WO2023249043A1 - 樹脂組成物ならびに単層および多層フィルム - Google Patents

樹脂組成物ならびに単層および多層フィルム Download PDF

Info

Publication number
WO2023249043A1
WO2023249043A1 PCT/JP2023/022887 JP2023022887W WO2023249043A1 WO 2023249043 A1 WO2023249043 A1 WO 2023249043A1 JP 2023022887 W JP2023022887 W JP 2023022887W WO 2023249043 A1 WO2023249043 A1 WO 2023249043A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
layer
butene
resin composition
mol
Prior art date
Application number
PCT/JP2023/022887
Other languages
English (en)
French (fr)
Inventor
真弓 清澤
悠平 居在家
孝法 佐々木
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2023249043A1 publication Critical patent/WO2023249043A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to resin compositions and single-layer and multi-layer films, and more particularly to single-layer and multi-layer films suitable for use in food packaging materials, construction materials, exterior materials for lithium ion batteries, etc., and to these films.
  • the present invention relates to a resin composition contained therein.
  • Polypropylene has been widely used as a thermoplastic molding material with excellent rigidity, heat resistance, transparency, etc. Since this polypropylene is a non-polar material, it has poor adhesion to polar materials such as ethylene/vinyl alcohol copolymers, and a technique to modify polypropylene with unsaturated carboxylic acids or derivatives thereof is widely used to improve adhesion. Are known. Furthermore, since polypropylene has poor flexibility, a soft rubber component is usually blended with polypropylene when used as an adhesive.
  • lithium-ion batteries have been increasingly used in portable electronic devices and automobiles in recent years, and lithium-ion batteries are lighter, have better heat dissipation, and have better shapeability than cylindrical or prismatic exterior materials. Due to its excellent flexibility, flexibility in shape, and miniaturization, the use of pouch-type and embossed-type exterior bodies using multilayer film as packaging material is expanding.
  • This packaging material made of a multilayer film is composed of at least a base material layer, a metal foil layer, a heat-adhesive resin layer, and an adhesive layer that adheres two adjacent layers among these layers.
  • the multilayer film Since the multilayer film has a large degree of freedom in shape, it is easy to process when manufacturing these pouch-type and embossed-type exterior bodies, but when the multilayer film is deformed, the deformed area may turn white. If there is a whitening spot on the exterior body, it will cause a short circuit, so there is a need for a material with excellent whitening resistance.
  • Patent Document 3 discloses that a base material layer, a metal foil layer having a chemical conversion treatment layer on at least one side, an acid-modified polyolefin layer, a heat seal layer consisting of a high melting point polypropylene layer and an ethylene propylene random copolymer layer, A battery packaging material is described in which the high melting point polypropylene layer is arranged closer to the metal foil layer than the ethylene/propylene random copolymer layer, and the melting point is 150° C. or higher, in which at least the battery packaging material is sequentially laminated. .
  • a high melting point polypropylene layer with a melting point of 150°C or higher is placed closer to the metal foil layer than the ethylene/propylene random copolymer layer, which prevents temperature rise inside the exterior body due to overcharging, etc. Even in this case, the high melting point polypropylene layer does not melt, preventing contact between the metal terminal and the metal foil layer, and suppressing the occurrence of internal short circuits.
  • Patent Document 4 describes a propylene-ethylene block copolymer containing a propylene-based polymer component (A1) that satisfies specific conditions such as ethylene content and a propylene-ethylene random copolymer component (A2) obtained by multistage polymerization.
  • a polypropylene resin composition for a battery packaging film comprising the combination (A) is described.
  • the film formed from this composition has excellent heat resistance, sealability, and moldability, and has high sealing strength and impact resistance, and has a well-balanced improvement in whitening resistance and cracking resistance during deformation processing. It is described as having the effect of
  • Patent Document 3 cannot be expected to have sufficient whitening resistance for battery applications. Furthermore, the actual situation is that the composition described in Patent Document 4 does not reach the required level in terms of whitening resistance.
  • the present invention provides a resin composition that can be used for food packaging materials, construction materials, exterior bodies of lithium ion batteries, etc., and has excellent resistance to whitening during deformation processing.
  • the object of the present invention is to provide a single-layer or multilayer film comprising layers comprising:
  • the present invention relates to, for example, the following [1] to [14].
  • the melting point observed in differential scanning calorimetry is 100°C or higher.
  • the polyolefin (C) contains 0.01 to 5% by mass of structural units derived from an unsaturated carboxylic acid and/or a derivative thereof in terms of structural units derived from maleic anhydride, Furthermore, in the polyolefin (C), the content ratio of structural units derived from propylene in the structural units excluding the structural units derived from the unsaturated carboxylic acid and/or its derivative is 90 to 100 mol%, [1 ] or the resin composition according to [2].
  • the isotactic pendant fraction (mmmm) of the 1-butene/ethylene copolymer (B) calculated by 13 C-NMR is in the range of 80 to 99.9%, [1] to [3] Any of the resin compositions.
  • [6] The resin composition according to any one of [1] to [5], which has a Shore D hardness in the range of 20 to 70 as measured in accordance with ASTM D2240.
  • a single-layer or multilayer film comprising at least one layer containing the resin composition according to any one of [1] to [6].
  • a multilayer film comprising at least one layer containing the resin composition according to any one of [1] to [6], and further having both surfaces of the layer containing the resin composition in contact with other layers.
  • It includes at least one layer containing the resin composition according to any one of [1] to [6], and further, one or both sides of the layer containing the resin composition include a metal-containing layer, a polyolefin layer, and a polar resin layer.
  • a multilayer film that is in contact with at least one of the layers.
  • Single-layer or multilayer films containing layers formed from the resin composition of the present invention have excellent resistance to whitening during deformation processing, and can be used as food packaging materials, construction materials, and exterior bodies of batteries such as lithium-ion batteries. It can be suitably used as a packaging material for forming.
  • X to Y representing a numerical range means a numerical range including the lower limit and upper limit, which are the endpoints, unless otherwise specified. Moreover, when numerical ranges are described in stages, the upper and lower limits of each numerical range can be combined arbitrarily.
  • the resin composition of the present invention comprises a propylene polymer (A), a 1-butene/ethylene copolymer (B), and a polyolefin (C ) and an ethylene polymer (D).
  • Propylene polymer (A) examples include propylene homopolymers and copolymers of propylene and at least one ⁇ -olefin having 2 to 20 carbon atoms other than propylene.
  • ⁇ -olefins having 2 to 20 carbon atoms other than propylene include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, Examples include 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, and ethylene or an ⁇ -olefin having 4 to 10 carbon atoms is preferred.
  • the copolymer of propylene and these ⁇ -olefins may be a random copolymer or a block copolymer.
  • the structural units derived from these ⁇ -olefins are contained in the copolymer of ⁇ -olefin and propylene in an amount of 35 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less, and even more preferably 10 mol%. Below, it can be contained particularly preferably in a proportion of 5 mol% or less.
  • the propylene polymer (A) according to the present invention satisfies the following requirement (a).
  • the melting point observed in differential scanning calorimetry is 100°C or higher.
  • the melting point is preferably 100 to 170°C, more preferably 120 to 165°C.
  • the propylene polymer (A) has a melt flow rate (MFR) of 0.01 to 1000 g/10 minutes, preferably 0.05 to 100 g, measured at 230°C and a load of 2.16 kg according to ASTM D 1238. /10 minutes is desirable.
  • the propylene polymer (A) may have either an isotactic structure or a syndiotactic structure, and as described below, either one may be used in consideration of compatibility with the 1-butene/ethylene copolymer (B). structure can be selected. That is, forms of the propylene polymer (A) include isotactic propylene polymer (A1) and syndiotactic propylene polymer (A2).
  • isotactic propylene polymer (A1) homopolypropylene with excellent heat resistance, for example, a known homopolypropylene with a copolymerization component other than propylene of 3 mol% or less, a block with an excellent balance between heat resistance and flexibility
  • Polypropylene such as the known block polypropylene, which usually has a normal decane-eluting rubber component of 3 to 30% by mass, and random polypropylene, which has an excellent balance between flexibility and transparency, such as the melting peak measured by a differential scanning calorimeter, DSC.
  • Known random polypropylenes having a temperature of 100°C or higher, preferably in the range of 110°C to 150°C can be mentioned, and can be appropriately selected from these to obtain the desired physical properties, or two or more types having different melting points and rigidities can be used. It is possible to use the above-mentioned polypropylene components in combination.
  • Such an isotactic propylene polymer (A1) is, for example, a Ziegler catalyst system consisting of a solid catalyst component containing magnesium, titanium, halogen and an electron donor as essential components, an organoaluminum compound and an electron donor, or a metallocene catalyst system. It can be produced by polymerizing propylene or copolymerizing propylene and other ⁇ -olefins using a metallocene catalyst system using the compound as a component of the catalyst.
  • the syndiotactic propylene polymer (A2) contains 90 mol% or more of structural units derived from propylene and 10 mol% or less of structural units derived from one or more types selected from ethylene and ⁇ -olefins having 4 to 20 carbon atoms. , preferably contains 91 mol% or more of structural units derived from propylene and 9 mol% or less of structural units derived from one or more types selected from ethylene and ⁇ -olefins having 4 to 20 carbon atoms (however, the total amount of both structural units is 100 mol%).
  • Examples of ethylene and ⁇ -olefins having 4 to 20 carbon atoms include ethylene, 1-butene, 3-methyl-1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1 -decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene and the like.
  • the syndiotactic propylene polymer (A2) can be produced, for example, using a method as described in International Publication No. WO2011/078054.
  • the propylene polymer (A) may be used alone or in combination of two or more in the resin composition of the present invention.
  • the 1-butene/ethylene copolymer (B) satisfies the following requirement (b-1).
  • (b-1) When the total of the structural unit (i) derived from 1-butene and the structural unit (ii) derived from ethylene is 100 mol%, the content of the structural unit (i) is 70 to 97 mol %, and the content of the structural unit (ii) is in the range of 3 to 30 mol%.
  • the 1-butene/ethylene copolymer (B) preferably satisfies at least one of the following requirements (b-2) to (b-5).
  • (b-2) The isotactic pendant fraction (mmmm) calculated by 13 C-NMR is in the range of 80 to 99.9%.
  • (b-3) At 135°C, the intrinsic viscosity [ ⁇ ] in decalin solvent is in the range of 0.7 to 2.5 dl/g.
  • the melt flow rate (MFR) measured in accordance with ASTM D1238 at 190°C and a load of 2.16 kg is in the range of 1 to 100 g/10 minutes.
  • (b-5) Weight average molecular weight (Mw) is 100,000 to 600,000.
  • the upper limit of the amount of structural units derived from 1-butene is 97 mol%, preferably 96 mol%, more preferably 95 mol%, and preferably 94 mol%. More preferably, it is 90.5 mol%.
  • the upper limit of the amount of the structural unit (ii) derived from ethylene is 30 mol%.
  • the upper limit of this structural unit is preferably 25 mol%, more preferably 20 mol%, even more preferably 17 mol%, and particularly preferably 15 mol%.
  • the lower limit of the amount of the structural unit (ii) derived from ethylene is 3 mol%, preferably 4 mol%, more preferably 5 mol%, and 6 mol%. is more preferable, and particularly preferably 9.5 mol%.
  • the 1-butene/ethylene copolymer (B) according to the present invention has good compatibility with the propylene polymer (A) by controlling the amount of the structural unit (ii) derived from ethylene within the above range. can be obtained. If it is below the upper limit of the structural unit derived from ethylene, it is preferable because it has excellent mechanical strength, and when used as a packaging material, for example, it has excellent adhesive strength and improves the durability of the film. In addition, if it is above the lower limit, the crystallization rate will be appropriate, and for example, it is preferable because the molding conditions will be expanded during the molding process and the moldability will be improved. In some cases, it is preferable because it has excellent whitening resistance during stretching or deformation processing.
  • the content (mol%) of each structural unit constituting the 1-butene/ethylene copolymer (B) is measured by 13 C-NMR. The details of the measurement method are as described in Examples below.
  • the isotactic pendant fraction (mmmm) calculated by 13 C-NMR is in the range of 80 to 99.9%.
  • the lower limit of the isotactic pentad fraction (mmmm) is preferably 85%, more preferably 90%, and 95% It is more preferable that it is above.
  • the upper limit of the isotactic pentad fraction (mmmm) is preferably 99.5%, more preferably 99.0%.
  • isotactic pentad fraction (mmmm) By setting the isotactic pentad fraction (mmmm) within the above range, even when ethylene is copolymerized and the compatibility with the propylene copolymer (B) described below is controlled, appropriate mechanical strength and flexibility can be achieved. This allows for flexible design. Note that details of the method for measuring the isotactic pentad fraction (mmmm) are as described in Examples below.
  • the intrinsic viscosity [ ⁇ ] in decalin solvent is in the range of 0.7 to 2.5 dl/g.
  • the intrinsic viscosity [ ⁇ ] of the 1-butene/ethylene copolymer (B) according to the present invention is more preferably 0.8 to 2.3 dl/g, and more preferably 0.9 to 2.25 dl/g. More preferably, it is 1.0 to 2.2 dl/g, particularly preferably 1.0 to 2.2 dl/g.
  • the 1-butene/ethylene copolymer (B) having an intrinsic viscosity [ ⁇ ] within the above range has an excellent balance between fluidity and mechanical strength. For example, by containing the 1-butene/ethylene copolymer (B), a molded article with excellent mechanical properties can be easily obtained, and both ease of molding and durability of the packaging material can be achieved, which is preferable.
  • the melt flow rate (MFR) measured in accordance with ASTM D1238 at 190°C and a load of 2.16 kg is in the range of 1 to 100 g/10 minutes.
  • the MFR of the 1-butene/ethylene copolymer (B) according to the present invention is preferably 1 to 50 g/10 minutes, more preferably 1 to 30 g/10 minutes, and more preferably 1 to 10 g/10 minutes. More preferably, the amount is 2 to 8 g/10 minutes.
  • the MFR of the 1-butene/ethylene copolymer (B) is within the above range, the fluidity is good and the resulting molded product has good mechanical properties.
  • the composition When the MFR is at least the lower limit, the composition has fluidity and is suitable for high-speed molding. When the MFR is below the upper limit, the composition containing the 1-butene/ethylene copolymer (B) has excellent mechanical properties, adhesive strength, and durability, which is preferable.
  • the 1-butene/ethylene copolymer (B) according to the present invention preferably has a weight average molecular weight (Mw) of 100,000 to 550,000.
  • the 1-butene/ethylene copolymer (B) according to the present invention preferably has a weight average molecular weight (Mw) of 100,000 to 520,000, more preferably 100,000 to 520,000, when moldability is required. More preferably, it is 500,000, and particularly preferably 100,000 to 490,000.
  • the resin composition containing the 1-butene/ethylene copolymer (B) is suitable for high-speed moldability from the viewpoint of fluidity.
  • the 1-butene/ethylene copolymer (B) according to the present invention preferably has a weight average molecular weight (Mw) of 150,000 to 600,000, and more preferably 200,000 to 600,000. More preferably, it is 600,000, and particularly preferably 202,000 to 600,000. When the weight average molecular weight is within the above range, a resin composition with excellent mechanical properties can be easily obtained.
  • Mw weight average molecular weight
  • the 1-butene/ethylene copolymer (B) according to the present invention preferably has a molecular weight distribution (Mw/Mn) of 1.5 to 3.0, more preferably 1.6 to 2.8. .
  • Mw/Mn is a polystyrene equivalent value measured by GPC method.
  • the 1-butene/ethylene copolymer (B) having Mw/Mn within the above range is preferable because it has less low molecular weight components that reduce mechanical strength and less high molecular weight components that deteriorate fluidity.
  • a part of the 1-butene/ethylene copolymer (B) may be graft-modified with a polar monomer.
  • polar monomers include hydroxyl group-containing ethylenically unsaturated compounds, amino group-containing ethylenically unsaturated compounds, epoxy group-containing ethylenically unsaturated compounds, aromatic vinyl compounds, unsaturated carboxylic acids or derivatives thereof, vinyl ester compounds, and vinyl chloride. Examples include.
  • the modified 1-butene/ethylene copolymer (B) can be obtained by graft polymerizing a polar monomer to the above-described 1-butene/ethylene copolymer (B).
