WO2023248416A1 - プリウェットモジュール、およびプリウェット方法 - Google Patents

プリウェットモジュール、およびプリウェット方法 Download PDF

Info

Publication number
WO2023248416A1
WO2023248416A1 PCT/JP2022/025061 JP2022025061W WO2023248416A1 WO 2023248416 A1 WO2023248416 A1 WO 2023248416A1 JP 2022025061 W JP2022025061 W JP 2022025061W WO 2023248416 A1 WO2023248416 A1 WO 2023248416A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
degassing
tank
liquid
processed
Prior art date
Application number
PCT/JP2022/025061
Other languages
English (en)
French (fr)
Inventor
正也 関
剛臣 菊池
一仁 辻
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to JP2022562906A priority Critical patent/JPWO2023248416A1/ja
Priority to PCT/JP2022/025061 priority patent/WO2023248416A1/ja
Publication of WO2023248416A1 publication Critical patent/WO2023248416A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present application relates to a pre-wet module and a pre-wet method.
  • Plating equipment for performing plating on substrates consists of a pre-wet module that performs various pre-treatments on the substrate, such as degassing, and a plating device that performs plating on the pre-treated substrate. It is equipped with a module.
  • Patent Document 1 different pretreatments are efficiently performed on multiple substrates in parallel, such as cleaning a second substrate while immersing a first substrate in a deaeration tank and performing deaeration treatment.
  • a pre-wet module is disclosed that is capable of pre-wetting.
  • the conventional technology does not take into account the possibility that the degassing process may become uneven due to air bubbles attached to the surface to be processed of the substrate.
  • the substrate holder is lowered with the surface to be processed of the substrate held in the substrate holder horizontally facing downward (facing the degassed liquid surface), so that the substrate is immersed in the degassed liquid. Air bubbles tend to adhere to the surface to be treated. If the degassing process is performed with air bubbles attached to the surface to be treated, the degassing process will not be promoted in the areas where the bubbles are attached, and as a result, the degassing process may become uneven over the entire surface to be treated. .
  • one purpose of the present application is to efficiently pre-process a substrate and to suppress the adhesion of air bubbles to the surface to be processed of the substrate.
  • a degassing tank configured to contain a degassing liquid; a cleaning device disposed above the degassing tank and configured to supply cleaning liquid downward; a first holding member arranged between the deaeration tank and the cleaning device and configured to hold a first substrate; and a second holding member configured to hold a second substrate.
  • a substrate holder having a member, and a drive mechanism configured to rotate and move the substrate holder up and down, the first holding member and the second holding member being arranged to hold the first substrate.
  • a pre-wet module configured to be able to hold the second substrate is disclosed.
  • FIG. 1 is a perspective view showing the overall configuration of a plating apparatus according to this embodiment.
  • FIG. 2 is a plan view showing the overall configuration of the plating apparatus of this embodiment.
  • FIG. 3 is a vertical cross-sectional view schematically showing the configuration of a pre-wet module according to an embodiment.
  • FIG. 4 is a flowchart illustrating a prewetting method using the prewetting module of one embodiment.
  • FIG. 5 is a diagram schematically illustrating a prewetting method using a prewetting module according to an embodiment.
  • FIG. 6 is a diagram schematically illustrating a prewetting method using a prewetting module according to an embodiment.
  • FIG. 7 is a diagram schematically illustrating a prewetting method using a prewetting module according to an embodiment.
  • FIG. 1 is a perspective view showing the overall configuration of a plating apparatus according to this embodiment.
  • FIG. 2 is a plan view showing the overall configuration of the plating apparatus of this embodiment.
  • FIG. 3 is
  • FIG. 8 is a diagram schematically illustrating a prewetting method using a prewetting module according to an embodiment.
  • FIG. 9 is a diagram schematically illustrating a prewetting method using a prewetting module according to an embodiment.
  • FIG. 10 is a diagram schematically illustrating a prewet method using a prewet module according to an embodiment.
  • FIG. 1 is a perspective view showing the overall configuration of a plating apparatus according to this embodiment.
  • FIG. 2 is a plan view showing the overall configuration of the plating apparatus of this embodiment.
  • the plating apparatus 1000 includes a load port 100, a transfer robot 110, an aligner 120, a pre-wet module 200, a pre-soak module 300, a plating module 400, a cleaning module 500, a spin rinse dryer 600, and a transfer device. 700 and a control module 800.
  • the load port 100 is a module for loading a substrate stored in a cassette such as a FOUP (not shown) into the plating apparatus 1000 and for unloading the substrate from the plating apparatus 1000 into a cassette.
  • a cassette such as a FOUP (not shown)
  • four load ports 100 are arranged side by side in the horizontal direction, but the number and arrangement of the load ports 100 are arbitrary.
  • the transfer robot 110 is a robot for transferring a substrate, and is configured to transfer the substrate between the load port 100, the aligner 120, the pre-wet module 200, and the spin rinse dryer 600. When transferring a substrate between the transfer robot 110 and the transfer device 700, the transfer robot 110 and the transfer device 700 can transfer the substrate via a temporary stand (not shown).
  • the aligner 120 is a module for aligning the orientation flat, notch, etc. of the substrate in a predetermined direction.
  • two aligners 120 are arranged side by side in the horizontal direction, but the number and arrangement of aligners 120 are arbitrary.
  • the pre-wet module 200 wets the surface of the substrate to be plated before plating with a treatment liquid such as pure water or deaerated water, thereby replacing the air inside the pattern formed on the substrate surface with the treatment liquid.
  • the pre-wet module 200 is configured to perform a pre-wet process that replaces the processing solution inside the pattern with a plating solution during plating, thereby making it easier to supply the plating solution inside the pattern.
  • two pre-wet modules 200 are arranged side by side in the vertical direction, but the number and arrangement of the pre-wet modules 200 are arbitrary.
  • the pre-soak module 300 cleans the plating base surface by etching away an oxide film with high electrical resistance that exists on the surface of a seed layer formed on the surface to be plated of a substrate before plating using a treatment solution such as sulfuric acid or hydrochloric acid. Alternatively, it is configured to perform pre-soak processing to activate. In this embodiment, two pre-soak modules 300 are arranged side by side in the vertical direction, but the number and arrangement of the pre-soak modules 300 are arbitrary.
  • the plating module 400 performs plating processing on the substrate. In this embodiment, there are two sets of 12 plating modules 400 arranged in parallel, three in the vertical direction and four in the horizontal direction, for a total of 24 plating modules 400. The number and arrangement of these are arbitrary.
  • the cleaning module 500 is configured to perform a cleaning process on the substrate in order to remove plating solution and the like remaining on the substrate after the plating process.
  • two cleaning modules 500 are arranged side by side in the vertical direction, but the number and arrangement of the cleaning modules 500 are arbitrary.
  • the spin rinse dryer 600 is a module for drying a substrate after cleaning by rotating it at high speed.
  • two spin rinse dryers are arranged side by side in the vertical direction, but the number and arrangement of spin rinse dryers are arbitrary.
  • the transport device 700 is a device for transporting substrates between a plurality of modules within the plating apparatus 1000.
  • the control module 800 is configured to control a plurality of modules of the plating apparatus 1000, and can be configured, for example, from a general computer or a dedicated computer with an input/output interface with an operator.
  • a substrate stored in a cassette is loaded into the load port 100.
  • the transfer robot 110 takes out the substrate from the cassette of the load port 100 and transfers the substrate to the aligner 120.
  • the aligner 120 aligns the orientation flat, notch, etc. of the substrate in a predetermined direction.
  • the transfer robot 110 transfers the substrate whose direction has been aligned by the aligner 120 to the pre-wet module 200.
  • the pre-wet module 200 performs a pre-wet process on the substrate.
  • the transport device 700 transports the prewet-treated substrate to the presoak module 300.
  • the pre-soak module 300 performs a pre-soak process on the substrate.
  • the transport device 700 transports the pre-soaked substrate to the plating module 400.
  • the plating module 400 performs plating processing on the substrate.
  • the transport device 700 transports the plated substrate to the cleaning module 500.
  • the cleaning module 500 performs cleaning processing on the substrate.
  • the transport device 700 transports the substrate that has been subjected to the cleaning process to the spin rinse dryer 600.
  • the spin rinse dryer 600 performs a drying process on the substrate.
  • the transfer robot 110 receives the substrate from the spin rinse dryer 600 and transfers the dried substrate to the cassette of the load port 100. Finally, the cassette containing the substrates is carried out from the load port 100.
  • Pre-wet module configuration Next, the configuration of the pre-wet module 200 will be explained. Since the two pre-wet modules 200 in this embodiment have the same configuration, only one pre-wet module 200 will be described.
  • FIG. 3 is a vertical cross-sectional view schematically showing the configuration of a pre-wet module according to an embodiment.
  • the pre-wet module 200 includes a degassing tank 210 configured to contain a degassing liquid (eg, degassing water).
  • the degassing tank 210 has an open upper surface and has a shape capable of storing a degassing liquid.
  • the deaeration tank 210 has a plurality of overflow ports 219 for causing the deaeration liquid to overflow from the generally cylindrical side wall 210b.
  • a plurality of (for example, four) overflow ports 219 are formed at substantially equal intervals (approximately 90° intervals) along the circumferential direction at the same height position on the side wall 210b of the deaeration tank 210.
  • the pre-wet module 200 has a plurality of overflow tanks 205 each communicating with a plurality of overflow ports 219 .
  • the overflow tank 205 is a generally rectangular container arranged outside the side wall 210b of the degassing tank 210.
  • a deaeration region 214 is formed inside the deaeration tank 210
  • an overflow region 216 is formed inside the overflow tank 205.
  • the deaeration tank 210 has a deaeration liquid inlet 210d formed in the center of the bottom wall 210c of the deaeration tank 210.
  • the injection port 210d is provided at a position corresponding to the center of the substrate WF immersed in the degassing tank 210.
  • the pre-wet module 200 includes a circulation tank 280 configured to store degassed liquid, a first pipe 281 that connects the circulation tank 280 and the degassed tank 210, and a circulation tank 280 configured to store degassed liquid.
  • a pump 282 for supplying the degassed liquid stored in the tank 280 to the degassed tank 210 is provided.
  • the pre-wet module 200 also includes a deaeration unit 284 that removes dissolved oxygen contained in the deaeration liquid discharged from the pump 282, and a supply valve 286 configured to open and close the first pipe 281. Equipped with.
  • the supply valve 286 is configured to open and close the first pipe 281 downstream of the degassing unit 284.
  • the pre-wet module 200 also includes a second pipe 283 that connects the deaeration tank 210 and the circulation tank 280, and a discharge valve 288 configured to open and close the second pipe 283.
  • the second pipe 283 may connect the deaeration tank 210 and the circulation tank 280 independently of the first pipe 281.
  • the pre-wet module 200 can supply degassed liquid from the circulation tank 280 to the deaeration tank 210 by opening the supply valve 286, closing the discharge valve 288, and driving the pump 282.
  • the pre-wet module 200 can discharge the degassed liquid from the deaeration tank 210 to the circulation tank 280 by stopping the drive of the pump 282, closing the supply valve 286, and opening the discharge valve 288.
  • the pre-wet module 200 is configured to return the degassed liquid used in the deaeration process from the deaeration tank 210 to the circulation tank 280 and circulate it to the deaeration tank 210 via the deaeration unit 284.
  • the pre-wet module 200 includes a shielding member 290 disposed in the deaeration tank 210 facing the injection port 210d.
  • the shielding member 290 is fixed at a position lower than the degassing position where the substrate WF is placed when performing the degassing process.
  • the shielding member 290 is fixed to the bottom wall 210c of the deaeration tank 210 via a plurality of leg members 290a.
  • the shielding member 290 may be configured to shield the upward flow of the degassed liquid supplied from the inlet 210d, and may be a shielding plate, for example. Since the plurality of leg members 290a are arranged at intervals, the degassing liquid flows between the plurality of leg members 290a.
  • the degassed liquid sent from the deaeration tank 210 and from which dissolved oxygen has been removed by the deaeration unit 284 is injected into the deaeration tank 210 through the inlet 210d.
