WO2023272569A1 - 一种用于制作降解膜的生物塑料及制备方法 - Google Patents

一种用于制作降解膜的生物塑料及制备方法 Download PDF

Info

Publication number
WO2023272569A1
WO2023272569A1 PCT/CN2021/103465 CN2021103465W WO2023272569A1 WO 2023272569 A1 WO2023272569 A1 WO 2023272569A1 CN 2021103465 W CN2021103465 W CN 2021103465W WO 2023272569 A1 WO2023272569 A1 WO 2023272569A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbat
film
bioplastic
degradable
making
Prior art date
Application number
PCT/CN2021/103465
Other languages
English (en)
French (fr)
Inventor
罗洋德
潘小阳
Original Assignee
浙江中邦塑胶股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江中邦塑胶股份有限公司 filed Critical 浙江中邦塑胶股份有限公司
Publication of WO2023272569A1 publication Critical patent/WO2023272569A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the invention belongs to the field of functional plastics, in particular to the technical field of application of biodegradable plastics, in particular to a bioplastic for making a degradable film and a preparation method thereof.
  • Plastic products have become a necessity in production, life and industry, especially the immediate use of plastic packaging bags for shopping and packaging. This kind of plastic film products are different from durable plastic products.
  • Various shopping bags and packaging bags of plastic film products will be discarded after use, which is difficult to recycle. Since plastic film products are difficult to decompose naturally after use, they become white pollution and become a factor affecting the environment. At present, plastic bags are basically landfilled together with garbage, which is likely to cause lasting pollution. In order to effectively solve the pollution caused by plastics to the environment, biodegradable plastics have begun to be widely used.
  • Bio-based degradable plastics include polylactic acid (PLA), polyhydroxyalkanoate polymers (PHAs), whole starch-based, cellulose, etc.; petrochemical-based bioplastics include polybutylene succinate (PBS), polyethylene glycol Diacid-butylene terephthalate (PBAT), carbon dioxide copolymer (PPC), polycaprolactone (PCL), etc.
  • PBS polybutylene succinate
  • PBAT polyethylene glycol Diacid-butylene terephthalate
  • PCL polycaprolactone
  • the bioplastics that can be produced and supplied on a large scale are mainly polylactic acid (PLA) and polybutylene adipate-terephthalate (PBAT). Moreover, these two bioplastics still have problems such as high cost, poor processing stability, and poor performance of the obtained plastic products. Compared with the existing traditional plastics (PE, PP), there is a big gap, which has also become an obstacle affecting the promotion and use of bioplastics.
  • PLA polylactic acid
  • PBAT polybutylene adipate-terephthalate
  • the biodegradable film is formed by melt blowing of bioplastics through screw extrusion, so bioplastics are required to have good melt strength, film forming property and suitable softness. Film products are also the most demanding raw materials among all plastic products.
  • PLA polylactic acid
  • PBAT polybutylene adipate-terephthalate
  • Polylactic acid is polymerized from fermented lactic acid, separated from traditional petroleum raw materials, and has good biocompatibility, high strength and modulus, but it is hard and tough, and lacks flexibility and elasticity. , It is difficult to prepare a film, and it is mainly used for injection molding products at present.
  • Polybutylene adipate-terephthalate is based on 1,4-butanediol (BDO), adipic acid (AA), terephthalic acid (PTA) or terephthalic diol Ester (DMT) is used as a raw material, which is prepared by direct esterification or transesterification. It has good ductility and elongation at break. Because it contains flexible fatty chain segments, it ensures that the molecular chain has good flexibility. It is a synthetic Good material for film processing.
  • polybutylene adipate-terephthalate (PBAT) has become the mainstream raw material for degradable membranes.
  • the film products processed by pure PBAT resin on the market have no use value. The main reason is that the pure PBAT resin is too soft, poor in rigidity, and poor in blown film stability when the film is blown. The product has poor opening, is soft, has a poor user experience, and is expensive.
  • PBAT poly(butylene adipate-terephthalate)
  • PVA rigid polylactic acid
  • Chinese invention patent CN109825048A discloses a PLA/PBAT composite material and its preparation method.
  • EGMA ethylene glycol
  • Hydrogen bonds are formed between OMMT and PLA or PBAT, which act as physical cross-linking points, thereby improving the strength of the material.
  • the finished product has both the high strength of PLA and the toughness of PBAT, and can be used for agricultural films and packaging products.
  • Chinese invention patent CN110105727A discloses a fully biodegradable film material for crops in irrigation areas and its preparation method and application.
  • the raw materials are polybutylene terephthalate adipate, polyethylene furandicarboxylate, fat Zinc carboxylate compounds, compatibilizers, fillers, antioxidants and ultraviolet absorbers, using PEF (polyethylene furandicarboxylate) with strong rigidity to increase the rigidity of PBAT under the action of compatibilizers Modification improves the rigidity of PBAT and improves the balance of rigidity and toughness of PBAT.
  • Chinese invention patent CN111647183A discloses a preparation method of inorganic micropowder/PBAT fully degradable composite film, by adding inorganic filler calcium carbonate, silicon micropowder, talcum powder, mica powder, gypsum powder, montmorillonite powder, hydromica powder, etc. to PBAT Inorganic micropowder is used to prepare degradable film, which improves the stiffness of the film, which is beneficial to PBAT blown film bag making.
  • Chinese invention patent CN 103013065 B discloses a composite material for polybutylene succinate degradable film and a preparation method thereof, in which polybutylene succinate, polybutylene adipate-terephthalate Glycol esters, fillers, and lubricants are extruded and granulated, and the fillers are micron-sized calcium carbonate or corn starch, which not only reduces the cost, but also improves the rigidity of the film and makes the preparation stable.
  • Blending modified PBAT is the simplest and most effective way to reduce costs and improve the processing performance of PBAT.
  • polylactic acid when polylactic acid is used for the hardening modification of PBAT, the compatibility between polylactic acid and PBAT is poor, and more compatibilizers need to be added, and the amount of polylactic acid should not be too high. If the amount of polylactic acid is too high, it will seriously Affect compatibility and cause difficulty in blow molding into film. Moreover, the cost of polylactic acid is high, and the increase in usage will further increase the cost.
  • Inorganic fillers and starch are used to modify PBAT, which has obvious advantages in reducing the cost of PBAT and moderately increasing the rigidity of the film.
  • inorganic fillers are used to improve PBAT, which has played a good role in reducing costs and improving the rigidity of the film.
  • the amount of inorganic fillers added is low. If the inorganic fillers are further improved The added amount will accelerate the reduction of the film strength, and even affect the stability of the blown film, and the blown film is prone to holes.
  • the present invention proposes a bioplastic for making a degradable film, and further provides a preparation method of the bioplastic.