  • the polar monomer When graft polymerizing the above polar monomer to the 1-butene/ethylene copolymer (B), the polar monomer is usually added in a proportion of 100 parts by mass of the 1-butene/ethylene copolymer (B). It is used in amounts of 1 to 100 parts by weight, preferably 5 to 80 parts by weight.
  • This graft polymerization is usually carried out in the presence of a radical initiator.
  • the radical initiator organic peroxides or azo compounds can be used.
  • the radical initiator can be used as it is mixed with the 1-butene/ethylene copolymer (B) and the polar monomer, but it can also be used after being dissolved in a small amount of organic solvent.
  • any organic solvent that can dissolve the radical initiator can be used without particular limitation.
  • a reducing substance may be used when graft polymerizing a polar monomer to the 1-butene/ethylene copolymer (B). When a reducing substance is used, the amount of polar monomer grafted can be increased.
  • Graft modification of the 1-butene/ethylene copolymer (B) with a polar monomer can be carried out by a conventionally known method.
  • the 1-butene/ethylene copolymer (B) is dissolved in an organic solvent, and then the polar monomer is This can be carried out by adding monomers, radical initiators, etc. to a solution and reacting at a temperature of 70 to 200°C, preferably 80 to 190°C, for 0.5 to 15 hours, preferably 1 to 10 hours.
  • the amount of modification (the amount of polar monomer grafted) of the modified 1-butene/ethylene copolymer thus obtained is usually 0.1 to 50% by mass, preferably 0.2 to 30% by mass, and more preferably 0. .2 to 10% by mass is desirable.
  • the above-mentioned modified 1-butene/ethylene copolymer is contained as the 1-butene/ethylene copolymer (B) in the propylene-based polymer composition of the present invention, it has excellent adhesiveness and compatibility with other resins. , the wettability of the surface of the molded article may be improved.
  • the 1-butene/ethylene copolymer (B) may be used alone or in combination of two or more in the resin composition of the present invention.
  • Methods for obtaining the 1-butene/ethylene copolymer (B) according to the present invention include a gas phase method, a bulk method, a slurry method, etc., in which monomers are mixed in the presence of a catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst.
  • a catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst.
  • An example is polymerization using a known polymerization method. Among these, the polymer has a narrow molecular weight distribution and composition distribution, which not only makes it possible to design a molded product with an excellent balance of mechanical strength and flexibility, but also works particularly well when combined with the propylene polymer (A) described below.
  • a metallocene catalyst that can uniformly control the reaction, since it is possible to obtain good compatibility and to delay the crystallization rate, and is represented by the following general formula (1) or (2). It is particularly preferable to carry out the polymerization using a metallocene compound (F).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 in the above general formula (1) or (2) are hydrogen or carbonized. They are selected from hydrogen groups and silicon-containing hydrocarbon groups, and may be the same or different.
  • the hydrocarbon group is preferably an alkyl group having 1 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an alkylaryl group having 7 to 20 carbon atoms. and may contain one or more ring structures. Specific examples include methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1,1-diethylpropyl, 1-ethyl-1-methylpropyl. , 1,1,2,2-tetramethylpropyl, sec-butyl, tert-butyl and the like.
  • the silicon-containing hydrocarbon group is preferably an alkylsilyl group or an arylsilyl group having 1 to 4 silicon atoms and 3 to 20 carbon atoms, and specific examples thereof include trimethylsilyl, tert-butyldimethylsilyl, triphenylsilyl. etc.
  • R 2 is preferably a sterically bulky hydrocarbon group or a silicon-containing hydrocarbon group, that is, a secondary or tertiary substituent, and more preferably a substituent having 4 or more carbon atoms.
  • Specific hydrocarbons include isopropyl, 1,1-dimethylpropyl, 1,1-diethylpropyl, 1-ethyl-1-methylpropyl, 1,1,2,2-tetramethylpropyl, sec-butyl, Examples include tert-butyl and 1,1-dimethylbutyl. Particularly preferred is tert-butyl.
  • silicon-containing hydrocarbons include compounds in which some or all of the carbon atoms in the above compounds are replaced with silicon.
  • Adjacent substituents from R 5 to R 12 on the fluorene ring may be bonded to each other to form a ring.
  • substituted fluorenyl groups include benzofluorenyl, dibenzofluorenyl, and the like.
  • R 3 and R 4 in the above general formula (1) are hydrogen, carbonized They are selected from hydrogen groups, and may be the same or different. Specific examples of preferable hydrocarbon groups include those mentioned above.
  • Y is carbon or silicon. In the case of general formula (1), R 13 and R 14 combine with Y to form a substituted methylene group or a substituted silylene group as a crosslinking portion.
  • Preferred specific examples include methylene, dimethylmethylene, diisopropylmethylene, methyl tert-butylmethylene, dicyclohexylmethylene, methylcyclohexylmethylene, methylphenylmethylene, diphenylmethylene, dimethylsilylene, diisopropylsilylene, and the like. More preferred Y is carbon.
  • R 1 is preferably a methyl or ethyl group, preferably a methyl group.
  • R 3 and R 4 in general formula (1) are methyl or phenyl groups, preferably methyl groups. Further, R 3 and R 4 are preferably the same.
  • R 5 to R 12 may be hydrogen.
  • R 2 in the general formula (1) is a tert-butyl group and R 1 is an ethyl group
  • R 5 , R 7 , R 8 , R 9 , R 10 and R 12 are hydrogen
  • R 6 and R Those in which 11 is a tert-butyl group are preferably used.
  • Y is bonded to a divalent hydrocarbon group A having 2 to 20 carbon atoms which may include a partially unsaturated bond and/or an aromatic ring, and Y is a cycloalkylidene group or It constitutes a cyclomethylene silylene group, etc.
  • Preferred specific examples include cyclopropylidene, cyclobutylidene, cyclopentylidene, and cyclohexylidene.
  • M in general formulas (1) and (2) is a metal selected from Group 4 of the periodic table, and examples of M include titanium, zirconium, and hafnium.
  • Q is selected from the same or different combinations of halogen, a hydrocarbon group having 1 to 20 carbon atoms, an anionic ligand, or a neutral ligand capable of coordinating with a lone pair of electrons.
  • halogen include fluorine, chlorine, bromine, and iodine
  • hydrocarbon groups include those mentioned above.
  • anionic ligands include alkoxy groups such as methoxy, tert-butoxy and phenoxy, carboxylate groups such as acetate and benzoate, and sulfonate groups such as mesylate and tosylate.
  • neutral ligands that can coordinate with a lone pair of electrons include organic phosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, and diphenylmethylphosphine, or tetrahydrofuran, diethyl ether, dioxane, and 1,2- Examples include ethers such as dimethoxyethane.
  • Q may be the same or a different combination, but it is preferable that at least one is a halogen or an alkyl group.
  • the olefin polymerization catalyst used in the polymerization for producing the 1-butene/ethylene copolymer (B) according to the present invention is a metallocene compound (F ), at least one selected from an organoaluminumoxy compound (G-1), a compound (G-2) that reacts with the metallocene compound (F) to form an ion pair, and an organoaluminum compound (G-3). It is preferable that one type of compound (G) is included, and if necessary, a particulate carrier (H) may also be included.
  • organoaluminumoxy compound (G-1) used conventionally known aluminoxane can be used as is.
  • the compound (G-2) that reacts with the metallocene compound (F) to form an ion pair (hereinafter may be abbreviated as "ionic compound") is disclosed in Japanese Patent Publication No. 1-501950 and JP-A No. Examples include Lewis acids, ionic compounds, borane compounds, and carborane compounds described in Publication No. 2004-51676. Furthermore, mention may also be made of heteropoly compounds and isopoly compounds.
  • triphenylboron tris(o-tolyl)boron, tris(p-tolyl)boron, tris(3,5-dimethylphenyl)boron, trimethylboron, triisobutylboron; tris(4-fluorophenyl) Compounds having a halogen-containing aryl group, such as compounds having a fluorine-containing aryl group such as boron, tris(3,5-difluorophenyl)boron, tris(4-fluoromethylphenyl)boron, and tris(pentafluorophenyl)boron; An example is fluoroboron.
  • organoaluminum compound (G-3) examples include organoaluminum compounds represented by the following general formula (3).
  • dialkyl aluminum hydrides such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, diisopropylaluminum hydride, and diisobutylaluminum hydride
  • alkylaluminum alkoxides such as isobutylaluminum methoxide and isobutylaluminum ethoxide.
  • organoaluminum compound (G-3) tri-n-alkylaluminum such as trimethylaluminum, triethylaluminum, trioctylaluminum, etc., and tri-branched alkylaluminum such as triisobutylaluminum are preferable, and trimethylaluminum and triisobutylaluminum are particularly preferred. Preferably used.
  • the polymerization of the 1-butene/ethylene copolymer (B) can be carried out by either a liquid phase polymerization method such as solution polymerization or suspension polymerization, or a gas phase polymerization method.
  • a liquid phase polymerization method such as solution polymerization or suspension polymerization, or a gas phase polymerization method.
  • an inert hydrocarbon solvent may be used; specifically, aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, and decane; cyclopentane, cyclohexane, and methyl Examples include alicyclic hydrocarbons such as cyclopentane; aromatic hydrocarbons such as benzene, toluene, and xylene, and mixtures thereof. It is also possible to carry out bulk polymerization using the 1-butene-containing olefin itself as a solvent.
  • the metallocene compound (F) When carrying out the polymerization, the metallocene compound (F) is usually 10 -8 to 10 -2 mol, preferably 10 -7 to 10 -3 mol, in terms of metal atom of Group 4 of the periodic table, per 1 liter of reaction volume. used in such amounts.
  • the organoaluminumoxy compound (G-1) has a molar ratio [(G-1)/M] with the transition metal atom (M) in the metallocene compound (F) usually from 0.01 to 5000, preferably 0. It is used in an amount of 0.05 to 2000.
  • the molar ratio [(G-2)/M] of the ionic compound (G-2) to the transition metal atom (M) in the metallocene compound (F) is usually 1 to 10, preferably 1 to 5.
  • the organoaluminum compound (G-3) has a molar ratio [(G-3)/M] with the transition metal atom (M) in the metallocene compound (F), usually 10 to 5000, preferably 20 to 2000. used in such amounts.
  • the polymerization temperature is usually in the range of -50 to 200°C, preferably 0 to 100°C, more preferably 20 to 100°C. If the polymerization temperature is too low, it tends to be disadvantageous industrially in terms of polymerization activity per unit catalyst, heat recovery efficiency, etc.
  • the polymerization pressure is usually normal pressure to 10 MPa gauge pressure, preferably normal pressure to 5 MPa gauge pressure, and the polymerization reaction can be carried out in any of the batch, semi-continuous, and continuous methods. Furthermore, it is also possible to carry out the polymerization in two or more stages with different reaction conditions.
  • Hydrogen can be added for the purpose of controlling the molecular weight and polymerization activity of the 1-butene/ethylene copolymer (A) produced during polymerization, and the amount is 0 per 1 kg of 1-butene/ethylene copolymer (A). Approximately .001 to 100NL is appropriate.
  • Polyolefin (C) containing a structural unit derived from an unsaturated carboxylic acid and/or its derivative The polyolefin (C) containing a structural unit derived from an unsaturated carboxylic acid and/or its derivative (hereinafter also referred to as "polyolefin (C)") according to the present invention is a polyolefin containing a structural unit derived from an unsaturated carboxylic acid and/or its derivative. It contains structural units derived from the unsaturated carboxylic acid and/or its derivatives.
  • polyolefins to be modified examples include polypropylene (c1), ethylene/propylene/ ⁇ -olefin copolymer (c2), and ethylene/ ⁇ -olefin copolymer (c3).
  • the polyolefin (C) may be used alone or in a mixture of two or more.
  • the polypropylene (c1) is, for example, a propylene homopolymer and/or a propylene/ ⁇ -olefin copolymer.
  • the ⁇ -olefins are not limited, but preferably include ethylene and ⁇ -olefins having 4 to 20 carbon atoms, and these ⁇ -olefins may be used alone or in combination of two or more.
  • Preferred ⁇ -olefins include ethylene and ⁇ -olefins having 4 to 10 carbon atoms, and particularly preferred are ethylene and ⁇ -olefins having 4 to 8 carbon atoms.
  • the content of structural units derived from propylene in the propylene/ ⁇ -olefin copolymer is at least 50 mol% or more and less than 100%.
  • the intrinsic viscosity [ ⁇ ] of polypropylene (c1) is preferably 0.1 to 10 dl/g.
  • the intrinsic viscosity [ ⁇ ] of the polyolefin (C) obtained by modifying such polypropylene (c1) is preferably 0.1 to 6 dl/g. When the intrinsic viscosity [ ⁇ ] is within this range, a composition with excellent moldability and mechanical strength can be obtained.
  • the method for producing polypropylene (c1) is not particularly limited, and examples include well-known methods using well-known catalysts such as Ziegler-Natta catalysts and metallocene catalysts.
  • polypropylene (c1) a crystalline polymer is preferable, and in the case of a copolymer, it may be a random copolymer or a block copolymer. Furthermore, there are no particular restrictions on the stereoregularity or molecular weight as long as the moldability is satisfied and the molded product has a strength sufficient to withstand use. It is also possible to use commercially available resins as they are.
  • Polypropylene (c1) is, for example, homopolypropylene or a propylene/ ⁇ -olefin random copolymer. It may also contain several different isotactic polypropylenes.
  • the ethylene/propylene/ ⁇ -olefin copolymer (c2) is a copolymer of ethylene, propylene, and an ⁇ -olefin having 4 or more carbon atoms, and is defined, for example, in (i) and (ii) below. meet the requirements.
  • (i) Contains 45 to 90 mol% of structural units derived from propylene, 10 to 25 mol% of structural units derived from ethylene, and 1 to 30 mol% of structural units derived from ⁇ -olefins having 4 to 20 carbon atoms.
  • the intrinsic viscosity [ ⁇ ] in decalin at 135°C is in the range of 0.1 to 10 dl/g.
  • ⁇ -olefins having 4 to 10 carbon atoms can be suitably used, and one type may be used alone or two or more types may be used.
  • the ratio of structural units derived from each monomer is preferably propylene 50 to 85 mol%, ethylene 10 to 22 mol%, ⁇ -olefin 5 to 28 mol%, propylene 55 to 80 mol%, ethylene 10 to 20 mol%, More preferably, the ⁇ -olefin is 10 to 28 mol%.
  • the intrinsic viscosity [ ⁇ ] is more preferably in the range of 0.5 to 8 dl/g, and even more preferably in the range of 0.8 to 6 dl/g.
  • the intrinsic viscosity [ ⁇ ] of the polyolefin (C) obtained by modifying such an ethylene/propylene/ ⁇ -olefin copolymer (c2) is preferably 0.5 to 8 dl/g, more preferably 0.8 ⁇ 6 dl/g.
  • the method for producing the ethylene/propylene/ ⁇ -olefin copolymer (c2) is not particularly limited, and it can be produced by a well-known method using a well-known catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. .
  • ethylene/propylene/ ⁇ -olefin copolymer (c2) satisfies moldability and has strength enough to withstand use when formed into a molded product, there are no particular restrictions on stereoregularity or molecular weight. do not have. It is also possible to use commercially available resins as they are.
  • the ethylene/ ⁇ -olefin copolymer (c3) is a copolymer of ethylene and ⁇ -olefin, and satisfies, for example, the requirements specified in (iii) and (iv) below.
  • (iii) Contains 50 to 99 mol% of structural units derived from ethylene and 1 to 50 mol% of structural units derived from ⁇ -olefins having 3 to 20 carbon atoms.
  • the intrinsic viscosity [ ⁇ ] in decalin at 135°C is in the range of 0.1 to 10 dl/g.
  • ⁇ -olefins having 3 to 10 carbon atoms are more suitable, and one type may be used alone or two or more types may be used.
  • the ratio of structural units derived from each monomer is preferably 55 to 98 mol% ethylene and 2 to 45 mol% ⁇ -olefin, more preferably 60 to 95 mol% ethylene and 5 to 40 mol% ⁇ -olefin.
  • the intrinsic viscosity [ ⁇ ] is more preferably in the range of 0.5 to 8 dl/g, and even more preferably in the range of 0.8 to 6 dl/g.
  • the intrinsic viscosity [ ⁇ ] of the polyolefin (C) obtained by modifying such an ethylene/ ⁇ -olefin copolymer (c3) is preferably 0.5 to 8 dl/g, more preferably 0.8 to 6 dl. /g.
  • the method for producing the ethylene/ ⁇ -olefin copolymer (c3) is not particularly limited, and includes well-known methods using well-known catalysts such as Ziegler-Natta catalysts and metallocene catalysts.
  • the ethylene/ ⁇ -olefin copolymer (c3) has excellent moldability and there are no particular restrictions on stereoregularity or molecular weight, as long as it has sufficient strength to withstand use when formed into a molded product such as a film.
  • As the ethylene/ ⁇ -olefin copolymer (c3) it is also possible to use a commercially available resin as is.
  • Unsaturated carboxylic acids and/or derivatives thereof that modify these polyolefins include unsaturated compounds having one or more carboxylic acid groups, esters of compounds having carboxylic acid groups and alkyl alcohols, and one or more carboxylic anhydride groups. Examples include unsaturated compounds. Examples of the unsaturated group contained in the unsaturated compound include a vinyl group, a vinylene group, and an unsaturated cyclic hydrocarbon group. Unsaturated carboxylic acids and/or derivatives thereof can be used alone or in combination of two or more. Among these, unsaturated dicarboxylic acids or their acid anhydrides are preferred, and maleic acid, nadic acid, or their acid anhydrides are particularly preferred.
  • the amount of structural units derived from unsaturated carboxylic acids and/or derivatives thereof contained in the polyolefin (C) is preferably 0.01 to 5% by mass in terms of structural units derived from maleic anhydride, and 0.05% by mass. More preferably, it is 3.5% by mass.
