WO2023273266A1 - 石墨烯基复合电极材料的制备方法及其应用 - Google Patents

石墨烯基复合电极材料的制备方法及其应用 Download PDF

Info

Publication number
WO2023273266A1
WO2023273266A1 PCT/CN2021/142962 CN2021142962W WO2023273266A1 WO 2023273266 A1 WO2023273266 A1 WO 2023273266A1 CN 2021142962 W CN2021142962 W CN 2021142962W WO 2023273266 A1 WO2023273266 A1 WO 2023273266A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
preparation
based composite
sio
composite material
Prior art date
Application number
PCT/CN2021/142962
Other languages
English (en)
French (fr)
Inventor
张振华
李长东
范霞
毛林林
阮丁山
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to HU2200333A priority Critical patent/HUP2200333A1/hu
Publication of WO2023273266A1 publication Critical patent/WO2023273266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and in particular relates to a preparation method and application of a graphene-based composite electrode material.
  • the commercial negative electrode materials are mainly graphite carbon-based carbon materials.
  • graphite is a common negative electrode for commercial lithium-ion batteries.
  • SEI membrane solid electrolyte membrane
  • Sn (993mAh g -1 ) and SnO 2 (1494mAh g -1 ) suffer from drastic volume changes during charge and discharge, leading to electrode damage and rapid capacity fading.
  • these high-capacity materials are compounded with carbon, but the cycle stability and electrical conductivity of such composite materials still need to be further improved.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a preparation method and application of a graphene-based composite electrode material.
  • the reduced graphene oxide is obtained by grinding graphene oxide and sintering it under an inert atmosphere. Further, the sintering temperature is 700-900° C., and the sintering time is 5-8 hours. At high temperature, the oxygen-containing functional groups in graphene oxide will be transformed into carbon monoxide or carbon dioxide gas to escape, thereby obtaining reduced graphene oxide.
  • the nitrogen-doped graphene is prepared by mixing and grinding graphene oxide and a nitrogen source, and sintering in an inert atmosphere. Further, the mass ratio of graphene oxide to nitrogen source is 1:(4-7); the sintering time is 700-900°C, and the sintering time is 1-3h.
  • the nitrogen source is selected from one or more of melamine, aniline, ammonia water or ammonium salt; preferably, the nitrogen source is melamine.
  • the hydrogen in melamine reacts with the oxygen in the oxygen-containing functional groups of graphene oxide to generate water, and N is introduced into graphene to obtain nitrogen-doped graphene.
  • the particle size D50 of the SiO 2 is 25-35 nm, and too large SiO 2 particles may easily lead to uneven distribution.
  • step S1 the size of the graphene is 1-5 ⁇ m.
  • step S1 the mass ratio of graphene to SiO 2 is (5-10):1.
  • the solvent is N-methylpyrrolidone.
  • step S1 the process of the dispersion treatment is as follows: pre-dispersion by stirring first, and then ultrasonic dispersion.
  • step S1 the stirring speed is 100rpm-300rpm, and the stirring time is 2-6h.
  • step S1 the power of the ultrasound is 100-500W, and the time of ultrasound is 1-4h.
  • step S1 the drying temperature is 70-90° C., and the drying time is 10-24 hours.
  • step S2 the mass ratio of the divalent tin salt to the organic solvent is (2-4):1.
  • the organic solvent is selected from one or more of ethylene glycol, methanol, ethanol, isopropanol or tetrahydrofuran; preferably, the organic solvent is ethylene diol alcohol.
  • the divalent tin salt is one or more of SnCl 2 ⁇ 2H 2 O, SnCl 2 , and SnSO 4 .
  • the divalent tin salt is SnCl 2 ⁇ 2H 2 O.
  • SnCl 2 reacts with water to form SnO 2 .
  • step S2 the mass ratio of Sn to SiO 2 /graphene-based composite material in the divalent tin salt is (2-5):(5-8).
  • step S2 the process of the dispersion treatment is: first perform stirring pre-dispersion, and then ultrasonically disperse; preferably, the stirring time is 1-2h; the ultrasonic power is 200-400W, Ultrasonic time is 2-4h.
  • the reducing agent is selected from one of NaBH 4 , hydrazine hydrate, sodium hydride, lithium aluminum hydride, ascorbic acid or hydroiodic acid.
  • the reducing agent is NaBH 4 .
