WO2023248383A1 - 遠隔光路切替ノード及びその監視方法 - Google Patents

遠隔光路切替ノード及びその監視方法 Download PDF

Info

Publication number
WO2023248383A1
WO2023248383A1 PCT/JP2022/024922 JP2022024922W WO2023248383A1 WO 2023248383 A1 WO2023248383 A1 WO 2023248383A1 JP 2022024922 W JP2022024922 W JP 2022024922W WO 2023248383 A1 WO2023248383 A1 WO 2023248383A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
port
test
connect
loop
Prior art date
Application number
PCT/JP2022/024922
Other languages
English (en)
French (fr)
Inventor
和英 中江
良 小山
ひろし 渡邉
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/024922 priority Critical patent/WO2023248383A1/ja
Publication of WO2023248383A1 publication Critical patent/WO2023248383A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/275Ring-type networks

Definitions

  • the present disclosure monitors optical fiber connections during point-to-point connections in an optical fiber network.
  • optical fiber networks especially access networks that connect communication equipment installed at accommodation stations and user-side communication terminals (hereinafter referred to as user terminals), in order to use equipment efficiently in the opening and maintenance of optical fiber networks, Optical fiber switching is performed, such as connecting an optical fiber to an arbitrary route or changing the route.
  • remote optical path switching nodes are arranged to connect the loop networks.
  • connection confirmation of this remote optical path switching node even if test light is transmitted from the accommodation station, it may not be possible to confirm the switching of the optical fiber.
  • An object of the present disclosure is to make it possible to confirm the connection between optical fibers using test light from an accommodation station even when point-to-point connections are made in an optical fiber network.
  • the optical fiber network of the present disclosure includes two loop networks in which optical fibers are connected in a loop using the remote optical path switching node of the present disclosure, and a test for transmitting test light to the remote optical path switching node. and a test device for inputting test light into the test optical fiber.
  • the two loop networks include an upper loop close to a tester that emits test light and a lower loop far from the tester.
  • the remote optical path switching node of the present disclosure includes: an optical cross-connect connected to the optical fibers forming the lower loop; a test optical coupler connected to a test optical fiber that propagates test light in the upper loop and connectable to the optical cross connect; a control unit that controls connection of the optical cross-connect and the test optical coupler; a light extraction unit that propagates through the upper loop and detects test light emitted from the test optical coupler or the optical cross-connect; Equipped with.
  • the remote optical path switching node monitoring method of the present disclosure is a monitoring method executed by the remote optical path switching node of the present disclosure, comprising:
  • the control unit uses the optical cross-connect and the test optical coupler to connect the upper loop and the lower loop, or connect the lower loops to each other,
  • a light extractor detects test light propagating through the upper loop and emitted from the test optical coupler or the optical cross-connect.
  • the test optical coupler has four ports, The first and second ports of the test optical coupler are respectively connected to optical fibers of different routes in the upper loop network, The test optical coupler outputs the test light incident on the first port to a fourth port in a different direction from the first port, and outputs the test light incident on the second port to the fourth port. The light may be emitted to a third port in a different direction from the second port.
  • the optical cross-connect has four ports, The third and fourth ports of the optical cross-connect are respectively connected to different routes of optical fibers in the lower loop network,
  • the control unit connects the first port of the optical cross-connect to the third port of the test optical coupler, and connects the second port of the optical cross-connect to the fourth port of the test optical coupler.
  • the lower loops may be connected to each other by connecting to ports.
  • the optical cross-connect has four ports, The third and fourth ports of the optical cross-connect are respectively connected to different routes of optical fibers in the lower loop network
  • the control unit includes: (i) connecting the fourth port of the test optical coupler to the optical fiber of the upper loop; connecting a third port of the test optical coupler to a first port of the optical cross-connect; connecting a first port to a third port in the optical cross-connect; or (ii) connecting the third port of the test optical coupler to the optical fiber of the upper loop; connecting a fourth port of the test optical coupler to a second port of the optical cross-connect; By connecting the second port to the fourth port in the optical cross-connect, The upper loop and the lower loop may be connected.
  • the optical cross-connect, the test optical coupler, and the light extraction section may be integrally configured.
  • FIG. 4 is an explanatory diagram of a method for checking the optical fiber connection state within a remote optical path switching node when a PtoP connection is established.
  • 4 is an explanatory diagram of a method for checking the optical fiber connection state within a remote optical path switching node when a PtoP connection is established.
  • An example of a connected state of optical paths according to an embodiment of the present disclosure is shown.
  • 4 illustrates an example of an optical fiber connection state within a remote optical path switching node according to an embodiment of the present disclosure.
  • An example of a connected state of optical paths according to an embodiment of the present disclosure is shown.
  • 4 illustrates an example of an optical fiber connection state within a remote optical path switching node according to an embodiment of the present disclosure.
  • FIG. 1 shows the configuration of an optical fiber network according to the present disclosure.
  • the optical fiber network of the present disclosure includes an accommodation station 12 and a loop network.
  • the accommodation station 12 includes, for example, an accommodation station wiring rack 21, a tester 22, an in-house optical path switching node 23, and a node Ops (operation system) 24.
  • the accommodation station 12 may be connected to other Ops 26 such as an underground optical maintenance system via an API (Application Programming Interface) 25.
  • the tester 22 is a device that emits test light, and the test light is input into the optical fiber of the upper loop in the accommodation station wiring frame 21.