  • the amount of the structural unit derived from the unsaturated carboxylic acid and/or its derivative is within the above range, a resin composition with excellent balance between moldability and adhesiveness can be obtained.
  • the content ratio of structural units derived from propylene in the structural units excluding the structural units derived from the unsaturated carboxylic acid and/or its derivatives is preferably 90 to 100 mol%, and preferably 95 to 100 mol%. More preferably, it is 100 mol%.
  • the content ratio of the structural unit derived from propylene is within the above range, a resin composition having excellent heat resistance can be obtained.
  • the method for grafting the unsaturated carboxylic acid and/or its derivative is not particularly limited, and conventionally known graft polymerization methods such as a solution method and a melt-kneading method can be employed.
  • the polyolefin (C) may be used alone or in combination of two or more in the resin composition of the present invention.
  • Ethylene polymer (D) The ethylene polymer (D) contains 60 to 100 mol% of structural units derived from ethylene. Specific examples of the ethylene polymer (D) according to the present invention include high-pressure low density polyethylene (D1) and ethylene/ ⁇ -olefin copolymer (D2).
  • the resulting resin composition has particularly excellent moldability during molding processing, and can be used to produce films such as films that have excellent whitening resistance, impact resistance, and transparency during deformation processing in a well-balanced manner. Molded objects can be easily obtained.
  • High pressure low density polyethylene (D1) any known material can be used without restriction.
  • High-pressure low-density polyethylene is generally obtained by radical polymerizing ethylene under high temperature and high pressure, and the manufacturing method thereof is not particularly limited, but for example, 500 to 2000 atm, 150 to 300 atm. Examples include radical polymerization methods in which radical polymerization is carried out under conditions of .degree. C., and examples of the polymerization initiator include organic peroxides.
  • the high-pressure low density polyethylene (D1) preferably has a density in the range of 900 to 925 kg/m 3 , more preferably 910 to 925 kg/m 3 as measured in accordance with ASTM D1505.
  • the high-pressure low-density polyethylene (D1) has a melt flow rate (MFR) measured at 190°C and a load of 2.16 kg in accordance with ASTM D1238, preferably 0.1 g/10 minutes or more, more preferably 0. .5 g/10 minutes or more, particularly preferably 1.0 g/10 minutes or more, preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, particularly preferably 20 g/10 minutes or less.
  • MFR melt flow rate
  • the ethylene/ ⁇ -olefin copolymer (D2) contains at least a structural unit derived from ethylene and a structural unit derived from an ⁇ -olefin having 3 to 20 carbon atoms.
  • the content of structural units derived from ethylene in the ethylene/ ⁇ -olefin copolymer (D2) is 60 to 99 mol%, preferably 65 to 99 mol%, more preferably 70 to 99 mol%, especially Preferably it is 80 to 99 mol%.
  • Ethylene/ ⁇ -olefin copolymer (D2) is characterized by having fewer long chain branched structures than high-pressure low-density polyethylene (D1), and is generally referred to as linear low-density polyethylene (LLDPE). may be done.
  • LLDPE linear low-density polyethylene
  • the content of the structural unit derived from an ⁇ -olefin having 3 to 20 carbon atoms in the ethylene/ ⁇ -olefin copolymer (D2) is 1 to 40 mol%, preferably 1 to 35 mol%, more It is preferably 1 to 30 mol%, particularly preferably 1 to 20 mol%.
  • contents are based on the total of 100 mol% of the structural units derived from ethylene and ⁇ -olefin having 3 to 20 carbon atoms.
  • a molded article such as a film that is excellent in whitening resistance during deformation processing, impact resistance, and flexibility in a well-balanced manner can be easily obtained from the resulting resin composition.
  • Examples of the ⁇ -olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 1-heptene, Examples include 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-nonadecene, and 1-eicosene.
  • ⁇ -olefins having 3 to 10 carbon atoms are preferred, ⁇ -olefins having 3 to 8 carbon atoms are more preferred, propylene, 1-butene, and 1-octene are even more preferred, and propylene is particularly preferred.
  • the ⁇ -olefin having 3 to 20 carbon atoms may be used alone or in combination of two or more.
  • the ethylene/ ⁇ -olefin copolymer (D2) may contain one or more structural units derived from other polymerizable monomers to the extent that the object of the present invention is not impaired. You can leave it there.
  • Such other polymerizable monomers include, for example, vinyl compounds such as styrene, vinylcyclopentene, vinylcyclohexane, and vinylnorbornane; vinyl esters such as vinyl acetate; unsaturated organic acids such as maleic anhydride or derivatives thereof; Examples include non-conjugated polyenes such as dicyclopentadiene, cyclohexadiene, and 5-ethylidene-2-norbornene.
  • ethylene/ ⁇ -olefin copolymer (D2) examples include ethylene/propylene copolymer, ethylene/1-butene copolymer, ethylene/propylene/1-butene copolymer, and ethylene/propylene/ethylidene norbornene. copolymers, ethylene/1-butene/1-octene copolymers, ethylene/4-methyl-1-pentene copolymers, ethylene/1-hexene copolymers, and ethylene/1-octene copolymers. Among these, preferred are, for example, ethylene/propylene copolymer and ethylene/1-butene copolymer.
  • the density of the ethylene/ ⁇ -olefin copolymer (D2) is preferably 840 kg/m 3 or more, more preferably 850 kg/m 3 or more, particularly preferably 855 kg/m 3 or more, and preferably 940 kg/m 3 or less. , more preferably 899 kg/m 3 or less, further preferably 890 kg/m 3 or less, particularly preferably 885 kg/m 3 or less.
  • the density can be measured by density gradient tube method.
  • the MFR of the ethylene/ ⁇ -olefin copolymer (D2) (according to ASTM D1238, measured at 190°C under a load of 2.16 kg) is preferably 0.01 g/10 minutes or more, more preferably 0.1 g/10 minutes. or more, preferably 40 g/10 minutes or less, more preferably 20 g/10 minutes or less, particularly preferably 10 g/10 minutes or less.
  • D2 ethylene/ ⁇ -olefin copolymer
  • the ethylene/ ⁇ -olefin copolymer (D2) has an MFR of 10 measured at 190°C and a load of 10 kg and an MFR of 2.16 measured at 190°C and a load of 2.16 kg in accordance with ASTM D1238.
  • the ratio (MFR 10 /MFR 2.16 ) is preferably 4.0 or more, more preferably 5.0 or more, and preferably 8.0 or less, more preferably 7.0 or less.
  • the ethylene/ ⁇ -olefin copolymer (D2) can be produced by a conventionally known method using a vanadium-based catalyst, a titanium-based catalyst, a metallocene-based catalyst, or the like.
  • a metallocene catalyst a copolymer with narrow molecular weight distribution and composition distribution can be obtained, which is more suitable in terms of mechanical properties, transparency, and impact resistance.
  • the ethylene polymer (D) may be used alone or in combination of two or more in the resin composition of the present invention.
  • the monomers used in producing the above-mentioned propylene polymer (A), 1-butene/ethylene copolymer (B), polyolefin (C), and ethylene polymer (D) are, respectively,
  • the monomer may be any of fossil fuel-derived monomers, biomass-derived monomers, and chemical recycling-derived monomers, and one or more of these may be used in combination.
  • the resin composition of the present invention may include a propylene-ethylene block copolymer, a propylene homopolymer, a propylene-ethylene random copolymer, which has a composition different from that of the present invention, within a range that does not impair the effects of the present invention. It may contain a propylene-ethylene-butene random copolymer, a styrene elastomer, or the like as appropriate.
  • the resin composition of the present invention also includes antioxidants, ultraviolet absorbers, neutralizing agents, nucleating agents, light stabilizers, antistatic agents, anti-blocking agents, lubricants, odor absorbers, antibacterial agents, pigments, inorganic and Known additives such as organic fillers and various synthetic resins can be contained as necessary.
  • the resin composition of the present invention comprises the above-mentioned propylene polymer (A), the 1-butene/ethylene copolymer (B), and a structural unit derived from an unsaturated carboxylic acid and/or a derivative thereof. It contains a polyolefin (C) and an ethylene polymer (D).
  • the resin composition of the present invention can be manufactured using a conventionally known method. For example, it can be manufactured by melt-kneading the above components.
  • the content of the 1-butene/ethylene copolymer (B) in the composition of the present invention is 7 to 38% by mass. When the content is less than 7% by mass, the effect of improving whitening resistance cannot be obtained. Moreover, when the content exceeds 38% by mass, the mechanical properties of the molded article of the composition deteriorate. Further, in the resin composition of the present invention, the content of the polyolefin (C) in the composition is preferably 0.1 to 10% by mass. When the content of the polyolefin (C) in the composition satisfies this range, it becomes possible to develop adhesive strength without impairing the mechanical properties of the composition, and a composition with excellent mechanical properties and adhesive strength can be obtained. .
  • the contents of the propylene polymer (A), 1-butene/ethylene copolymer (B), polyolefin (C), and ethylene polymer (D) in the resin composition of the present invention are as follows: ), 1-butene/ethylene copolymer (B), polyolefin (C) and ethylene polymer (D) total content of 100 parts by mass, propylene polymer (A) 45 to 87.9 parts by mass 1-butene/ethylene copolymer (B) 7 to 38 parts by weight, polyolefin (C) 0.1 to 10 parts by weight, and ethylene polymer (D) 5 to 30 parts by weight.
  • the resin composition of the present invention can also be used for the purpose of the present invention.
  • Other components may be contained within the range that does not impair the properties.
  • Other components include, for example, resin components other than the above components (A) to (D), antioxidants, heat stabilizers, weather stabilizers, slip agents, anti-blocking agents, crystal nucleating agents, pigments, and other additives. can be mentioned.
  • the content of these other components is not particularly limited, but is usually 10 parts by mass or less, preferably 0.01 to 5 parts by mass, based on a total of 100 parts by mass of components (A) to (D). This is within the scope of the department.
  • a biomass-derived raw material may be added to the resin composition of the present invention.
  • the resin composition of the present invention preferably has a Shore D hardness in the range of 20 to 70 as measured in accordance with ASTM D2240.
  • the Shore D hardness (according to ASTM D2244) of the resin composition of the present invention is more preferably from 25 to 65, and even more preferably from 31 to 60.
  • Shore D hardness is an index of crystallinity, and when Shore D hardness is below the upper limit, a composition can be obtained that has low crystallinity, excellent flexibility, and excellent whitening resistance during stretching. When the Shore D hardness is at least the lower limit, a composition with excellent mechanical properties can be obtained.
  • the single-layer and multi-layer films of the present invention are single-layer or multi-layer films containing at least one layer containing the polypropylene resin composition. That is, the single-layer film of the present invention is a film consisting of a layer containing the polypropylene resin composition, and the multilayer film is a multilayer film containing at least one layer containing the polypropylene resin composition.
  • the single-layer and multilayer films of the present invention have excellent whitening resistance during deformation processing. Therefore, when the single-layer and multi-layer films of the present invention are used as food packaging materials, construction materials, exterior materials for lithium ion batteries, etc., whitening is unlikely to occur during secondary processing of the film such as drawing or bending. Therefore, the single-layer and multilayer films of the present invention can be suitably used as films for battery packaging, such as films for food packaging, films for construction materials, and films for packaging pouch-type batteries.
  • polypropylene-based resins have been used as packaging materials for forming the exterior bodies of lithium-ion batteries, but the present invention uses the aforementioned propylene-based polymer (A), 1-butene-ethylene copolymer (B), polyolefin (C), and ethylene polymer (D), it is possible to prevent whitening, which could not be prevented with conventional polypropylene resins.
  • the multilayer film of the present invention includes, for example, at least one layer containing the polypropylene resin composition, and one or both sides of the layer containing the composition is in contact with another layer.
  • layers in contact with the layer containing the composition include a metal-containing layer, a polyolefin layer, and a polar resin layer.
  • the metal-containing layer include an aluminum layer, a copper layer, and a stainless steel layer.
  • the polyolefin layer include a polypropylene layer, a poly4-methylpentene layer, and a polyethylene layer.
  • the polar resin layer include a polyamide layer. , an EVOH (ethylene-vinyl alcohol copolymer resin) layer, a PET (polyethylene terephthalate) layer, a PBT (polybutylene terephthalate) layer, and the like.
  • the single-layer and multilayer films of the present invention can be suitably obtained by melt extrusion molding, etc., and can be manufactured by generally industrial casting methods, inflation methods, extrusion lamination methods, etc.
  • a 0.5 mm thick press sheet (single sheet) was formed using a press molding machine under the following conditions: preheating and pressing temperature: 200°C, preheating time: 6 min, pressure: 10 MPa, pressing time: 4 min, cooling temperature: 20°C, cooling time: 4 min, and pressure: 10 MPa. layer film) was created.
  • a test piece for measurement was prepared by punching out a JIS K6301 No. 2 dumbbell from a press sheet, and when the test piece for measurement was pulled 0 mm and 20 mm at a tensile speed of 200 mm/min at room temperature using a tensile tester ATX manufactured by Shimadzu Corporation.
  • the hue change of the measurement test piece was measured by the reflection method using Konica Minolta CM-3700A. The change in hue when pulled 20 mm from the initial value (0 mm) is defined as ⁇ L.
  • a film with a thickness of 40 ⁇ m was molded from the resin composition described in the Examples or Comparative Examples using an extrusion molding machine equipped with a T-die.
  • the obtained film was sandwiched between aluminum foils having a thickness of 300 ⁇ m and heat-sealed using a heat sealer at 180° C. and 0.1 MPa for 10 seconds to obtain a multilayer film.
  • the obtained multilayer film was cut to a width of 15 mm, and the adhesive strength (unit: N/15 mm) between the aluminum foil and the resin composition layer was measured using a tensile tester using a 180° peel method at room temperature of 23°C. .
  • the content of the structural units derived from propylene in the propylene copolymer, the structural units derived from ⁇ -olefin, and the structural units of the 1-butene/ethylene copolymer (B) can be determined by the following method using 13 C-NMR. The experiment was carried out using the same equipment and conditions. The content of propylene and ⁇ -olefin was quantified using a JECX400P nuclear magnetic resonance apparatus manufactured by JEOL Ltd., using a mixed solvent of heavy orthodichlorobenzene/heavy benzene (80/20% by volume) as the solvent, and a sample concentration of 60 mg/0.
  • pulse width was 4.7 ⁇ s (45° pulse)
  • repetition time was 5.5 seconds
  • number of integration was 128 times
  • chemical shift standard value was carbon signal of butene side chain methylene group at 27.50 ppm.
  • the compositions of 1-butene (C4 content; mol%) and ethylene (C2 content; mol%) were quantified from the obtained 13 C-NMR spectrum.
  • Mw Weight average molecular weight
  • Mw/Mn molecular weight distribution
  • Tm melting point
  • Polyolefin used The polyolefins used in Examples and Comparative Examples are shown below. Incidentally, unless otherwise specified, all polyolefins were prepared by polymerization according to conventional methods.
  • N-hexane was supplied at a rate of 14.2 L/h to one supply port of a continuous polymerization vessel with a volume of 300 liters, and isopropyldene (3-tert-butyl-5-methylcyclopentadienyl) was supplied from the other supply port.
  • main catalyst 1 modified methylaluminoxane and triisobutylaluminum mixed hexane solution
  • main catalyst 1 has a zirconium equivalent concentration of 0.5 mmol/L
  • modified methylaluminoxane has an aluminum equivalent concentration of 4 mmol/L
  • triisobutyl Concentration of aluminum was continuously supplied at 0.22 L/h (total hexane 10 L/h).
  • 1-butene was continuously supplied from another supply port of the polymerization vessel at a rate of 27.0 kg/h, ethylene at 1.0 kg/h, and hydrogen at 0.6 NL/h, at a polymerization temperature of 60°C and a polymerization pressure of 0. Continuous solution polymerization was carried out under conditions of .8 MPaG and residence time of 1.5 hours to obtain a 1-butene/ethylene copolymer (BER-1).
  • Modified PP-1 Modified homopolypropylene (maleic anhydride graft amount 3.0% by mass, intrinsic viscosity [ ⁇ ] 0.4 dl/g)
  • D-2: EPR-1: (80 mol% of structural units derived from ethylene, 20 mol% of structural units derived from propylene, MFR 0.8 g/10 min)
  • Example 1 25.0 parts by mass of PP-1, 42.5 parts by mass of PP-2, 10 parts by mass of BER-1, 5 parts by mass of modified PP-1, 7 parts by mass of D-1, 10. 5 parts by mass were melt-kneaded at 230°C using a single-screw extruder to produce a resin composition.
  • Table 1 shows the MFR of the resin compositions obtained in Examples and Comparative Examples, and the whitening resistance, elastic modulus, and hardness of press sheets made from these resin compositions, as well as the adhesive strength with respect to multilayer films.
  • a multilayer film with excellent whitening resistance, elastic modulus, and adhesiveness can be provided.
  • this multilayer film it is possible to provide a battery exterior material that is excellent in whitening resistance, heat resistance, mechanical properties, durability, and adhesiveness.

