。
基于上述硬件构架,提出本申请空调器的制热控制方法的实施例。
参照图2,图2为本申请空调器的制热控制方法的第一实施例,所述空调器的制 热控制方法应用于所述空调器的制热控制系统,所述制热控制系统包括分流模块和喷焓电子膨胀阀,以通过所述分流模块将通过蒸发器的冷媒分成两路,所述空调器的制热控制方法包括以下步骤:
步骤S10,获取当前室内温度,并计算所述当前室内温度与预设温度值的第一差值。
在本申请中,执行主体为空调器。空调器的原理图如图3所示,其中,1为喷焓压缩机,也可以时其他变频压缩机,1-1为排气温度传感器TP,2为四通阀,3为冷凝器,31为上风机,32为下风机,33为管路温度传感器T3,34为外环境温度传感器T4,4为过滤器,5为制热电子膨胀阀,6为冷媒管电控,7为制冷节流阀,8为板式换热器,或者是可分流的换热器,9为蒸发器,91为内风机,92为室内管路温度传感器T2,93为室内温度传感器T1,10为气液分离器,11为喷焓电子膨胀阀。空调器制冷时:喷焓压缩机1排出的高温高压气体冷媒流经四通阀2,进入到冷凝器3侧进行散热后,经过过滤器4,制热电子膨胀阀5,经过冷媒管电控6,实现对电控发热元器件进行降温,流经板式换热器8分流的主流路,通过制冷节流阀7节流,形成低温低压冷媒,冷媒再进入到室内侧蒸发器9进行吸热蒸发,再流入气液分离器10中进行气液分离,气态冷媒回到压缩机中进行循环,液体冷媒储存在气液分离器10中。空调器制热时:喷焓压缩机1排出的高温高压气体冷媒流经四通阀2,进入到蒸发器9侧进行散热后,经过过滤器4、制冷节流阀7、流经板式换热器8分流的主流路,经过冷媒管电控6,实现对电控发热元器件进行降温,之后经过制热电子膨胀阀5节流,形成低温低压冷媒,冷媒再进入到室外侧冷凝器3进行吸热蒸发,再流入气液分离器10中进行气液分离后,气态冷媒回到压缩机中进行循环,液体冷媒储存在气液分离器10中。当喷焓电子膨胀阀11打开时,主流路中的冷媒经过板式换热器8后,分成两路,一路继续经过冷媒管电控6后,进入冷凝器3进行吸收热量,之后再回到喷焓压缩机1进行压缩循环,另一路通过辅助流路,经过喷焓电子膨胀阀11起节流降压后,与主流路中的冷媒进行热交换,之后形成中温中压冷媒,之后再回到喷焓压缩机1中,实现喷焓作用,大幅提升制热量,提升用户体验。在喷焓电子膨胀阀11的开度参数会影响喷焓电子膨胀阀11输出的冷媒量,从而影响辅助流路与主流路进 行热交换的热量。通过监测室内温度与预设温度阈值的差值,确定室内当前是否需要大量制热。并通过监测喷焓压缩机1排气口的排气温度与室内管路温度的差值,判定喷焓电子膨胀阀11输出的冷媒量是否合适,若冷媒量不够,则产生的热量不够。若冷媒量过多,则容易产生液击问题,减少制热量。具体地,开机制热,以初始运行参数运行预设时间,通过室内温度传感器93检测当前室内温度T1。并计算T1与预设温度阈值TS的差值,其中,预设温度阈值TS可以根据实际需要热量值设定。
步骤S20,在所述第一差值大于第一温度阈值时,获取所述蒸发器9的室内管路温度以及压缩机1的排气温度,并计算所述室内管路温度与所述排气温度的第二差值;
本实施例中,若所述第一差值大于第一温度阈值时,如4,即室内温度与设定温度差值大,需要很大的制热量输出。进一步通过室内管路温度传感器92检测制热管路温度T2,并通过排气温度传感器1-1检测喷焓压缩机1排气口的温度TP,并计算T2与TP的第二差值。
步骤S30,基于所述第二差值,确定所述喷焓电子膨胀阀11的开度参数,以控制所述喷焓电子膨胀阀11输出的冷媒量,并通过所述喷焓电子膨胀阀11对输出的一路冷媒进行节流降压;