  • a shielding member 290 is disposed in the degassing tank 210 facing the inlet 210d, the flow of the degassing liquid collides with the shielding member 290 and spreads in the radial direction while passing through the degassing tank 210.
  • the liquid fills up and overflows from the plurality of overflow ports 219.
  • the present embodiment it is possible to suppress air bubbles from adhering to the surface to be processed when the substrate WF is immersed in a degassing liquid. That is, if the degassed liquid supplied from the injection port 210d flows directly upward, a liquid protrusion may be formed at the center of the degassed liquid surface. If the substrate WF is immersed in the degassed liquid with a liquid protrusion formed at the center of the degassed liquid surface, air bubbles will easily adhere to the surface to be processed. On the other hand, in this embodiment, the formation of a liquid protrusion at the center of the degassed liquid surface is prevented by blocking the upward flow of the degassed liquid supplied from the inlet 210d with the shielding member 290. Can be suppressed. As a result, the degassed liquid level rises while remaining horizontal as a whole, making it possible to suppress air bubbles from adhering to the surface to be processed of the substrate.
  • the pre-wet module 200 includes a substrate holder 220 placed above the deaeration tank 210.
  • the substrate holder 220 is configured to hold a substrate WF to be preprocessed.
  • the substrate holder 220 includes a cylindrical first holding member 222 configured to hold a disk-shaped first substrate WF-1, and a cylindrical first holding member 222 configured to hold a disk-shaped second substrate WF-2.
  • a second holding member 224 having a cylindrical shape is provided.
  • the first holding member 222 and the second holding member 224 are configured to be able to hold the back side of the processed surface of the substrate by vacuum suction or the like. Note that in this embodiment, descriptions such as “first substrate WF-1" and "second substrate WF-2" are used, but this is simply to distinguish between different substrates, and the processing It does not indicate any order.
  • the pre-wet module 200 includes a drive mechanism 230 configured to drive the substrate holder 220.
  • the drive mechanism 230 drives the substrate holder 220 so that the first substrate WF-1 and the second substrate WF-2 are sequentially immersed in the degassing liquid in the degassing tank 210.
  • the drive mechanism 230 specifically includes a rotation mechanism 240 configured to rotate the substrate holder 220 and a lifting mechanism 248 configured to raise and lower the substrate holder 220.
  • the substrate station 250 is a member for holding a substrate when transferring the substrate to and from the transport device 700 and when performing a cleaning process to be described later on the substrate.
  • the substrate station 250 includes a first arm member 250-1 and a second arm member 250-2 for holding the back surface of the substrate to be processed.
  • the first arm member 250-1 and the second arm member 250-2 each have a protruding member 250a for holding the outer edge of the back surface of the processed surface of the substrate.
  • the first arm member 250-1 and the second arm member 250-2 are arranged side by side and spaced apart from each other in the horizontal direction.
  • the first arm member 250-1 and the second arm member 250-2 are movable toward and away from each other.
  • the first arm member 250-1 and the second arm member 250-2 are configured to hold a substrate when in the substrate holding position in close proximity to each other.
  • the plurality of nozzles 268 are configured to supply a cleaning liquid sent through a flow path 267 from a cleaning liquid source (not shown) to the processing surface of the substrate held at the substrate station 250.
  • the pre-wet module 200 includes a horizontal driving member 270 for horizontally driving the cleaning device 260.
  • the horizontal drive member 270 moves the cleaning device 260 in the horizontal direction via a shaft 272 that is fixed to the shaft 266 and extends in the horizontal direction. Thereby, the cleaning device 260 can clean the entire surface of the substrate to be processed.
  • the horizontal drive member 270 can be realized by a known mechanism such as a motor.
  • the plurality of nozzles 268 hold the surface to be processed WF-2a vertically upward when the first substrate WF-1 is immersed in the degassing liquid in the degassing tank 210.
  • the cleaning liquid is supplied to the processing target surface WF-2a of the second substrate WF-2 that is being processed.
  • an example was shown in which the cleaning process is performed on the substrate held in the substrate station 250, but the present invention is not limited to this.
  • the cleaning process may be performed on a substrate (a substrate whose surface to be processed is held vertically upward).
  • the substrate holder 220 includes a first holding member 222 and a second holding member 224, and the drive mechanism 230 supports the first substrate WF-1 and the second substrate.
  • the substrate holder 220 is configured to be driven such that the WF-2 is sequentially immersed in the degassing liquid in the degassing tank 210. Therefore, the pre-wet module 200 can perform different processes (for example, cleaning process and degassing process) on the first substrate WF-1 and the second substrate WF-2 in parallel within the pre-wet module 200. . Therefore, according to this embodiment, the substrate can be efficiently pretreated, and the throughput of the pre-wet module 200 can be improved.
  • the first holding member 222 and the second holding member 224 are used for degassing in the degassing tank 210 when the surface to be processed WF-1a of the first substrate WF-1 is inclined with respect to the horizontal.
  • the first substrate WF-1 and the second substrate WF-2 are placed so that the surface to be processed WF-2a of the second substrate WF-2 faces the cleaning device 260 horizontally while facing the gas/liquid surface. Constructed to be retainable.
  • the first holding member 222 is in a position where the second holding member 224 can hold the substrate held at the substrate station 250 (a substrate with the surface to be processed horizontally facing upward).
  • the first substrate WF-1 is held so that the surface WF-1a is inclined by 1 to 10 degrees with respect to the horizontal and faces the degassed liquid level in the deaeration tank 210.
  • the inclination of the surface to be processed of the substrate with respect to the level of the degassing liquid is preferable because if it is too small, it will be difficult for air bubbles to escape, and if it is too large, the size of the degassing tank 210 in the height direction will increase and the amount of degassing liquid required will increase. do not have.
  • the inclination of the surface to be processed of the substrate with respect to the degassed liquid level is preferably 1 to 10 degrees, but is not limited to this, for example, it is more preferably 2 to 9 degrees, and even more preferably 3 to 8 degrees. .
  • the present embodiment it is possible to suppress air bubbles from adhering to the surface to be processed of the substrate. That is, if the substrate is immersed in a degassing liquid with the surface to be processed facing straight down (facing horizontally downward), air bubbles are likely to adhere to the surface to be processed during immersion. If the degassing process is performed with air bubbles attached to the surface to be treated, the degassing process will not be promoted in the areas where the bubbles are attached, and as a result, the degassing process may become uneven over the entire surface to be treated. .
  • the surface of the substrate to be processed is immersed in the degassing liquid while being inclined with respect to the horizontal, so air bubbles can easily escape along the inclination of the surface to be processed, and as a result, the surface of the substrate to be processed is inclined with respect to the horizontal. It is possible to suppress air bubbles from adhering to the treated surface.
  • the relative speed at which the substrate is immersed in the degassing liquid is also important. For example, if the relative speed during immersion between the degassed liquid and the substrate is about 5 to 15 mm/sec, bubbles will be less likely to adhere to the surface to be processed. Therefore, it is preferable that the elevating mechanism 248 lowers the substrate holder 220 at a rate of about 5 to 15 mm/sec, but depending on the type of elevating mechanism 248, it may be difficult to precisely control the lowering speed.
  • the elevating mechanism 248 can precisely control the elevating speed of the substrate holder 220, the substrate holder 220 may be moved at a speed of about 5 to 15 mm/sec after the deaeration tank 210 is filled with the deaeration liquid.
  • the substrate may be immersed by lowering it.
  • the relative speed of the degassing liquid and the substrate during immersion is not limited to 5 to 15 mm/sec, but is more preferably 7 to 13 mm/sec, and even more preferably 9 to 11 mm/sec.
  • the degassing liquid is injected such that the relative velocity between the degassing liquid and the substrate during immersion is about 5 to 15 mm/sec. By appropriately controlling the relative speed of the degassing liquid and the substrate during immersion in this manner, it is possible to further suppress the adhesion of air bubbles to the processing surface WF-1a.
  • the substrate holder 220 is rotated using the rotation mechanism 240 so that the substrate holder 220 is turned upside down (second rotation step 111, see FIG. 9).
  • the second rotation step 111 is performed so that the processing surface WF-1a of the first substrate WF-1 held by the substrate holder 220 faces horizontally upward, and is held by the substrate holder 220.
  • the substrate holder 220 is rotated so that the processing surface WF-2a of the second substrate WF-2 is tilted with respect to the horizontal and faces downward (see FIG. 9).
  • the first substrate WF-1 is held at the substrate station 250 and then transported out by the transport device 700 (see FIG. 9).
  • the second degassing step 113 injects degassing liquid into the degassing tank 210 by opening the supply valve 286, closing the discharge valve 288, and driving the pump 282.
  • the degassing liquid is discharged such that the relative velocity of the degassing liquid and the substrate during immersion is approximately 5 to 15 mm/sec.
  • the pre-wet module 200 is configured to simultaneously perform the degassing process for the second substrate WF-2 and the cleaning process for the third substrate WF-3 in parallel. Therefore, according to this embodiment, the substrate can be efficiently pretreated, and the throughput of the pre-wet module 200 can be improved. In the pre-wet method, subsequent substrates are also pre-treated, but since the same process is repeated, the explanation will be omitted.
  • the present application includes a deaeration tank configured to contain a deaeration liquid, and a cleaning device arranged above the deaeration tank and configured to supply the cleaning liquid downward. , a first holding member arranged between the deaeration tank and the cleaning device and configured to hold the first substrate, and a second holding member configured to hold the second substrate. a substrate holder having a holding member; and a drive mechanism configured to rotate and move the substrate holder up and down, the first holding member and the second holding member each holding the first substrate.
  • a pre-wet module is disclosed that is configured to be able to hold a substrate and the second substrate.
  • the deaeration tank has a deaeration liquid inlet formed in the center of the bottom wall of the deaeration tank, and the pre-wet module faces the inlet.
  • a pre-wet module is disclosed, further comprising a shielding member configured to shield the flow of degassed liquid supplied from the inlet.
  • the present application provides a circulation tank configured to store a degassed liquid, a first pipe connecting the circulation tank and the deaeration tank, and a system that connects the circulation tank and the degassed tank through the first pipe.
  • a pre-wet module is disclosed, further comprising a second pipe connecting the second pipe, and a discharge valve configured to open and close the second pipe.
  • a pre-wetting method comprising:
  • a cleaning liquid is supplied to the processing surface of the second substrate, which is arranged so that the processing surface faces horizontally upward.
  • a second cleaning step is disclosed.
  • the present application includes a raising step of raising the substrate holder after the first degassing step, and a degassing liquid level lower than the degassing position after the first degassing step.
  • a pre-wetting method is disclosed, further comprising a discharging step of discharging the degassed liquid from the degassing tank.
  • the present application includes a second holding step of holding the second substrate using the substrate holder after the raising step, and a second holding step of holding the second substrate using the substrate holder; a second rotation of rotating the substrate holder so that the surface to be processed faces horizontally upward, and the surface to be processed of the second substrate held in the substrate holder is tilted with respect to the horizontal and faces downward; a second lowering step of lowering the substrate holder to place the second substrate in a degassing position in a degassing tank; and a second lowering step of lowering the substrate holder to place the second substrate in the degassing position;
  • a pre-wet method is disclosed, further comprising a second degassing step of injecting a degassing liquid into the degassing tank such that the degassing liquid level is higher than the degassing liquid level.
  • a cleaning liquid is supplied to the processing surface of the third substrate, which is arranged so that the processing surface faces horizontally upward.
  • a third cleaning step is disclosed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