  • 1,4-butanediol, adipic acid, and terephthalic acid are weighed according to a molar ratio of 8:2.2:1.8 for later use as premixed material A;
  • step (2) Add the premixed material A obtained in step (1) into the reactor, add the catalyst and stir evenly; then add porous inorganic fillers with a particle size of less than 5 ⁇ m and stir at a low speed, turn on the vacuum pump, and stabilize the vacuum pressure gauge at -0.08MPa for 10- After 15 minutes, turn off the vacuum pump, react in the reactor at 160-180°C for 120-150 minutes; raise the temperature to 240°C, adjust the temperature and reaction pressure to 20-50Pa, polycondensate for 80-100 minutes, and discharge to obtain material B;
  • step (3) cooling the material B obtained in step (2), pulverizing, grinding and dispersing with epoxy resin and dispersant in a grinder to obtain material C;
  • step (3) 40-50 parts of material C obtained by step (3), 50-70 parts of polyadipate-butylene terephthalate, and 1-2 parts of lubricant are dropped into a high-speed mixer according to parts by weight, and the temperature Control it at 80-100°C, disperse at 400-700rpm for 10-15min; then transport it to a twin-screw extruder, extrude at 130-150°C, air-cool the strands, and cut into pellets to obtain a product for degradation Membranes of bioplastics.
  • the catalyst in step (2) is selected from one of tetrabutyl titanate and stannous chloride; the amount of the catalyst is 1-1.5% of the mass of the material A.
  • the mixing mass ratio of the mixed material A and the porous inorganic filler in step (2) is 1:3-5.
  • the porous inorganic filler in step (2) is selected from at least one of zeolite powder, diatomaceous earth and hollow glass microspheres. Further preferably, the porous inorganic filler is selected from hollow glass microspheres; hollow glass microspheres are excellent in filling compatibility for PBAT except for voids and surface loading PBAT as a filler, and have low density, which has an obvious effect on reducing the density of PBAT; especially Hollow glass microspheres have a ball effect, reduce the use of lubricants, and can dissipate heat in time to prevent excessive thermal shear degradation of PBAT, and the prepared degraded film has a smooth surface with few defects.
  • the material A is adsorbed in the micropores for polycondensation, so that poly(butylene adipate-terephthalate) is formed in the pores and on the surface of the porous inorganic fillers.
  • This modification makes the inorganic When the filler is added to polybutylene adipate-terephthalate, the interfacial compatibility is greatly improved, and there is no need to add a compatibilizer.
  • step (2) The basic process adopted in step (2) is esterification and polycondensation to prepare PBAT, the purpose of which is to form a PBAT interface in the micropores and surfaces of the porous inorganic filler, so that it can be conveniently filled in PBAT in the later stage without compatibilization treatment.
  • the material B, epoxy resin, and dispersant described in step (3) are ground and dispersed according to a mass ratio of 100:2-2.5:1-1.5; the epoxy resin is epoxy resin E51, epoxy resin E44 A kind of; The dispersant is polyethylene wax.
  • the porous inorganic filler can further carry epoxy groups.
  • the epoxy groups are easy to extend the chain with the carboxyl groups of PBAT. , thereby aiding in increasing strength and preventing thermal degradation during blow molding.
  • the grinding in step (3) adopts conventional grinding, preferably ball milling, so that material B, epoxy resin, and dispersant can be evenly dispersed; prevent excessive grinding from causing the polyadipic acid-terephthalic acid-terephthalic acid to which porous inorganic fillers are attached.
  • Butylene glycol diformate is degraded, preferably by ball milling for 10-15 minutes.
  • the poly(butylene adipate-terephthalate) described in step (4) selects film-grade PBAT whose melt index is 5-7g/10min (190°C, pressure 2.16kg); One of paraffin, stearic acid, and glyceryl monostearate.
  • Another technical solution of the present invention is to provide a bioplastic prepared by the above method for making a degradable film.
  • the present invention selects porous inorganic materials. ) is adsorbed in the micropores of porous inorganic fillers for polycondensation, so that polyadipate-butylene terephthalate (PBAT) is formed in the voids and surfaces of porous inorganic fillers.
  • PBAT polyadipate-butylene terephthalate
  • modification treatment of the present invention enables the inorganic filler to have a good PBAT interface, and this interface is stable and will not fall off due to grinding, shearing, etc.
  • the significant advantage is that it is added to The interfacial compatibility of polybutylene adipate-terephthalate is greatly improved without adding compatibilizer, so that more fillers can be added in polybutylene adipate-terephthalate It will not affect the strength and processing stability, and it is not easy to have holes in the blown film; the more excellent effect is to grind with epoxy resin, so that the porous inorganic filler can further carry the epoxy group, and it is used in polyethylene
  • PBAT diacid-butylene terephthalate
  • the epoxy group is easy to chain-extend with the carboxyl group of PBAT, thereby helping to improve strength and prevent thermal degradation during blow molding.
  • a kind of biological plastics and preparation method for making degradable film of the present invention, compared with prior art, positive effect is manifested in:
  • the present invention utilizes a porous inorganic material to polycondense the precursor liquid raw material (material A) of PBAT in the micropores of the porous inorganic filler, thereby forming a PBAT interface in the voids and on the surface of the porous inorganic filler, so that the inorganic filler is A relatively high amount is added to PBAT to prepare bioplastics, which has low cost, no significant decrease in strength, and stable blown film production.
  • the present invention makes porous inorganic fillers carry epoxy groups.
  • the epoxy groups are easy to extend the chain with the carboxyl groups of PBAT, thereby assisting in improving the strength and prevent thermal degradation in blow molding processes.
  • the preparation process of the present invention is easy to control, the raw materials are easy to obtain, and is suitable for stable large-scale production.
  • the prepared bioplastic can be directly used for blow molding to make degradable films, and is suitable for various packaging bags.
  • Fig. 1 is the effect diagram of the bioplastic blown film obtained by the scheme of Example 1.
  • Fig. 2 is the effect diagram of the bioplastic blown film obtained by the scheme of Comparative Example 1.
  • 1,4-butanediol, adipic acid, and terephthalic acid are weighed according to a molar ratio of 8:2.2:1.8 for later use as premixed material A;
  • step (3) Cool the material B obtained in step (2), crush it, weigh 5kg, weigh 510.1kg of epoxy resin E, 0.05kg of polyethylene wax and add it to a ball mill, and use zirconia balls as the grinding medium for ball milling for 10min, and grind and disperse to obtain Material C;
  • the material C5kg obtained in step (3), the film-grade PBAT 7kg of 5g/10min, and 0.1kg of glyceryl monostearate are put into a high-speed mixer, and the temperature is controlled at 100°C, at 400rpm rotating speed Disperse for 15 minutes; then transport to parallel co-rotating twin-screw extruder for extrusion and granulation.