Abstract

本発明は、食品包装材、建築用資材及びリチウムイオン電池の外装体等に用いることができる、変形加工時の耐白化性に優れた樹脂組成物、当該樹脂組成物を含む層を含む単層または多層フィルムを提供することを課題とする。 本発明の樹脂組成物は、融点が100℃以上であるプロピレン系重合体(A)と、 1-ブテンから導かれる構成単位(i)の含有量が70~97モル%である1-ブテン・エチレン共重合体(B)と、不飽和カルボン酸及び/又はその誘導体に由来する構造単位を含有するポリオレフィン(C)と、エチレンから導かれる構成単位を60~100モル%含有するエチレン系重合体(D)とを含有し、組成物中の前記1-ブテン・エチレン共重合体(B)の含有量が7~38質量%である。

Description

樹脂組成物ならびに単層および多層フィルム
 本発明は、樹脂組成物ならびに単層および多層フィルムに関し、さらに詳しくは、食品包装材や建築用資材、リチウムイオン電池の外装材等に好適に用いられる単層および多層フィルム、ならびにそれらのフィルムに含有される樹脂組成物に関する。
 従来からポリプロピレンは、剛性、耐熱性、透明性などに優れた熱可塑性成形材料として広く利用されている。このポリプロピレンは非極性材料であるため、例えばエチレン・ビニルアルコール共重合体などの極性材料との接着性に乏しく、接着性改良を目的にポリプロピレンを不飽和カルボン酸又はその誘導体で変性する技術が広く知られている。また、ポリプロピレンは柔軟性に劣るため、接着剤として用いる際は通常、ポリプロピレンに軟質ゴム成分を配合している。
 このようにポリプロピレンに軟質ゴム成分を配合すると、接着性が改善されたポリプロピレン系の接着剤が得られるが(例えば特許文献1及び特許文献2)、一方で軟質ゴム成分は深絞り加工や折り曲げ加工といった2次加工の際に白化の原因となるため、耐白化性の改良も求められていた。特に深絞り加工や折り曲げ加工が必要な具体的な用途としては食品包装材や建築用資材、リチウムイオン電池の包装材等が挙げられる。
 この中でもリチウムイオン電池は近年携帯型電子機器や自動車などへの使用が拡大しており、さらにはリチウムイオン電池では、円筒型や角型タイプの外装材に比べて軽量性、放熱性および賦形性に優れることから、形状の自由度や小型化への対応により、多層フィルムを包装材料としたパウチタイプやエンボスタイプの外装体の使用が拡大している。この多層フィルムからなる包装材料は、少なくとも基材層、金属箔層および熱接着性樹脂層、ならびにこれらの層のうち隣り合う2層を接着する接着剤層から構成される。多層フィルムは形状の自由度が大きいので、これらパウチタイプやエンボスタイプの外装体を製造する際に加工しやすいが、多層フィルムを変形させたときに、変形箇所が白化する場合がある。外装体に白化箇所があると短絡の原因となるので、耐白化性に優れる材料が求められている。
 特許文献3には、基材層と、少なくとも片面に化成処理層を備えた金属箔層と、酸変性ポリオレフィン層と、高融点ポリプロピレン層とエチレン・プロピレンランダムコポリマー層からなるヒートシール層とが、少なくとも順次積層された電池用包装材料において、前記高融点ポリプロピレン層が前記エチレン・プロピレンランダムコポリマー層より前記金属箔層側に配され、融点が150℃以上である電池用包装材料が記載されている。この電池用包装材料においては、融点が150℃以上である高融点ポリプロピレン層をエチレン・プロピレンランダムコポリマー層より金属箔層側に配すことで、過充電等により外装体内部で温度上昇が起きた場合でも、高融点ポリプロピレン層は溶解せず、金属端子と金属箔層との接触が防がれ、内部短絡の発生を抑えることができる。
 特許文献4には、多段重合により得られる、エチレン含量等の特定の条件を満たすプロピレン系重合体成分(A1)とプロピレン-エチレンランダム共重合体成分(A2)とを含むプロピレン-エチレンブロック共重合体(A)からなる電池包装フィルム用ポリプロピレン系樹脂組成物が記載されている。この組成物から形成されるフィルムは、耐熱性、密封性および成形性に優れ、高いシール強度や耐衝撃性を有し、変形加工時の耐白化性や耐クラッキング性などが、バランスよくおしなべて向上されるという効果を有すると記載されている。
特開平9-111069号公報 特開平4-300933号公報 特開2007-273398号公報 特開2015-230777号公報
 しかし、特許文献3に記載の包装材料は電池用途では十分な耐白化性を期待することはできない。また、特許文献4に記載の組成物は、耐白化性に関して要求されるレベルまでには達していないのが実情である。
 本発明は、上記問題点に鑑み、食品包装材、建築用資材及びリチウムイオン電池の外装体等に用いることができる、変形加工時の耐白化性に優れた樹脂組成物、当該樹脂組成物を含む層を含む単層または多層フィルムを提供することを課題としている。
 本発明は、例えば、以下の〔1〕~〔14〕に関する。
〔1〕
 下記(a)を満たすプロピレン系重合体(A)と、
 下記(b-1)を満たす1-ブテン・エチレン共重合体(B)と、
 不飽和カルボン酸及び/又はその誘導体に由来する構造単位を含有するポリオレフィン(C)と、
 エチレンから導かれる構成単位を60~100モル%含有するエチレン系重合体(D)と
を含有し、
 組成物中の前記1-ブテン・エチレン共重合体(B)の含有量が7~38質量%である、樹脂組成物。
 (a)示差走査熱量測定において観測される融点が100℃以上である。
 (b-1)1-ブテンから導かれる構成単位(i)およびエチレンから導かれる構成単位(ii)の合計を100モル%としたとき、前記構成単位(i)の含有量が70~97モル%、前記構成単位(ii)の含有量が3~30モル%の範囲にある。
〔2〕
 前記プロピレン系重合体(A)45~87.9質量部と、
 前記1-ブテン・エチレン共重合体(B)7~38質量部と、
 前記ポリオレフィン(C)0.1~10質量部と、
 前記エチレン系重合体(D)5~30質量部(ただし、(A)、(B)、(C)および(D)の合計を100質量部とする)を含む、〔1〕に記載の樹脂組成物。
〔3〕
 前記ポリオレフィン(C)が不飽和カルボン酸及び/又はその誘導体に由来する構造単位を無水マレイン酸由来の構造単位換算で0.01~5質量%含有し、
 さらに、前記ポリオレフィン(C)において、前記不飽和カルボン酸及び/又はその誘導体に由来する構造単位を除いた構造単位中におけるプロピレン由来の構造単位の含有比率が90~100モル%である、〔1〕または〔2〕に記載の樹脂組成物。
〔4〕
 1-ブテン・エチレン共重合体(B)の、13C-NMRにより算出したアイソタクティックペンダット分率(mmmm)が80~99.9%の範囲にある、〔1〕~〔3〕のいずれかに記載の樹脂組成物。
〔5〕
 1-ブテン・エチレン共重合体(B)の重量平均分子量(Mw)が100,000~600,000である、〔1〕~〔4〕のいずれかに記載の樹脂組成物。
〔6〕
 ASTM D2240に準拠して測定したショアD硬度が20~70の範囲である、〔1〕~〔5〕のいずれかに記載の樹脂組成物。
〔7〕
 〔1〕~〔6〕のいずれかに記載の樹脂組成物を含む層を少なくとも1層含む、単層または多層フィルム。
〔8〕
 〔1〕~〔6〕のいずれかに記載の樹脂組成物を含む層を少なくとも1層含み、さらに前記樹脂組成物を含む層の両面が他の層と接している多層フィルム。
〔9〕
 〔1〕~〔6〕のいずれかに記載の樹脂組成物を含む層を少なくとも1層含み、さらに前記樹脂組成物を含む層の片面または両面が、金属含有層、ポリオレフィン層および極性樹脂層のうちの少なくとも1層と接している多層フィルム。
〔10〕
 食品包装用フィルムである、〔7〕に記載の単層または多層フィルム、あるいは〔8〕または〔9〕に記載の多層フィルム。
〔11〕
 建築資材用フィルムである、〔7〕に記載の単層または多層フィルム、あるいは〔8〕または〔9〕に記載の多層フィルム。
〔12〕
 電池包装用フィルムである、〔7〕に記載の単層または多層フィルム、あるいは〔8〕または〔9〕に記載の多層フィルム。
〔13〕
 パウチ型電池包装用フィルムである、〔7〕に記載の単層または多層フィルム、あるいは〔8〕または〔9〕に記載の多層フィルム。
〔14〕
 〔1〕~〔6〕のいずれかに記載の樹脂組成物を溶融押出成形する工程を有する、単層又は多層フィルムの製造方法。
 本発明の樹脂組成物から形成される層を含む単層または多層フィルムは、変形加工時の耐白化性に優れており、食品包装材や建築用資材及びリチウムイオン電池等の電池の外装体等を形成する包装材料として好適に用いることができる。
 以下、本発明について具体的に説明する。
 本発明において、数値範囲を表す「X~Y」の記載は、特に断りのない限り、端点である下限および上限を含む数値範囲を意味する。また、数値範囲が段階的に記載されている場合、各数値範囲の上限および下限は任意に組み合わせることができる。
<樹脂組成物>
 本発明の樹脂組成物は、プロピレン系重合体(A)と、1-ブテン・エチレン共重合体(B)と、不飽和カルボン酸及び/又はその誘導体に由来する構造単位を含有するポリオレフィン(C)と、エチレン系重合体(D)とを含有する。
プロピレン系重合体(A)
 プロピレン系重合体(A)としては、プロピレン単独重合体、またはプロピレンと少なくとも1種のプロピレン以外の炭素原子数が2~20のα-オレフィンとの共重合体を挙げることができる。ここで、プロピレン以外の炭素原子数が2~20のα-オレフィンとしては、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられ、エチレンまたは炭素原子数が4~10のα-オレフィンが好ましい。
 プロピレンとこれらα-オレフィンとの共重合体は、ランダム共重合体でもよく、ブロック共重合体でもよい。これらのα-オレフィンから導かれる構造単位は、α-オレフィンとプロピレンとの共重合体中に35モル%以下、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは10モル%以下、特に好ましくは5モル%以下の割合で含むことができる。
 本発明に係るプロピレン系重合体(A)は、下記要件(a)を満たす。
(a)示差走査熱量測定において観測される融点が100℃以上である。
 前記融点は、好ましくは100~170℃、より好ましくは120~165℃である。
 プロピレン系重合体(A)は、ASTM D 1238 に準拠して230℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.01~1000g/10分、好ましくは0.05~100g/10分の範囲にあることが望ましい。
 前記プロピレン系重合体(A)はアイソタクティック構造、シンジオタクティック構造のどちらでもよく、後述するように1-ブテン・エチレン共重合体(B)との相容性を考慮していずれかの構造を選択することができる。
 つまり、前記プロピレン系重合体(A)の形態としてアイソタクティックプロピレン系重合体(A1)およびシンジオタクティックプロピレン系重合体(A2)が挙げられる。
 アイソタクティックプロピレン系重合体(A1)としては、耐熱性に優れるホモポリプロピレン、たとえば通常プロピレン以外の共重合成分が3mol%以下である公知のホモポリプロピレン、耐熱性と柔軟性とのバランスに優れるブロックポリプロピレン、たとえば通常3~30質量%のノルマルデカン溶出ゴム成分を有する公知のブロックポリプロピレン、および柔軟性と透明性とのバランスに優れるランダムポリプロピレン、たとえば通常示差走査熱量計DSCにより測定される融解ピークが100℃以上、好ましくは110℃~150℃の範囲にある公知のランダムポリプロピレンが挙げられ、目的の物性を得るためにこれらの中から適宜選択することができ、または融点や剛性の異なる2種類以上の前記ポリプロピレン成分を併用することが可能である。
 このようなアイソタクティックプロピレン系重合体(A1)は、例えばマグネシウム、チタン、ハロゲンおよび電子供与体を必須成分として含有する固体触媒成分と有機アルミニウム化合物および電子供与体からなるチーグラー触媒系、またはメタロセン化合物を触媒の一成分として用いたメタロセン触媒系で、プロピレンを重合あるいはプロピレンと他のα-オレフィンとを共重合することにより製造することができる。
 シンジオタクティックプロピレン系重合体(A2)は、プロピレンから導かれる構造単位90mol%以上と、エチレンおよび炭素原子数4~20のα-オレフィンから選ばれる一種以上から導かれる構造単位を10mol%以下含み、好ましくはプロピレンから導かれる構造単位91mol%以上と、エチレンおよび炭素原子数4~20のα-オレフィンから選ばれる一種以上から導かれる構造単位を9mol%以下含む(但し、両者の構造単位の合計を100mol%とする)。
 エチレンおよび炭素原子数4~20のα-オレフィンとしては、エチレン、1-ブテン、3-メチル-1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられる。
 シンジオタクティックプロピレン系重合体(A2)は、例えば国際公開番号WO2011/078054号に記載されているような手法を用いて製造することができる。
 プロピレン重合体(A)は、本発明の樹脂組成物中において、1種単独で用いられてもよく、2種以上組み合わせて用いられてもよい。
1-ブテン・エチレン共重合体(B)
 1-ブテン・エチレン共重合体(B)は、下記要件(b-1)を満たす。
(b-1)1-ブテンから導かれる構成単位(i)およびエチレンから導かれる構成単位(ii)の合計を100モル%としたとき、前記構成単位(i)の含有量が70~97モル%、前記構成単位(ii)の含有量が3~30モル%の範囲にある。
 また、1-ブテン・エチレン共重合体(B)は、下記要件(b-2)~(b-5)の少なくとも1つを満たすことが好ましい。
(b-2)13C-NMRにより算出したアイソタクティックペンダット分率(mmmm)が80~99.9%の範囲にある。
(b-3)135℃、デカリン溶媒中の極限粘度[η]が0.7~2.5dl/gの範囲にある。
(b-4)ASTM D1238に準拠し、190℃、2.16kg荷重で測定したメルトフローレート(MFR)が1~100g/10分の範囲にある。
(b-5)重量平均分子量(Mw)が100,000~600,000である。
 以下、1-ブテン・エチレン共重合体(B)に係るこれらの要件等を詳説する。
(要件(b-1))
(b-1):1-ブテンから導かれる構成単位(i)およびエチレンから導かれる構成単位(ii)の合計を100モル%としたとき、前記構成単位(i)の含有量が70~97モル%、前記構成単位(ii)の含有量が3~30モル%の範囲にある。
 本発明に係る1-ブテン・エチレン共重合体(B)は、1-ブテンから導かれる構成単位の量の下限値は70モル%である。その構成単位の下限値は75モル%であることが好ましく、80モル%であることがより好ましく、83モル%であることがさらに好ましく、85モル%であることが特に好ましい。
 一方、1-ブテンから導かれる構成単位の量の上限値は、97モル%であるが、96モル%であることが好ましく、95モル%であることがより好ましく、94モル%であることがさらに好ましく、90.5モル%であることが特に好ましい。
 本発明に係る1-ブテン・エチレン共重合体(B)は、エチレンから導かれる構成単位(ii)の量の上限値は30モル%である。この構成単位の上限値は25モル%であることが好ましく、20モル%であることがより好ましく、17モル%であることがさらに好ましく、15モル%であることが特に好ましい。
 一方、エチレンから導かれる構成単位(ii)の量の下限値は、3モル%であるが、4モル%であることが好ましく、5モル%であることがより好ましく、6モル%であることがさらに好ましく、9.5モル%であることが特に好ましい。
 本発明に係る1-ブテン・エチレン共重合体(B)は、エチレンから導かれる構成単位(ii)の量を上記範囲内にすることで、プロピレン系重合体(A)との良好な相溶性を得ることができる。エチレンから導かれる構成単位の上限値以下にあると、機械強度に優れ、例えば包装材として使用した場合、接着強度に優れ、フィルムの耐久性が向上するため好ましい。また、下限値以上にあると適切な結晶化速度となり、例えば、成形加工時に成形条件が広がり成形性が向上するため好ましく、包装材として使用した場合にはプロピレン系重合体(A)と組み合わせた場合に延伸時や変形加工時の耐白化性に優れるために好ましい。
 前記1-ブテン・エチレン共重合体(B)を構成する各構成単位の含有率(モル%)の値は、13C-NMRにより測定される。なお、測定方法の詳細については、後述の実施例に記載する内容のとおりである。