基板に効率よく前処理を行い、かつ、基板の被処理面に気泡が付着するのを抑制する。 プリウェットモジュール200は、脱気液を収容するように構成された脱気槽210と、脱気槽210の上方に配置され、洗浄液を下方に向けて供給するように構成された洗浄装置260と、脱気槽210と洗浄装置260との間に配置され、第1の基板WF-1を保持するように構成された第1の保持部材222、および第2の基板WF-2を保持するように構成された第2の保持部材224、を有する基板ホルダ220と、基板ホルダ220を回転および昇降させるように構成された駆動機構230と、を含み、第1の保持部材222および第2の保持部材224は、第1の基板WF-1の被処理面WF-1aが水平に対して傾いて脱気槽210内の脱気液面に対向すると同時に、第2の基板WF-2の被処理面WF-2aが水平に洗浄装置260に対向するように、第1の基板WF-1および第2の基板WF-2を保持可能に構成される。

Description

プリウェットモジュール、およびプリウェット方法
 本願は、プリウェットモジュール、およびプリウェット方法に関する。
 基板(例えば半導体ウェハ)にめっき処理を行うためのめっき装置は、脱気処理などの各種の前処理を基板に対して行うプリウェットモジュールと、前処理が行われた基板にめっき処理を行うめっきモジュールと、を備えている。 
 例えば特許文献1には、第1の基板を脱気槽に浸漬して脱気処理しながら第2の基板を洗浄処理するなど、複数の基板に対して異なる前処理を並行して効率よく実行することが可能なプリウェットモジュールが開示されている。
特許第7008863号公報
 しかしながら、従来技術は、基板の被処理面に付着した気泡に起因して脱気処理が不均一になるおそれがあることについて考慮されていない。
 すなわち、従来技術は、基板ホルダに保持された基板の被処理面が水平に下を向いた(脱気液面に対向した)状態で基板ホルダを下降させるので、基板を脱気液に浸漬させる際に被処理面に気泡が付着しやすい。被処理面に気泡が付着したまま脱気処理が行われると、気泡が付着した箇所では脱気処理が促進されず、その結果、被処理面全体の脱気処理が不均一になるおそれがある。
 そこで、本願は、基板に効率よく前処理を行い、かつ、基板の被処理面に気泡が付着するのを抑制することを1つの目的としている。
 一実施形態によれば、脱気液を収容するように構成された脱気槽と、前記脱気槽の上方に配置され、洗浄液を下方に向けて供給するように構成された洗浄装置と、前記脱気槽と前記洗浄装置との間に配置され、第1の基板を保持するように構成された第1の保持部材、および第2の基板を保持するように構成された第2の保持部材、を有する基板ホルダと、前記基板ホルダを回転および昇降させるように構成された駆動機構と、を含み、前記第1の保持部材および前記第2の保持部材は、前記第1の基板の被処理面が水平に対して傾いて前記脱気槽内の脱気液面に対向すると同時に、前記第2の基板の被処理面が水平に前記洗浄装置に対向するように、前記第1の基板および前記第2の基板を保持可能に構成される、プリウェットモジュールが開示される。
図1は、本実施形態のめっき装置の全体構成を示す斜視図である。 図2は、本実施形態のめっき装置の全体構成を示す平面図である。 図3は、一実施形態のプリウェットモジュールの構成を概略的に示す縦断面図である。 図4は、一実施形態のプリウェットモジュールを用いたプリウェット方法を示すフローチャートである。 図5は、一実施形態のプリウェットモジュールを用いたプリウェット方法を概略的に示す図である。 図6は、一実施形態のプリウェットモジュールを用いたプリウェット方法を概略的に示す図である。 図7は、一実施形態のプリウェットモジュールを用いたプリウェット方法を概略的に示す図である。 図8は、一実施形態のプリウェットモジュールを用いたプリウェット方法を概略的に示す図である。 図9は、一実施形態のプリウェットモジュールを用いたプリウェット方法を概略的に示す図である。 図10は、一実施形態のプリウェットモジュールを用いたプリウェット方法を概略的に示す図である。
 以下、本発明の実施形態について図面を参照して説明する。以下で説明する図面において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
<めっき装置の全体構成>
 図1は、本実施形態のめっき装置の全体構成を示す斜視図である。図2は、本実施形態のめっき装置の全体構成を示す平面図である。図1、2に示すように、めっき装置1000は、ロードポート100、搬送ロボット110、アライナ120、プリウェットモジュール200、プリソークモジュール300、めっきモジュール400、洗浄モジュール500、スピンリンスドライヤ600、搬送装置700、および、制御モジュール800を備える。
 ロードポート100は、めっき装置1000に図示していないFOUPなどのカセットに収納された基板を搬入したり、めっき装置1000からカセットに基板を搬出するためのモジュールである。本実施形態では4台のロードポート100が水平方向に並べて配置されているが、ロードポート100の数および配置は任意である。搬送ロボット110は、基板を搬送するためのロボットであり、ロードポート100、アライナ120、プリウェットモジュール200およびスピンリンスドライヤ600の間で基板を受け渡すように構成される。搬送ロボット110および搬送装置700は、搬送ロボット110と搬送装置700との間で基板を受け渡す際には、図示していない仮置き台を介して基板の受け渡しを行うことができる。
 アライナ120は、基板のオリエンテーションフラットやノッチなどの位置を所定の方向に合わせるためのモジュールである。本実施形態では2台のアライナ120が水平方向に並べて配置されているが、アライナ120の数および配置は任意である。プリウェットモジュール200は、めっき処理前の基板の被めっき面を純水または脱気水などの処理液で濡らすことで、基板表面に形成されたパターン内部の空気を処理液に置換する。プリウェットモジュール200は、めっき時にパターン内部の処理液をめっき液に置換することでパターン内部にめっき液を供給しやすくするプリウェット処理を施すように構成される。本実施形態では2台のプリウェットモジュール200が上下方向に並べて配置されているが、プリウェットモジュール200の数および配置は任意である。
 プリソークモジュール300は、例えばめっき処理前の基板の被めっき面に形成したシード層表面等に存在する電気抵抗の大きい酸化膜を硫酸や塩酸などの処理液でエッチング除去してめっき下地表面を洗浄または活性化するプリソーク処理を施すように構成される。本実施形態では2台のプリソークモジュール300が上下方向に並べて配置されているが、プリソークモジュール300の数および配置は任意である。めっきモジュール400は、基板にめっき処理を施す。本実施形態では、上下方向に3台かつ水平方向に4台並べて配置された12台のめっきモジュール400のセットが2つあり、合計24台のめっきモジュール400が設けられているが、めっきモジュール400の数および配置は任意である。
 洗浄モジュール500は、めっき処理後の基板に残るめっき液等を除去するために基板に洗浄処理を施すように構成される。本実施形態では2台の洗浄モジュール500が上下方向に並べて配置されているが、洗浄モジュール500の数および配置は任意である。スピンリンスドライヤ600は、洗浄処理後の基板を高速回転させて乾燥させるためのモジュールである。本実施形態では2台のスピンリンスドライヤが上下方向に並べて配置されているが、スピンリンスドライヤの数および配置は任意である。搬送装置700は、めっき装置1000内の複数のモジュール間で基板を搬送するための装置である。制御モジュール800は、めっき装置1000の複数のモジュールを制御するように構成され、例えばオペレータとの間の入出力インターフェースを備える一般的なコンピュータまたは専用コンピュータから構成することができる。
 めっき装置1000による一連のめっき処理の一例を説明する。まず、ロードポート100にカセットに収納された基板が搬入される。続いて、搬送ロボット110は、ロードポート100のカセットから基板を取り出し、アライナ120に基板を搬送する。アライナ120は、基板のオリエンテーションフラットやノッチなどの位置を所定の方向に合わせる。搬送ロボット110は、アライナ120で方向を合わせた基板をプリウェットモジュール200へ受け渡す。
 プリウェットモジュール200は、基板にプリウェット処理を施す。搬送装置700は、プリウェット処理が施された基板をプリソークモジュール300へ搬送する。プリソークモジュール300は、基板にプリソーク処理を施す。搬送装置700は、プリソーク処理が施された基板をめっきモジュール400へ搬送する。めっきモジュール400は、基板にめっき処理を施す。
 搬送装置700は、めっき処理が施された基板を洗浄モジュール500へ搬送する。洗浄モジュール500は、基板に洗浄処理を施す。搬送装置700は、洗浄処理が施された基板をスピンリンスドライヤ600へ搬送する。スピンリンスドライヤ600は、基板に乾燥処理を施す。搬送ロボット110は、スピンリンスドライヤ600から基板を受け取り、乾燥処理を施した基板をロードポート100のカセットへ搬送する。最後に、ロードポート100から基板を収納したカセットが搬出される。
 <プリウェットモジュールの構成>
 次に、プリウェットモジュール200の構成を説明する。本実施形態における2台のプリウェットモジュール200は同一の構成であるので、1台のプリウェットモジュール200のみを説明する。
 図3は、一実施形態のプリウェットモジュールの構成を概略的に示す縦断面図である。図3に示すように、プリウェットモジュール200は、脱気液(例えば脱気水)を収容するように構成された脱気槽210を備える。脱気槽210は、上面が開口しており、脱気液を貯留可能な形状を有する。脱気槽210は、概略円筒形状の側壁210bから脱気液を溢れ出させるための複数のオーバーフロー口219を有する。一例では、複数(例えば4個)のオーバーフロー口219は、脱気槽210の側壁210bの同じ高さ位置に、周方向に沿って実質的に等間隔(約90°間隔)に形成されている。プリウェットモジュール200は、複数のオーバーフロー口219にそれぞれ連通する複数のオーバーフロー槽205を有する。オーバーフロー槽205は脱気槽210の側壁210bの外側に配置された概略矩形の容器である。本実施形態では、脱気槽210の内部に脱気領域214が形成され、オーバーフロー槽205の内部にオーバーフロー領域216が形成される。
 また、図3に示すように、脱気槽210は、脱気槽210の底壁210cの中央に形成された脱気液の注入口210dを有する。注入口210dは、脱気槽210に浸漬された基板WFの中心に対応する位置に設けられる。
 プリウェットモジュール200は、脱気液を貯留するように構成された循環槽280と、循環槽280と脱気槽210とを接続する第1の配管281と、第1の配管281を介して循環槽280に貯留された脱気液を脱気槽210に供給するためのポンプ282と、を備える。また、プリウェットモジュール200は、ポンプ282から吐出された脱気液中に含まれる溶存酸素を除去する脱気ユニット284と、第1の配管281を開閉するように構成された供給バルブ286と、を備える。供給バルブ286は、脱気ユニット284の下流側の第1の配管281を開閉するように構成される。
 また、プリウェットモジュール200は、脱気槽210と循環槽280とを接続する第2の配管283と、第2の配管283を開閉するように構成された排出バルブ288と、を備える。なお、本実施形態では、第1の配管281と第2の配管283が一部共用されている例を示したが、これに限定されない。第2の配管283は、第1の配管281とは独立して脱気槽210と循環槽280とを接続してもよい。プリウェットモジュール200は、供給バルブ286を開き、排出バルブ288を閉じ、ポンプ282を駆動することによって、循環槽280から脱気槽210に脱気液を供給することができる。また、プリウェットモジュール200は、ポンプ282の駆動を停止し、供給バルブ286を閉じ、排出バルブ288を開くことによって、脱気槽210から循環槽280へ脱気液を排出することができる。プリウェットモジュール200は、脱気処理に用いた脱気液を脱気槽210から循環槽280へ戻し、脱気ユニット284を介して脱気槽210へ循環できるようになっている。
 プリウェットモジュール200は、脱気槽210内に注入口210dに対向して配置された遮蔽部材290を備える。遮蔽部材290は、脱気処理を行うときに基板WFが配置される脱気位置よりも低い位置に固定される。具体的には、遮蔽部材290は、複数の脚部材290aを介して脱気槽210の底壁210cに固定されている。遮蔽部材290は、注入口210dから供給される脱気液の上向きの流れを遮蔽するように構成されていればよく、例えば遮蔽板であってもよい。複数の脚部材290a同士は間隔をあけて配置されているので、複数の脚部材290a間には脱気液が流れるようになっている。脱気槽210から送出されて脱気ユニット284によって溶存酸素が除去された脱気液は、注入口210dを介して脱気槽210内に注入される。ここで、脱気槽210内には注入口210dに対向して遮蔽部材290が配置されているので、脱気液の流れは遮蔽部材290に衝突して放射方向に広がりながら脱気槽210を満たし、複数のオーバーフロー口219から溢れ出す。
 本実施形態によれば、基板WFを脱気液に浸漬する際に被処理面に気泡が付着するのを抑制することができる。すなわち、注入口210dから供給された脱気液が真上に向かって流れると、脱気液面の中央に液突起が形成されるおそれがある。脱気液面の中央に液突起が形成された状態で基板WFを脱気液に浸漬すると、被処理面に気泡が付着し易くなる。これに対して本実施形態では、注入口210dから供給された脱気液の真上に向かう流れを遮蔽部材290によって遮蔽することで、脱気液面の中央に液突起が形成されるのを抑制することができる。その結果、脱気液面は全体的に水平を保ったまま上昇するので、基板の被処理面に気泡が付着するのを抑制することができる。
 プリウェットモジュール200は、脱気槽210の上部に配置された基板ホルダ220を備える。基板ホルダ220は、前処理対象の基板WFを保持するように構成される。基板ホルダ220は、円板形状の第1の基板WF-1を保持するように構成された円柱形状の第1の保持部材222と、円板形状の第2の基板WF-2を保持するように構成された円柱形状の第2の保持部材224と、を備える。第1の保持部材222および第2の保持部材224は、真空吸着などによって基板の被処理面の裏面を保持可能に構成される。なお、本実施形態では、「第1の基板WF-1」、および「第2の基板WF-2」などの記載を用いているが、これは単に異なる基板を区別するためであり、処理の順序を示すものではない。
 プリウェットモジュール200は、基板ホルダ220を駆動するように構成された駆動機構230を備える。駆動機構230は、第1の基板WF-1と第2の基板WF-2が順次、脱気槽210内の脱気液に浸漬されるように基板ホルダ220を駆動する。駆動機構230は、具体的には、基板ホルダ220を回転させるように構成された回転機構240と、基板ホルダ220を昇降させるように構成された昇降機構248と、を備える。
 回転機構240は、基板ホルダ220から水平方向に伸びるシャフト242の軸周りに基板ホルダ220を回転可能に構成される。これにより、回転機構240は、第1の基板WF-1の被処理面WF-1aが脱気槽210内の脱気液に対向する第1の状態と、第2の基板WF-2の被処理面WF-2aが脱気槽210内の脱気液に対向する第2の状態と、の間で基板ホルダ220を回転させるように構成される。回転機構240は、例えばモータなどの公知の機構によって実現することができる。
 昇降機構248は、第1の状態から基板ホルダ220を下降させることによって第1の基板WF-1を脱気位置に配置することができ、第2の状態から基板ホルダ220を下降させることによって第2の基板WF-2を脱気位置に配置することができる。昇降機構248は、例えばエアシリンダなどの公知の機構によって実現することができる。本実施形態では、駆動機構230が回転機構240と昇降機構248とを備える例を示したが、この構成に限定されない。
 プリウェットモジュール200は、第1の基板WF-1および第2の基板WF-2のいずれか一方が脱気槽210内の脱気液に浸漬されているときに他方の基板に所定の処理を行うように構成された処理装置258を備える。処理装置258は、本実施形態では、基板ホルダ220の上部に配置された基板ステーション250と、基板ステーション250の上部に配置された洗浄装置260と、を含む。
 基板ステーション250は、搬送装置700との間で基板の受け渡しを行うとき、および、基板に対して後述する洗浄処理を行うときに、基板を保持するための部材である。基板ステーション250は、基板の被処理面の裏面を保持するための第1のアーム部材250-1および第2のアーム部材250-2を備える。第1のアーム部材250-1および第2のアーム部材250-2はそれぞれ、基板の被処理面の裏面の外縁を保持するための突起部材250aを有する。第1のアーム部材250-1と第2のアーム部材250-2は水平方向に並べて離間して配置されている。第1のアーム部材250-1と第2のアーム部材250-2は、互いに近づく方向および離れる方向に移動可能になっている。第1のアーム部材250-1と第2のアーム部材250-2は、互いに近づいた基板保持位置にあるときに基板を保持するように構成される。
 洗浄装置260は、脱気槽210の上方に配置されており、洗浄液を下方に向けて供給するように構成されている。具体的には、洗浄装置260は、基板ステーション250に保持された基板と対向するように配置された円板形状の天井部材262と、天井部材262の下面の外縁に取り付けられた筒状の側壁部材264と、天井部材262の下面に取り付けられた複数のノズル268と、を備える。天井部材262の上面の中央には鉛直方向に伸びるシャフト266が取り付けられている。シャフト266および天井部材262には洗浄液(例えば純水)を通流させるための流路267が形成されており、流路267は複数のノズル268に連通している。複数のノズル268は、図示していない洗浄液源から流路267を介して送られた洗浄液を、基板ステーション250に保持された基板の被処理面に供給するように構成されている。プリウェットモジュール200は、洗浄装置260を水平方向に駆動するための水平駆動部材270を備える。水平駆動部材270は、シャフト266に固定され水平方向に伸びるシャフト272を介して洗浄装置260を水平方向に移動させる。これにより、洗浄装置260は、基板の被処理面の全体を洗浄することができる。水平駆動部材270は、例えばモータなどの公知の機構によって実現することができる。
 図3の例では、複数のノズル268は、第1の基板WF-1が脱気槽210内の脱気液に浸漬されているときに、被処理面WF-2aが鉛直方向の上向きに保持されている第2の基板WF-2の被処理面WF-2aに洗浄液を供給するように構成される。なお、本実施形態では、基板ステーション250に保持された基板に対して洗浄処理を行う例を示したが、これに限定されず、第1の保持部材222または第2の保持部材224に保持された基板(被処理面が鉛直方向の上向きに保持された基板)に洗浄処理を行ってもよい。
 基板ホルダ220は、複数のノズル268と脱気槽210との間に配置された遮蔽部材225を有する。遮蔽部材225は、脱気槽210の上部に形成された開口210a(脱気領域214の上部開口)よりも大きな外縁を有し、複数のノズル268と開口210aとの間を遮蔽するように構成された円板形状の部材である。遮蔽部材225を設けることによって、複数のノズル268から供給された洗浄液が脱気槽210(脱気領域214)内に落下することを防止することができる。
 本実施形態のプリウェットモジュール200では、基板ホルダ220は、第1の保持部材222および第2の保持部材224を備えており、駆動機構230は、第1の基板WF-1と第2の基板WF-2が順次、脱気槽210内の脱気液に浸漬されるように基板ホルダ220を駆動するように構成されている。したがって、プリウェットモジュール200は、プリウェットモジュール200内で、第1の基板WF-1と第2の基板WF-2に異なる処理(例えば洗浄処理と脱気処理)を並行して行うことができる。したがって、本実施形態によれば、基板に効率よく前処理を行うことができ、プリウェットモジュール200のスループットを向上させることができる。
 また、本実施形態では、第1の保持部材222および第2の保持部材224は、第1の基板WF-1の被処理面WF-1aが水平に対して傾いて脱気槽210内の脱気液面に対向すると同時に、第2の基板WF-2の被処理面WF-2aが水平に洗浄装置260に対向するように、第1の基板WF-1および第2の基板WF-2を保持可能に構成される。一例では、第1の保持部材222は、基板ステーション250に保持された基板(被処理面が水平に上を向いた基板)を第2の保持部材224が保持可能な姿勢のときに、被処理面WF-1aが水平に対して1~10度傾いて脱気槽210内の脱気液面に対向するように、第1の基板WF-1を保持する。脱気液面に対する基板の被処理面の傾きは、小さすぎると気泡が抜けにくく、大きすぎると脱気槽210の高さ方向のサイズが大きくなり必要な脱気液の量が多くなるので好ましくない。脱気液面に対する基板の被処理面の傾きは、一例では1~10度が好ましいが、これに限定されず、例えば2~9度にすることがより好ましく、3~8度にするとさらに好ましい。
 また、回転機構240によって基板ホルダ220を回転させると、後述する図9に示すように、第1の保持部材222および第2の保持部材224は、第2の基板WF-2の被処理面WF-2aが水平に対して傾いて脱気槽210内の脱気液面に対向すると同時に、第1の基板WF-1の被処理面WF-1aが水平に洗浄装置260に対向するように、第1の基板WF-1および第2の基板WF-2を保持可能に構成される。
 したがって、本実施形態によれば、基板の被処理面に気泡が付着するのを抑制することができる。すなわち、基板の被処理面が真下を向いた(水平に下を向いた)状態で基板を脱気液に浸漬させると、浸漬の際に被処理面に気泡が付着しやすい。被処理面に気泡が付着したまま脱気処理が行われると、気泡が付着した箇所では脱気処理が促進されず、その結果、被処理面全体の脱気処理が不均一になるおそれがある。これに対して本実施形態では、基板の被処理面が水平に対して傾いた状態で脱気液に浸漬されるので、被処理面の傾斜に沿って気泡が抜けやすくなり、その結果、被処理面に気泡が付着するのを抑制することができる。
 また、基板の被処理面に気泡が付着するのを抑制するためには、脱気液に基板が浸漬されるときの相対速度も重要である。例えば、脱気液と基板の浸漬時の相対速度を5~15mm/sec程度とすると、被処理面に気泡が付着し難くなる。したがって、昇降機構248は、5~15mm/sec程度で基板ホルダ220を下降させるのが好ましいが、昇降機構248の種類によっては下降速度を精密に制御するのが難しい場合もある。そこで、本実施形態では、脱気槽210に貯められた脱気液に対して基板を下降させるのではなく、脱気液が満たされていない状態で基板を脱気位置まで下降させ、その状態で脱気液面を上昇させることによって、基板を脱気液に浸漬させるように構成される。この構成によれば、脱気液と基板の浸漬時の相対速度が5~15mm/sec程度になるようにポンプ282の吐出量を制御することができるので、昇降機構248の種類に関係なく、基板の被処理面に気泡が付着するのを抑制することができる。なお、昇降機構248が基板ホルダ220の昇降速度を精密に制御することができる場合には、脱気槽210に脱気液を満たした後に、5~15mm/sec程度の速度で基板ホルダ220を下降させて基板を浸漬してもよい。なお、脱気液と基板の浸漬時の相対速度は、5~15mm/secに限らず、例えば、7~13mm/secとするとより好ましく、9~11mm/secとするとさらに好ましい。
 以下、本実施形態のプリウェット方法について説明する。図4は、一実施形態のプリウェットモジュールを用いたプリウェット方法を示すフローチャートである。図5~図10は、一実施形態のプリウェットモジュールを用いたプリウェット方法を概略的に示す図である。なお、図5~図10では、説明の便宜上、プリウェットモジュール200の一部の部材の図示を省略している。
 図4に示すように、プリウェット方法は、搬送ロボット110によってプリウェットモジュール200に搬入された第1の基板WF-1を基板ステーション250に保持する(ステップ101)。このとき、第1の基板WF-1は、被処理面が水平になった状態で上を向いている。続いて、プリウェット方法は、基板ステーション250に保持された第1の基板WF-1の被処理面を洗浄装置260によって洗浄する(第1の洗浄ステップ102、図5参照)。続いて、プリウェット方法は、昇降機構248を用いて基板ホルダ220を上昇させて、被処理面WF-1aが水平に上を向いた第1の基板WF-1を保持する(第1の保持ステップ103、図5参照)。第1の保持ステップ103は、具体的には、第1の保持部材222を第1の基板WF-1の被処理面WF-1aの裏面に接触させて真空吸着することによって、第1の基板WF-1を保持する。
 続いて図4に示すように、プリウェット方法は、回転機構240を用いて基板ホルダ220が上下反転するように基板ホルダ220を回転させる(第1の回転ステップ104、図6参照)。具体的には、第1の回転ステップ104は、基板ホルダ220に保持された第1の基板WF-1の被処理面WF-1aが水平に対して傾いて下を向き、かつ、被処理面WF-2aが水平に上を向いた第2の基板WF-2を保持可能な姿勢になるように、基板ホルダ220を回転させる(図6参照)。続いて、プリウェット方法は、昇降機構248を用いて基板ホルダ220を下降させることによって、第1の基板WF-1を脱気位置に配置する(第1の下降ステップ105、図6参照)。
 続いて、プリウェット方法は、脱気位置に配置された第1の基板WF-1の被処理面WF-1aよりも脱気液面が高くなるように脱気槽210に脱気液を注入する(第1の脱気ステップ106、図7参照)。具体的には、第1の脱気ステップ106は、供給バルブ286を開き、排出バルブ288を閉じ、ポンプ282を駆動することによって、脱気槽210に脱気液を注入する。これにより第1の基板WF-1は脱気液に浸漬される。本実施形態によれば、第1の基板WF-1を脱気液に浸漬させるときに、第1の基板WF-1の被処理面WF-1aを脱気液面に対して傾斜させているので、被処理面WF-1aに気泡が付着するのを抑制することができる。さらに、本実施形態によれば、脱気液と基板の浸漬時の相対速度が5~15mm/sec程度になるように脱気液を注入する。このように脱気液と基板の浸漬時の相対速度を適切に制御することによって、被処理面WF-1aに気泡が付着するのをより抑制することができる。
 続いて、プリウェット方法は、第1の脱気ステップ106の実行と並行して、基板ステーション250に保持された第2の基板WF-2の被処理面WF-2aに洗浄液を供給する(第2の洗浄ステップ107、図7参照)。本実施形態によれば、プリウェットモジュール200内で、第1の基板WF-1の脱気処理と第2の基板WF-2の洗浄処理を並行して同時に行うように構成されている。したがって、本実施形態によれば、基板に効率よく前処理を行うことができ、プリウェットモジュール200のスループットを向上させることができる。