  • 1,4-butanediol, adipic acid, and terephthalic acid are weighed according to a molar ratio of 8:2.2:1.8 for later use as premixed material A;
  • step (2) 2kg of the premixed material A obtained in step (1) is weighed and added to the reactor, and the catalyst tetrabutyl titanate 30g is weighed and stirred; Start the stirring paddle of the reactor, stir at a low speed of 40rpm, turn on the vacuum pump, stabilize the vacuum pressure gauge at -0.08MPa for 15 minutes, turn off the vacuum pump, maintain the stirring at a low speed of 40rpm, and react the reactor at 165°C for 150min; the temperature rises to 240°C, adjust The temperature reaction pressure is 40Pa, the polycondensation is 80min, and the material is discharged to obtain the material B;
  • step (3) Cool the material B obtained in step (2), crush it, weigh 5kg, weigh 440.125kg of epoxy resin, 0.075kg of polyethylene wax and add it to a ball mill, and use zirconia balls as grinding media for ball milling for 10min, and grind and disperse to obtain Material C;
  • step (3) obtains material C 4kg according to weight portion, melt index is 5g/10min drop into high-speed mixer, temperature is controlled at 100 °C, disperses 15min at 700rpm rotating speed; Then Convey to the parallel co-rotating twin-screw extruder for extrusion and granulation.
  • 1,4-butanediol, adipic acid, and terephthalic acid are weighed according to a molar ratio of 8:2.2:1.8 for later use as premixed material A;
  • step (2) Take by weighing 2kg of the premixed material A obtained in step (1) and add to the reactor, take by weighing 30 g of catalyst tetrabutyl titanate and stir evenly; then add 6 kg of hollow glass microspheres with particle diameter less than 5 ⁇ m and porosity greater than 35%, Start the stirring paddle of the reactor, stir at a low speed of 40rpm, turn on the vacuum pump, stabilize the vacuum pressure gauge at -0.08MPa for 10 minutes, turn off the vacuum pump, maintain the stirring at a low speed of 40rpm, and react at 170°C for 120min in the reactor; the temperature rises to 240°C, adjust The temperature reaction pressure is 50Pa, the polycondensation is 100min, and the material is discharged to obtain the material B;
  • step (3) Cool the material B obtained in step (2), crush it, weigh 5kg, weigh 40.1kg of epoxy resin E, 0.075kg of polyethylene wax and add it to a ball mill, use zirconia balls as the grinding medium for ball milling for 12min, and grind and disperse to obtain Material C;
  • step (3) 5kg of material C obtained in step (3), 7kg of film grade PBAT with a melting index of 5g/10min, and 0.1kg of stearic acid are put into a high-speed mixer according to parts by weight, and the temperature is controlled at 80° C., and dispersed at 400rpm for 15 minutes ; Then convey to the parallel co-rotating twin-screw extruder for extruding and granulating.
  • 1,4-butanediol, adipic acid, and terephthalic acid are weighed according to the molar ratio of 8:2.2:1.8 for later use, as premixed material A;
  • step (2) Take by weighing 2kg of the premixed material A obtained in step (1) and add to the reactor, take by weighing 20 g of catalyst tetrabutyl titanate and stir evenly; then add 6 kg of calcium carbonate with a particle diameter less than 5 ⁇ m, start the reactor stirring paddle, Stir at a low speed of 40rpm, turn on the vacuum pump, stabilize the vacuum pressure gauge at -0.08MPa for 15 minutes, turn off the vacuum pump, maintain a low speed of 40rpm, and react at 180°C for 150min; the temperature rises to 240°C, adjust the temperature and reaction pressure to 50Pa, polycondensation 80min, discharge, obtain material B;
  • step (3) Cool the material B obtained in step (2), crush it, weigh 5kg, weigh 510.1kg of epoxy resin E, 0.05kg of polyethylene wax and add it to a ball mill, and use zirconia balls as the grinding medium for ball milling for 10min, and grind and disperse to obtain Material C;
  • 1,4-butanediol, adipic acid, and terephthalic acid are weighed according to the molar ratio of 8: 2.2: 1.8 for later use, as premixed material A;
  • step (2) Weigh 2 kg of the premixed material A obtained in step (1) and add it to the reactor, take 20 g of catalyst tetrabutyl titanate and stir evenly; Reactor stirring paddle, stirring at a low speed of 40rpm, turn on the vacuum pump, stabilize the vacuum pressure gauge at -0.08MPa for 15min, turn off the vacuum pump, maintain a low speed stirring of 40rpm, and react at 180°C for 150min in the reactor; the temperature rises to 240°C, adjust the temperature Reaction pressure is 50Pa, polycondensation 80min, discharge, obtain material B;
  • step (3) Cool the material B obtained in step (2), pulverize it, weigh 5 kg, weigh 0.05 kg of polyethylene wax and add it to a ball mill, use zirconia balls as the grinding medium for ball milling for 10 minutes, and grind and disperse to obtain material C;
  • Embodiment 13 obtain bioplastics blown film stable, smooth surface, without broken film broken membrane; As shown in Figure 1, be that embodiment 1 bioplastics blown film blown film is stable, and film surface is even.
  • the film surface of the bioplastic in Comparative Example 1 was rough as shown in Figure 2 when the film was blown; the film surface of the bioplastic in Comparative Example 3 was rough when the film was blown, easy to break holes, and could not be blown continuously.
  • Pure PBAT is extremely unstable, but it can form a film very well.
  • the bioplastic obtained by the technology of the present invention still maintains good processing stability when the filler content is greater than 30%, and the strength loss of the film is small, which meets the strength requirement as a packaging bag product.
  • non-porous conventional inorganic filler calcium carbonate was used to replace porous zeolite powder in the implementation process. Since calcium carbonate has no empty pores, PBAT does not have the ability to polycondense in the pores of the inorganic filler, but only polycondenses on the surface, resulting in an interface The modified calcium carbonate interface effect is poor, and the binding force between the PBAT interface and the calcium carbonate surface interface is weak, so it will affect the compatibility of filling in PBAT, and the film surface of the bioplastic prepared under high filling amount is rough when the film is blown. , resulting in low film strength.
  • Comparative Example 2 material B was not treated with epoxy resin during the implementation process, and when the filler was filled in PBAT, it could not extend the carboxyl group chain of PBAT very well, so the strength of the blown film was slightly poor.