  • FIG. 1 shows an example in which optical fibers are connected in a loop to form a loop network, and the loop network is connected in multiple stages.
  • a remote optical path switching node 11 that connects the loop networks is placed where the loops overlap.
  • a loop close to the accommodation station 12 is defined as an upper loop, and a loop connected to the upper loop is defined as a lower loop.
  • FIG. 1 shows a configuration using three lower loops.
  • the remote optical path switching node 11 that connects the upper loop and the lower loop has a function of changing the route of the optical fiber.
  • the accommodation station 12 issues an instruction (signal) to the remote optical path switching node 11, and the remote optical path switching node 11 performs switching based on the instruction (see Non-Patent Documents 1 and 2).
  • FIG. 2 shows a configuration in which a user terminal 13B (not shown) connected beyond the accommodation station 12 is connected to a user terminal 13A via a remote optical path switching node 11.
  • 3 and 4 show that the user terminal 13A is connected to the user terminal 13B not through the accommodation station 12 but through the remote optical path switching node 11.
  • FIGS. 3 and 4 are called point-to-point connections (hereinafter defined as P-to-P connections) because the user terminals 13A and 13B are taken as points and these two points are connected. There is.
  • P-to-P connections point-to-point connections
  • FIG. 2 since the user terminal 13A is connected to the user terminal 13B (not shown) located behind the accommodation station, it is treated as a P to P connection.
  • the connections shown in FIGS. 2 and 3 are referred to as PtoP connections from upper loops to lower loops, and the connections shown in FIG. 4 are referred to as PtoP connections between lower loops.
  • the accommodation station 12 transmits the test light to the communication optical fiber F1U, which is the working optical fiber, to the optical coupler of the accommodation station distribution rack 21.
  • the connection status at the remote optical path switching node 11 can be confirmed by inserting the optical path at the remote optical path switching node 11 and receiving the signal from the remote optical path switching node 11.
  • the remote optical path switching node 11 includes an optical cross connect 31, two light extractors 35#1 and 35#2, a photodiode (PD) 33, a power storage capacitor 34, and a controller 32 in the center.
  • the remote optical path switching node 11 is connected to communication optical fibers F0U, F1U, F0L, and F1L, and is also connected to a power supply control fiber SC.
  • the optical cross-connect 31 has four ports P11 to P14, in which port P11 functions as a first port, port P12 functions as a second port, port P13 functions as a third port, and port P14 functions as the fourth port.
  • port P11 functions as a first port
  • port P12 functions as a second port
  • port P13 functions as a third port
  • port P14 functions as the fourth port.
  • ports P11 and P12 are connected to optical fibers F0U and F1U of the upper loop
  • ports P13 and P14 are connected to optical fibers F0L and F1L of the lower loop.
  • FIG. 5 shows a connection example in the case of PtoP connection from the upper loop to the lower loop shown in FIG. 3.
  • the PtoP connection is established by connecting ports P12 and P13 of the optical cross-connect 31.
  • both ends of the communication optical fiber F1U and the communication optical fiber F0L are connected to each user terminal 13A and 13B, and the test light from the tester 22 cannot be sent from the communication optical fiber F1U to the communication optical fiber F0L. .
  • the accommodation station 12 cannot confirm whether the optical fiber is connected at the remote optical path switching node 11 (Non-Patent Document 2).
  • FIG. 6 shows a connection example in the case of PtoP connection between the lower loops shown in FIG. 4.
  • the PtoP connection is established by connecting ports P13 and P14 of the optical cross-connect 31.
  • the optical fiber from the tester 22 and the optical fiber in the PtoP section cannot be connected. Therefore, since the test light from the accommodation station 12 cannot be sent to the PtoP section, port information indicating that the optical fibers F0L and F1L are connected cannot be grasped.
  • Communication light uses a wavelength of 1310 nm to 1550 nm.
  • the test light has a wavelength of 1650 nm.
  • a wavelength different from the communication light is used as the test light.
  • an optical coupler 14 is installed on one of the user terminals 13A.
  • the optical coupler 14 has a plurality of ports and is a 2 ⁇ 2 type. Input the test light from an empty port.
  • the accommodation station 12 issues an instruction to the remote optical path switching node 11 to detect the connection of the optical fiber, and makes advance preparations (S101).
  • Test light is inserted from the optical coupler 14 of the user terminal 13A toward the user terminal 13B (S102).
  • the test light passes through the remote optical path switching node 11 for the first time.
  • the remote optical path switching node 11 confirms that the test light has passed.
  • the communication light can be read from a light extractor provided in advance inside the remote optical path switching node 11 (S103).
  • the remote optical path switching node 11 can send the read port information to the accommodation station 12 (S104).
  • the accommodation station 12 receives the result of the test light passing through the remote optical path switching node 11 (S105).
  • the instruction notified from the accommodation station 12 to the remote optical path switching node 11 in step S101 is that the test light passing through the communication optical fiber inside the remote optical path switching node 11 is and transmits the extracted optical port information to the accommodation station 12.
  • the port information is information about which port of the communication optical fiber is connected to which the test light passes, and specifically, the optical fiber number of the communication optical fiber can be exemplified.
  • FIG. 10 shows an example of a network configuration according to an embodiment of the present disclosure.
  • FIG. 11 shows an example of a remote optical path switching node.
  • the upper loop includes test optical fibers F0T and F1T that connect the accommodation station 12 and the remote optical path switching node 11.
  • the remote optical path switching node 11 of this embodiment allows test light to be transmitted from the accommodation station 12 to the optical fiber used for the PtoP connection even in a PtoP connection from an upper loop to a lower loop. to be sent.
  • the remote optical path switching node 11 includes a test optical coupler 41.
  • the test optical coupler 41 has four ports P41 to P44, port P41 functions as a first port, port P42 functions as a second port, port P43 functions as a third port, Port P44 functions as a fourth port.
  • port P41 and port P42 are connected to test optical fibers F0T and F1T (0 system, 1 system) of different routes in the upper loop, respectively.
  • An accommodating station 12 is connected to the ends of the test optical fibers F0T and F1T, and a tester 22 for emitting test light from the accommodating station 12 is provided. Test light is emitted from the accommodation station 12 and reaches the test optical coupler 41 .
  • the test optical coupler 41 outputs the test light incident on the first port P41 to a port P44 in a different direction from the port P41, and outputs the test light incident on the port P42 in a different direction from the port P42. It emits to port P43.
  • the optical cross-connect 31 includes four ports P11 to P34. Ports P13 and P14 are connected to optical fibers F0L and F1L of different routes in the lower loop, respectively.
  • the port P43 can be connected to either the optical fiber F0U of the upper loop or the port P11 of the optical cross-connect.
  • Port P44 can be connected to either the optical fiber F1U of the upper loop or the port P12 of the optical cross-connect.
  • the control unit 32 can connect the ports provided in the optical cross-connect 31 and the connection between the optical cross-connect 31 and the test optical coupler 41.
  • a configuration is adopted in which the communication optical fiber F1U of the user terminal 13B is connected to the port P44, and the port P43 of the test optical coupler 41 and the port P11 of the optical cross connect 31 are connected. Furthermore, port P11 of the optical cross-connect 31 is connected to port P13, and port P13 of the optical cross-connect 31 is connected to the communication optical fiber F0L of the user terminal 13A, thereby constructing an optical path from the user terminal 13B to the user terminal 13A. do.
  • test light When test light is inserted into the test optical fiber F1T from the accommodation station 12, the test light enters port P42, passes through ports P43 and P11, and is emitted from port P13.
  • the light extractor 35#1 extracts test light from the optical fiber F0L connected to the port P13. Thereby, port information on the optical fiber F0L (in this embodiment, the optical fiber number of the communication optical fiber F0L connected to port P13) can be detected.
  • test light When the test light is inserted into the test optical fiber F0T (0 system), the test light enters the port P41 and is emitted from the port P44.
  • Light extractor 35#2 extracts test light from optical fiber F1U. Thereby, port information on the optical fiber F1U (in this embodiment, the optical fiber number of the communication optical fiber F1U connected to port P44) can be detected.
  • the control unit 32 since the port information can be detected by the light extraction units 35 #1 and 35 #2, the control unit 32 transmits the detection result to the accommodation station 12, so that the communication between the accommodation station 12 and the user terminal 13 ( It becomes possible to grasp the port information (between the user terminal 13A and the terminal 13B).
  • the port P44 of the test optical coupler 41 is connected to the optical fiber F1U of the upper loop
  • the port P43 of the test optical coupler 41 is connected to the port P11 of the optical cross-connect 31, and the optical cross-connect 31
  • the control unit 32 connects the port P43 of the test optical coupler 41 to the optical fiber F0U of the upper loop, connects the port P44 of the test optical coupler 41 to the port P12 of the optical cross-connect 31, and connects the test optical coupler 41 to the port P12 of the optical cross-connect 31.
  • Port P12 may also be connected to port P14.
  • FIG. 12 shows an example of a network configuration according to an embodiment of the present disclosure.
  • FIG. 13 shows an example of a remote optical path switching node according to this embodiment.
  • the basic configuration is the same as the first embodiment.
  • the separated optical path switching node 11 of this embodiment allows test light to be transmitted from the accommodation station 12 to the optical fiber used for the PtoP connection even in a PtoP connection between lower loops.
  • control unit 32 connects port P11 of the optical cross-connect 31 to port P43 of the test optical coupler 41, and connects port P12 of the optical cross-connect 31 to the test optical coupler 41. Connect to port P44.
  • control unit 32 connects the user terminal 13A to the user terminal 13B as shown in FIG. 13.
  • the test light when the test light is inserted from the accommodation station 12 to the test optical fiber F1T, the test light enters port P42, passes through ports P43 and P11, and is emitted from port P13. Ru.
  • the light extractor 35#1 extracts test light from the optical fiber F0L connected to the port P13. Thereby, port information on the optical fiber F0L (in this embodiment, the optical fiber number of the communication optical fiber F0L connected to port P13) can be detected.
  • test light When the test light is inserted into the test optical fiber F0T, the test light enters port P41, passes through ports P44 and P12, and is emitted from port P14.
  • the light extractor 35#2 extracts test light from the optical fiber F1L connected to the port P14. Thereby, port information on the optical fiber F1L (in this embodiment, the optical fiber number of the communication optical fiber F1L connected to port P14) can be detected.
  • the control unit 32 transmits the detection result to the accommodation station 12, so that the communication between the accommodation station 12 and the user terminal 13 ( The connection of the optical fiber between the user terminal 13A and the terminal 13B can be confirmed.
  • the present disclosure allows testing from the accommodation station 12 without installing the optical coupler 14 in the building managed by the user terminal, so there is no time restriction. Furthermore, there is no need to prepare an optical fiber for testing on the user terminal side. Therefore, the present disclosure can streamline operations.
  • optical cross connect 31, the test optical coupler 41, and the light extraction sections 35#1 and 35#2 are configured individually, but two or more of these are configured integrally. You can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本開示は、光ファイバーネットワークにおいてPoint to Point接続を行っている場合であっても、収容局からの試験光を用いて、光ファイバ同士の接続を確認可能にすることを目的とする。 本開示は、光ファイバをループ状に接続した2つのループネットワークを接続する遠隔光路切替ノードであって、前記2つのループネットワークは、試験光を出射する試験器に近い上位ループと、前記試験器から遠い下位ループと、を備え、を備え、前記下位ループを構成する光ファイバと接続されている光クロスコネクトと、前記上位ループにおいて試験光を伝搬する試験用光ファイバと接続され、前記光クロスコネクトと接続可能な試験用光カプラと、前記光クロスコネクト及び前記試験用光カプラの接続を制御する制御部と、前記上位ループを伝搬し、前記試験用光カプラ又は前記光クロスコネクトから出射された試験光を検出する光抽出部と、を具備する遠隔光路切替ノードである。

Description

遠隔光路切替ノード及びその監視方法
 本開示は、光ファイバーネットワークにおいて、Point to Point接続時における光ファイバ接続を監視するものである。
 光ファイバネットワーク、特に収容局に設置された通信装置とユーザ側の通信端末(以後、ユーザ端末とする)とを接続するアクセスネットワークでは、その開通や保守において効率的に設備を使用するために、光ファイバを任意のルートに接続したり、ルートを変更するといった光ファイバの切替が行われている。
 この遠隔光路切替ノードに収容局から試験光を送信することで、遠隔光路切替ノードにおける光ファイバの切替の確認を行うことができる。しかし、光ファイバーネットワークにおいてPoint to Point接続を行っている場合、Point to Point接続の接続態様によっては、収容局から試験光を送信しても、光ファイバの切替の確認ができない場合があった。
 例えば、光ファイバをループ状に接続してループネットワークを構成し、ループネットワークを多段に接続した光ファイバーネットワークにおいては、ループネットワーク同士を接続する遠隔光路切替ノードが配置されている。この遠隔光路切替ノードの接続確認については、収容局から試験光を送信しても、光ファイバの切替の確認ができない場合があった。
川野 友裕,藤本 達也,中江 和英,渡辺 汎,片山 和典,「将来光アクセス網に向けた遠隔光路切替ノードの検討」,2021年電子情報通信学会総合大会,B-13-16,2021 渡辺 汎,川野 友裕, 深井 千里, 小山 良, 中江 和英, 藤本 達也, 阿部 宜輝, 片山 和典,「多段ループ型光アクセス網で運用する遠隔光路切替ノード」,2021年電子情報通信学会ソサエティ大会,BK-2-3,2021
 本開示は、光ファイバーネットワークにおいてPoint to Point接続を行っている場合であっても、収容局からの試験光を用いて、光ファイバ同士の接続を確認可能にすることを目的とする。
 本開示の光ファイバーネットワークは、本開示の遠隔光路切替ノードを用いて、光ファイバをループ状に接続した2つのループネットワークが接続されており、前記遠隔光路切替ノードへ試験光を送信するための試験用光ファイバと、前記試験用光ファイバに試験光を入射する試験器と、を具備する。
 前記2つのループネットワークは、試験光を出射する試験器に近い上位ループと、前記試験器から遠い下位ループと、を備える。
 本開示の遠隔光路切替ノードは、
 前記下位ループを構成する光ファイバと接続されている光クロスコネクトと、
 前記上位ループにおいて試験光を伝搬する試験用光ファイバと接続され、前記光クロスコネクトと接続可能な試験用光カプラと、
 前記光クロスコネクト及び前記試験用光カプラの接続を制御する制御部と、
 前記上位ループを伝搬し、前記試験用光カプラ又は前記光クロスコネクトから出射された試験光を検出する光抽出部と、
 を具備する。
 本開示の遠隔光路切替ノードの監視方法は、本開示の遠隔光路切替ノードが実行する監視方法であって、
 前記制御部が、前記光クロスコネクト及び前記試験用光カプラを用いて、前記上位ループと前記下位ループを接続するか、前記下位ループを互いに接続し、
 光抽出部が、前記上位ループを伝搬し、前記試験用光カプラ又は前記光クロスコネクトから出射された試験光を検出する。
 前記試験用光カプラは4つのポートを備え、
 前記試験用光カプラの第1及び第2のポートはそれぞれ前記上位ループネットワークにおける異なる方路の光ファイバに接続され、
 前記試験用光カプラは、第1のポートに入射された試験光を前記第1のポートとは異なる方路の第4のポートに出射し、第2のポートに入射された試験光を前記第2のポートとは異なる方路の第3のポートに出射してもよい。
 前記光クロスコネクトは4つのポートを備え、
 前記光クロスコネクトの第3及び第4のポートはそれぞれ前記下位ループネットワークにおける異なる方路の光ファイバに接続され、
 前記制御部は、前記光クロスコネクトの第1のポートを前記試験用光カプラの前記第3のポートに接続し、前記光クロスコネクトの第2のポートを前記試験用光カプラの前記第4のポートに接続することで、前記下位ループを互いに接続してもよい。
 前記光クロスコネクトは4つのポートを備え、
 前記光クロスコネクトの第3及び第4のポートはそれぞれ前記下位ループネットワークにおける異なる方路の光ファイバに接続され、
 前記制御部は、
 (i)前記試験用光カプラの第4のポートを前記上位ループの光ファイバに接続し、
 前記試験用光カプラの第3のポートを前記光クロスコネクトの第1のポートに接続し、
 前記光クロスコネクトにおいて第1のポートを第3のポートに接続するか、或いは、
 (ii)前記試験用光カプラの第3のポートを前記上位ループの光ファイバに接続し、
 前記試験用光カプラの第4のポートを前記光クロスコネクトの第2のポートに接続し、
 前記光クロスコネクトにおいて第2のポートを第4のポートに接続することで、
 前記上位ループと前記下位ループを接続してもよい。
 前記光クロスコネクト、前記試験用光カプラ及び前記光抽出部が一体で構成されていてもよい。
 なお、上記各開示は、可能な限り組み合わせることができる。
 本開示は、光ファイバーネットワークにおいてPoint to Point接続を行っている場合であっても、収容局からの試験光を用いて、光ファイバ同士の接続を確認可能にすることができる。
多段ループ型配線と遠隔光路切替ノード構成例を示す。 収容局ビルを介した場合の光線路の繋がり状態の一例を示す。 PtoP接続した場合の光線路の繋がり状態の一例を示す。 PtoP接続した場合の状態の一例を示す。 遠隔光路切替ノードの構成例を示す。 遠隔光路切替ノードの構成例を示す。 PtoP接続した場合に、遠隔光路切替ノード内の光ファイバ接続状態を確認する方法の一例を示す。 PtoP接続した場合に、遠隔光路切替ノード内の光ファイバ接続状態を確認する方法の説明図である。 PtoP接続した場合に、遠隔光路切替ノード内の光ファイバ接続状態を確認する方法の説明図である。 本開示の実施形態に係る光線路の繋がり状態の一例を示す。 本開示の実施形態に係る遠隔光路切替ノード内の光ファイバ接続状態の一例を示す。 本開示の実施形態に係る光線路の繋がり状態の一例を示す。 本開示の実施形態に係る遠隔光路切替ノード内の光ファイバ接続状態の一例を示す。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(ネットワーク構成)
 本開示の光ファイバーネットワークの構成を図1に示す。本開示の光ファイバーネットワーク、収容局12とループネットワークを備える。収容局12は、例えば、収容局配線架21、試験器22、所内光路切替ノード23、ノードOps(Operation system)24を備える。収容局12は、API(Application Programming Interface)25を介して、地下光保守システムなどの他のOps26と接続されていてもよい。試験器22は試験光を出射する装置であり、試験光は収容局配線架21において上位ループの光ファイバに入射される。
 図1では、光ファイバをループ状に接続してループネットワークを構成し、ループネットワークを多段に接続している例を示す。ループとループの重なるところに、ループネットワークを接続する遠隔光路切替ノード11を配置している。収容局12から近いループを上位ループとし、上位ループと接続されるループを下位ループと定義している。図1中には、下位ループを3つ用いた構成である。上位ループと下位ループを接続する遠隔光路切替ノード11には、光ファイバのルートを変更できる機能がある。切替ためには、収容局12から遠隔光路切替ノード11に指示(信号)を発出し、遠隔光路切替ノード11がその指示を元に切替を行う(非特許文献1、2を参照)。
 図1で示す光ネットワークの使用例を図2、図3及び図4に示す。図2は、遠隔光路切替ノード11を経由し、収容局12の先に接続されているユーザ端末13B(不図示)からユーザ端末13Aを繋ぐ形態である。図3及び図4は、収容局12を介さず、遠隔光路切替ノード11を経由し、ユーザ端末13Aからユーザ端末13Bを繋ぐことを示す。
 図3及び図4の例は、ユーザ端末13Aとユーザ端末13Bを点と取られ、その2つの点を接続することから、Point to Point 接続 (以後、P to P接続と定義)と呼ばれている。図2も、ユーザ端末13Aと収容局の後ろに控えているユーザ端末13B(不図示)につなげるため、同じくP to P接続と取り扱う。本開示では、図2及び図3に示す接続を上位ループから下位ループへのPtoP接続と称し、図4に示す接続を下位ループ同士のPtoP接続と称する。
 図2において、収容局12とユーザ端末13Aとが単心単位で接続されている場合、収容局12は、現用光ファイバである通信用光ファイバF1Uに試験光を収容局配線架21の光カプラで挿入し、遠隔光路切替ノード11からの信号を受信することで、遠隔光路切替ノード11での繋がり状況を確認することができる。
 図5及び図6は、遠隔光路切替ノード11の内部構造と機能の一例を示している。遠隔光路切替ノード11は、中央部に光クロスコネクト31、2つの光抽出部35#1及び35#2、受光部(PD:Photodiode)33、蓄電用コンデンサ34、制御部32を備える。遠隔光路切替ノード11は、通信用光ファイバF0U、F1U、F0L、F1Lに接続され、給電制御用ファイバSCも接続されている。
 光クロスコネクト31は、4つのポートP11~P14を有し、ポートP11が第1のポートとして機能し、ポートP12が第2のポートとして機能し、ポートP13が第3のポートとして機能し、ポートP14が第4のポートとして機能する。本開示では、ポートP11及びP12が上位ループの光ファイバF0U及びF1Uに接続され、ポートP13及びP14が下位ループの光ファイバF0L及びF1Lに接続される例を示す。
 図5は、図3に示す上位ループから下位ループへのPtoP接続の場合の接続例を示す。図3のようなPtoP接続を実施した場合、光クロスコネクト31のポートP12とポートP13を接続することにより、PtoP接続が成立する。ポートP12とポートP13が接続したことを確認するためには、ポートP12とポートP13を接続する光ファイバに試験光を伝搬さる必要がある。しかし、通信用光ファイバF1Uと通信用光ファイバF0Lの両端は各ユーザ端末13A及び13Bに接続されており、試験器22からの試験光を通信用光ファイバF1Uから通信用光ファイバF0Lに送れない。このため、収容局12は、遠隔光路切替ノード11において光ファイバが接続されているかの確認が取れない(非特許文献2)。
 図6は、図4に示す下位ループ同士のPtoP接続の場合の接続例を示す。図4のようなPtoP接続を実施した場合、光クロスコネクト31のポートP13とポートP14を接続することにより、PtoP接続が成立する。この場合、図3と同様に、試験器22からの光ファイバとPtoP区間の光ファイバとの接続ができない。このため、収容局12からの試験光をPtoP区間に送れないため、光ファイバF0L及びF1Lが繋がっていることを示すポート情報の把握ができない。
 現状の技術において、図3に示す上位ループと下位ループのPtoP接続及び図4に示す下位ループ同士のPtoP接続形態の場合、PtoP区間で使用している通信用光ファイバーには収容局12から試験光を送れないため、ポート情報が取得できない。このため、収容局12からの遠隔光路切替ノード11内の光ファイバ接続状態を確認する場合、図7に示す5つの工程が必要である。その工程を図8及び図9を参照しながら説明する
 図8及び図9のようにユーザ端末13A及び13B同士を結びたい。そのため、収容局12から指示を遠隔光路切替ノード11に出す。遠隔光路切替ノード11内の制御部32は、収容局12からの指示に従い、光クロスコネクト31を動かし、ユーザ端末13Aとユーザ端末13Bを接続する。
 つながったことを確認する必要がある。そのためには、試験をするための専用の光を用いる。通信光は波長1310nmから1550nmを用いている。一方で試験光は波長が1650nmである。通信光と異なる波長を試験光として用いている。この試験光を入れるために、いずれか一方のユーザ端末13A側に光カプラ14を設置する。光カプラ14とはポートを複数備えており、2×2のタイプを示す。空いているポートから試験光を入力する。
 収容局12は、光ファイバの接続を検出する旨の指示を遠隔光路切替ノード11に出し、事前準備をする(S101)。
 ユーザ端末13Aの光カプラ14より試験光をユーザ端末13Bへ向け挿入する(S102)。この工程で、試験光が遠隔光路切替ノード11の内部を初めて透過する。
 遠隔光路切替ノード11は、試験光を通過したことを確認する。このとき、遠隔光路切替ノード11の内部に予め設けた光抽出部から通信光を読み取ることができる(S103)。遠隔光路切替ノード11は、読み取ったポート情報を収容局12に送ることができる(S104)。収容局12は、遠隔光路切替ノード11内を試験光が通過した結果を受信する(S105)。
 上記の5つの工程を実施することで、ユーザ端末13Aとユーザ端末13Bが接続されたことを確認できる。
 ここで、ステップS101において収容局12から遠隔光路切替ノード11に通知される指示は、遠隔光路切替ノード11内部での通信用光ファイバを通過する試験光を光抽出部35#1及び35#2で抽出し、抽出した光のポート情報を収容局12へ送信するものである。ポート情報は、通信用光ファイバの接続されているどのポートに試験光が通ったかという情報であり、具体的には通信用光ファイバの光ファイバ番号が例示できる。
 図7で説明した方法を用いて収容局12が遠隔光路切替ノード11におけるポート情報を取得する場合、以下の問題がある。
・第1の問題:ユーザ端末13側から試験光を送信できるような設備構成にする必要がある。
・第2の問題:試験光を送信することについて、ユーザの承諾が必要になるため、試験光を任意の時間に送ることができない。
・第3の問題:試験光を送るためだけの光ファイバをユーザ端末13側に別途備えると、運用上非効率である。
(発明を実施するための第1形態)
 図10に、本開示の実施形態に係るネットワーク構成の一例を示す。図11に、遠隔光路切替ノードの一例を示す。本実施形態では、上位ループに、収容局12と遠隔光路切替ノード11を接続する試験用光ファイバF0T及びF1Tを備える。本実施形態の遠隔光路切替ノード11は、これらの構成を備えることで、上位ループから下位ループへのPtoP接続であっても、PtoP接続に用いられている光ファイバに、収容局12から試験光を送信可能にする。
 本実施形態に係る遠隔光路切替ノード11は、試験用光カプラ41を備える。試験用光カプラ41は、4つのポートP41~P44を有し、ポートP41が第1のポートとして機能し、ポートP42が第2のポートとして機能し、ポートP43が第3のポートとして機能し、ポートP44が第4のポートとして機能する。
 本開示では、ポートP41およびポートP42は、それぞれ上位ループにおける異なる方路の試験用光ファイバF0T及びF1T(0系、1系)に接続される。試験用光ファイバF0T及びF1Tの先には収容局12が接続されており、その収容局12から試験光を出射する試験器22が備わっている。収容局12から試験光が出射され、試験用光カプラ41まで試験光が到達する。
 試験用光カプラ41は、第1のポートP41に入射された試験光をポートP41とは異なる方路のポートP44に出射し、ポートP42に入射された試験光をポートP42とは異なる方路のポートP43に出射する。
 光クロスコネクト31は4つのポートP11~P34を備える。ポートP13及びP14はそれぞれ下位ループにおける異なる方路の光ファイバF0L及びF1Lに接続される。
 ポートP43は、上位ループの光ファイバF0U及び光クロスコネクトのポートP11のいずれかに接続可能である。ポートP44は、上位ループの光ファイバF1U及び光クロスコネクトのポートP12のいずれかに接続可能である。光クロスコネクト31に備わるポート同士の接続、及び光クロスコネクト31と試験用光カプラ41との接続は、制御部32が行うことができる。
 上位ループから下位ループに抜けるPtoP接続の場合、光クロスコネクト31のポートP12からポートP13への接続はせず、ポートP11とポートP13を接続し、試験用光カプラ41を経由してユーザ端末13Aからユーザ端末13Bへ抜ける接続形態をとる。
 ポートP44にユーザ端末13Bの通信用光ファイバF1Uを接続し、試験用光カプラ41のポートP43と光クロスコネクト31のポートP11を接続する構成をとる。さらに、光クロスコネクト31のポートP11はポートP13と接続し、光クロスコネクト31のポートP13はユーザ端末13Aの通信用光ファイバF0Lと接続し、ユーザ端末13Bからユーザ端末13Aにぬける光経路を構築する。
 収容局12から試験用光ファイバF1Tに対し試験光を挿入すると、試験光はポートP42に入射され、ポートP43及びP11を通過し、ポートP13から出射される。光抽出部35#1がポートP13に接続されている光ファイバF0Lから試験光を抽出する。これにより、光ファイバF0Lにおけるポート情報(本実施形態ではポートP13に接続されている通信用光ファイバF0Lの光ファイバ番号)を検出することができる。
 試験用光ファイバF0T(0系)に対し、試験光を挿入すると、試験光はポートP41に入射され、ポートP44から出射される。光抽出部35#2が光ファイバF1Uから試験光を抽出する。これにより、光ファイバF1Uにおけるポート情報(本実施形態ではポートP44に接続されている通信用光ファイバF1Uの光ファイバ番号)を検出することができる。
 したがって、本実施形態は、光抽出部35#1及び35#2でポート情報が検出できるため、制御部32が検出結果を収容局12に送信することで、収容局12からユーザ端末13間(ユーザ端末13A―端末13B間)のポート情報の把握が可能となる。
 なお、本実施形態では、試験用光カプラ41のポートP44を上位ループの光ファイバF1Uに接続し、試験用光カプラ41のポートP43を光クロスコネクト31のポートP11に接続し、光クロスコネクト31においてポートP11をポートP13に接続する例を示したが、本開示はこれに限定されない。例えば、制御部32は、試験用光カプラ41のポートP43を上位ループの光ファイバF0Uに接続し、試験用光カプラ41のポートP44を光クロスコネクト31のポートP12に接続し、光クロスコネクト31においてポートP12をポートP14に接続してもよい。
(発明を実施するための第2形態)
 図12に、本開示の実施形態に係るネットワーク構成の一例を示す。図13に、本実施形態に係る遠隔光路切替ノードの一例を示す。基本的な構成は第1形態と同様である。ただし、本実施形態の隔光路切替ノード11は、下位ループ同士のPtoP接続であっても、PtoP接続に用いられている光ファイバに、収容局12から試験光を送信可能にする。
 下位ループを互いに接続するPtoP接続の場合、制御部32は、光クロスコネクト31のポートP11を試験用光カプラ41のポートP43に接続し、光クロスコネクト31のポートP12を試験用光カプラ41のポートP44に接続する。
 また、制御部32は、ユーザ端末13Aからユーザ端末13B間を図13のように接続する。
 ユーザ端末13Aの通信用光ファイバF0L
 →光クロスコネクト31のポートP13
 →光クロスコネクト31のポートP11
 →試験用光カプラ41のポートP43
 →試験用光カプラ41のポートP44
 →光クロスコネクト31のポートP12
 →光クロスコネクト31のポートP14
 →ユーザ端末13Bの通信用光ファイバF1L
 このような光経路を構築することにより、収容局12から試験用光ファイバF1Tに対し試験光を挿入すると、試験光はポートP42に入射され、ポートP43及びP11を通過し、ポートP13から出射される。光抽出部35#1がポートP13に接続されている光ファイバF0Lから試験光を抽出する。これにより、光ファイバF0Lにおけるポート情報(本実施形態ではポートP13に接続されている通信用光ファイバF0Lの光ファイバ番号)を検出することができる。
 試験用光ファイバF0Tに対し、試験光を挿入すると、試験光はポートP41に入射され、ポートP44及びP12を通過し、ポートP14から出射される。光抽出部35#2がポートP14に接続されている光ファイバF1Lから試験光を抽出する。これにより、光ファイバF1Lにおけるポート情報(本実施形態ではポートP14に接続されている通信用光ファイバF1Lの光ファイバ番号)を検出することができる。
 したがって、本実施形態は、光抽出部35#1及び35#2でポート情報が検出できるため、制御部32が検出結果を収容局12に送信することで、収容局12からユーザ端末13間(ユーザ端末13A―端末13B間)の光ファイバの接続確認ができる。
 以上説明したように、本開示は、ユーザ端末が管理している建物内に光カプラ14を設置することなく、収容局12から試験ができるため、時間の制約を受けることがない。また、試験をするための光ファイバをユーザ端末側に準備をする必要がない。したがって、本開示は、運用を効率化することができる。
 なお、上述の実施形態では、光クロスコネクト31、試験用光カプラ41及び光抽出部35#1及び35#2が個別の構成である例を示すが、これらの2以上が一体で構成されていてもよい。
11:遠隔光路切替ノード
12:収容局
13:ユーザ端末
14:光カプラ
21:収容局配線架
22:試験器
23:所内光路切替ノード
24:ノードOps
25:API
26:他のOps
31:光クロスコネクト
32:制御部
33:PD
34:蓄電用コンデンサ
35:光抽出部

Claims (7)

  1.  光ファイバをループ状に接続した2つのループネットワークを接続する遠隔光路切替ノードであって、
     前記2つのループネットワークは、試験光を出射する試験器に近い上位ループと、前記試験器から遠い下位ループと、を備え、
     前記下位ループを構成する光ファイバと接続されている光クロスコネクトと、
     前記上位ループにおいて試験光を伝搬する試験用光ファイバと接続され、前記光クロスコネクトと接続可能な試験用光カプラと、
     前記光クロスコネクト及び前記試験用光カプラの接続を制御する制御部と、
     前記上位ループを伝搬し、前記試験用光カプラ又は前記光クロスコネクトから出射された試験光を検出する光抽出部と、
     を具備する遠隔光路切替ノード。
  2.  前記試験用光カプラは4つのポートを備え、
     前記試験用光カプラの第1及び第2のポートはそれぞれ前記上位ループにおける異なる方路の光ファイバに接続され、
     前記試験用光カプラは、前記第1のポートに入射された試験光を前記第1のポートとは異なる方路の第4のポートに出射し、前記第2のポートに入射された試験光を前記第2のポートとは異なる方路の第3のポートに出射する、
     請求項1に記載の遠隔光路切替ノード。
  3.  前記光クロスコネクトは4つのポートを備え、
     前記光クロスコネクトの第3及び第4のポートはそれぞれ前記下位ループにおける異なる方路の光ファイバに接続され、
     前記制御部は、前記光クロスコネクトの第1のポートを前記試験用光カプラの前記第3のポートに接続し、前記光クロスコネクトの第2のポートを前記試験用光カプラの前記第4のポートに接続することで、前記下位ループを互いに接続する、
     請求項2に記載の遠隔光路切替ノード。
  4.  前記光クロスコネクトは4つのポートを備え、
     前記光クロスコネクトの第3及び第4のポートはそれぞれ前記下位ループにおける異なる方路の光ファイバに接続され、
     前記制御部は、
     (i)前記試験用光カプラの第4のポートを前記上位ループの光ファイバに接続し、
     前記試験用光カプラの第3のポートを前記光クロスコネクトの第1のポートに接続し、
     前記光クロスコネクトにおいて第1のポートを第3のポートに接続するか、或いは、
     (ii)前記試験用光カプラの第3のポートを前記上位ループの光ファイバに接続し、
     前記試験用光カプラの第4のポートを前記光クロスコネクトの第2のポートに接続し、
     前記光クロスコネクトにおいて第2のポートを第4のポートに接続することで、
     前記上位ループと前記下位ループを接続する、
     請求項2に記載の遠隔光路切替ノード。
  5.  前記光クロスコネクト、前記試験用光カプラ及び前記光抽出部、の2以上が一体で構成されている、
     請求項1に記載の遠隔光路切替ノード。
  6.  請求項1から5のいずれかに記載の遠隔光路切替ノードと、
     前記遠隔光路切替ノードへ試験光を送信するための試験用光ファイバと、
     前記試験用光ファイバに試験光を入射する試験器と、
     を具備する、
     光ファイバーネットワーク。
  7.  光ファイバをループ状に接続した2つのループネットワークを接続する遠隔光路切替ノードが実行する監視方法であって、
     前記2つのループネットワークは、試験光を出射する試験器に近い上位ループと、前記試験器から遠い下位ループと、を備え、
     前記遠隔光路切替ノードは、
     前記下位ループを構成する光ファイバと接続されている光クロスコネクトと、
     前記上位ループにおいて試験光を伝搬する試験用光ファイバと接続され、前記光クロスコネクトと接続可能な試験用光カプラと、
     前記光クロスコネクト及び前記試験用光カプラの接続を制御する制御部と、
     を具備し、
     前記制御部が、前記光クロスコネクト及び前記試験用光カプラを用いて、前記上位ループと前記下位ループを接続するか、前記下位ループを互いに接続し、
     光抽出部が、前記上位ループを伝搬し、前記試験用光カプラ又は前記光クロスコネクトから出射された試験光を検出する、
     監視方法。
PCT/JP2022/024922 2022-06-22 2022-06-22 遠隔光路切替ノード及びその監視方法 WO2023248383A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024922 WO2023248383A1 (ja) 2022-06-22 2022-06-22 遠隔光路切替ノード及びその監視方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024922 WO2023248383A1 (ja) 2022-06-22 2022-06-22 遠隔光路切替ノード及びその監視方法