(要件(b-2))
(b-2):13C-NMRにより算出したアイソタクティックペンダット分率(mmmm)が80~99.9%の範囲にある。
 本発明に係る1-ブテン・エチレン共重合体(B)は、アイソタクティックペンタッド分率(mmmm)の下限値は85%であることが好ましく、90%であることがより好ましく、95%以上であることが更に好ましい。また、前記アイソタクティックペンタッド分率(mmmm)の上限値は99.5%であることが好ましく、99.0%であることがより好ましい。アイソタクティックペンタッド分率(mmmm)を上記範囲にすることで、エチレンを共重合し、後述のプロピレン系共重合体(B)との相溶性をコントロールした場合も、適切な機械強度や柔軟性に設計することが可能となる。
 なお、アイソタクティックペンタッド分率(mmmm)の測定方法の詳細については、後述の実施例に記載する内容のとおりである。
(要件(b-3))
(b-3):135℃、デカリン溶媒中の極限粘度[η]が0.7~2.5dl/gの範囲にある。
 本発明に係る1-ブテン・エチレン共重合体(B)の極限粘度[η]は、0.8~2.3dl/gであることがより好ましく、0.9~2.25dl/gであることがさらに好ましく、1.0~2.2dl/gであることが特に好ましい。極限粘度[η]が前記範囲にある1-ブテン・エチレン共重合体(B)は、流動性と機械強度のバランスが優れる。
 例えば、1-ブテン・エチレン共重合体(B)を含有することにより、機械特性に優れる成形体を容易に得ることができ、成形のしやすさと包装材の耐久性を両立でき好ましい。
(要件(b-4))
(b-4):ASTM D1238に準拠し、190℃、2.16kg荷重で測定したメルトフローレート(MFR)が1~100g/10分の範囲にある。
 本発明に係る1-ブテン・エチレン共重合体(B)のMFRは、1~50g/10分であることが好ましく、1~30g/10分であることがより好ましく、1~10g/10分であることがさらに好ましく、2~8g/10分であることが特に好ましい。
 1-ブテン・エチレン共重合体(B)のMFRが前記範囲にあると、流動性が良好で、また、得られる成形体は機械特性が良好である。
 MFRが下限値以上にあると、流動性を有し、1-ブテン・エチレン共重合体(B)を含有する組成物は、高速での成形に適している。MFRが上限値以下にあると、1-ブテン・エチレン共重合体(B)を含有する組成物は、機械特性に優れ、接着強度や耐久性に優れるため好ましい。
(要件(b-5))
(b-5):重量平均分子量(Mw)が100,000~600,000である。
 本発明に係る1-ブテン・エチレン共重合体(B)は、重量平均分子量(Mw)が、好ましくは100,000~550,000である。
 本発明に係る1-ブテン・エチレン共重合体(B)は、成形性が求められる場合において、重量平均分子量 (Mw)が100,000~520,000であることがより好ましく、100,000~500,000であることがさらに好ましく、100,000~490,000であることが特に好ましい。重量平均分子量が前記範囲にあると1-ブテン・エチレン共重合体(B)を含有する樹脂組成物は、流動性の観点で高速での成形性に適している。
 また本発明に係る1-ブテン・エチレン共重合体(B)は、機械強度が求められる場合において、重量平均分子量(Mw)が150,000~600,000であることがより好ましく200,000~600,000であることがさらに好ましく、202,000~600,000であることが特に好ましい。重量平均分子量が前記範囲にあると機械特性に優れる樹脂組成物を容易に得ることができる。
 さらに本発明に係る1-ブテン・エチレン共重合体(B)は、分子量分布(Mw/Mn)が好ましくは1.5~3.0であり、より好ましくは1.6~2.8である。Mw/Mnは、GPC法で測定される、ポリスチレン換算の値である。Mw/Mnが前記範囲にある1-ブテン・エチレン共重合体(B)は、機械強度を低下させる低分子量成分が少なく、流動性を悪化させる高分子量成分も少ないため好ましい。
 1-ブテン・エチレン共重合体(B)は、その一部が極性モノマーによりグラフト変性されていてもよい。極性モノマーとしては、水酸基含有エチレン性不飽和化合物、アミノ基含有エチレン性不飽和化合物、エポキシ基含有エチレン性不飽和化合物、芳香族ビニル化合物、不飽和カルボン酸あるいはその誘導体、ビニルエステル化合物、塩化ビニルなどが挙げられる。変性した1-ブテン・エチレン共重合体(B)は、上記のような1-ブテン・エチレン共重合体(B)に、極性モノマーをグラフト重合させることにより得られる。1-ブテン・エチレン共重合体(B)に、上記のような極性モノマーをグラフト重合させる際には、極性モノマーは、1-ブテン・エチレン共重合体(B)100質量部に対して、通常1~100質量部、好ましくは5~80質量部の量で使用される。このグラフト重合は、通常ラジカル開始剤の存在下に行なわれる。ラジカル開始剤としては、有機過酸化物あるいはアゾ化合物などを用いることができる。ラジカル開始剤は、1-ブテン・エチレン共重合体(B)および極性モノマーとそのまま混合して使用することもできるが、少量の有機溶媒に溶解してから使用することもできる。この有機溶媒としては、ラジカル開始剤を溶解し得る有機溶媒であれば特に限定することなく用いることができる。また1-ブテン・エチレン共重合体(B)に極性モノマーをグラフト重合させる際には、還元性物質を用いてもよい。還元性物質を用いると、極性モノマーのグラフト量を向上させることができる。
 1-ブテン・エチレン共重合体(B)の極性モノマーによるグラフト変性は、従来公知の方法で行うことができ、たとえば1-ブテン・エチレン共重合体(B)を有機溶媒に溶解し、次いで極性モノマーおよびラジカル開始剤などを溶液に加え、70~200℃、好ましくは80~190℃の温度で、0.5~15時間、好ましくは1~10時間反応させることにより行うことができる。また押出機などを用いて、無溶媒で、1-ブテン・エチレン共重合体(B)と極性モノマーとを反応させて、変性した1-ブテン・エチレン共重合体(B)を製造することもできる。この反応は、通常、1-ブテン・エチレン共重合体(B)の融点以上、具体的には120~250℃の温度で、通常0.5~10分間行なわれることが望ましい。
 このようにして得られる変性1-ブテン・エチレン共重合体の変性量(極性モノマーのグラフト量)は、通常0.1~50質量%、好ましくは0.2~30質量%、さらに好ましくは0.2~10質量%であることが望ましい。
 本発明のプロピレン系重合体組成物に1-ブテン・エチレン共重合体(B)として上記の変性1-ブテン・エチレン共重合体が含まれると、他の樹脂との接着性、相溶性に優れ、成形体表面の濡れ性が改良される場合がある。
 1-ブテン・エチレン共重合体(B)は、本発明の樹脂組成物中において、1種単独で用いられてもよく、2種以上組み合わせて用いられてもよい。
 <1-ブテン・エチレン共重合体(B)の製造方法>
 本発明に係る1-ブテン・エチレン共重合体(B)を得る方法としては、チーグラー・ナッタ系触媒、メタロセン系触媒などの触媒の存在下に、モノマーを気相法、バルク法、スラリー法などの公知の重合法により重合することが例示される。なかでも、重合物の分子量分布および組成分布が狭く、機械強度と柔軟性のバランスに優れた成形体を設計可能となるだけでなく、特に後述のプロピレン系重合体(A)と組み合わせた場合良好な相溶性を得ることができ、また結晶化速度の遅延が可能となる点で、反応を均一に制御できるメタロセン触媒を用いることが好ましく、下記の一般式(1)または(2)で表されるメタロセン化合物(F)を用いて重合することが特に好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 上記一般式(1)または(2)のR1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12は水素、炭化水素基、ケイ素含有炭化水素基から選ばれ、それぞれ同一でも異なっていてもよい。
 炭化水素基としては、好ましくは炭素原子数1~20のアルキル基、炭素原子数7~20のアリールアルキル基、炭素原子数6~20のアリール基、または炭素原子数7~20のアルキルアリール基であり、1つ以上の環構造を含んでいてもよい。その具体例としては、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-メチルプロピル、1,1,2,2-テトラメチルプロピル、sec-ブチル、tert-ブチル等が挙げられる。
 ケイ素含有炭化水素基としては、好ましくはケイ素数1~4かつ炭素原子数3~20のアルキルシリル基またはアリールシリル基であり、その具体例としては、トリメチルシリル、tert-ブチルジメチルシリル、トリフェニルシリル等が挙げられる。
 なお、R2は立体的に嵩高い炭化水素基、ケイ素含有炭化水素基であること、即ち2級、3級の置換基が好ましく、炭素原子数4以上の置換基であることがより好ましい。具体的な炭化水素機としては、イソプロピル、1,1-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-メチルプロピル、1,1,2,2-テトラメチルプロピル、sec-ブチル、tert-ブチル、1,1-ジメチルブチルなどが挙げられる。特に好ましくはtert-ブチルである。ケイ素含有炭化水素機は上記化合物の一部または全部の炭素がケイ素に置換された構造の化合物を例示できる。
 フルオレン環上のR5からR12までの隣接した置換基は、互いに結合して環を形成してもよい。そのような置換フルオレニル基として、ベンゾフルオレニル、ジベンゾフルオレニル等を挙げることができる。また、フルオレン環上のR5からR12の置換基は、合成上の容易さから左右対称、すなわちR5=R12、R6=R11、R7=R10、R8=R9であることが好ましく、無置換フルオレン、3,6-二置換フルオレン、2,7-二置換フルオレンまたは2,3,6,7-四置換フルオレンであることがより好ましい。ここでフルオレン環上の3位、6位、2位、7位はそれぞれR7、R10、R6、R11に対応する上記一般式(1)のR3とR4は、水素、炭化水素基から選ばれ、それぞれ同一でも異なっていてもよい。好ましい炭化水素基の具体例としては、上記と同様のものを挙げることができる。Yは炭素またはケイ素である。一般式(1)の場合は、R13とR14はYと結合し、架橋部として置換メチレン基または置換シリレン基を構成する。好ましい具体例として、例えば、メチレン、ジメチルメチレン、ジイソプロピルメチレン、メチルtert-ブチルメチレン、ジシクロヘキシルメチレン、メチルシクロヘキシルメチレン、メチルフェニルメチレン、ジフェニルメチレンまたはジメチルシリレン、ジイソプロピルシリレン等を挙げることができる。より好ましいYは炭素である。
 一般式(1)または(2)のR2がtert-ブチル基の時に、R1がメチルまたはエチル基であることが好ましく、好ましくはメチル基である。この時の一般式(1)のR3、R4はメチルまたはフェニル基であり、好ましくはメチル基である。またR3、R4は互いに同一であることが好ましい。更に前記一般式(1)のR2がtert-ブチル基、R1がメチル基の時に、R5~R12が水素であるものでも良い。
 更に前記一般式(1)のR2がtert-ブチル基、R1がエチル基の時に、R5、R7、R8、R9、R10、R12が水素であり、R6、R11がtert-ブチル基であるものが好適に使用される。
 一般式(2)の場合は、Yは一部不飽和結合及び/または芳香族環を含んでいてもよい炭素原子数2~20の2価の炭化水素基Aと結合し、シクロアルキリデン基またはシクロメチレンシリレン基等を構成する。好ましい具体例として、例えば、シクロプロピリデン、シクロブチリデン、シクロペンチリデン、シクロヘキシリデン等を挙げることができる。
 一般式(1)及び(2)のMは、周期表第4族から選ばれる金属であり、Mとしてはチタニウム、ジルコニウム、ハフニウムが挙げられる。Qはハロゲン、炭素原子数1~20の炭化水素基、アニオン配位子、または孤立電子対で配位可能な中性配位子から同一または異なる組み合わせで選ばれる。ハロゲンの具体例としては、フッ素、塩素、臭素、ヨウ素であり、炭化水素基の具体例としては、上記と同様のものを挙げることができる。アニオン配位子の具体例としては、メトキシ、tert-ブトキシ、フェノキシ等のアルコキシ基、アセテート、ベンゾエート等のカルボキシレート基、メシレート、トシレート等のスルホネート基等が挙げられる。孤立電子対で配位可能な中性配位子の具体例としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、またはテトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタン等のエーテル類が挙げられる。これらのうち、Qは同一でも異なった組み合わせでもよいが、少なくとも一つはハロゲンまたはアルキル基であるのが好ましい。
 本発明に係る1-ブテン・エチレン共重合体(B)を製造する際の重合に用いるオレフィン重合用触媒は、上述した一般式(1)または一般式(2)で表されるメタロセン化合物(F)に加えて、有機アルミニウムオキシ化合物(G-1)、前記メタロセン化合物(F)と反応してイオン対を形成する化合物(G-2)、及び有機アルミニウム化合物(G-3)から選ばれる少なくとも1種の化合物(G)を含むことが好ましく、さらに必要に応じて、粒子状担体(H)を含んでもよい。
 用いられる有機アルミニウムオキシ化合物(G-1)としては、従来公知のアルミノキサンをそのまま使用できる。
 メタロセン化合物(F)と反応してイオン対を形成する化合物(G-2)(以下、「イオン性化合物」と略称する場合がある。)としては、特表平1-501950号公報や特開2004-51676号公報などに記載されたルイス酸、イオン性化合物、ボラン化合物及びカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物及びイソポリ化合物も挙げることができる。
 具体的には、トリフェニルボロン、トリス(o-トリル)ボロン、トリス(p-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロン、トリメチルボロン、トリイソブチルボロン;トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロンなどのフッ素含有アリール基を有する化合物などのハロゲン含有アリール基を有する化合物;トリフルオロボロンが例示される。
 有機アルミニウム化合物(G-3)としては、例えば下記一般式(3)で表される有機アルミニウム化合物などを挙げることができる。
   RamAl(ORb)Hpq・・・(3)
 (式中、Ra及びRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Qはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
 このような化合物の具体例として、トリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド、イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシドなどのアルキルアルミニウムアルコキシドなどを挙げることができる。
 有機アルミニウム化合物(G-3)としては、トリメチルアルミニウム、トリエチルアルミニウム、トリオクチルアルミニウム等のトリn-アルキルアルミニウムや、トリイソブチルアルミニウム等のトリ分岐鎖アルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリイソブチルアルミニウムが好ましく用いられる。
 本発明では、1-ブテン・エチレン共重合体(B)の重合は、溶解重合、懸濁重合などの液相重合法または気相重合法いずれにおいても実施できる。液相重合法においては、不活性炭化水素溶媒を用いてもよく、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、などの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素またはこれらの混合物などを挙げることができる。また1-ブテンを含んだオレフィン類自身を溶媒とする塊状重合を実施することもできる。