  • the zeolite powder was not subjected to pre-adsorption and polycondensation PBAT treatment during the application process, but the traditional coupling treatment was adopted. Since PBAT did not have the ability to polycondense in the pores of the zeolite powder, the obtained interfacial coupling modified interface effect Poor, the binding force between the PBAT interface and the interface of the zeolite powder surface is weak, so it will affect the compatibility of filling in PBAT. When the bioplastics prepared at high filling amount are blown film, the film surface is rough, easy to break holes, and cannot Blown film; resulting film has lower strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

一种用于制作降解膜的生物塑料及制备方法,技术方案为:通过将PBAT的前驱液状原料吸附在多孔无机填料的微孔中进行酯化、缩聚,从而使多孔无机填料的空隙内以及表面形成PBAT界面,同时使多孔无机填料携带环氧基,使得无机填料以较高量添加在PBAT制备得到生物塑料,得到的生物塑料成本低,可以直接用于吹塑制作降解膜,强度不出现明显下降、吹塑制膜稳定,适合用于各类包装袋。

Description

一种用于制作降解膜的生物塑料及制备方法 技术领域
本发明属于功能塑料领域,特别涉及生物降解塑料应用技术领域,具体涉及一种用于制作降解膜的生物塑料及制备方法。
背景技术
塑料制品目前已成为生产、生活、工业中的必需品,尤其是即时性的用于购物、包装的塑料包装袋使用量极大。这类塑料膜制品不同于耐久性的塑料制品,塑料膜制品的各种购物袋、包装袋使用完就会丢弃,很难回收。由于塑料膜制品使用后难以自然分解,变为白色污染,成为影响环境的因素。目前塑料袋基本都是与垃圾一同填埋,容易造成持久的污染。为了有效地解决塑料对环境造成的污染,生物降解塑料开始被大规模推广使用。
由于技术开发投入加大,目前生物降解塑料的种类较多,根据原料来源可将其分为生物基和石化基两类。生物基可降解塑料有聚乳酸(PLA)、聚羟基脂肪酸酯类聚合物(PHAs)、全淀粉基、纤维素等;石化基生物塑料有聚丁二酸丁二醇酯(PBS)、聚己二酸-对苯二甲酸丁二醇酯(PBAT)、二氧化碳共聚物(PPC)、聚己内酯(PCL)等。
然而,受技术成熟度、原料稳定供应等影响,目前能够规模化生产供应的生物塑料主要是聚乳酸(PLA)、聚己二酸-对苯二甲酸丁二醇酯(PBAT)。而且这两种生物塑料仍然存在成本高、加工稳定性差、得到的塑料制品使用性能较差等问题。与现有传统塑料(PE、PP)相比存在较大的差距,也成了影响生物塑料推广使用的障碍。
降解膜是由生物塑料通过螺杆挤出熔融吹胀形成,因此要求生物塑料具有良好的熔体强度、成膜性、合适的柔软度。膜制品也是所有塑料制品中对原料要求最高的。而现有生物塑料聚乳酸(PLA)、聚己二酸-对苯二甲酸丁二醇酯(PBAT)的成膜加工性还存在较多的问题。
聚乳酸(PLA)是由发酵乳酸聚合而成,脱离了传统的石油原料,且具有良 好的生物相容性、较高的强度和模量,但是其质硬而韧性较差,缺乏柔性和弹性,很难制备成膜,目前主要用于注塑制品。
聚己二酸-对苯二甲酸丁二醇酯(PBAT)是以1,4-丁二醇(BDO)、己二酸(AA)、对苯二甲酸(PTA)或对苯二甲酸二醇酯(DMT)为原料,通过直接酯化或酯交换法而制得,有较好的延展性和断裂伸长率,由于含有柔性的脂肪链段,保证了分子链具有良好的柔性,是成膜加工的良好材料。目前,聚己二酸-对苯二甲酸丁二醇酯(PBAT)已成为降解膜的主流原料。然而目前市场上纯的PBAT树脂所加工成的薄膜制品不具有使用价值,其主要原因是纯PBAT树脂吹塑加工薄膜时由于薄膜过软,刚性差,吹膜稳定性差,加工成的薄膜包装袋制品开口性较差,发软,使用体验感较差,而且成本高。
为了解决聚己二酸-对苯二甲酸丁二醇酯(PBAT)制备的膜过软的问题和成本高的问题,目前已有针对性的改进。如将PBAT与具有刚性的聚乳酸(PLA)等共混来改善PBAT膜过软的问题;添加无机填料、淀粉等改善PBAT膜过软的问题。
中国发明专利CN109825048A公开了一种PLA/PBAT复合材料及其制备方法。通过使用EGMA改善了两相界面粘合较差的问题,形成了PLA-EGMA-PBAT连续相,OMMT与PLA或PBAT之间形成氢键,起到物理交联点的作用,进而提升材料强度,制成产品兼具PLA的高强度和PBAT的强韧性,可以用于农业薄膜、包装产品。
中国发明专利CN110105727A公开了一种灌溉区农作物用全生物降解地膜材料及其制备方法和应用,原料采用了聚对苯二甲酸己二酸丁二醇酯,聚呋喃二甲酸乙二醇酯,脂肪族羧酸锌类化合物,增容剂,填料,抗氧剂和紫外线吸收剂,利用刚性较强的PEF(聚呋喃二甲酸乙二醇酯)在增容剂的作用下,对PBAT进行增刚改性,提升了PBAT的刚性,改善了PBAT的刚韧平衡性。
中国发明专利CN111647183A公开了一种无机微粉/PBAT全降解复合薄膜的制备方法,通过在PBAT中加入无机填料碳酸钙、硅微粉、滑石粉、云母粉、石 膏粉、蒙脱石粉、水云母粉等无机微粉制备降解膜,提高了薄膜的硬挺度,这些有利于PBAT吹膜制袋。