 脱気処理が終了したら、プリウェット方法は、昇降機構248を用いて基板ホルダ220を上昇させる(上昇ステップ108、図8参照)。続いて、プリウェット方法は、脱気位置より脱気液面が低くなるように脱気槽210から脱気液を排出する(排出ステップ109、図8参照)。排出ステップ109は、具体的には、ポンプ282の駆動を停止し、供給バルブ286を閉じ、排出バルブ288を開くことによって、脱気槽210から循環槽280へ脱気液を排出することができる。本実施形態によれば、洗浄装置260によって被処理面が洗浄された基板を脱気処理するので、脱気槽210内の脱気液に塵などが混入し難い。したがって、脱気処理に用いられた脱気液を循環槽280へ排出して再利用することができる。なお、上昇ステップ108と排出ステップ109は、順序が入れ替わってもよいし、同時に実行されてもよい。
 上昇ステップ108の後、プリウェット方法は、基板ホルダ220を用いて第2の基板WF-2を保持する(第2の保持ステップ110、図8参照)。第2の保持ステップ110は、具体的には、第2の保持部材224を第2の基板WF-2の被処理面の裏面に接触させ、被処理面の裏面を真空吸着することによって、第2の基板WF-2を保持する。
 続いて、プリウェット方法は、回転機構240を用いて基板ホルダ220が上下反転するように基板ホルダ220を回転させる(第2の回転ステップ111、図9参照)。第2の回転ステップ111は、具体的には、基板ホルダ220に保持された第1の基板WF-1の被処理面WF-1aが水平に上を向き、かつ、基板ホルダ220に保持された第2の基板WF-2の被処理面WF-2aが水平に対して傾いて下を向くように、基板ホルダ220を回転させる(図9参照)。第1の基板WF-1は、基板ステーション250に保持された後、搬送装置700によって搬出される(図9参照)。
 続いて、プリウェット方法は、昇降機構248を用いて基板ホルダ220を下降させて第2の基板WF-2を脱気槽210内の脱気位置に配置する(第2の下降ステップ112、図9参照)。続いて、プリウェット方法は、脱気位置に配置された第2の基板WF-2の被処理面WF-2aよりも脱気液面が高くなるように脱気槽210に脱気液を注入する(第2の脱気ステップ113、図10参照)。具体的には、第2の脱気ステップ113は、供給バルブ286を開き、排出バルブ288を閉じ、ポンプ282を駆動することによって、脱気槽210に脱気液を注入する。本実施形態によれば、第2の基板WF-2を脱気液に浸漬させるときに、第2の基板WF-2の被処理面WF-2aを脱気液面に対して傾斜させているので、被処理面WF-2aに気泡が付着するのを抑制することができる。さらに、本実施形態によれば、脱気液と基板の浸漬時の相対速度が5~15mm/sec程度になるように脱気液を吐出する。このように脱気液と基板の浸漬時の相対速度を適切に制御することによって、被処理面WF-2aに気泡が付着するのをより抑制することができる。
 プリウェット方法は、第2の脱気ステップ113の実行と並行して、基板ステーション250に保持された第3の基板WF-3の被処理面WF-3aに洗浄液を供給する(第3の洗浄ステップ114、図10参照)。本実施形態によれば、プリウェットモジュール200内で、第2の基板WF-2の脱気処理と第3の基板WF-3の洗浄処理を並行して同時に行うように構成されている。したがって、本実施形態によれば、基板に効率よく前処理を行うことができ、プリウェットモジュール200のスループットを向上させることができる。プリウェット方法は、後続の基板についても前処理を行うが、同様の処理の繰り返しであるので、説明を省略する。
 以上、いくつかの本発明の実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることは勿論である。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
 本願は、一実施形態として、脱気液を収容するように構成された脱気槽と、前記脱気槽の上方に配置され、洗浄液を下方に向けて供給するように構成された洗浄装置と、前記脱気槽と前記洗浄装置との間に配置され、第1の基板を保持するように構成された第1の保持部材、および第2の基板を保持するように構成された第2の保持部材、を有する基板ホルダと、前記基板ホルダを回転および昇降させるように構成された駆動機構と、を含み、前記第1の保持部材および前記第2の保持部材は、前記第1の基板の被処理面が水平に対して傾いて前記脱気槽内の脱気液面に対向すると同時に、前記第2の基板の被処理面が水平に前記洗浄装置に対向するように、前記第1の基板および前記第2の基板を保持可能に構成される、プリウェットモジュールを開示する。
 また、本願は、一実施形態として、前記第1の保持部材および前記第2の保持部材は、前記基板ホルダが前記駆動機構によって回転されると、前記第2の基板の被処理面が水平に対して傾いて前記脱気槽内の脱気液面に対向すると同時に、前記第1の基板の被処理面が水平に前記洗浄装置に対向するように、前記第1の基板および前記第2の基板を保持可能に構成される、プリウェットモジュールを開示する。
 また、本願は、一実施形態として、前記第1の保持部材および前記第2の保持部材は、前記第1の基板および前記第2の基板のいずれか一方の基板の被処理面が水平に対して1~10度傾いて前記脱気槽内の脱気液面に対向すると同時に、他方の基板の被処理面が水平に前記洗浄装置と対向するように、前記第1の基板および前記第2の基板を保持可能に構成される、プリウェットモジュールを開示する。
 また、本願は、一実施形態として、前記脱気槽は、前記脱気槽の底壁の中央に形成された脱気液の注入口を有し、前記プリウェットモジュールは、前記注入口に対向して配置され、前記注入口から供給される脱気液の流れを遮蔽するように構成された遮蔽部材をさらに含む、プリウェットモジュールを開示する。
 また、本願は、一実施形態として、脱気液を貯留するように構成された循環槽と、前記循環槽と前記脱気槽とを接続する第1の配管と、前記第1の配管を介して前記循環槽に貯留された脱気液を前記脱気槽に供給するためのポンプと、前記第1の配管を開閉するように構成された供給バルブと、前記脱気槽と前記循環槽とを接続する第2の配管と、前記第2の配管を開閉するように構成された排出バルブと、をさらに含む、プリウェットモジュールを開示する。
 また、本願は、一実施形態として、被処理面が水平に上を向いた第1の基板の被処理面を洗浄する第1の洗浄ステップと、基板ホルダを用いて前記第1の基板を保持する第1の保持ステップと、前記基板ホルダに保持された前記第1の基板の被処理面が水平に対して傾いて下を向き、かつ、被処理面が水平に上を向いた第2の基板を保持可能な姿勢になるように、前記基板ホルダを回転させる第1の回転ステップと、前記基板ホルダを下降させて前記第1の基板を脱気槽内の脱気位置に配置する第1の下降ステップと、前記脱気位置に配置された前記第1の基板の被処理面よりも脱気液面が高くなるように脱気槽に脱気液を注入する第1の脱気ステップと、を含む、プリウェット方法を開示する。
 また、本願は、一実施形態として、前記第1の脱気ステップの実行と並行して、被処理面が水平に上を向くように配置された第2の基板の被処理面に洗浄液を供給する第2の洗浄ステップと、をさらに含む、プリウェット方法を開示する。
 また、本願は、一実施形態として、前記第1の脱気ステップの後に前記基板ホルダを上昇させる上昇ステップと、前記第1の脱気ステップの後に前記脱気位置より脱気液面が低くなるように前記脱気槽から脱気液を排出する排出ステップと、をさらに含む、プリウェット方法を開示する。
 また、本願は、一実施形態として、前記上昇ステップの後に、前記基板ホルダを用いて前記第2の基板を保持する第2の保持ステップと、前記基板ホルダに保持された前記第1の基板の被処理面が水平に上を向き、かつ、前記基板ホルダに保持された前記第2の基板の被処理面が水平に対して傾いて下を向くように前記基板ホルダを回転させる第2の回転ステップと、前記基板ホルダを下降させて前記第2の基板を脱気槽内の脱気位置に配置する第2の下降ステップと、前記脱気位置に配置された前記第2の基板の被処理面よりも脱気液面が高くなるように脱気槽に脱気液を注入する第2の脱気ステップと、をさらに含む、プリウェット方法を開示する。
 また、本願は、一実施形態として、前記第2の脱気ステップの実行と並行して、被処理面が水平に上を向くように配置された第3の基板の被処理面に洗浄液を供給する第3の洗浄ステップと、をさらに含む、プリウェット方法を開示する。
200 プリウェットモジュール
210 脱気槽
210c 底壁
210d 注入口
220 基板ホルダ
222 第1の保持部材
224 第2の保持部材
230 駆動機構
240 回転機構
248 昇降機構
250 基板ステーション
250-1 第1のアーム部材
250-2 第2のアーム部材
260 洗浄装置
280 循環槽
281 第1の配管
282 ポンプ
283 第2の配管
284 脱気ユニット
286 供給バルブ
288 排出バルブ
290 遮蔽部材
1000 めっき装置
WF 基板
WF-1 第1の基板
WF-1a 被処理面
WF-2 第2の基板
WF-2a 被処理面
WF-3 第3の基板
WF-3a 被処理面
 