本实施例中,将所述第二差值与第一阈值以及第二阈值进行比对,以基于所述排气口与室内管路的温度差,确定热交换的热量值是否满足需要,从而确定辅助流路中的冷媒量是否满足需要,由此确定输出冷媒的喷焓电子膨胀阀11的开度参数是否合适。
步骤S40,通过节流降压的一路冷媒与另一路冷媒进行热交换产生热量,以增大所述空调器的制热量。
本实施例中,当喷焓电子膨胀阀11打开时,主流路中的冷媒经过板式换热器8后,分成两路,一路继续经过冷媒管电控6后,进入冷凝器3进行吸收热量,之后再回到喷焓压缩机1进行压缩循环,另一路通过辅助流路,经过喷焓电子膨胀阀11起节流降压后,与主流路中的冷媒进行热交换,之后形成中温中压冷媒,之后再回到喷焓压缩机1中,实现喷焓作用,大幅提升制热量。
在本实施例提供的技术方案中,通过分流模块将通过蒸发器的冷媒分成两路,并通过喷焓电子膨胀阀11对其中一路冷媒进行节流降压,然后基于室内管路温度与压缩机的排气温度的差值,控制喷焓电子膨胀阀11的开度参数,由此控制喷焓电子膨胀阀11输出的冷媒量,继而控制节流降压的一路冷媒的冷媒量,从而控制节流降压的一路冷媒与另一路冷媒进行热交换的冷媒量,实现喷焓作用,提升了空调器的制热量,降低了空调器高频运行时的噪音,提升了用户体验。
参照图4,图4为本申请空调器的制热控制方法的第二实施例,基于第一实施例,所述步骤S30具体包括:
步骤S31,判断所述第二差值是否不小于第一阈值;
步骤S32,若所述第二差值不小于所述第一阈值,则增大所述喷焓电子膨胀阀11的开度参数,以增加所述喷焓电子膨胀阀11输出的冷媒量,并通过所述喷焓电子膨胀阀11对输出的一路冷媒进行节流降压。
在本实施例中,判断所述第二差值是否不小于第一阈值,如判断10≤TP-T2是否成立。当10≤TP-T2,则当前冷媒量不足,将所述喷焓电子膨胀阀11的开口增大,由此增加所述喷焓电子膨胀阀11输出的冷媒量。
需要说明的是,所述增大所述喷焓电子膨胀阀11的开度参数的步骤具体包括:根据预设时间间隔,控制所述喷焓电子膨胀阀11的开度参数由当前值以固定值增大至最大开度参数。如喷焓电子膨胀阀11由初始开度参数P,之后每30s开大5步,其开度范围60~480。
在一实施例中,所述步骤S31之后,还具体包括:若所述第二差值小于所述第一阈值且不小于所述第二阈值,则控制所述喷焓电子膨胀阀11保持当前开度参数,以维持所述喷焓电子膨胀阀11当前输出的冷媒量,并通过所述喷焓电子膨胀阀11对输出的一路冷媒进行节流降压。
本实施例中,若所述第二差值小于所述第一阈值且不小于所述第二阈值,如5≤TP-T2<10,即当前热交换的冷媒量符合要求,即喷焓电子阀膨胀阀11的开度参数合适。可控制所述喷焓电子膨胀阀11保持当前开度参数,以维持所述喷焓电子膨胀阀11当前输出的冷媒量,即控制喷焓压缩机1以预设频率F运行,并控制 喷焓电子膨胀阀11维持当前开度运行。
在本实施例提供的技术方案中,基于室内管路温度与压缩机的排气温度的差值,控制喷焓电子膨胀阀11的开度参数,由此控制喷焓电子膨胀阀11输出的冷媒量,继而控制节流降压的一路冷媒的冷媒量,从而控制节流降压的一路冷媒与另一路冷媒进行热交换的冷媒量,实现喷焓作用,提升了空调器的制热量,降低了空调器高频运行时的噪音,提升了用户体验。
参照图5,图5为本申请空调器的制热控制方法的第三实施例,基于第一实施例,所述步骤S31之后,还包括:
步骤S33,若所述第二差值小于所述第一阈值,则判断所述第二差值是否小于第二阈值,其中,所述第一阈值大于所述第二阈值;
步骤S34,若所述第二差值小于所述第二阈值,则减小所述喷焓电子膨胀阀11的开度参数,以减小所述喷焓电子膨胀阀11输出的冷媒量,并通过所述喷焓电子膨胀阀11对输出的一路冷媒进行节流降压。
在本实施例中,若所述第二差值小于所述第一阈值,则进一步判断所述第二差值是否小于第二阈值,其中,所述第一阈值大于所述第二阈值。即判断TP-T2<5是否成立,当TP-T2<5,减小所述喷焓电子膨胀阀11的开度参数,以减小所述喷焓电子膨胀阀11输出的冷媒量,如控制喷焓压缩机1以预设频率F运行,喷焓电子膨胀阀11由当前开度每20s关小10度,之后每3min后再检测TP-T2的值。
在一实施例中,所述步骤S10之后,还包括:在所述第一差值不大于所述第一温度阈值且不小于第二温度阈值时,判断所述第二差值是否不小于第一阈值,其中,所述第二温度阈值小于所述第一温度阈值;若所述第二差值不小于所述第一阈值,则控制所述喷焓电子膨胀阀11保持当前开度参数,以维持所述喷焓电子膨胀阀11当前输出的冷媒量,并通过所述喷焓电子膨胀阀11对输出的一路冷媒进行节流降压。若所述第二差值小于所述第一阈值,则在所述第二差值小于所述第二阈值时,减小所述喷焓电子膨胀阀11的开度参数,以减小所述喷焓电子膨胀阀11输出的冷媒量,通过所述喷焓电子膨胀阀11对输出的一路冷媒进行节流降压,其中,所述第一阈值大于所述第二阈值;若所述第二差值小于所述第一阈值且不小于所述第二阈值,则控制所述喷焓电子膨胀阀11保持当前开 度参数,以维持所述喷焓电子膨胀阀11当前输出的冷媒量,并通过所述喷焓电子膨胀阀11对输出的一路冷媒进行节流降压。
在本实施例中,在所述第一差值不大于所述第一温度阈值且不小于第二温度阈值时,如1≤Ts-T1≤4,即室内温度与设定温度差值适中,需要制热量输出适中。进一步判断所述第二差值是否不小于第一阈值,其中,所述第二温度阈值小于所述第一温度阈值,即判断10≤TP-T2是否成立。当10≤TP-T2,控制喷焓压缩机1以预设频率F运行,喷焓电子膨胀阀11维持初始开度参数P初始运行;当5≤TP-T2<10,控制喷焓压缩机1以预设频率F运行,喷焓电子膨胀阀11以初始开度参数P维持运行;当TP-T2<5,控制喷焓压缩机1以预设频率F运行,喷焓电子膨胀阀11关闭,之后每3min后再检测TP-T2的值。
在一实施例中,所述步骤S10之后,还包括:在所述第一差值小于所述第二温度阈值且大于第三温度阈值时,关闭所述喷焓电子膨胀阀11,并减小所述喷焓压缩机1的工作频率。
本实施例中,在所述第一差值小于所述第二温度阈值且大于第三温度阈值时,如-1<Ts-T1<1,即室内温度与设定温度差值相近,基本达到用户设定值,需要制热量输出很小,则喷焓电子膨胀阀11关闭,控制喷焓压缩机1的压缩频率由初始值F降到最低频率F0运行。
本申请还提供一种空调器,所述空调器包括包括分流模块、喷焓电子膨胀阀、存储器、处理器以及存储在所述存储器并可在所述处理器上运行的空调器的制热控制程序,以通过所述分流模块将通过蒸发器的冷媒分成两路,所述空调器的制热控制程序被处理器执行时实现如上实施例所述的空调器的制热控制方法的步骤。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质包括空调器的制热控制程序,所述空调器的制热控制程序被处理器执行时实现如上实施例所述的空调器的制热控制方法的步骤。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅 包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端空调器(可以是手机,计算机,服务器,空调器,或者网络空调器等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内在此处键入本申请的实施方式描述段落。

Claims (10)

  1. 一种空调器的制热控制方法,其中,所述空调器的制热控制方法应用于所述空调器的制热控制系统,所述制热控制系统包括分流模块和喷焓电子膨胀阀,以通过所述分流模块将通过蒸发器的冷媒分成两路,所述空调器的制热控制方法包括:
    获取当前室内温度,并计算所述当前室内温度与预设温度值的第一差值;
    在所述第一差值大于第一温度阈值时,获取所述蒸发器的室内管路温度以及压缩机的排气温度,并计算所述室内管路温度与所述排气温度的第二差值;
    基于所述第二差值,确定所述喷焓电子膨胀阀的开度参数,以控制所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压;及
    通过节流降压的一路冷媒与另一路冷媒进行热交换产生热量,以增大所述空调器的制热量。
  2. 如权利要求1所述的空调器的制热控制方法,其中,所述“基于所述第二差值,确定所述喷焓电子膨胀阀的开度参数,以控制所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压”的步骤包括:
    判断所述第二差值是否不小于第一阈值;及
    若所述第二差值不小于所述第一阈值,则增大所述喷焓电子膨胀阀的开度参数,以增加所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
  3. 如权利要求2所述的空调器的制热控制方法,其中,所述“增大所述喷焓电子膨胀阀的开度参数”的步骤包括:
    根据预设时间间隔,控制所述喷焓电子膨胀阀的开度参数由当前值以固定值增大至最大开度参数。
  4. 如权利要求2所述的空调器的制热控制方法,其中,所述“判断所 述第二差值是否大于第一阈值”的步骤包括:
    若所述第二差值小于所述第一阈值,则判断所述第二差值是否小于第二阈值,其中,所述第一阈值大于所述第二阈值;及
    若所述第二差值小于所述第二阈值,则减小所述喷焓电子膨胀阀的开度参数,以减小所述喷焓电子膨胀阀输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
  5. 如权利要求4所述的空调器的制热控制方法,其中,在所述“若所述第二差值小于所述第一阈值,则判断所述第二差值是否小于第二阈值”的步骤之后,所述方法还包括:
    若所述第二差值小于所述第一阈值且不小于所述第二阈值,则控制所述喷焓电子膨胀阀保持当前开度参数,以维持所述喷焓电子膨胀阀当前输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
  6. 如权利要求1所述的空调器的制热控制方法,其中,在所述“获取当前室内温度,并计算所述当前室内温度与预设温度值的第一差值”的步骤之后,所述方法还包括:
    在所述第一差值不大于所述第一温度阈值且不小于第二温度阈值时,判断所述第二差值是否不小于第一阈值,其中,所述第二温度阈值小于所述第一温度阈值;及
    若所述第二差值不小于所述第一阈值,则控制所述喷焓电子膨胀阀保持当前开度参数,以维持所述喷焓电子膨胀阀当前输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
  7. 如权利要求6所述的空调器的制热控制方法,其中,在所述“在所述第一差值不大于所述第一温度阈值且不小于第二温度阈值时,判断所述第二差值是否不小于第一阈值,其中,所述第二温度阈值小于所述第一温度阈值”的步骤之后,所述方法还包括:
    若所述第二差值小于所述第一阈值,则在所述第二差值小于所述 第二阈值时,减小所述喷焓电子膨胀阀的开度参数,以减小所述喷焓电子膨胀阀输出的冷媒量,通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压,其中,所述第一阈值大于所述第二阈值;及
    若所述第二差值小于所述第一阈值且不小于所述第二阈值,则控制所述喷焓电子膨胀阀保持当前开度参数,以维持所述喷焓电子膨胀阀当前输出的冷媒量,并通过所述喷焓电子膨胀阀对输出的一路冷媒进行节流降压。
  8. 如权利要求1-7任一项所述的空调器的制热控制方法,其中,在所述“获取当前室内温度,并计算所述当前室内温度与预设温度值的第一差值”的步骤之后,所述方法还包括:
    在所述第一差值小于所述第二温度阈值且大于第三温度阈值时,关闭所述喷焓电子膨胀阀,并减小所述压缩机的工作频率。
  9. 一种空调器,其中,所述空调器包括包括分流模块、喷焓电子膨胀阀、存储器、处理器以及存储在所述存储器并可在所述处理器上运行的空调器的制热控制程序,以通过所述分流模块将通过蒸发器的冷媒分成两路,所述空调器的制热控制程序被处理器执行时实现如权利要求1-8任一项所述的空调器的制热控制方法。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质包括空调器的制热控制程序,所述空调器的制热控制程序被处理器执行时实现如权利要求1-8任一项所述的空调器的制热控制方法。
PCT/CN2020/088767 2019-12-09 2020-05-06 空调器、空调器的制热控制方法和存储介质 WO2021114557A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/749,351 US20220275964A1 (en) 2019-12-09 2022-05-20 Air conditioner, heating control method of air conditioner and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911262568.XA CN110925975B (zh) 2019-12-09 2019-12-09 空调器、空调器的制热控制方法和存储介质
CN201911262568.X 2019-12-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/749,351 Continuation US20220275964A1 (en) 2019-12-09 2022-05-20 Air conditioner, heating control method of air conditioner and computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2021114557A1 true WO2021114557A1 (zh) 2021-06-17

Family

ID=69859882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088767 WO2021114557A1 (zh) 2019-12-09 2020-05-06 空调器、空调器的制热控制方法和存储介质

Country Status (3)

Country Link
US (1) US20220275964A1 (zh)
CN (1) CN110925975B (zh)
WO (1) WO2021114557A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110925975B (zh) * 2019-12-09 2021-07-16 广东美的制冷设备有限公司 空调器、空调器的制热控制方法和存储介质
CN111623477B (zh) * 2020-06-03 2022-06-10 Tcl空调器(中山)有限公司 空调器及其空调控制方法、控制装置和可读存储介质
CN112033040B (zh) * 2020-09-15 2022-08-30 广东美的暖通设备有限公司 空调系统的控制方法和计算机可读存储介质
CN113531867B (zh) * 2021-08-11 2022-05-03 美的集团武汉暖通设备有限公司 空调设备、空调控制方法和装置、空调器和可读存储介质
CN113834177B (zh) * 2021-09-09 2022-11-25 宁波奥克斯电气股份有限公司 冷媒冷却控制方法、控制装置及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928138A (zh) * 2016-04-25 2016-09-07 广东美的制冷设备有限公司 空调器及其控制方法
CN106931546A (zh) * 2017-03-27 2017-07-07 广东美的制冷设备有限公司 一种热泵喷焓系统及其控制方法、空调器
JP2018204898A (ja) * 2017-06-07 2018-12-27 三菱重工サーマルシステムズ株式会社 マルチ型空気調和機の制御装置、マルチ型空気調和機、マルチ型空気調和機の制御方法及びマルチ型空気調和機の制御プログラム
CN109237748A (zh) * 2018-09-28 2019-01-18 宁波奥克斯电气股份有限公司 一种喷液控制方法、装置及空调器
CN109373533A (zh) * 2018-10-22 2019-02-22 广东美的暖通设备有限公司 调节方法、调节装置、多联机系统和计算机可读存储介质
CN110925975A (zh) * 2019-12-09 2020-03-27 广东美的制冷设备有限公司 空调器、空调器的制热控制方法和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101585943B1 (ko) * 2010-02-08 2016-01-18 삼성전자 주식회사 공기조화기 및 그 제어방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928138A (zh) * 2016-04-25 2016-09-07 广东美的制冷设备有限公司 空调器及其控制方法
CN106931546A (zh) * 2017-03-27 2017-07-07 广东美的制冷设备有限公司 一种热泵喷焓系统及其控制方法、空调器
JP2018204898A (ja) * 2017-06-07 2018-12-27 三菱重工サーマルシステムズ株式会社 マルチ型空気調和機の制御装置、マルチ型空気調和機、マルチ型空気調和機の制御方法及びマルチ型空気調和機の制御プログラム
CN109237748A (zh) * 2018-09-28 2019-01-18 宁波奥克斯电气股份有限公司 一种喷液控制方法、装置及空调器
CN109373533A (zh) * 2018-10-22 2019-02-22 广东美的暖通设备有限公司 调节方法、调节装置、多联机系统和计算机可读存储介质
CN110925975A (zh) * 2019-12-09 2020-03-27 广东美的制冷设备有限公司 空调器、空调器的制热控制方法和存储介质

Also Published As

Publication number Publication date
US20220275964A1 (en) 2022-09-01
CN110925975A (zh) 2020-03-27
CN110925975B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2021114557A1 (zh) 空调器、空调器的制热控制方法和存储介质
CN107120793B (zh) 变频空调及其变频模块散热器防凝露控制方法
CN107763889B (zh) 一种多联机空调系统及其控制方法
CN110906500B (zh) 一种空调器的制冷控制方法、装置及空调器
WO2021120497A1 (zh) 空调器、空调器的制冷控制方法和存储介质
CN109099610B (zh) 补气增焓的制冷系统、空调器及空调器控制方法
CN107062720B (zh) 一种空调机组控制方法及空调机组
EP3598013A1 (en) Method for controlling multi-split air conditioner, multi-split air conditioner system, and computer-readable storage medium
CN107255309B (zh) 空调系统、控制方法及计算机可读存储介质
CN104457072A (zh) 电子膨胀阀控制方法、装置及制冷/制热系统
EP3467390B1 (en) Multi-split system and method for controlling heating throttling element thereof
CN106996657B (zh) 空气调节器
CN110553440B (zh) 多联机系统、防液击控制方法、装置及可读存储介质
WO2021073035A1 (zh) 空调器及其控制方法、可读存储介质
CN211552102U (zh) 一种多联式空调系统
WO2023202156A1 (zh) 空调器、空调器控制方法、电子设备及存储介质
CN111043723A (zh) 一种空调器及其控制方法
CN113757936B (zh) 空调控制系统、空调器及空调器的控制方法
CN110579040A (zh) 冷媒循环系统及其控制方法、装置、设备、空调
CN111256205B (zh) 一种空调散热控制系统、方法及空调设备
US20230167999A1 (en) Air conditioner, control method and computer-readable storage medium
CN114322243B (zh) 空调器及其控制方法和计算机可读存储介质
WO2023005240A1 (zh) 空调器控制方法、装置、空调器及存储介质
WO2024040915A1 (zh) 空调器
CN113091200B (zh) 空调及其控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20898941

Country of ref document: EP

Kind code of ref document: A1