中国发明专利CN 103013065 B公开了一种聚丁二酸丁二醇酯可降解薄膜用复合材料及其制备方法,直接将聚丁二酸丁二醇酯、聚己二酸-对苯二甲酸丁二醇酯、填料、润滑剂挤出造粒,填料为微米级碳酸钙或玉米淀粉,不但成本降低,而且薄膜的刚性有所改善,制备稳定。
共混改性PBAT是最简单有效地降低成本,提升PBAT加工性能的方法。但是将聚乳酸用于PBAT的增硬改性时,聚乳酸与PBAT相容性较差,需要加入较多的相容剂,而且聚乳酸使用量不能太高,聚乳酸使用量过高会严重影响相容性,造成吹塑成膜困难。而且聚乳酸成本高,使用量增加会进一步增加成本。无机填料和淀粉等用于改性PBAT,降低PBAT成本优势明显,并适度增加薄膜的刚性,也是目前市场上降低PBAT成本,提升薄膜刚性的有效手段。但是无机填料与PBAT的相容性更差,如果不能很好地解决相容性问题,在PBAT的添加量有限。根据目前市场的反馈,无机填料用于改性PBAT的添加量在15%以内,一旦添加量增加,会导致薄膜强度降低,失去使用价值。
因此,如何解决在无机填料高含量时保持与PBAT良好的相容性和稳定的强度,这对推进PBAT的使用非常有必要。
发明内容
目前无机填料用于改进PBAT,对降低成本、提升薄膜的刚性起到了较好的作用,但由于无机填料与PBAT的相容性较差,使得无机填料添加量较低,如果进一步提升无机填料的添加量,会使得薄膜强度加速降低,甚至会影响吹塑成膜的稳定性,吹膜极易出现破洞现象。
鉴于上述技术问题,本发明提出一种用于制作降解膜的生物塑料,进一步提供所述生物塑料的制备方法。
本发明的技术方案之一是通过如下技术措施实现:一种用于制作降解膜的 生物塑料,其特征在于,具体制备方法如下:
(1)将1,4-丁二醇、己二酸、对苯二甲酸按照摩尔比8∶2.2∶1.8称量备用,作为预混的物料A;
(2)将步骤(1)得到的预混物料A加入反应釜,加入催化剂搅拌均匀;然后加入粒径小于5μm的多孔无机填料低速搅拌,开启真空泵,稳定真空压力表在-0.08MPa处理10-15min,关闭真空泵,反应釜在160-180℃反应120-150min;温度升至240℃,调整温度反应压力为20-50Pa,缩聚80-100min,放料,得到物料B;
(3)将步骤(2)得到的物料B冷却,粉碎,与环氧树脂、分散剂在研磨机中研磨分散得到物料C;
(4)按照重量份将步骤(3)得到的物料C 40-50份、聚己二酸-对苯二甲酸丁二醇酯50-70份、润滑剂1-2份投入高速混合机,温度控制在80-100℃,在400-700rpm转速分散10-15min;然后输送至双螺杆挤出机中,在130-150℃挤出,风冷拉条,切粒,得到一种用于制作降解膜的生物塑料。
本发明中,步骤(2)所述催化剂选用钛酸四丁酯、氯化亚锡中的一种;催化剂用量为物料A质量的1-1.5%。
本发明中,步骤(2)所述混物料A、多孔无机填料的配合质量比例为1∶3-5。
本发明中,步骤(2)所述多孔无机填料选用沸石粉、硅藻土、空心玻璃微球中的至少一种。进一步优选的,所述多孔无机填料选用空心玻璃微球;空心玻璃微珠除了空隙和表面负载PBAT作为填料用于PBAT的填充相容性优异,而且密度低,对降低PBAT密度效果明显;特别是空心玻璃微珠具有滚珠效应,减少润滑剂使用,能够及时散热防止PBAT过度热剪切降解,制备的降解膜表面光滑缺陷少。
通过选用多孔无机填料,使物料A被吸附在微孔中进行缩聚,从而使多孔无 机填料的空隙内以及表面形成聚己二酸-对苯二甲酸丁二醇酯,这一改性处理使得无机填料在添加于聚己二酸-对苯二甲酸丁二醇酯时界面相容性大幅提升,无需加入相容剂。
步骤(2)中采用的基本工艺为酯化、缩聚制备PBAT,其目的是为了在多孔无机填料的微孔和表面形成PBAT界面,以便能在后期方便的填充在PBAT中无需相容处理。
本发明中,步骤(3)所述物料B、环氧树脂、分散剂按照质量比100∶2-2.5∶1-1.5研磨分散;所述环氧树脂为环氧树脂E51、环氧树脂E44中的一种;所述分散剂为聚乙烯蜡。通过物料B与环氧树脂研磨,使多孔无机填料进一步携带环氧基,在用于聚己二酸-对苯二甲酸丁二醇酯(PBAT)时,环氧基易于和PBAT的羧基扩链,从而辅助提升强度和防止吹塑加工中的热降解。
本发明中,步骤(3)所述研磨采用常规研磨,优选球磨,使物料B、环氧树脂、分散剂均匀分散开即可;防止过度研磨造成多孔无机填料附着的聚己二酸-对苯二甲酸丁二醇酯降解,优选球磨10-15min即可。
本发明中,步骤(4)所述聚己二酸-对苯二甲酸丁二醇酯选用熔指为5-7g/10min(190℃、压力2.16kg)的薄膜级PBAT;所述润滑剂选用石蜡、硬脂酸、单硬脂酸甘油酯中的一种。
本发明的又一技术方案是提供由上述方法制备得到的一种用于制作降解膜的生物塑料。为了使无机填料用于PBAT相容性良好,减少对强度的影响,保证在无机填料高填充时能够稳定吹膜不破洞,本发明选用了多孔无机材料,通过将PBAT的前驱液状原料(物料A)吸附在多孔无机填料的微孔中进行缩聚,从而使多孔无机填料的空隙内以及表面形成聚己二酸-对苯二甲酸丁二醇酯(PBAT),此类改性处理不同于普通的偶联改性和界面相容改性,本发明的改性处理使得无机填料具有良好的PBAT界面,且这一界面稳定,不会因研磨、剪切等脱落,显著的优势是将其添加于聚己二酸-对苯二甲酸丁二醇酯时界面相容性大幅提升,无需加入相容剂,从而可以在聚己二酸-对苯二甲酸丁二醇酯中 加入较多的填料而不会对强度、加工稳定性产生影响,在吹塑制膜是不容易出现破洞;更为优异的效果是与环氧树脂研磨,使多孔无机填料进一步携带环氧基,在用于聚己二酸-对苯二甲酸丁二醇酯(PBAT)时,环氧基易于和PBAT的羧基扩链,从而辅助提升强度和防止吹塑加工中的热降解。
本发明一种用于制作降解膜的生物塑料及制备方法,相比于现有技术,积极的效果表现在:
1、本发明利用多孔无机材料,通过将PBAT的前驱液状原料(物料A)吸附在多孔无机填料的微孔中进行缩聚,从而使多孔无机填料的空隙内以及表面形成PBAT界面,使得无机填料以较高量添加在PBAT制备生物塑料,成本低、强度不出现明显下降、吹塑制膜稳定。