Claims (10)

  1.  脱気液を収容するように構成された脱気槽と、
     前記脱気槽の上方に配置され、洗浄液を下方に向けて供給するように構成された洗浄装置と、
     前記脱気槽と前記洗浄装置との間に配置され、第1の基板を保持するように構成された第1の保持部材、および第2の基板を保持するように構成された第2の保持部材、を有する基板ホルダと、
     前記基板ホルダを回転および昇降させるように構成された駆動機構と、を含み、
     前記第1の保持部材および前記第2の保持部材は、前記第1の基板の被処理面が水平に対して傾いて前記脱気槽内の脱気液面に対向すると同時に、前記第2の基板の被処理面が水平に前記洗浄装置に対向するように、前記第1の基板および前記第2の基板を保持可能に構成される、
     プリウェットモジュール。
  2.  前記第1の保持部材および前記第2の保持部材は、前記基板ホルダが前記駆動機構によって回転されると、前記第2の基板の被処理面が水平に対して傾いて前記脱気槽内の脱気液面に対向すると同時に、前記第1の基板の被処理面が水平に前記洗浄装置に対向するように、前記第1の基板および前記第2の基板を保持可能に構成される、
     請求項1に記載のプリウェットモジュール。
  3.  前記第1の保持部材および前記第2の保持部材は、前記第1の基板および前記第2の基板のいずれか一方の基板の被処理面が水平に対して1~10度傾いて前記脱気槽内の脱気液面に対向すると同時に、他方の基板の被処理面が水平に前記洗浄装置と対向するように、前記第1の基板および前記第2の基板を保持可能に構成される、
     請求項2に記載のプリウェットモジュール。
  4.  前記脱気槽は、前記脱気槽の底壁の中央に形成された脱気液の注入口を有し、
     前記プリウェットモジュールは、前記注入口に対向して配置され、前記注入口から供給される脱気液の流れを遮蔽するように構成された遮蔽部材をさらに含む、
     請求項1から3のいずれか一項に記載のプリウェットモジュール。
  5.  脱気液を貯留するように構成された循環槽と、
     前記循環槽と前記脱気槽とを接続する第1の配管と、
     前記第1の配管を介して前記循環槽に貯留された脱気液を前記脱気槽に供給するためのポンプと、
     前記第1の配管を開閉するように構成された供給バルブと、
     前記脱気槽と前記循環槽とを接続する第2の配管と、
     前記第2の配管を開閉するように構成された排出バルブと、
     をさらに含む、
     請求項1から3のいずれか一項に記載のプリウェットモジュール。
  6.  被処理面が水平に上を向いた第1の基板の被処理面を洗浄する第1の洗浄ステップと、
     基板ホルダを用いて前記第1の基板を保持する第1の保持ステップと、
     前記基板ホルダに保持された前記第1の基板の被処理面が水平に対して傾いて下を向き、かつ、被処理面が水平に上を向いた第2の基板を保持可能な姿勢になるように、前記基板ホルダを回転させる第1の回転ステップと、
     前記基板ホルダを下降させて前記第1の基板を脱気槽内の脱気位置に配置する第1の下降ステップと、
     前記脱気位置に配置された前記第1の基板の被処理面よりも脱気液面が高くなるように脱気槽に脱気液を注入する第1の脱気ステップと、
     を含む、プリウェット方法。
  7.  前記第1の脱気ステップの実行と並行して、被処理面が水平に上を向くように配置された第2の基板の被処理面に洗浄液を供給する第2の洗浄ステップと、
     をさらに含む、
     請求項6に記載のプリウェット方法。
  8.  前記第1の脱気ステップの後に前記基板ホルダを上昇させる上昇ステップと、
     前記第1の脱気ステップの後に前記脱気位置より脱気液面が低くなるように前記脱気槽から脱気液を排出する排出ステップと、
     をさらに含む、
     請求項7に記載のプリウェット方法。
  9.  前記上昇ステップの後に、前記基板ホルダを用いて前記第2の基板を保持する第2の保持ステップと、
     前記基板ホルダに保持された前記第1の基板の被処理面が水平に上を向き、かつ、前記基板ホルダに保持された前記第2の基板の被処理面が水平に対して傾いて下を向くように前記基板ホルダを回転させる第2の回転ステップと、
     前記基板ホルダを下降させて前記第2の基板を脱気槽内の脱気位置に配置する第2の下降ステップと、
     前記脱気位置に配置された前記第2の基板の被処理面よりも脱気液面が高くなるように脱気槽に脱気液を注入する第2の脱気ステップと、
     をさらに含む、
     請求項8に記載のプリウェット方法。
  10.  前記第2の脱気ステップの実行と並行して、被処理面が水平に上を向くように配置された第3の基板の被処理面に洗浄液を供給する第3の洗浄ステップと、
     をさらに含む、
     請求項9に記載のプリウェット方法。
     
PCT/JP2022/025061 2022-06-23 2022-06-23 プリウェットモジュール、およびプリウェット方法 WO2023248416A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022562906A JPWO2023248416A1 (ja) 2022-06-23 2022-06-23
PCT/JP2022/025061 WO2023248416A1 (ja) 2022-06-23 2022-06-23 プリウェットモジュール、およびプリウェット方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025061 WO2023248416A1 (ja) 2022-06-23 2022-06-23 プリウェットモジュール、およびプリウェット方法

Publications (1)

Publication Number Publication Date
WO2023248416A1 true WO2023248416A1 (ja) 2023-12-28

Family

ID=89379289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025061 WO2023248416A1 (ja) 2022-06-23 2022-06-23 プリウェットモジュール、およびプリウェット方法

Country Status (2)

Country Link
JP (1) JPWO2023248416A1 (ja)
WO (1) WO2023248416A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264245A (ja) * 2004-03-18 2005-09-29 Ebara Corp 基板の湿式処理方法及び処理装置
JP2014139341A (ja) * 2012-12-11 2014-07-31 Novellus Systems Incorporated 電気充填真空めっきセル
JP2018104799A (ja) * 2016-12-28 2018-07-05 株式会社荏原製作所 基板を処理するための方法および装置
JP7008863B1 (ja) * 2021-05-31 2022-01-25 株式会社荏原製作所 プリウェットモジュール、脱気液循環システム、およびプリウェット方法
JP2022059253A (ja) * 2020-10-01 2022-04-13 株式会社荏原製作所 めっき装置及びめっき方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264245A (ja) * 2004-03-18 2005-09-29 Ebara Corp 基板の湿式処理方法及び処理装置
JP2014139341A (ja) * 2012-12-11 2014-07-31 Novellus Systems Incorporated 電気充填真空めっきセル
JP2018104799A (ja) * 2016-12-28 2018-07-05 株式会社荏原製作所 基板を処理するための方法および装置
JP2022059253A (ja) * 2020-10-01 2022-04-13 株式会社荏原製作所 めっき装置及びめっき方法
JP7008863B1 (ja) * 2021-05-31 2022-01-25 株式会社荏原製作所 プリウェットモジュール、脱気液循環システム、およびプリウェット方法

Also Published As

Publication number Publication date
JPWO2023248416A1 (ja) 2023-12-28

Similar Documents

Publication Publication Date Title
KR101798320B1 (ko) 기판 처리 장치
JP2013033925A (ja) 洗浄方法、プログラム、コンピュータ記憶媒体、洗浄装置及び剥離システム
KR101870650B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102346529B1 (ko) 액 공급 유닛, 그리고 이를 가지는 기판 처리 장치 및 방법
KR102447205B1 (ko) 프리웨트 모듈 및 프리웨트 방법
US20240050992A1 (en) Pre-wet module, deaerated liquid circulation system, and pre-wet method
TW202223166A (zh) 鍍覆方法
JP3958572B2 (ja) 基板処理装置及び基板処理方法
TW202405994A (zh) 基板處理裝置
WO2023248416A1 (ja) プリウェットモジュール、およびプリウェット方法
KR102098599B1 (ko) 약액공급유닛
JP7008863B1 (ja) プリウェットモジュール、脱気液循環システム、およびプリウェット方法
TW202403119A (zh) 預濕模組及預濕方法
TWI769848B (zh) 鍍覆裝置之預濕模組及鍍覆處理之預濕方法
KR102186069B1 (ko) 기판 처리 장치 및 방법
KR102392488B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102193031B1 (ko) 기판처리장치 및 방법
JP7467782B1 (ja) めっき装置およびめっき液排出方法
US20240153792A1 (en) Apparatus and method for processing substrate
KR102454447B1 (ko) 기판 처리 장치 및 방법
TW202248463A (zh) 預濕模組及預濕方法
JP7253125B1 (ja) めっき装置、及び、めっき方法
TWI837780B (zh) 鍍覆裝置及鍍覆方法
EP4297073A1 (en) Substrate treating apparatus
KR102310461B1 (ko) 기판 처리 장치 및 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022562906

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947977

Country of ref document: EP

Kind code of ref document: A1