 重合を行うに際して、メタロセン化合物(F)は、反応容積1リットル当り、周期律表第4族金属原子換算で通常10-8~10-2モル、好ましくは10-7~10-3モルとなるような量で用いられる。有機アルミニウムオキシ化合物(G-1)は、メタロセン化合物(F)中の遷移金属原子(M)とのモル比[(G-1)/M]が、通常0.01~5000、好ましくは0.05~2000となるような量で用いられる。イオン性化合物(G-2)は、メタロセン化合物(F)中の遷移金属原子(M)とのモル比[(G-2)/M]が、通常1~10、好ましくは1~5となるような量で用いられる。有機アルミニウム化合物(G-3)は、メタロセン化合物(F)中の遷移金属原子(M)とのモル比[(G-3)/M]が、通常10~5000、好ましくは20~2000となるような量で用いられる。
 重合温度は、通常-50~200℃、好ましくは0~100℃、より好ましくは20~100℃の範囲である。重合温度が低すぎると単位触媒あたりの重合活性や熱回収効率などの面で、工業的には不利な傾向がある。
 重合圧力は、通常常圧~10MPaゲージ圧、好ましくは常圧~5MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
 重合に際して生成する1-ブテン・エチレン共重合体(A)の分子量や重合活性を制御する目的で水素を添加することができ、その量は1-ブテン・エチレン共重合体(A)1kgあたり0.001~100NL程度が適当である。
不飽和カルボン酸及び/又はその誘導体に由来する構造単位を含有するポリオレフィン(C)
 本発明に係る不飽和カルボン酸及び/又はその誘導体に由来する構造単位を含有するポリオレフィン(C)(以下、「ポリオレフィン(C)」ともいう)は、ポリオレフィンを不飽和カルボン酸及び/又はその誘導体で変性して得られ、その不飽和カルボン酸及び/又はその誘導体に由来する構造単位を含有する。
 変性を受けるポリオレフィンとしては、たとえばポリプロピレン(c1)、エチレン・プロピレン・α-オレフィン共重合体(c2)およびエチレン・α-オレフィン共重合体(c3)を挙げることができる。
 ポリオレフィン(C)は、1種単独でも、2種以上の混合物であってもよい。たとえば、ポリプロピレン(c1)の変性体、エチレン・プロピレン・α-オレフィン共重合体(c2)の変性体およびエチレン・α-オレフィン共重合体(c3)の変性体のいずれか1種、またはこれら2種以上の混合物であってよい。
 ポリプロピレン(c1)は、たとえばプロピレンの単独重合体および/またはプロピレン・α-オレフィン共重合体である。α-オレフィンとしては、限定されないが、好ましくはエチレンおよび炭素数4~20のα-オレフィンが挙げられ、これらのα-オレフィンは、1種単独でも2種以上であってもよい。好ましいα-オレフィンとしては、エチレン、炭素数4~10のα-オレフィンであり、中でも特にエチレンおよび炭素数4~8のα-オレフィンが好適である。ここで、プロピレン・α-オレフィン共重合体における、プロピレンから導かれる構造単位の含有量は少なくとも50モル%以上であり、100%未満である。
 ポリプロピレン(c1)の極限粘度[η]は、0.1~10dl/gであることが好ましい。このようなポリプロピレン(c1)を変性して得られるポリオレフィン(C)の極限粘度[η]は、好ましくは0.1~6dl/gである。極限粘度[η]がこの範囲にあると、成形性と機械強度に優れる組成物を得ることができる。
 ポリプロピレン(c1)の製造方法は、特に限定されるものではなく、チーグラ・ナッタ触媒、メタロセン系触媒等の周知の触媒を用いた周知の方法が挙げられる。
 ポリプロピレン(c1)としては、結晶性の重合体が好ましく、共重合体の場合には、ランダム共重合体であっても、ブロック共重合体であってもよい。更に、成形性を満足し、成形体としたときの使用に耐えうる強度を有するものであれば、立体規則性、分子量についても特段の制限はない。市販の樹脂をそのまま利用することも可能である。
 ポリプロピレン(c1)は、たとえばホモポリプロピレンまたはプロピレン・α-オレフィンランダム共重合体である。また、幾つかの異なるアイソタクティックポリプロピレンを含有していてもよい。
 エチレン・プロピレン・α-オレフィン共重合体(c2)は、エチレンと、プロピレンと、炭素数4以上のα-オレフィンとの共重合体であって、たとえば下記の(i)および(ii)で規定される要件を満たす。
(i)プロピレン由来の構造単位を45~90モル%,エチレン由来の構造単位を10~25モル%,炭素数4~20のα-オレフィン由来の構造単位を1~30モル%含有する。
(ii)135℃デカリン中での極限粘度[η]が、0.1~10dl/gの範囲にある。
 前記α-オレフィンとしては、炭素数4~10のα-オレフィンが好適に使用でき、1種単独でもよく2種以上でもよい。各モノマー由来の構造単位の比率については、プロピレン50~85モル%、エチレン10~22モル%、α-オレフィン5~28モル%が好ましく、プロピレン55~80モル%、エチレン10~20モル%、α-オレフィン10~28モル%が更に好ましい。
 (ii)については、極限粘度[η]は0.5~8dl/gの範囲であることがより好ましく、0.8~6dl/gの範囲にあるとさらに好ましい。このようなエチレン・プロピレン・α-オレフィン共重合体(c2)を変性して得られるポリオレフィン(C)の極限粘度[η]は、好ましくは0.5~8dl/g、より好ましくは0.8~6dl/gである。極限粘度[η]が上記の範囲にあると、柔軟性と機械強度とのバランスが優れ、接着性に優れた樹脂組成物を得ることができる。
 エチレン・プロピレン・α-オレフィン共重合体(c2)の製造方法としては、特に限定されず、チーグラ・ナッタ触媒、メタロセン系触媒等の周知の触媒を用いた周知の方法にて製造することができる。
 エチレン・プロピレン・α-オレフィン共重合体(c2)は、成形性を満足し、成形体としたときの使用に耐えうる強度を有するものであれば、立体規則性、分子量についても特段の制限はない。市販の樹脂をそのまま利用することも可能である。
 エチレン・α-オレフィン共重合体(c3)は、エチレンとα-オレフィンとの共重合体であって、たとえば下記の(iii)および(iv)で規定される要件を満たす。
(iii)エチレン由来の構造単位を50~99モル%,炭素数3~20のα-オレフィン由来の構造単位を1~50モル%含有する。
(iv)135℃デカリン中での極限粘度[η]が、0.1~10dl/gの範囲にある。
 α-オレフィンとしては、炭素数3~10のα-オレフィンがより好適であり、1種単独でもよく2種以上でもよい。各モノマー由来の構造単位の比率については、エチレン55~98モル%、α-オレフィン2~45モル%が好ましく、エチレン60~95モル%、α-オレフィン5~40モル%が更に好ましい。
 (iv)については、極限粘度[η]は0.5~8dl/gの範囲にあることがより好ましく、0.8~6dl/gの範囲にあるとさらに好ましい。このようなエチレン・α-オレフィン共重合体(c3)を変性して得られるポリオレフィン(C)の極限粘度[η]は、好ましくは0.5~8dl/g、より好ましくは0.8~6dl/gである。極限粘度[η]が上記の範囲にあると、柔軟性と機械強度とのバランスに優れ、接着性に優れた樹脂組成物を得ることができる。
 エチレン・α-オレフィン共重合体(c3)の製造方法としては、特に限定されるものではなく、チーグラ・ナッタ触媒、メタロセン系触媒等の周知の触媒を用いた周知の方法が挙げられる。
 エチレン・α-オレフィン共重合体(c3)は、成形性に優れ、フィルム等の成形体としたときの使用に耐えうる強度を確保できれば、立体規則性、分子量についても特段の制限はない。エチレン・α-オレフィン共重合体(c3)は、市販の樹脂をそのまま利用することも可能である。
 これらのポリオレフィンを変性する不飽和カルボン酸および/またはその誘導体としては、カルボン酸基を1以上有する不飽和化合物、カルボン酸基を有する化合物とアルキルアルコールとのエステル、無水カルボン酸基を1以上有する不飽和化合物等を挙げることができる。不飽和化合物が有する不飽和基としては、ビニル基、ビニレン基、不飽和環状炭化水素基などを挙げることができる。不飽和カルボン酸および/またはその誘導体は、1種単独で使用することもできるし、2種以上を組み合せて使用することもできる。これらの中では、不飽和ジカルボン酸またはその酸無水物が好適であり、特にマレイン酸、ナジック酸またはこれらの酸無水物が好ましい。
 ポリオレフィン(C)が含有する不飽和カルボン酸及び/又はその誘導体に由来する構造単位の量は、無水マレイン酸由来の構造単位換算で0.01~5質量%であることが好ましく、0.05~3.5質量%であることがより好ましい。不飽和カルボン酸及び/又はその誘導体に由来する構造単位の量が前記範囲内であると、成形性と接着性のバランスに優れる樹脂組成物を得ることができる。
 ポリオレフィン(C)において、前記不飽和カルボン酸及び/又はその誘導体に由来する構造単位を除いた構造単位中におけるプロピレン由来の構造単位の含有比率は90~100モル%であることが好ましく、95~100モル%であることがより好ましい。プロピレン由来の構造単位の含有比率が前記範囲内であると、耐熱性に優れる樹脂組成物を得ることができる。
 不飽和カルボン酸および/またはその誘導体をグラフトさせる方法については、特に限定されず、溶液法、溶融混練法等、従来公知のグラフト重合法を採用することができる。例えばポリオレフィンを溶融し、そこへ不飽和カルボン酸および/またはその誘導体を添加してグラフト反応させる方法、あるいはポリオレフィンを溶媒に溶解して溶液とし、そこへ不飽和カルボン酸および/またはその誘導体を添加してグラフト反応させる方法等がある。
 ポリオレフィン(C)は、本発明の樹脂組成物中において、1種単独で用いられてもよく、2種以上組み合わせて用いられてもよい。
エチレン系重合体(D)
 エチレン系重合体(D)は、エチレンから導かれる構成単位を60~100モル%含有している。本発明に係るエチレン系重合体(D)の具体例としては、高圧法低密度ポリエチレン(D1)、およびエチレン・α-オレフィン共重合体(D2)などが挙げられる。
 エチレン系重合体(D)を用いることで、得られる樹脂組成物は、特に成形加工時の成形性に優れ、変形加工時の耐白化性、耐衝撃性および透明性がバランス良く優れるフィルム等の成形体を容易に得ることができる。
≪高圧法低密度ポリエチレン(D1)≫
 高圧法低密度ポリエチレン(D1)としては公知のものを制約なく用いることができる。高圧法低密度ポリエチレンとは、一般にエチレンを高温高圧下においてラジカル重合することによって得られるポリエチレンであり、その製造方法としては、特に限定されるものではないが、例えば500~2000気圧、150~300℃の条件下でラジカル重合させるラジカル重合法等が挙げられ、ここで重合開始剤としては、例えば有機過酸化物が挙げられる。
 高圧法低密度ポリエチレン(D1)は、ASTM D1505に準拠して測定した密度が900~925kg/m3の範囲にあることが好ましく、より好ましくは910~925kg/m3である。
 高圧法低密度ポリエチレン(D1)は、ASTM D1238に準拠して、190℃、2.16kg荷重の条件で測定したメルトフローレート(MFR)が好ましくは0.1g/10分以上、より好ましくは0.5g/10分以上、特に好ましくは1.0g/10分以上であり、好ましくは50g/10分以下、より好ましくは30g/10分以下、特に好ましくは20g/10分以下である。
≪エチレン・α-オレフィン共重合体(D2)≫
 エチレン・α-オレフィン共重合体(D2)は少なくともエチレンから導かれる構成単位および炭素原子数3~20のα-オレフィンから導かれる構成単位を含有している。
 エチレン・α-オレフィン共重合体(D2)中のエチレンから導かれる構成単位の含有量は、60~99モル%であり、好ましくは65~99モル%、より好ましくは70~99モル%、特に好ましくは80~99モル%である。
 エチレン・α-オレフィン共重合体(D2)は高圧法低密度ポリエチレン(D1)に比べて長鎖の分岐構造が少ない点が特徴であり、一般的には線状低密度ポリエチレン(LLDPE)と呼称される場合がある。
 エチレン・α-オレフィン共重合体(D2)中の炭素原子数3~20のα-オレフィンから導かれる構成単位の含有量は、1~40モル%であり、好ましくは1~35モル%、より好ましくは1~30モル%、特に好ましくは1~20モル%である。
 これらの含有量は、エチレンおよび炭素原子数3~20のα-オレフィンから導かれる構成単位の合計100モル%に対する量である。
 構成単位の含有量が前記範囲にあると、得られる樹脂組成物から、変形加工時の耐白化性、耐衝撃性、柔軟性にバランス良く優れるフィルムなどの成形体を容易に得ることができる。
 前記炭素原子数3~20のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-ノナデセン、1-エイコセンが挙げられる。これらの中でも、炭素原子数3~10のα-オレフィンが好ましく、炭素原子数3~8のα-オレフィンがより好ましく、プロピレン、1-ブテン、1-オクテンがさらに好ましく、プロピレンが特に好ましい。
 前記炭素原子数3~20のα-オレフィンは、1種を用いてもよく、2種以上を用いてもよい。
 エチレン・α-オレフィン共重合体(D2)は、前記の構成単位に加えて、本発明の目的を損なわない範囲で、他の重合性モノマーから導かれる構成単位を1種または2種以上含有していてもよい。
 このような他の重合性モノマーとしては、例えば、スチレン、ビニルシクロペンテン、ビニルシクロヘキサン、ビニルノルボルナン等のビニル化合物類;酢酸ビニル等のビニルエステル類;無水マレイン酸等の不飽和有機酸またはその誘導体;ジシクロペンタジエン、シクロヘキサジエン、5-エチリデン-2-ノルボルネン等の非共役ポリエン類が挙げられる。
 エチレン・α-オレフィン共重合体(D2)の具体例としては、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・プロピレン・1-ブテン共重合体、エチレン・プロピレン・エチリデンノルボルネン共重合体、エチレン・1-ブテン・1-オクテン共重合体、エチレン・4-メチル-1-ペンテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体が挙げられる。これらの中でも、例えば、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体が好ましい。
 エチレン・α-オレフィン共重合体(D2)の密度は、好ましくは840kg/m3以上、より好ましくは850kg/m3以上、特に好ましくは855kg/m3以上であり、好ましくは940kg/m3以下、より好ましくは899kg/m3以下、さらに好ましくは890kg/m3以下、特に好ましくは885kg/m3以下である。
 密度が前記範囲にあると、耐衝撃性、剛性および透明性にバランス良く優れる成形体を容易に得ることができる。
 該密度は、密度勾配管法で測定することができる。
 エチレン・α-オレフィン共重合体(D2)のMFR(ASTM D1238準拠、190℃、2.16kg荷重下で測定)は、好ましくは0.01g/10分以上、より好ましくは0.1g/10分以上であり、好ましくは40g/10分以下、より好ましくは20g/10分以下、特に好ましくは10g/10分以下である。
 MFRが前記範囲にあると、耐衝撃性、剛性および透明性にバランス良く優れる成形体を容易に得ることができる。
 エチレン・α-オレフィン共重合体(D2)は、ASTM D1238に準拠して、190℃、荷重10kgの条件で測定したMFR10と、190℃、荷重2.16kgの条件で測定したMFR2.16との比(MFR10/MFR2.16)が、好ましくは4.0以上、より好ましくは5.0以上であり、好ましくは8.0以下、より好ましくは7.0以下である。
 MFR10/MFR2.16が前記範囲にあると、透明性および耐衝撃性にバランス良く優れる成形体を容易に得ることができる。
 エチレン・α-オレフィン共重合体(D2)は、バナジウム系触媒、チタン系触媒またはメタロセン系触媒などを用いる従来公知の方法により製造することができる。好ましくは、メタロセン系触媒を用いて製造することによって、分子量分布・組成分布が狭い共重合体を得ることができ、機械物性・透明性・耐衝撃性の面でより好適である。
 エチレン系重合体(D)は、本発明の樹脂組成物中において、1種単独で用いられてもよく、2種以上組み合わせて用いられてもよい。
 本発明において、上述したプロピレン系重合体(A)、1-ブテン・エチレン共重合体(B)、ポリオレフィン(C)およびエチレン系重合体(D)を製造する際に用いられるモノマーは、それぞれ、化石燃料由来モノマー、バイオマス由来モノマー、ケミカルリサイクル由来モノマーのいずれであってもよく、これらの1種以上が組み合わせて用いられていてもよい。
その他の成分
 本発明の樹脂組成物は、本発明の効果を損なわない範囲内で、本発明とは組成の異なるプロピレン-エチレンブロック共重合体やプロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-エチレン-ブテンランダム共重合体、またはスチレン系エラストマーなどを適宜含有してもよい。
 また本発明の樹脂組成物は、酸化防止剤、紫外線吸収剤、中和剤、造核剤、光安定剤、帯電防止剤、アンチブロッキング剤、滑剤、臭気吸着剤、抗菌剤、顔料、無機質及び有機質の充填剤並びに種々の合成樹脂などの公知の添加剤を必要に応じて含有することができる。
樹脂組成物
 本発明の樹脂組成物は、上述したプロピレン系重合体(A)と、1-ブテン・エチレン共重合体(B)と、不飽和カルボン酸及び/又はその誘導体に由来する構造単位を含有するポリオレフィン(C)と、エチレン系重合体(D)とを含有する。
 本発明の樹脂組成物は、従来公知の方法を用いて製造することができる。たとえば上記の各成分を溶融混練することで製造することができる。
 本発明の組成物中の前記1-ブテン・エチレン共重合体(B)の含有量は、7~38質量%である。当該含有量が7質量%未満では、耐白化性を改善する効果が得られない。また、当該含有量が38質量%を超える場合、組成物の成形体の機械物性が低下する。また本発明の樹脂組成物は、組成物中の前記ポリオレフィン(C)の含有量が、0.1~10質量%であることが好ましい。組成物中の前記ポリオレフィン(C)の含有量がこの範囲を満たすと、組成物の機械物性を損なうことなく接着力を発現することが可能となり、機械物性と接着力に優れる組成物が得られる。
 本発明の樹脂組成物におけるプロピレン系重合体(A)、1-ブテン・エチレン共重合体(B)、ポリオレフィン(C)およびエチレン系重合体(D)の含有量は、プロピレン系重合体(A)、1-ブテン・エチレン共重合体(B)、ポリオレフィン(C)およびエチレン系重合体(D)の含有量の合計を100質量部として、プロピレン系重合体(A)45~87.9質量部、1-ブテン・エチレン共重合体(B)7~38質量部、ポリオレフィン(C)0.1~10質量部、エチレン系重合体(D)5~30質量部であることが好ましく、プロピレン系重合体(A)55~78質量部、1-ブテン・エチレン共重合体(B)10~30質量部、ポリオレフィン(C)2~5質量部、エチレン系重合体(D)10~20質量部であることがより好ましい。本発明の樹脂組成物における上記成分の含有量が前記範囲内であると、本組成物から得られる層を含むフィルムは、変形加工時により白化しにくくなる。
 本発明の樹脂組成物は、上述したプロピレン系重合体(A)、1-ブテン・エチレン共重合体(B)、ポリオレフィン(C)およびエチレン系重合体(D)に加えて、本発明の目的を損なわない範囲で、その他の成分を含有することができる。
 その他の成分としては、例えば、上記成分(A)~(D)以外樹脂成分や、酸化防止剤、耐熱安定剤、耐候安定剤、スリップ剤、アンチブロッキング剤、結晶核剤、顔料等の添加物が挙げられる。これらのその他の成分の含有量は、特に限定されるものではないが、成分(A)~(D)の合計100質量部に対して、通常10質量部以下、好ましくは0.01~5質量部の範囲である。
 また、本発明の樹脂組成物には、バイオマス由来原料を配合してもよい。
 本発明の樹脂組成物は、ASTM D2240に準拠して測定したショアD硬度が20~70の範囲であることが好ましい。
 本発明の樹脂組成物のショアD硬度(ASTM D2244に準拠)は、25~65であることがより好ましく、31~60であることがさらに好ましい。ショアD硬度は結晶化度の指標となり、ショアD硬度が上限値以下であると、結晶性が低く、柔軟性に優れ、延伸時の耐白化性に優れる組成物を得ることができる。ショアD硬度が下限値以上であると、機械特性に優れる組成物を得ることができる。
<単層フィルムおよび多層フィルム>
 本発明の単層および多層フィルムは、前記ポリプロピレン系樹脂組成物を含む層を少なくとも1層含む、単層または多層フィルムである。つまり、本発明の単層フィルムは、前記ポリプロピレン系樹脂組成物を含む層からなるフィルムであり、多層フィルムは、前記ポリプロピレン系樹脂組成物を含む層を少なくとも1層含む多層フィルムである。
 本発明の単層および多層フィルムは、変形加工時の耐白化性に優れている。したがって、本発明の単層および多層フィルムを食品包装材や建築用資材、リチウムイオン電池の外装材等として使用した場合、絞り加工や折り曲げ等のフィルムの二次加工時に白化が生じにくい。このため、本発明の単層および多層フィルムは、食品包装用フィルムや建築資材用フィルム、パウチ型電池包装用フィルムなどの電池包装用フィルムとして好適に用いることができる。
 特に、リチウムイオン電池の外装体を形成する包装材料としてこれまでもポリプロピレン系樹脂が用いられていたが、本発明は、前述のプロピレン系重合体(A)、1-ブテン・エチレン共重合体(B)、ポリオレフィン(C)およびエチレン系重合体(D)という特定の組み合わせを用いることにより、従来のポリプロピレン系樹脂では防げなかった白化の防止を実現したものである。
 本発明の多層フィルムは、たとえば、前記ポリプロピレン系樹脂組成物を含む層を少なくとも1層含み、さらに前記組成物を含む層の片面または両面が他の層と接している。前記組成物を含む層と接している他の層としては、たとえば、金属含有層、ポリオレフィン層および極性樹脂層を挙げることができる。金属含有層としてはアルミ層、銅層、ステンレス層等を挙げることができ、ポリオレフィン層としてはポリプロピレン層、ポリ4-メチルペンテン層、ポリエチレン層等を挙げることができ、極性樹脂層としてはポリアミド層、EVOH(エチレン・ビニルアルコール共重合体樹脂)層、PET(ポリエチレンテレフタレート)層、PBT(ポリブチレンテレフタレート)層等を挙げることができる。
 本発明の単層および多層フィルムは、溶融押出成形等により好適に得ることができ、一般に工業的に行われているキャスト法、インフレーション法、押出ラミネーション法などで製造できる。
 以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を越えない限りこれらの実施例になんら制約されるものではない。
(各種測定方法)
 本実施例等においては、以下の方法に従って測定を実施した。
[メルトフローレート(MFR)]
 ASTM D1238に従い、230℃、2.16kg荷重の下、メルトフローレート測定を実施した。
[極限粘度[η]]
 極限粘度[η]は、ASTM D1601に準拠して測定した。
[耐白化性評価]
 プレス成型機にて余熱および加圧温度200℃、余熱時間6min、圧力10MPa、加圧時間4min、冷却温度20℃、冷却時間4min、圧力10MPaの条件で成形した0.5mm厚のプレスシート(単層フィルム)を作成した。JIS K6301 2号ダンベルをプレスシートから打ち抜いて測定用試験片を作製し、島津製作所製引張試験機ATXを用いて、測定用試験片を室温にて引張速度200mm/minで0mm、20mm引張った際の測定用試験片の色相変化を、コニカミノルタ製CM-3700Aを用いて反射法にて測定した。初期値(0mm)から20mm引っ張った際の色相変化をΔLとする。
[弾性率測定]
 プレス成型機にて余熱および加圧温度220℃、余熱時間8min、圧力5MPa、加圧時間5min、冷却温度20℃、冷却時間12min、圧力5MPaの条件で成形した2.0mm厚のプレスシート(単層フィルム)を作成した。JIS K7161-2 5Aダンベルをプレスシートから打ち抜いて測定用試験片を作製し、インステコ社製引張試験機2005X-5を用いて、測定用試験片を室温にて引張速度500mm/minで引張試験を行い、弾性率を測定した。
[接着力]
 Tダイ付き押出成型機により、実施例または比較例に記載の樹脂組成物から厚さ40μmのフィルムを成形した。得られたフィルムを厚み300μmのアルミ箔に挟み、ヒートシーラーにて180℃、0.1MPaの条件で10秒間ヒートシールして多層フィルムを得た。得られた多層フィルムを15mm幅に切り、アルミ箔と樹脂組成物層との接着力(単位:N/15mm)を、引張試験機を使用して180°ピール法にて室温23℃で測定した。
[ポリマーの組成]
 プロピレン系共重合体中のプロピレンから導かれる構造単位、α-オレフィンから導かれる構造単位および1-ブテン・エチレン共重合体(B)の構造単位の含量の測定は、13C-NMRにより以下の装置および条件にて実施した。
 プロピレン、α-オレフィン含量の定量化は日本電子(株)製JECX400P型核磁気共鳴装置を用いて、溶媒として重オルトジクロロベンゼン/重ベンゼン(80/20容量%)混合溶媒、試料濃度60mg/0.6mL、測定温度120℃、観測核は13C(100MHz)、シーケンスはシングルパルスプロトンデカップリング、パルス幅は4.62μ秒(45°パルス)、繰り返し時間は5.5秒、積算回数は8000回、29.73ppmをケミカルシフトの基準値として測定した。
 1-ブテンおよびエチレン含量の定量化はブルカー・バイオスピン製AVANCE cryo-500型核磁気共鳴装置を用いて、下記のように測定した。溶媒としてo-ジクロロベンゼン/重水素化ベンゼン(容量比:80/20)混合溶媒、試料濃度20mg/0.6mL、測定温度は120℃、観測角は13C(125MHz)、シーケンスはシングルパルスプロトンブロードバンドデカップリング、パルス幅は4.7μ秒(45°パルス)、繰り返し時間は5.5秒、積算回数は128回、ケミカルシフト基準値はブテン側鎖メチレン基の炭素シグナルを27.50ppmとした。得られた13C-NMRスペクトルにより、1-ブテン(C4含量;mol%)およびエチレン(C2含量;mol%)の組成を定量化した。
 [重量平均分子量(Mw)および分子量分布(Mw/Mn)]
 GPC装置として、Waters社製ゲル浸透クロマトグラフAlliance GPC-2000型を用い、以下の条件でポリスチレン換算のMwおよびMnを測定し、Mw/Mnを算出した。
 分離カラム:東ソー(株)製のTSKgel GNH6-HT 2本、および、東ソー(株)製のTSKgel GNH6-HTL 2本(カラムサイズはいずれも直径7.5mm、長さ300mm)
 カラム温度:140℃
 移動相:酸化防止剤としてBHT(武田薬品工業(株)製)0.025重量%を含むo-ジクロロベンゼン(富士フィルム和光純薬(株)製)
 移動速度:1.0mL/分
 試料濃度:15mg/10mL
 試料注入量:400μL
 検出器:示差屈折計
 標準ポリスチレン:分子量がMw<1000、および、Mw>4×10^6の場合、東ソー(株)製を使用、分子量が1000≦Mw≦4×10^6の場合、プレッシャーケミカル社製を使用した。
 [ショアD硬度]
 D型測定器を用い、試験片に押針接触後、最大値の目盛りを読み取り、ショアD硬度とした。(ASTM D2240に準拠)
[融点(Tm)]
 融点(Tm)は、示差走査熱量計(DSC)としてパーキンエルマー社製DSC8500を用いて測定した。試料5~10mgをアルミニウムパン中に密封して試料とした。温度プロファイルは、室温から10℃/分で230℃まで昇温したのち、230℃で5分間保持し、次いで10℃/minで-80℃まで降温して、-80℃で5分間保持、さらに10℃/minで230℃まで昇温した。この2度目の昇温時のチャートから融点(Tm)を得た。
 プロピレン・エチレン・α-オレフィン共重合体(E)のみ、20℃/分の加熱速度で-70℃から200℃まで昇温(第一昇温)し、200℃で10分間保持した後、次いで、20℃/分の冷却速度で-70℃まで降温(第一降温)し、-70℃で1分間保持した後、再度20℃/分の加熱速度で-70℃から200℃まで昇温(第二昇温)した際の、第一昇温で観測されたピークを融点(Tm)とした。
(使用したポリオレフィン)
 実施例及び比較例において使用したポリオレフィンを以下に示す。尚、特に断らない限り、いずれのポリオレフィンも常法に従い重合を行い、調製した。
プロピレン系重合体(A)
 以下PP―1、PP-2ともにアイソタクティックプロピレン系重合体(A1)に該当する。
PP-1:ランダムポリプロピレン
(プロピレン96mol%、エチレン4mol%、MFR=3.0g/10min、Tm140℃)
PP-2:ランダムポリプロピレン
(プロピレン含量96mol%、エチレン含量4mol%、MFR=7.0g/10分、Tm=138℃)
1-ブテン・エチレン共重合体(B)
BER-1:
 以下に示す方法により合成された1-ブテン・エチレン共重合体(エチレンから導かれる構造単位15mol%、ブテンから導かれる構造単位85mol%、MFR=6g/10min、アイソタクティックペンダット分率(mmmm)98.0%、極限粘度[η]1.71dl/g、Mw=366,000)
 〔BER-1製造例〕
 容積300リットルの連続重合器の一つの供給口に、n-ヘキサンを14.2L/hの割合で供給し、他の供給口よりイソプロピルデン(3-tert-ブチル-5-メチルシクロペンタジエニル-フルオレニル)ジルコニウムジクロリド(主触媒1)と修飾メチルアルミノキサンとトリイソブチルアルミニウムの混合ヘキサン溶液(主触媒1)のジルコニウム換算濃度0.5mmol/リットル、修飾メチルアルミノキサンのアルミニウム換算濃度4mmol/L、トリイソブチルアルミニウムのアルミニウム換算濃度100mmol/L)を0.22L/hで連続的に供給した(合計ヘキサン10L/h)。同時に重合器の別の供給口より、1-ブテンを27.0kg/h、エチレンを1.0kg/h、水素を0.6NL/hの割合で連続供給し、重合温度60℃、重合圧0.8MPaG、滞留時間1.5時間の条件下で連続溶液重合を行い、1-ブテン・エチレン共重合体(BER-1)を得た。
BER-2:
 重合器の別の供給口より供給するエチレンを0.9kg/h、水素を0.1NL/hとした以外はBER-1製造例と同様にして製造した、1-ブテン・エチレン共重合体(エチレンから導かれる構造単位15mol%、ブテンから導かれる構造単位85mol%、MFR=3g/10min、アイソタクティックペンダット分率(mmmm)98.0%、極限粘度[η]2.14dl/g、Mw=490,000)
BER-3:
 重合器の別の供給口より供給するエチレンを0.4kg/h、重合圧0.6MPaGとした以外はBER-1製造例と同様にして製造した、1-ブテン・エチレン共重合体(エチレンから導かれる構造単位6mol%、ブテンから導かれる構造単位94mol%、MFR=6g/10min、アイソタクティックペンダット分率(mmmm)93.0%、極限粘度[η]1.71dl/g、Mw=360,000)
BER-4:
 三井化学社製BL3540M(エチレンから導かれる構造単位2mol%、ブテンから導かれる構造単位98mol%、MFR=9g/10min、アイソタクティックペンダット分率(mmmm)93.0%、極限粘度[η]1.50dl/g、Mw=337,000)
ポリオレフィン(C)
 変性PP-1:変性ホモポリプロピレン
(無水マレイン酸グラフト量3.0質量%、極限粘度[η]0.4dl/g)
エチレン系重合体(D)
D-1:低密度ポリエチレン
(MFR=18g/10min、密度0.92g/cm3
D-2:EPR-1:(エチレンから導かれる構造単位80mol%、プロピレンから導かれる構造単位20mol%、MFR=0.8g/10min)
プロピレン・エチレン・α-オレフィン共重合体(E)
 エチレンから導かれる構造単位16mol%、プロピレンから導かれる構造単位78mol%、ブテンから導かれる構造単位6mol% 、MFR=6g/10min、Tm=48℃
[実施例1] 
 PP-1 25.0質量部と、PP―2 42.5質量部と、BER-1 10質量部と、変性PP-1 5質量部と、D-1 7質量部と、D-2 10.5質量部とを、1軸押出機を用いて230℃で溶融混練し、樹脂組成物を製造した。
[実施例2~9、比較例1~4]
 実施例2~9、比較例1~4において、それぞれ表1に示した配合処方に従い、実施例1と同様の方法で樹脂組成物を製造した。
 実施例および比較例で得られた樹脂組成物のMFRおよび、この樹脂組成物から作製されたプレスシートの耐白化性、弾性率、硬度ならびに多層フィルムに関する接着力を表1に示す。
 実施例1~9に示すように、本発明の組成物を用いることで、耐白化性、弾性率および接着性に優れる多層フィルムを提供することができる。さらに、この多層フィルムを用いることで、耐白化性、耐熱性、機械物性、耐久性および接着性に優れる電池用外装材を提供することができる。
Figure JPOXMLDOC01-appb-T000003

Claims (14)

  1.  下記(a)を満たすプロピレン系重合体(A)と、
     下記(b-1)を満たす1-ブテン・エチレン共重合体(B)と、
     不飽和カルボン酸及び/又はその誘導体に由来する構造単位を含有するポリオレフィン(C)と、
     エチレンから導かれる構成単位を60~100モル%含有するエチレン系重合体(D)と
    を含有し、
     組成物中の前記1-ブテン・エチレン共重合体(B)の含有量が7~38質量%である、樹脂組成物。
     (a)示差走査熱量測定において観測される融点が100℃以上である。
     (b-1)1-ブテンから導かれる構成単位(i)およびエチレンから導かれる構成単位(ii)の合計を100モル%としたとき、前記構成単位(i)の含有量が70~97モル%、前記構成単位(ii)の含有量が3~30モル%の範囲にある。
  2.  前記プロピレン系重合体(A)45~87.9質量部と、
     前記1-ブテン・エチレン共重合体(B)7~38質量部と、
     前記ポリオレフィン(C)0.1~10質量部と、
     前記エチレン系重合体(D)5~30質量部(ただし、(A)、(B)、(C)および(D)の合計を100質量部とする)を含む、請求項1に記載の樹脂組成物。
  3.  前記ポリオレフィン(C)が不飽和カルボン酸及び/又はその誘導体に由来する構造単位を無水マレイン酸由来の構造単位換算で0.01~5質量%含有し、
     さらに、前記ポリオレフィン(C)において、前記不飽和カルボン酸及び/又はその誘導体に由来する構造単位を除いた構造単位中におけるプロピレン由来の構造単位の含有比率が90~100モル%である、請求項1に記載の樹脂組成物。
  4.  1-ブテン・エチレン共重合体(B)の、13C-NMRにより算出したアイソタクティックペンダット分率(mmmm)が80~99.9%の範囲にある、請求項1に記載の樹脂組成物。
  5.  1-ブテン・エチレン共重合体(B)の重量平均分子量(Mw)が100,000~600,000である、請求項1に記載の樹脂組成物。
  6.  ASTM D2240に準拠して測定したショアD硬度が20~70の範囲である、請求項1に記載の樹脂組成物。
  7.  請求項1~6のいずれかに記載の樹脂組成物を含む層を少なくとも1層含む、単層または多層フィルム。
  8.  請求項1~6のいずれかに記載の樹脂組成物を含む層を少なくとも1層含み、さらに前記樹脂組成物を含む層の両面が他の層と接している多層フィルム。
  9.  請求項1~6のいずれかに記載の樹脂組成物を含む層を少なくとも1層含み、さらに前記樹脂組成物を含む層の片面または両面が、金属含有層、ポリオレフィン層および極性樹脂層のうちの少なくとも1層と接している多層フィルム。
  10.  食品包装用フィルムである、請求項7に記載の単層または多層フィルム。
  11.  建築資材用フィルムである、請求項7に記載の単層または多層フィルム。
  12.  電池包装用フィルムである、請求項7に記載の単層または多層フィルム。
  13.  パウチ型電池包装用フィルムである、請求項7に記載の単層または多層フィルム。
  14.  請求項1~6のいずれかに記載の樹脂組成物を溶融押出成形する工程を有する、単層又は多層フィルムの製造方法。
PCT/JP2023/022887 2022-06-22 2023-06-21 樹脂組成物ならびに単層および多層フィルム WO2023249043A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-100389 2022-06-22
JP2022100389 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023249043A1 true WO2023249043A1 (ja) 2023-12-28

Family

ID=89379992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022887 WO2023249043A1 (ja) 2022-06-22 2023-06-21 樹脂組成物ならびに単層および多層フィルム

Country Status (1)

Country Link
WO (1) WO2023249043A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102643481A (zh) * 2012-05-20 2012-08-22 柳州市海达新型材料科技有限公司 经济型汽车装饰裙板和压条用聚丙烯材料及其制备方法
WO2018180165A1 (ja) * 2017-03-29 2018-10-04 三井化学株式会社 電池用積層体
WO2019176403A1 (ja) * 2018-03-15 2019-09-19 三井化学株式会社 樹脂組成物ならびに単層および多層フィルム
CN112574515A (zh) * 2020-12-14 2021-03-30 金发科技股份有限公司 一种聚丙烯发泡材料及其制备方法
CN112679862A (zh) * 2020-12-14 2021-04-20 金发科技股份有限公司 一种聚丙烯组合物及其制备方法
WO2022191039A1 (ja) * 2021-03-08 2022-09-15 三井化学株式会社 1-ブテン・エチレン共重合体、当該1-ブテン・エチレン共重合体とプロピレン系重合体を含む1-ブテン系重合体組成物、当該1-ブテン・エチレン共重合体とプロピレン系重合体とエチレン系重合体を含む1-ブテン系重合体組成物およびその用途
WO2023022167A1 (ja) * 2021-08-18 2023-02-23 三井化学株式会社 接着性樹脂組成物およびフィルム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102643481A (zh) * 2012-05-20 2012-08-22 柳州市海达新型材料科技有限公司 经济型汽车装饰裙板和压条用聚丙烯材料及其制备方法
WO2018180165A1 (ja) * 2017-03-29 2018-10-04 三井化学株式会社 電池用積層体
WO2019176403A1 (ja) * 2018-03-15 2019-09-19 三井化学株式会社 樹脂組成物ならびに単層および多層フィルム
CN112574515A (zh) * 2020-12-14 2021-03-30 金发科技股份有限公司 一种聚丙烯发泡材料及其制备方法
CN112679862A (zh) * 2020-12-14 2021-04-20 金发科技股份有限公司 一种聚丙烯组合物及其制备方法
WO2022191039A1 (ja) * 2021-03-08 2022-09-15 三井化学株式会社 1-ブテン・エチレン共重合体、当該1-ブテン・エチレン共重合体とプロピレン系重合体を含む1-ブテン系重合体組成物、当該1-ブテン・エチレン共重合体とプロピレン系重合体とエチレン系重合体を含む1-ブテン系重合体組成物およびその用途
WO2023022167A1 (ja) * 2021-08-18 2023-02-23 三井化学株式会社 接着性樹脂組成物およびフィルム

Similar Documents

Publication Publication Date Title
JP6942851B2 (ja) ポリプロピレン系樹脂組成物ならびに単層および多層フィルム
US10017591B2 (en) 1-butane-α-olefin copolymer composition
JP5020524B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物からなるペレット、熱可塑性重合体用改質剤、熱可塑性重合体組成物の製造方法
JP7047060B2 (ja) 樹脂組成物ならびに単層および多層フィルム
JP5330637B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
CN116917355A (zh) 1-丁烯·乙烯共聚物、包含该1-丁烯·乙烯共聚物和丙烯系聚合物的1-丁烯系聚合物组合物、包含该1-丁烯·乙烯共聚物、丙烯系聚合物和乙烯系聚合物的1-丁烯系聚合物组合物及其用途
WO2017213216A1 (ja) 熱可塑性エラストマー組成物、その製造方法および成形体
WO2023249043A1 (ja) 樹脂組成物ならびに単層および多層フィルム
JP5506985B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
JP5550615B2 (ja) プロピレン系重合体組成物の製造方法
JP6666089B2 (ja) プロピレン系樹脂組成物および成形体
CN113366036B (zh) 树脂组合物
JP2015174884A (ja) コーティング剤
WO2024053644A1 (ja) シーラント樹脂組成物、およびその用途
US20240158549A1 (en) 1-butene/ethylene copolymer, 1-butene-based polymer composition comprising 1-butene/ethylene copolymer and propylene-based polymer, 1-butene-based polymer composition comprising 1-butene/ethylene copolymer, propylene-based polymer and ethylene-based polymer, and uses thereof
JP2014101415A (ja) プロピレン系共重合体組成物に極性基含有化合物を付加する方法、該方法を用いて得られた極性基含有プロピレン系共重合体組成物、該共重合体組成物を含む組成物および該方法を含む極性基含有プロピレン系共重合体組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827226

Country of ref document: EP

Kind code of ref document: A1