2、本发明通过使多孔无机填料携带环氧基,在用于聚己二酸-对苯二甲酸丁二醇酯(PBAT)时,环氧基易于和PBAT的羧基扩链,从而辅助提升强度和防止吹塑加工中的热降解。
3、本发明制备工艺易控,原料易得,适合于稳定规模化生产,制备得到的生物塑料可以直接用于吹塑制作降解膜,适合用于各类包装袋。
附图说明
以下结合附图对本发明的技术方案进一步说明:
图1是实施例1方案得到的生物塑料吹膜效果图。
图2是对比例1方案得到的生物塑料吹膜效果图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明的技术思路,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
实施例1
(1)将1,4-丁二醇、己二酸、对苯二甲酸按照摩尔比8∶2.2∶1.8称量备用,作为预混的物料A;
(2)称取步骤(1)得到的预混物料A 2kg加入反应釜,称取催化剂钛酸四丁酯20g搅拌均匀;然后加入粒径小于5μm、孔隙率>50%的沸石粉6kg,启动反应釜搅拌桨,以40rpm的低速搅拌,开启真空泵,稳定真空压力表在-0.08MPa处理15min,关闭真空泵,维持40rpm的低速搅拌,反应釜在180℃反应150min;温度升至240℃,调整温度反应压力为50Pa,缩聚80min,放料,得到物料B;
(3)将步骤(2)得到的物料B冷却,粉碎,称取5kg,称取环氧树脂E510.1kg、聚乙烯蜡0.05kg加入球磨机,以氧化锆球为研磨介质球磨10min,研磨分散得到物料C;
(4)按照重量份将步骤(3)得到的物料C5kg、熔指为5g/10min的薄膜级PBAT 7kg、单硬脂酸甘油酯0.1kg投入高速混合机,温度控制在100℃,在400rpm转速分散15min;然后输送至平行同向双螺杆挤出机挤出造粒,挤出的温度由进料口到出料口的控温工艺为T1=130℃,T2=135℃,T3=140℃,T4=150℃,T5=135℃,风冷拉条,切粒,得到一种用于制作降解膜的生物塑料,其中的无机填料超过30%。。
实施例2
(1)将1,4-丁二醇、己二酸、对苯二甲酸按照摩尔比8∶2.2∶1.8称量备用,作为预混的物料A;
(2)称取步骤(1)得到的预混物料A 2kg加入反应釜,称取催化剂钛酸四丁酯30g搅拌均匀;然后加入粒径小于5μm、孔隙率>50%的硅藻土7kg,启动反应釜搅拌桨,以40rpm的低速搅拌,开启真空泵,稳定真空压力表在 -0.08MPa处理15min,关闭真空泵,维持40rpm的低速搅拌,反应釜在165℃反应150min;温度升至240℃,调整温度反应压力为40Pa,缩聚80min,放料,得到物料B;
(3)将步骤(2)得到的物料B冷却,粉碎,称取5kg,称取环氧树脂E440.125kg、聚乙烯蜡0.075kg加入球磨机,以氧化锆球为研磨介质球磨10min,研磨分散得到物料C;
(4)按照重量份将步骤(3)得到的物料C 4kg、熔指为5g/10min的薄膜级PBAT 6kg、石蜡0.1kg投入高速混合机,温度控制在100℃,在700rpm转速分散15min;然后输送至平行同向双螺杆挤出机挤出造粒,挤出的温度由进料口到出料口的控温工艺为T1=130℃,T2=135℃,T3=140℃,T4=150℃,T5=135℃,风冷拉条,切粒,得到一种用于制作降解膜的生物塑料,其中的无机填料超过30%。
实施例3
(1)将1,4-丁二醇、己二酸、对苯二甲酸按照摩尔比8∶2.2∶1.8称量备用,作为预混的物料A;
(2)称取步骤(1)得到的预混物料A 2kg加入反应釜,称取催化剂钛酸四丁酯30g搅拌均匀;然后加入粒径小于5μm、孔隙率大于35%空心玻璃微球6kg,启动反应釜搅拌桨,以40rpm的低速搅拌,开启真空泵,稳定真空压力表在-0.08MPa处理10min,关闭真空泵,维持40rpm的低速搅拌,反应釜在170℃反应120min;温度升至240℃,调整温度反应压力为50Pa,缩聚100min,放料,得到物料B;
(3)将步骤(2)得到的物料B冷却,粉碎,称取5kg,称取环氧树脂E440.1kg、聚乙烯蜡0.075kg加入球磨机,以氧化锆球为研磨介质球磨12min,研磨分散得到物料C;
(4)按照重量份将步骤(3)得到的物料C 5kg、熔指为5g/10min的薄膜级PBAT 7kg、硬脂酸0.1kg投入高速混合机,温度控制在80℃,在400rpm转速分散15min;然后输送至平行同向双螺杆挤出机挤出造粒,挤出的温度由进料口到出料口的控温工艺为T1=130℃,T2=135℃,T3=140℃,T4=150℃,T5=135℃,风冷拉条,切粒,得到一种用于制作降解膜的生物塑料,其中的无机填料超过30%。
对比例1
(1)将1,4-丁二醇、己二酸、对苯二甲酸按照摩尔比8∶2.2∶1.8称量备用,作为预混的物料A;
(2)称取步骤(1)得到的预混物料A 2kg加入反应釜,称取催化剂钛酸四丁酯20g搅拌均匀;然后加入粒径小于5μm的碳酸钙6kg,启动反应釜搅拌桨,以40rpm的低速搅拌,开启真空泵,稳定真空压力表在-0.08MPa处理15min,关闭真空泵,维持40rpm的低速搅拌,反应釜在180℃反应150min;温度升至240℃,调整温度反应压力为50Pa,缩聚80min,放料,得到物料B;
(3)将步骤(2)得到的物料B冷却,粉碎,称取5kg,称取环氧树脂E510.1kg、聚乙烯蜡0.05kg加入球磨机,以氧化锆球为研磨介质球磨10min,研磨分散得到物料C;
(4)按照重量份将步骤(3)得到的物料C 5kg、熔指为5g/10min的薄膜级PBAT 7kg、单硬脂酸甘油酯0.1kg投入高速混合机,温度控制在100℃,在400rpm转速分散15min;然后输送至平行同向双螺杆挤出机挤出造粒,挤出的温度由进料口到出料口的控温工艺为T1=130℃,T2=135℃,T3=140℃,T4=150℃,T5=135℃,风冷拉条,切粒,得到一种用于制作降解膜的生物塑料。