  • SnCl 2 ⁇ 2H 2 O will be reduced to Sn, and the metal chloride itself can be used as a catalyst to further improve the reducing ability of the reducing agent, and finally a graphene-based composite material doped with SiO 2 , Sn and SnO 2 is obtained.
  • the dispersion treatment is ultrasonic dispersion
  • the power of ultrasonic is 200-400W
  • the time of ultrasonic is 2-4h.
  • step S3 the drying temperature is 60-80°C, and the drying time is 18-24h
  • the invention also proposes the application of the graphene-based composite electrode material prepared by the preparation method in the preparation of lithium-ion batteries.
  • the present invention first adds SiO to graphene oxide, reduced graphene oxide or nitrogen- doped graphene for ultrasonic dispersion, and the larger specific surface area provided by graphene helps SiO to be more uniformly loaded on the graphene. surface, to obtain SiO 2 /graphene-based composite materials; and then add it to an organic solvent containing divalent tin salt for ultrasonic dispersion. At this time, while dispersing graphene, divalent tin salt can also be better dispersed, and graphite Finally, add a reducing agent for ultrasonic dispersion.
  • the reducing agent can reduce graphene oxide, and at the same time, it can also react with divalent tin salt and organic solvent to form Sn simple substance, and obtain a doped graphene-based composite material.
  • These doping substances have a very high theoretical specific capacity, which can significantly improve the capacity performance of the composite material.
  • the doped substance is evenly dispersed on the graphene with a large specific surface area by ultrasound, which helps the material to form a stable and uniform SEI film during battery cycling, thereby improving cycle stability.
  • graphene can effectively inhibit the volume expansion of metal substances effect.
  • the synthesis method of the present invention is simple and easy to operate, and the cost is relatively low.
  • Fig. 1 is the transmission electron microscope figure of embodiment 2 composite material
  • Fig. 2 is the electronic selected area diffractogram of embodiment 2 composite material
  • Fig. 3 is the high-resolution transmission electron microscope figure of embodiment 2 composite material
  • Fig. 4 is an elemental distribution diagram of the composite material of Example 2.
  • a silicon/tin-doped graphene-based composite electrode material is prepared, and the specific process is as follows:
  • NaBH 4 can reduce graphene oxide on the one hand, and can also react with SnCl 2 2H 2 O and ethylene glycol to form Sn simple substance, while SnCl 2 will react with water to form SnO 2 , in which the metal chloride itself It can be used as a catalyst to further improve the reducing ability of NaBH 4 , and the reaction equation is as follows.
  • a silicon/tin-doped graphene-based composite electrode material is prepared, and the specific process is as follows:
  • SiO2 and reduced graphene oxide are mixed in a certain container at a mass ratio of 1:9, N-methylpyrrolidone is poured into the mixture as a solvent, and magnetic stirring is carried out at a speed of 300 rpm. After stirring for 2 hours, the The container is placed in a nanomaterial disperser, ultrasonicated for 2 hours, and the ultrasonic power is 300W. The ultrasonicated slurry is washed with deionized water several times, and placed in a drying oven at 80°C for 20 hours to obtain a SiO 2 /graphene-based composite material. ;
  • Fig. 1 is the transmission electron microscope figure of embodiment 2 composite materials, as can be seen that the nanoparticles of metal and its oxides are uniformly dispersed on the graphene film, and the large specific surface area of reduced graphene oxide provides a larger available space. Facilitates uniform distribution of nanoparticles.
  • Figure 2 is the selected area diffraction pattern of the composite material of Example 2. It can be seen that Sn and SnO 2 exist, but no diffraction pattern of SiO 2 is observed because SiO 2 exists in the form of an amorphous phase.
  • Figure 3 is a high-resolution transmission electron microscope image of the composite material of Example 2. It can be seen that the lattice fringes and corresponding crystal planes of Sn and SnO2 prove once again that the metal is successfully doped, and it also shows that SiO2 exists in an amorphous state .
  • Fig. 4 is an element distribution diagram of the composite material of Example 2, from which it can be seen that Sn and Si are uniformly distributed on the surface of graphene, while O originates from SnO 2 and SiO 2 .
  • a silicon/tin-doped graphene-based composite electrode material is prepared, and the specific process is as follows:
  • ( 2 ) SiO and nitrogen-doped graphene are mixed in a certain container according to the mass ratio of 1:9, and N-methylpyrrolidone is poured into the mixture as a solvent, and magnetic stirring is carried out at a speed of 300rpm. After stirring for 2h, the The container is placed in a nanomaterial disperser, ultrasonicated for 2 hours, and the ultrasonic power is 300W. The ultrasonicated slurry is washed with deionized water several times, and dried in a drying oven at 80°C for 20 hours to obtain a SiO 2 /nitrogen-doped graphene composite.