Publications (1)

Publication Number Publication Date
WO2023248383A1 true WO2023248383A1 (ja) 2023-12-28

Family

ID=89379261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024922 WO2023248383A1 (ja) 2022-06-22 2022-06-22 遠隔光路切替ノード及びその監視方法

Country Status (1)

Country Link
WO (1) WO2023248383A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11275028A (ja) * 1998-03-20 1999-10-08 Fujitsu Ltd 光通信システム
JP2008167306A (ja) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp 光クロスコネクト装置
JP2010141817A (ja) * 2008-12-15 2010-06-24 Mitsubishi Electric Corp 光通信システム、通信装置およびネットワーク管理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11275028A (ja) * 1998-03-20 1999-10-08 Fujitsu Ltd 光通信システム
JP2008167306A (ja) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp 光クロスコネクト装置
JP2010141817A (ja) * 2008-12-15 2010-06-24 Mitsubishi Electric Corp 光通信システム、通信装置およびネットワーク管理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROSHI WATANABE, TOMOHIRO KAWANO, CHISATO FUKAI, RYO KOYAMA, KAZUHIDE NAKAE, TATSUYA FUJIMOTO, YOSHITERU ABE, KAZUNORI KATAYAMA : "BK-2-3 Remote Operated Optical Fiber Switching Node Operated in Optical Access Network based on Concatenated Loop Topology", PROCEEDINGS OF THE 2021 IEICE COMMUNICATIONS SOCIETY CONFERENCE; 2021.09.14-17, IEICE, JP, 1 September 2021 (2021-09-01) - 17 September 2021 (2021-09-17), JP, pages SS - SS-8, XP009551657 *
RYO KOYAMA, YOSHITERU ABE, KAZUNORI KATAYAMA: "B-13-19 Study of a New Optical Tapping Technique using Fresnel Reflection for Remote Operated Optical Fiber Switching Node", PROCEEDINGS OF THE 2021 IEICE GENERAL CONFERENCE (COMMUNICATION 2); 2021.03.09-12, IEICE, JP, 1 March 2021 (2021-03-01) - 12 March 2021 (2021-03-12), JP, pages 262, XP009551656 *

Similar Documents

Publication Publication Date Title
US6920287B1 (en) Smart connect
EP1171967B1 (en) Method and monitoring device for monitoring the quality of data transmission over analog lines
US5774245A (en) Optical cross-connect module
CN101346946B (zh) 用户住宅侧光线路终端装置及光传输系统
US8126336B2 (en) Optical transmission system and optical repeater
WO1997041720A9 (en) Optical cross-connect module
US20050232629A1 (en) Optical connection switching apparatus and management control unit thereof
JP2012244530A (ja) ファイバ誤接続検出方法及びノード装置
JP2005012421A (ja) 信号中継器および切替装置とこれらの間の接続関係検出方法および通信システム
CN101771469B (zh) 用户住宅侧光线路终端装置
WO2023248383A1 (ja) 遠隔光路切替ノード及びその監視方法
WO2020158383A1 (ja) 通信監視方法及び通信監視装置
JP2011217293A (ja) 光伝送システム、光伝送方法
Hajduczenia et al. Optimized passive optical network deployment
JP5228503B2 (ja) 光伝送路の接続状態監視方法およびシステム
JP4906830B2 (ja) パストレース方法及びトランスペアレントネットワークシステム
JP2009088785A (ja) 光アクセス網システム
WO2023286266A1 (ja) 光線路を切り替える光ノード及び方法
WO2023166593A1 (ja) 光路切替ノード、光ファイバネットワーク及び光ファイバネットワークの試験方法
JP4859909B2 (ja) トランスペアレント光ネットワーク及びトランスペアレント光ネットワーク故障監視方法
US20240333380A1 (en) Fiber optic cable fault locating apparatus
JP2005045334A (ja) 光クロスコネクト装置
JPH09214468A (ja) 光伝送装置、光送信装置、光受信装置および光中継装置
Lee et al. A novel supervisory scheme for OXC based on different time-delay recognition
Hamazumi et al. Compact 8 x 8 optical switching board implemented with connection supervision and optical power control function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947944

Country of ref document: EP

Kind code of ref document: A1