对比例2
(1)将1,4-丁二醇、己二酸、对苯二甲酸按照摩尔比8∶2.2∶1.8称 量备用,作为预混的物料A;
(2)称取步骤(1)得到的预混物料A 2kg加入反应釜,称取催化剂钛酸四丁酯20g搅拌均匀;然后加入粒径小于5μm、孔隙率>50%的沸石粉6kg,启动反应釜搅拌桨,以40rpm的低速搅拌,开启真空泵,稳定真空压力表在-0.08MPa处理15min,关闭真空泵,维持40rpm的低速搅拌,反应釜在180℃反应150min;温度升至240℃,调整温度反应压力为50Pa,缩聚80min,放料,得到物料B;
(3)将步骤(2)得到的物料B冷却,粉碎,称取5kg,称取聚乙烯蜡0.05kg加入球磨机,以氧化锆球为研磨介质球磨10min,研磨分散得到物料C;
(4)按照重量份将步骤(3)得到的物料C 5kg、熔指为5g/10min的薄膜级PBAT 7kg、单硬脂酸甘油酯0.1kg投入高速混合机,温度控制在100℃,在400rpm转速分散15min;然后输送至平行同向双螺杆挤出机挤出造粒,挤出的温度由进料口到出料口的控温工艺为T1=130℃,T2=135℃,T3=140℃,T4=150℃,T5=135℃,风冷拉条,切粒,得到一种用于制作降解膜的生物塑料。
对比例3
(1)称取粒径小于5μm、孔隙率>50%的沸石粉3kg、熔指为5g/10min的薄膜级PBAT 7kg、硅烷偶联剂0.5kg、单硬脂酸甘油酯0.1kg投入高速混合机,温度控制在100℃,在400rpm转速分散15min;
(2)输送至平行同向双螺杆挤出机挤出造粒,挤出的温度由进料口到出料口的控温工艺为T1=130℃,T2=135℃,T3=140℃,T4=150℃,T5=135℃,风冷拉条,切粒,得到一种用于制作降解膜的生物塑料。
吹膜稳定性测试:
将实施例1-3、对比例1-3实验得到的生物塑料、未添加填料的PBAT在吹膜机吹塑制膜,吹膜机五段温度分别为:120℃、145℃、165℃、160℃、140℃;
实施例13、对比例2得到生物塑料吹膜稳定,表面光滑,无断膜破膜;如附 图1所示,为实施例1生物塑料吹塑薄膜吹膜稳定,膜面均匀。对比例1的生物塑料在吹塑薄膜时薄膜表面粗糙如附图2所示;对比例3在的生物塑料在吹塑薄膜时薄膜表面粗糙,易破洞,无法连续吹膜。纯PBAT极不稳定,但能够很好的成膜。
力学性能对比测试:
参照GB/T 1040《塑料拉伸性能试验方法》测试,对吹制的薄膜样品进行拉伸强度的测试,在50mm/min的试验速度测试,测试结果如表1所示。
表1:
Figure PCTCN2021103465-appb-000001
通过测试,本发明技术得到的生物塑料在填料含量大于30%时仍然保持良好的加工稳定性,而且膜的强度损失小,满足作为包装袋制品的强度要求。
对比例1在实施过程中采用了非多孔的常规无机填料碳酸钙替换了多孔沸石粉,由于碳酸钙没有空孔隙,PBAT的没有能够在无机填料的孔隙中缩聚,只在表面缩聚,得到的界面改性的碳酸钙界面效果差,PBAT界面与碳酸钙表面的 界面的结合力弱,因此会影响填于PBAT的相容性,在高填充量下制备的生物塑料在吹塑薄膜时薄膜表面粗糙,得到的薄膜强度较低。
对比例2在实施过程中没有对物料B利用环氧树脂处理,填料在填充在PBAT时不能很好的对PBAT的羧基扩链,因此吹塑的薄膜强度稍差。
对比例3在施过程中没有对沸石粉进行预先吸附缩聚PBAT处理,而是采用传统的偶联处理,由于PBAT的没有能够在沸石粉的孔隙中缩聚,得到的界面偶联改性的界面效果差,PBAT界面与沸石粉表面的界面的结合力较弱,因此会影响填于PBAT的相容性,在高填充量下制备的生物塑料在吹塑薄膜时薄膜表面粗糙,易破洞,无法吹膜;得到的薄膜强度较低。

Claims (8)

  1. 一种用于制作降解膜的生物塑料的制备方法,其特征在于,具体制备方法如下:
    (1)将1,4-丁二醇、己二酸、对苯二甲酸按照摩尔比8∶2.2∶1.8称量备用,作为预混的物料A;
    (2)将步骤(1)得到的预混物料A加入反应釜,加入催化剂搅拌均匀;然后加入粒径小于5μm的多孔无机填料低速搅拌,开启真空泵,稳定真空压力表在-0.08MPa处理10-15min,关闭真空泵,反应釜在160-180℃反应120-150min;温度升至240℃,调整温度反应压力为20-50Pa,缩聚80-100min,放料,得到物料B;
    (3)将步骤(2)得到的物料B冷却,粉碎,与环氧树脂、分散剂在研磨机中研磨分散得到物料C;
    (4)按照重量份将步骤(3)得到的物料C 40-50份、聚己二酸-对苯二甲酸丁二醇酯50-70份、润滑剂1-2份投入高速混合机,温度控制在80-100℃,在400-700rpm转速分散10-15min;然后输送至双螺杆挤出机中,在130-150℃挤出,风冷拉条,切粒,得到一种用于制作降解膜的生物塑料。
  2. 根据权利要求1所述一种用于制作降解膜的生物塑料的制备方法,其特征在于:步骤(2)所述催化剂选用钛酸四丁酯、氯化亚锡中的一种;催化剂用量为物料A质量的1-1.5%。
  3. 根据权利要求1所述一种用于制作降解膜的生物塑料的制备方法,其特征在于:步骤(2)所述混物料A、多孔无机填料的配合质量比例为1∶3-5;所述多孔无机填料选用沸石粉、硅藻土、空心玻璃微球中的至少一种。
  4. 根据权利要求1所述一种用于制作降解膜的生物塑料的制备方法,其特征在于:步骤(3)所述物料B、环氧树脂、分散剂按照质量比100∶2-2.5∶1-1.5研磨分散;所述环氧树脂为环氧树脂E51、环氧树脂E44中的一种;所述分散剂 为聚乙烯蜡。
  5. 根据权利要求1所述一种用于制作降解膜的生物塑料的制备方法,其特征在于:步骤(3)所述研磨采用球磨,球磨时间为10-15min。
  6. 根据权利要求1所述一种用于制作降解膜的生物塑料的制备方法,其特征在于:步骤(4)所述聚己二酸-对苯二甲酸丁二醇酯选用熔指为5-7g/10min(190℃、压力2.16kg)的薄膜级PBAT.