  • Material
  • artificial graphite is used as the negative electrode material.
  • This comparative example has prepared a kind of graphite composite material doped with silicon and tin, and the difference with embodiment 1 is that raw material adopts graphite, and concrete process is:
  • This test example tests the performance of the negative electrode materials prepared in Examples 1-3 and Comparative Examples 1-2.
  • the materials prepared in Examples 1-3 and Comparative Examples 1-2 were used as negative electrode materials respectively, and were prepared into batteries, and the electrochemical performance was tested, as follows: Sodium alginate, super P conductive agent and negative electrode material were mixed in 80:15: The ratio of 5 was dissolved in deionized water to make a slurry, and then coated on copper foil. The pole piece was dried in a drying oven at 80°C for 18 hours, and finally the battery was assembled in a glove box filled with argon atmosphere.
  • the electrolyte is made of LiPF 6 dissolved in ethylene carbonate and diethyl carbonate with a volume ratio of 1:1, and lithium metal foil is used as the counter electrode and reference electrode.
  • the cycle performance was tested by an electrochemical workstation with a current density of 300mA g -1 and a voltage range of 0.01-3V. The test results are shown in Table 1.
  • the Coulombic efficiency, specific capacity and cycle stability of the prepared graphene-based composite material doped with Sn and Si are all higher than Comparative Examples 1 and 2, especially the electrochemical performance of Example 2 is obviously comparatively excellent, This is because the graphene in Example 2 is reduced graphene oxide, which has a larger specific surface area, which contributes to the uniform dispersion of the metal and the coating of SiO 2 to obtain better electrochemical performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种石墨烯基复合电极材料的制备方法及其应用,该制备方法先向石墨烯中加入SiO 2进行超声分散,得到SiO 2/石墨烯基复合材料,再加入到含二价锡盐的有机溶剂中进行超声分散,最后加入还原剂进行超声分散,还原剂一方面可以还原氧化石墨烯,同时也可以与二价锡盐、有机溶剂共同反应生成Sn单质,获得硅/锡掺杂的石墨烯基复合材料,这些掺杂物质具有十分高的理论比容量,可以显著提升复合材料的容量性能。掺杂的物质通过超声均匀分散在具有大比表面积的石墨烯上,帮助材料在电池循环过程中形成稳定均一的SEI膜,从而提升循环稳定性,同时,石墨烯可以有效抑制金属物质的体积膨胀效应。

Description

石墨烯基复合电极材料的制备方法及其应用 技术领域
本发明属于锂离子电池技术领域,具体涉及一种石墨烯基复合电极材料的制备方法及其应用。
背景技术
随着电动汽车这个新兴市场的出现,对锂离子电池(LIB)产生了巨大的需求,目前商用的负极材料以石墨碳素类的碳材料为主,石墨虽然作为现在商业锂离子电池常用负极,但是因为其较低的比容量(372mAh g -1),严重的安全问题和SEI膜(固体电解质膜)的形成限制了它的进一步发展。因此,多种替代性的高理论比容量的负极材料被提出,如SiO 2(1965mAh g -1)、Sn(993mAh g -1)和SnO 2(1494mAh g -1)等。然而这些材料在充放电过程中会有剧烈的体积变化,导致电极损坏和快速的容量衰减。为减缓该问题,会将这些高容量材料与碳进行复合,然而这种复合材料的循环稳定性以及导电性能仍有待进一步提高。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种石墨烯基复合电极材料的制备方法及其应用。
根据本发明的一个方面,提出了一种石墨烯基复合电极材料的制备方法,包括以下步骤:
S1:将石墨烯与SiO 2混合,加入溶剂进行分散处理,所得浆料烘干,得到SiO 2/石墨烯基复合材料;所述石墨烯选自氧化石墨烯、还原氧化石墨烯或掺氮石墨烯中的至少一种;
S2:将所述SiO 2/石墨烯基复合材料加入到含有二价锡盐的有机溶剂中,再进行分散处理,得到混悬液;
S3:向所述混悬液中加入还原剂,进行分散处理,所得产物烘干,得到石墨烯基复 合电极材料。
在本发明的一些实施方式中,所述还原氧化石墨烯是将氧化石墨烯进行研磨,在惰性气氛下烧结制得。进一步地,所述烧结的温度为700-900℃,烧结的时间为5-8h。高温下氧化石墨烯中的含氧官能团会转变为一氧化碳或二氧化碳气体逸出,从而获得还原氧化石墨烯。
在本发明的一些实施方式中,所述掺氮石墨烯是将氧化石墨烯与氮源混合研磨,在惰性气氛下烧结制得。进一步地,氧化石墨烯与氮源的质量比为1:(4-7);烧结的时间为700-900℃,烧结的时间为1-3h。
在本发明的一些实施方式中,所述氮源选自三聚氰胺、苯胺、氨水或铵盐中的一种或几种;优选地,所述氮源为三聚氰胺。三聚氰胺中的氢与氧化石墨烯的含氧官能团中的氧反应生成水脱出,同时N则会引入到石墨烯中获得掺氮石墨烯。
在本发明的一些实施方式中,步骤S1中,所述SiO 2的粒径D50为25-35nm,过大的SiO 2颗粒容易导致分布不均。
在本发明的一些实施方式中,步骤S1中,所述石墨烯的尺寸为1-5μm。
在本发明的一些实施方式中,步骤S1中,所述石墨烯与SiO 2的质量比为(5-10):1。
在本发明的一些实施方式中,步骤S1中,所述溶剂为N-甲基吡咯烷酮。
在本发明的一些实施方式中,步骤S1中,所述分散处理的过程为:先进行搅拌预分散,再超声分散。
在本发明的一些优选的实施方式中,步骤S1中,所述搅拌的转速为100rpm-300rpm,搅拌的时间为2-6h。
在本发明的一些优选的实施方式中,步骤S1中,所述超声的功率为100-500W,超声的时间为1-4h。
在本发明的一些实施方式中,步骤S1中,所述干燥的温度为70-90℃,干燥的时间为10-24h。
在本发明的一些实施方式中,步骤S2中,所述二价锡盐与有机溶剂的质量比为(2-4):1。
在本发明的一些实施方式中,步骤S2中,所述有机溶剂选自乙二醇、甲醇、乙醇、异丙醇或四氢呋喃中的一种或几种;优选地,所述有机溶剂为乙二醇。
在本发明的一些实施方式中,步骤S2中,所述二价锡盐为SnCl 2·2H 2O、SnCl 2、SnSO 4中的一种或几种。
在本发明的一些优选的实施方式中,步骤S2中,所述二价锡盐为SnCl 2·2H 2O。SnCl 2会与水反应生成SnO 2
在本发明的一些实施方式中,步骤S2中,二价锡盐中Sn与SiO 2/石墨烯基复合材料的质量比为(2-5):(5-8)。
在本发明的一些实施方式中,步骤S2中,所述分散处理的过程为:先进行搅拌预分散,再超声分散;优选地,搅拌的时间为1-2h;超声的功率为200-400W,超声的时间为2-4h。
在本发明的一些实施方式中,步骤S3中,所述还原剂选自NaBH 4、水合肼、氢化钠、氢化铝锂、抗坏血酸或氢碘酸中的一种。优选地,所述还原剂为NaBH 4。SnCl 2·2H 2O会被还原为Sn单质,而金属氯化物本身也可以作为催化剂进一步提高还原剂的还原能力,最终获得SiO 2、Sn和SnO 2掺杂的石墨烯基复合材料。
在本发明的一些实施方式中,步骤S3中,所述分散处理为超声分散,超声的功率为200-400W,超声的时间为2-4h。
在本发明的一些实施方式中,步骤S3中,所述干燥的温度为60-80℃,干燥的时间为18-24h
本发明还提出所述的制备方法制得的石墨烯基复合电极材料在制备锂离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明先向氧化石墨烯、还原氧化石墨烯或掺氮石墨烯中加入SiO 2进行超声分 散,石墨烯提供的较大的比表面积,有助于SiO 2较为均匀的负载在石墨烯的表面,得到SiO 2/石墨烯基复合材料;再加入到含二价锡盐的有机溶剂中进行超声分散,此时分散石墨烯的同时,也可以将二价锡盐较好的分散,和石墨烯包裹在一起;最后加入还原剂进行超声分散,还原剂一方面可以还原氧化石墨烯,同时也可以与二价锡盐、有机溶剂共同反应生成Sn单质,获得掺杂的石墨烯基复合材料,这些掺杂物质具有十分高的理论比容量,可以显著提升复合材料的容量性能。掺杂的物质通过超声均匀分散在具有大比表面积的石墨烯上,帮助材料在电池循环过程中形成稳定均一的SEI膜,从而提升循环稳定性,同时,石墨烯可以有效抑制金属物质的体积膨胀效应。
2、本发明合成方法简单易操作,且成本较低。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为实施例2复合材料的透射电镜图;
图2为实施例2复合材料的电子选区衍射图;
图3为实施例2复合材料的高分辨透射电镜图;
图4为实施例2复合材料的元素分布图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种硅/锡掺杂的石墨烯基复合电极材料,具体过程为:
(1)将SiO 2和氧化石墨烯按质量比1:9混合放入一定容器中,向混合物中倒入N-甲基吡咯烷酮作为溶剂,进行磁力搅拌,转速为300rpm,搅拌2h后,将容器置于纳米材料分散器中,超声2h,超声功率为300W,将超声后的浆料用去离子水多次水洗, 放入干燥箱中80℃干燥20h,获得SiO 2/氧化石墨烯复合材料,其中,SiO 2的粒径D50约为30nm,石墨烯的尺寸为1-5μm,物料来源于阿拉丁或国药试剂;
(2)将乙二醇倒入容器中,添加2倍的SnCl 2·2H 2O,通入氮气,磁力搅拌2h后,添加SiO 2/氧化石墨烯复合材料,SnCl 2·2H 2O中Sn与SiO 2/石墨烯基复合材料之间的质量比为4:6,溶液搅拌2h后,置于纳米分散器中300W的功率下超声2h,获得混合溶液;
(3)向混合溶液中滴入NaBH 4溶液后,置于纳米分散器中200W的功率下超声3h,超声后浆料用无水乙醇多次清洗,最终置于干燥箱中80℃干燥18h,获得SiO 2、Sn和SnO 2掺杂的石墨烯基复合材料。NaBH 4作为还原剂一方面可以还原氧化石墨烯,同时也可以与SnCl 2·2H 2O、乙二醇共同反应生成Sn单质,而SnCl 2则会与水反应生成SnO 2,其中金属氯化物本身可以作为催化剂可进一步提高NaBH 4的还原能力,反应方程式如下。
SnCl 2·2H 2O+NaBH 4+2C 2H 6O 2→Na(BC 4H 8O 4)+2HCl+3H 2+2H 2O+Sn
SnCl 2+2H 2O→SnO 2+Cl 2+2H 2
实施例2
本实施例制备了一种硅/锡掺杂的石墨烯基复合电极材料,具体过程为:
(1)称取氧化石墨烯,用研钵进行研磨,将粉末放入坩埚中,再放于管式炉中,氮气或氩气气氛下800℃烧结6h,获得还原氧化石墨烯;
(2)将SiO 2和还原氧化石墨烯按质量比1:9混合放入一定容器中,向混合物中倒入N-甲基吡咯烷酮作为溶剂,进行磁力搅拌,转速为300rpm,搅拌2h后,将容器置于纳米材料分散器中,超声2h,超声功率为300W,将超声后的浆料用去离子水多次水洗,放入干燥箱中80℃干燥20h,获得SiO 2/石墨烯基复合材料;
(3)将乙二醇倒入容器中,添加2倍的SnCl 2·2H 2O,通入氮气,磁力搅拌2h后,添加SiO 2/石墨烯基复合材料,SnCl 2·2H 2O中Sn与SiO 2/石墨烯基复合材料之间的质量配比在4:6,溶液搅拌2h后,置于纳米分散器中300W的功率下超声2h,获得混合溶液;
(4)向混合溶液中滴入NaBH 4溶液后,置于纳米分散器中200W的功率下超声3h,超声后浆料用无水乙醇多次清洗,最终置于干燥箱中80℃干燥18h,获得SiO 2、Sn和SnO 2掺杂的石墨烯基复合材料。
图1为实施例2复合材料的透射电镜图,可以看出金属及其氧化物的纳米颗粒均匀的分散在石墨烯薄膜上,还原氧化石墨烯大的比表面积提供了较大的可利用空间有助于纳米颗粒的均匀分布。
图2为实施例2复合材料的电子选区衍射图,可以看出Sn和SnO 2的存在,而没有观察到SiO 2的衍射图案是由于SiO 2以无定形相的形式存在。
图3为实施例2复合材料的高分辨透射电镜图,可以看出Sn和SnO 2的晶格条纹及相应的晶面,再一次证明金属成功掺杂,同时也说明SiO 2以非晶态存在。
图4为实施例2复合材料的元素分布图,从图中可以看出Sn和Si均匀的分布在石墨烯的表面,而O则来源于SnO 2和SiO 2
实施例3
本实施例制备了一种硅/锡掺杂的石墨烯基复合电极材料,具体过程为:
(1)称取氧化石墨烯与三聚氰胺以质量比1:5混合研磨,放入管式炉中氮气或氩气气氛下800℃烧结3h,获得掺氮石墨烯;
(2)将SiO 2和掺氮石墨烯按质量比1:9混合放入一定容器中,向混合物中倒入N-甲基吡咯烷酮作为溶剂,进行磁力搅拌,转速为300rpm,搅拌2h后,将容器置于纳米材料分散器中,超声2h,超声功率为300W,将超声后的浆料用去离子水多次水洗,放入干燥箱中80℃干燥20h,获得SiO 2/掺氮石墨烯复合材料;
(3)将乙二醇倒入容器中,添加2倍的SnCl 2·2H 2O,通入氮气,磁力搅拌2h后,添加SiO 2/掺氮石墨烯复合材料,SnCl 2·2H 2O中Sn与SiO 2/石墨烯基复合材料之间的质量比为4:6,溶液搅拌2h后,置于纳米分散器中300W的功率下超声2h,获得混合溶液;
(4)向混合溶液中滴入NaBH 4溶液后,置于纳米分散器中200W的功率下超声3h, 超声后浆料用无水乙醇多次清洗,最终置于干燥箱中80℃干燥18h,获得SiO 2、Sn和SnO 2掺杂的石墨烯基复合材料。
对比例1
本对比例以人造石墨作为负极材料。
对比例2
本对比例制备了一种硅和锡掺杂的石墨复合材料,与实施例1的区别在于原料采用石墨,具体过程为:
(1)将SiO 2和人造石墨按质量比1:9混合放入一定容器中,向混合物中倒入N-甲基吡咯烷酮,进行磁力搅拌,转速为300rpm,搅拌2h后,将容器置于纳米材料分散器中,超声2h,超声功率为300W,将超声后的浆料用去离子水多次水洗过滤后,放入干燥箱中80℃干燥20h,获得SiO 2/石墨复合材料;
(2)将乙二醇倒入烧杯,添加2倍的SnCl 2·2H 2O,烧杯中通入氮气,磁力搅拌2h后,添加SiO 2/石墨复合材料,Sn与SiO 2/石墨复合材料之间的质量配比在4:6,溶液搅拌2h后,置于纳米分散器中300W的功率下超声2h,获得混合溶液。
(3)向混合溶液中滴入NaBH 4溶液后,置于纳米分散器中200W的功率下超声3h,用无水乙醇多次清洗,最终置于干燥箱中80℃干燥18h,获得硅和锡掺杂的石墨复合材料。
试验例
本试验例测试了实施例1-3和对比例1-2制备的负极材料的性能。分别将实施例1-3和对比例1-2制备的材料作为负极材料,制备成电池,并测试电化学性能,具体如下:将海藻酸钠、super P导电剂和负极材料以80:15:5的配比溶于去离子水中配成浆料,然后涂覆在铜箔上,极片放于干燥箱中在80℃下干燥18h,最后在充满氩气气氛的手套箱中组装电池,所用电解液为LiPF 6溶于体积比为1:1的碳酸亚乙酯和碳酸二乙酯制成,锂金属箔作为对电极和参比电极。循环性能用电化学工作站进行测试,测试的电流密度为300mA g -1,电压范围为0.01-3V。测试结果如表1所示。
表1
Figure PCTCN2021142962-appb-000001
由表1可见,所制备的掺杂Sn和Si的石墨烯基复合材料的库伦效率、比容量和循环稳定性都高于对比例1和2,尤其实施例2的电化学性能明显较为优异,这是由于实施例2的石墨烯为还原氧化石墨烯,具有较大的比表面积,有助于金属的均一分散和SiO 2的包覆,从而获得更好的电化学性能。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种石墨烯基复合电极材料的制备方法,其特征在于,包括以下步骤:
    S1:将石墨烯与SiO 2混合,加入溶剂进行分散处理,所得浆料烘干,得到SiO 2/石墨烯基复合材料;所述石墨烯选自氧化石墨烯、还原氧化石墨烯或掺氮石墨烯中的至少一种;
    S2:将所述SiO 2/石墨烯基复合材料加入到含有二价锡盐的有机溶剂中,再进行分散处理,得到混悬液;
    S3:向所述混悬液中加入还原剂,进行分散处理,所得产物烘干,得到石墨烯基复合电极材料。
  2. 根据权利要求1所述的制备方法,其特征在于,所述还原氧化石墨烯是将氧化石墨烯进行研磨,在惰性气氛下烧结制得。
  3. 根据权利要求1所述的制备方法,其特征在于,所述掺氮石墨烯是将氧化石墨烯与氮源混合研磨,在惰性气氛下烧结制得。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述石墨烯与SiO 2的质量比为(5-10):1。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述分散处理的过程为:先进行搅拌预分散,再超声分散;所述超声的功率为100-500W,超声的时间为1-4h。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述二价锡盐与有机溶剂的质量比为(2-4):1。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述有机溶剂选自乙二醇、甲醇、乙醇、异丙醇或四氢呋喃中的一种或几种。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,二价锡盐中Sn与SiO 2/石墨烯基复合材料的质量比为(2-5):(5-8)。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述还原剂选自NaBH 4、水合肼、氢化钠、氢化铝锂、抗坏血酸或氢碘酸中的一种。
  10. 权利要求1-9任一项所述的制备方法制得的石墨烯基复合电极材料在制备锂离子电池中的应用。
PCT/CN2021/142962 2021-06-30 2021-12-30 石墨烯基复合电极材料的制备方法及其应用 WO2023273266A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HU2200333A HUP2200333A1 (hu) 2021-06-30 2021-12-30 Grafén-alapú kompozit elektróda anyag elõállítási eljárása és alkalmazása

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110739417.X 2021-06-30
CN202110739417.XA CN113540430A (zh) 2021-06-30 2021-06-30 石墨烯基复合电极材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2023273266A1 true WO2023273266A1 (zh) 2023-01-05

Family

ID=78126363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142962 WO2023273266A1 (zh) 2021-06-30 2021-12-30 石墨烯基复合电极材料的制备方法及其应用

Country Status (3)

Country Link
CN (1) CN113540430A (zh)
HU (1) HUP2200333A1 (zh)
WO (1) WO2023273266A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117626048A (zh) * 2023-12-29 2024-03-01 池州通泰金属材料有限公司 一种耐高温型金属复合材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540430A (zh) * 2021-06-30 2021-10-22 广东邦普循环科技有限公司 石墨烯基复合电极材料的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237870A1 (de) * 2002-08-19 2004-03-04 Gaia Akkumulatorenwerke Gmbh Batterieelektroden mit vergrösserter Oberfläche und Verfahren zu ihrer Herstellung
CN102347143A (zh) * 2011-07-11 2012-02-08 中国科学院上海硅酸盐研究所 一种石墨烯复合多孔对电极、制备方法及其应用
CN104577086A (zh) * 2014-12-17 2015-04-29 李震祺 一种预锂化和石墨烯包覆的介孔SiO负极材料及其制备方法
CN111564321A (zh) * 2020-05-27 2020-08-21 新昌县易纵新材料科技有限公司 一种锡氧化物-改性g-C3N4的超级电容器电极材料及其制法
CN113540430A (zh) * 2021-06-30 2021-10-22 广东邦普循环科技有限公司 石墨烯基复合电极材料的制备方法及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728777B2 (en) * 2013-07-26 2017-08-08 Nanoteck Instruments, Inc. Methods for mass-producing silicon nano powder and graphene-doped silicon nano powder
WO2018038957A1 (en) * 2016-08-22 2018-03-01 Enermat Technolgies, Inc. Graphene oxide-based electrodes for secondary batteries
CN107394135B (zh) * 2017-06-26 2020-04-10 中航锂电(洛阳)有限公司 一种石墨烯基复合负极材料及其制备方法
CN108493421B (zh) * 2018-04-08 2020-07-28 深圳新恒业电池科技有限公司 一种锂离子电池用锡-硅基石墨烯球负极材料的制备方法
CN109273675B (zh) * 2018-08-03 2020-10-23 深圳市山木新能源科技股份有限公司 一种石墨烯复合材料及其制备方法及锂离子电池负极
CN109378451A (zh) * 2018-09-20 2019-02-22 合肥国轩高科动力能源有限公司 一种石墨烯复合二氧化锡纤维材料及其制备方法和应用
CN110931746B (zh) * 2019-12-03 2022-04-26 东南大学 一种硅-锡-石墨烯复合物电极材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237870A1 (de) * 2002-08-19 2004-03-04 Gaia Akkumulatorenwerke Gmbh Batterieelektroden mit vergrösserter Oberfläche und Verfahren zu ihrer Herstellung
CN102347143A (zh) * 2011-07-11 2012-02-08 中国科学院上海硅酸盐研究所 一种石墨烯复合多孔对电极、制备方法及其应用
CN104577086A (zh) * 2014-12-17 2015-04-29 李震祺 一种预锂化和石墨烯包覆的介孔SiO负极材料及其制备方法
CN111564321A (zh) * 2020-05-27 2020-08-21 新昌县易纵新材料科技有限公司 一种锡氧化物-改性g-C3N4的超级电容器电极材料及其制法
CN113540430A (zh) * 2021-06-30 2021-10-22 广东邦普循环科技有限公司 石墨烯基复合电极材料的制备方法及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117626048A (zh) * 2023-12-29 2024-03-01 池州通泰金属材料有限公司 一种耐高温型金属复合材料

Also Published As

Publication number Publication date
HUP2200333A1 (hu) 2023-04-28
CN113540430A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
Zheng et al. Fabrication and understanding of Cu 3 Si-Si@ carbon@ graphene nanocomposites as high-performance anodes for lithium-ion batteries
CN111180691B (zh) 双层碳包覆的硅基复合材料及其制备方法和应用
Tai et al. N-doped ZIF-8-derived carbon (NC-ZIF) as an anodic material for lithium-ion batteries
Li et al. Improved rate capability of a LiNi 1/3 Co 1/3 Mn 1/3 O 2/CNT/graphene hybrid material for Li-ion batteries
Xia et al. Improving the electrochemical properties of SiO@ C anode for high-energy lithium ion battery by adding graphite through fluidization thermal chemical vapor deposition method
WO2023273266A1 (zh) 石墨烯基复合电极材料的制备方法及其应用
Cai et al. High-pseudocapacitance of porous and square NiO@ NC nanosheets for high-performance lithium-ion batteries
Lu et al. Yolk-shell Si/SiO x@ Void@ C composites as anode materials for lithium-ion batteries
Deng et al. High-performance SiMn/C composite anodes with integrating inactive Mn4Si7 alloy for lithium-ion batteries
Chen et al. Construction of 3D porous graphene aerogel wrapped silicon composite as anode materials for high-efficient lithium-ion storage
Cheng et al. Core-shell structured Si@ Ni nanoparticles encapsulated in graphene nanosheet for lithium ion battery anodes with enhanced reversible capacity and cyclic performance
Gou et al. Agitation drying synthesis of porous carbon supported Li 3 VO 4 as advanced anode material for lithium-ion batteries
Tan et al. High performance sodium ion anodes based on Sn4P3 encapsulated within amphiphilic graphene tubes
Xiao et al. Decahedron Cu1. 8Se/C nano-composites derived from metal–organic framework Cu–BTC as anode materials for high performance lithium-ion batteries
Xie et al. Ultrafine hollow Fe3O4 anode material modified with reduced graphene oxides for high-power lithium-ion batteries
Xie et al. FeS/ZnS nanoflower composites as high performance anode materials for sodium ion batteries
CN112467097A (zh) 一种负极材料及其制备方法、电极、二次电池
Fan et al. Hydrothermal-template synthesis and electrochemical properties of Co 3 O 4/nitrogen-doped hemisphere-porous graphene composites with 3D heterogeneous structure
Hao et al. Facile fabrication of Fe3O4 octahedra with bimodal conductive network of nanoporous Cu and graphene nanosheets for high-performance anode in Li-ion batteries
CN113540428A (zh) 一种3DOM类石墨烯碳担载的单分散NiO纳米晶材料、制备及应用
Niu et al. High-rate lithium storage of TiNb2O7/reduced graphene oxide
Zhou et al. Metallurgy of aluminum-inspired formation of aluminosilicate-coated nanosilicon for lithium-ion battery anode
CN114242961B (zh) 一种石墨烯/硅的氧化物包覆纳米硅复合材料及制备方法与应用
WO2022042266A1 (zh) 硅氧复合负极材料、其制备方法及锂离子电池
Sun et al. In situ growth of core-shell structure of tremella fuciformis shaped SnS@ Sulfur doped carbon composite as anode materials for high performance lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948188

Country of ref document: EP

Kind code of ref document: A1