  7. 根据权利要求1所述一种用于制作降解膜的生物塑料的制备方法,其特征在于:步骤(4)所述润滑剂选用石蜡、硬脂酸、单硬脂酸甘油酯中的一种。
  8. 一种用于制作降解膜的生物塑料,其特征是由权利要求1-7任一项所述的方法制备得到。
PCT/CN2021/103465 2021-06-29 2021-06-30 一种用于制作降解膜的生物塑料及制备方法 WO2023272569A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110728987.9A CN113354928B (zh) 2021-06-29 2021-06-29 一种用于制作降解膜的生物塑料及制备方法
CN202110728987.9 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023272569A1 true WO2023272569A1 (zh) 2023-01-05

Family

ID=77537147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103465 WO2023272569A1 (zh) 2021-06-29 2021-06-30 一种用于制作降解膜的生物塑料及制备方法

Country Status (2)

Country Link
CN (1) CN113354928B (zh)
WO (1) WO2023272569A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116200012A (zh) * 2023-01-29 2023-06-02 安徽华驰环保科技有限公司 一种可生物降解塑料薄膜生产工艺及其生产用吹膜机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100236969A1 (en) * 2009-03-19 2010-09-23 Board Of Trustees Of Michigan State University Poly(Lactic Acid) and Zeolite Composites and Method of Manufacturing the Same
CN103013065A (zh) * 2012-12-14 2013-04-03 新疆蓝山屯河化工股份有限公司 聚丁二酸丁二醇酯可降解薄膜用复合材料及其制备方法
KR101464496B1 (ko) * 2014-08-12 2014-11-26 주식회사 디유케이 생분해성 섬유의 제조 방법 및 이 제조 방법에 의해 제조된 생분해성 섬유
CN106164170A (zh) * 2014-04-02 2016-11-23 巴斯夫欧洲公司 聚酯混合物
CN110591058A (zh) * 2019-10-28 2019-12-20 浙江晟祺实业有限公司 一种降解包装材料催化聚缩的方法
CN112708163A (zh) * 2020-12-25 2021-04-27 安踏(中国)有限公司 一种高回弹生物可降解聚酯微发泡异型材的制备方法
CN112794997A (zh) * 2020-12-30 2021-05-14 浙江联盛化学股份有限公司 一种多孔复合催化剂、其制备方法及聚对苯二甲酸己二酸丁二醇酯的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358778B (zh) * 2011-07-29 2014-06-18 上海载和实业投资有限公司 一种新型生物降解母料及其制备方法
CN103483522A (zh) * 2012-06-11 2014-01-01 上海杰事杰新材料(集团)股份有限公司 高分子量脂肪族-芳香族共聚酯及其制备方法
KR20150047939A (ko) * 2013-10-25 2015-05-06 삼성정밀화학 주식회사 생분해성 폴리에스테르 수지 컴파운드 및 그로부터 얻어진 발포체
CN105504250A (zh) * 2015-12-22 2016-04-20 成都新柯力化工科技有限公司 一种低成本降解塑料的制备方法
CN107541027B (zh) * 2017-05-19 2020-07-28 上海叹止新材料科技有限公司 一种聚合物基相变储能材料及其制备方法
JP2020527634A (ja) * 2017-07-17 2020-09-10 テクニップ ツィマー ゲーエムベーハー ポリエステルを調整するための方法
CN107400339A (zh) * 2017-07-27 2017-11-28 上海弘睿生物科技有限公司 蒙脱土改性全降解高分子材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100236969A1 (en) * 2009-03-19 2010-09-23 Board Of Trustees Of Michigan State University Poly(Lactic Acid) and Zeolite Composites and Method of Manufacturing the Same
CN103013065A (zh) * 2012-12-14 2013-04-03 新疆蓝山屯河化工股份有限公司 聚丁二酸丁二醇酯可降解薄膜用复合材料及其制备方法
CN106164170A (zh) * 2014-04-02 2016-11-23 巴斯夫欧洲公司 聚酯混合物
KR101464496B1 (ko) * 2014-08-12 2014-11-26 주식회사 디유케이 생분해성 섬유의 제조 방법 및 이 제조 방법에 의해 제조된 생분해성 섬유
CN110591058A (zh) * 2019-10-28 2019-12-20 浙江晟祺实业有限公司 一种降解包装材料催化聚缩的方法
CN112708163A (zh) * 2020-12-25 2021-04-27 安踏(中国)有限公司 一种高回弹生物可降解聚酯微发泡异型材的制备方法
CN112794997A (zh) * 2020-12-30 2021-05-14 浙江联盛化学股份有限公司 一种多孔复合催化剂、其制备方法及聚对苯二甲酸己二酸丁二醇酯的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116200012A (zh) * 2023-01-29 2023-06-02 安徽华驰环保科技有限公司 一种可生物降解塑料薄膜生产工艺及其生产用吹膜机

Also Published As

Publication number Publication date
CN113354928A (zh) 2021-09-07
CN113354928B (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
CN110791069B (zh) 一种软包装用全降解高阻隔复合材料
JP5763402B2 (ja) 生分解性脂肪族ポリエステル粒子、及びその製造方法
CN102060564B (zh) 轻质环保石头纸及制备方法
JP2017222846A (ja) 生分解性ポリマーブレンド
KR102212601B1 (ko) 물성이 개선된 생분해성 복합 수지 조성물 및 이의 제조 방법
CN110628185B (zh) 一种聚对苯二甲酸-己二酸丁二酯/聚甲基乙撑碳酸酯全生物降解薄膜及其制备方法
US10822491B2 (en) Composition of polyester and thermoplastic starch, having improved mechanical properties
CN113956630A (zh) 一种完全生物降解薄膜及其制备方法
CN114230989A (zh) 环保生物降解pbat发泡材料的制备方法
WO2012121296A1 (ja) 生分解性脂肪族ポリエステル樹脂粒状体組成物及びその製造方法
CN106674923A (zh) 一种降解可控pbat/pla复合膜及其制备方法
WO2023272569A1 (zh) 一种用于制作降解膜的生物塑料及制备方法
CN109666272A (zh) 3d打印用聚乳酸改性材料、打印丝线及其制备方法
EP1108751B1 (en) Aliphatic polyester composition for masterbatch and process for producing aliphatic polyester film with the composition
CN112500611B (zh) 一种生物降解塑料袋及其制备方法
CN115926406B (zh) 一种全降解高阻隔性聚酯复合膜材料及制备方法和应用
CN111793331A (zh) 一种可生物降解原位纳米复合材料及其制备方法和应用
JP2024012074A (ja) 茶繊維/phbv/pbat三元複合材料とその製造方法及び使用
CN113214615B (zh) 一种三元完全生物降解薄膜及其制备方法
EP4137285A2 (en) Method for preparing a biodegradable polymeric composition comprising thermoplastic starch and a synthetic biodegradable polymer
CN114907680A (zh) 一种可回收型水溶降解发泡材料及其制备方法
AU2010200315A1 (en) Biodegradable resin composition, method for production thereof and biodegradable film therefrom
CN115819937B (zh) 一种可生物降解的复合材料及其制备方法
CN114573968B (zh) 聚碳酸丁二醇酯生物可降解材料及其制备方法和应用
CN116715941A (zh) 一种可生物降解聚酯组合物及制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE