WO2023247074A1 - Planare silizium-anode auf einem kupfer-stromleiter für lithium-ionen-batterien - Google Patents
Planare silizium-anode auf einem kupfer-stromleiter für lithium-ionen-batterien Download PDFInfo
- Publication number
- WO2023247074A1 WO2023247074A1 PCT/EP2023/053091 EP2023053091W WO2023247074A1 WO 2023247074 A1 WO2023247074 A1 WO 2023247074A1 EP 2023053091 W EP2023053091 W EP 2023053091W WO 2023247074 A1 WO2023247074 A1 WO 2023247074A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- layer
- lithium
- anode
- multilayer structure
- Prior art date
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 129
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 124
- 239000010703 silicon Substances 0.000 title claims abstract description 124
- 239000010949 copper Substances 0.000 title claims abstract description 34
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 34
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 29
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 23
- 239000004020 conductor Substances 0.000 title claims description 5
- 239000010410 layer Substances 0.000 claims abstract description 131
- 229910052751 metal Inorganic materials 0.000 claims abstract description 49
- 239000002184 metal Substances 0.000 claims abstract description 49
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 25
- 239000012790 adhesive layer Substances 0.000 claims abstract description 20
- 238000005496 tempering Methods 0.000 claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims abstract description 12
- 238000000137 annealing Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- 239000011241 protective layer Substances 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000007784 solid electrolyte Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- 239000011572 manganese Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000011135 tin Substances 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 18
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 abstract description 18
- 229910052744 lithium Inorganic materials 0.000 abstract description 17
- 238000000034 method Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 15
- 150000002739 metals Chemical class 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 13
- 239000011149 active material Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 238000000151 deposition Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 229910021360 copper silicide Inorganic materials 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- JUZTWRXHHZRLED-UHFFFAOYSA-N [Si].[Cu].[Cu].[Cu].[Cu].[Cu] Chemical compound [Si].[Cu].[Cu].[Cu].[Cu].[Cu] JUZTWRXHHZRLED-UHFFFAOYSA-N 0.000 description 6
- 210000001787 dendrite Anatomy 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000012983 electrochemical energy storage Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000016507 interphase Effects 0.000 description 2
- 238000005224 laser annealing Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000005477 sputtering target Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910016344 CuSi Inorganic materials 0.000 description 1
- 229910003548 Li(Ni,Co,Mn)O2 Inorganic materials 0.000 description 1
- 229910010710 LiFePO Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910008479 TiSi2 Inorganic materials 0.000 description 1
- VJJVVKGSBWRFNP-UHFFFAOYSA-N [O].[Si](=O)=O Chemical compound [O].[Si](=O)=O VJJVVKGSBWRFNP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000011530 conductive current collector Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- WCCJDBZJUYKDBF-UHFFFAOYSA-N copper silicon Chemical compound [Si].[Cu] WCCJDBZJUYKDBF-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910021423 nanocrystalline silicon Inorganic materials 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
Definitions
- the invention relates to a silicon electrode suitable for use as an anode in a lithium-ion battery, comprising a current collector, preferably made of copper, an adhesive layer arranged on the current collector and a multilayer structure arranged on the adhesive layer.
- the invention also relates to a battery cell which comprises the silicon electrode according to the invention and a battery which comprises at least one battery cell.
- Electrochemical energy storage is an essential cornerstone of a global energy transition in order to temporarily store fluctuating renewable electricity and make it available for stationary and mobile applications.
- the rapid development in the field of electromobility and mobile communication devices also increases the demand for high storage capacities and high charging rates for energy storage devices. This is where the established technologies reach their limits.
- new materials are also required in addition to diversifying energy storage concepts.
- these should improve the technical performance of corresponding energy storage concepts (including capacity, energy density, service life), and on the other hand, they should also minimize manufacturing costs.
- the latter can be achieved in particular through the use of readily available chemical elements, such as silicon for which there is already a broad technology base.
- Batteries are electrochemical energy storage devices and are divided into primary and secondary batteries.
- Primary batteries are electrochemical power sources in which chemical energy is irreversibly converted into electrical energy. A primary battery is therefore not rechargeable. Secondary batteries, also called accumulators, on the other hand, are rechargeable electrochemical energy storage devices in which the chemical reaction that occurs is reversible, so that multiple use is possible. When charging, electrical energy is converted into chemical energy, and during discharging it is converted from chemical energy into electrical energy.
- Battery is the generic term for cells connected together.
- Cells are galvanic units consisting of two electrodes, electrolytes, separator and cell housing.
- Figure 1 shows an exemplary structure and the function of a lithium-ion cell during the discharging process. The components of a cell are briefly explained below.
- the cathode consists, for example, of mixed oxides that are applied to an aluminum collector. Transition metal oxides with cobalt (Co), manganese (Mn) and nickel (Ni) or aluminum oxide (AI2O3) are the most common compounds.
- the applied metal oxide layer serves to store the lithium ions when the cell is discharged.
- the anode of the Li-ion cell can consist of a copper foil as a collector and a layer of carbon as an active material. Natural or artificial graphite is usually used as the carbon compound because it has a low electrode potential and a low volume expansion during the charging and discharging process. During the charging process, lithium ions are reduced and stored in the graphite layers.
- Li (Ni, Co, Mn) O2 and LiFePO. ⁇ Due to the structure of the cathode using lithium metal oxides, an increase in capacity is only possible insignificantly.
- silicon instead of carbon in Li battery anodes.
- Silicon is a semiconductor with poor conductivity, very hard and brittle, the surface reacts with oxygen Silicon dioxide.
- silicon as an anode material has a high storage capacity of 3579 mAh/g at room temperature compared to conventional carbon-like materials such as.
- silicon has significantly reduced reactivity and prevents the formation of dendrite structures, especially at high surface currents. Dendrites are tree- or bush-like crystal structures that can pierce the separator and lead to short circuits in the battery and thus rapid cell death.
- Matrix includes amorphous, nanocrystalline areas of silicon.
- the adhesive layer guarantees an extremely stable contact of the active layer of the anode with the current collector of the anode, on the one hand through a mechanical fixation using a roughened surface and on the other hand through a (partial) reaction with the substrate (chemisorption).
- Adhesive layers that can be used or used consist of titanium or chromium as adhesion promoters; With suitable diffusion barriers such as tungsten or carbon, silicon itself can also be used as an adhesive layer.
- the short-term annealing with a controllable and defined energy input into a silicon layer of the multilayer structure causes a partial reaction of the silicon with the copper current collector and the formation of a roughened surface, which creates an extremely strong adhesion between the multilayer structure and the current collector, which does not change weakens during battery operation.
- the at least one layer can also be formed by a mixing system, the mixing system made of silicon being mixed with at least one metal (FIG. 6).
- This homogeneous mixture of at least one metal and silicon can be produced from a sputtering target made of sintered powder (Fig. 8b) or it is deposited into a mixed layer by co-deposition (Fig. 8a) of the starting materials.
- the layer thickness for silicon is between 500 - 1000 nm, for metal the layer thickness is between 10 - 100 nm. This means that a multilayer structure of the active layer with a total thickness of 5pm can consist of up to 20 individual layers.
- a further layer of silicon or the mixed system and/or a protective layer which forms a planar surface is arranged on the multilayer structure.
- the deposition technology used for the multilayer structure creates a planar surface.
- a layer of silicon, or the mixed system of silicon and one or more metals can be arranged up to a desired layer thickness and / or a protective layer.
- the planar layer structure has only a small surface area that does not change during battery operation.
- a boundary layer and/or a solid electrolyte is therefore arranged on the planar multilayer structure.
- planar layer structure of the multilayer structure simultaneously offers the possibility of building an artificial protective layer (artificial SEI) through to the application of a solid electrolyte for battery optimization and is therefore suitable for new cell concepts.
- artificial SEI artificial protective layer
- the multilayer structure has an active layer thickness of 10pm.
- the multilayer structure has a specific capacity of >1500mAh/g, preferably >2000mAh/g.
- the active layer can be used in a multi-layer structure or in the multilayer structure, both terms are used synonymously, with various materials and silicon or in the manner of a mixed system made of silicon and one or more metals to produce a specific capacity of over 1500mAh/g, preferably over 2000 mAh/g .
- the specific capacity of pure silicon of 3579 mAh/g the capacity of the Si electrode according to the invention reaches more than 50%.
- the multilayer structure has an area capacity of 2mAh/cm 2 to 6mAh/cm 2 . Larger surface capacities do not make sense because the cost of production increases with increasing layer thickness.
- the multilayer structure can be produced alternately in multilayers by separate layer deposition of the silicon and the at least one metal.
- the advantage of a layered structure over a mixed system is that you can vary each layer in each layer and thus create a customized structure with advantageous properties. For example, to control the volume expansion, a gradual build-up can be created in which an increased metal silicide is present in the area close to the substrate Portion is inserted, whereas in the one near the surface
- a silicon-rich structure can be selected.
- the short-term annealing is a laser annealing, which is carried out using a laser with an annealing time in the range from 0.01 to 100 ms by setting a scanning speed of a local heating point and an energy density in the range from 0.1 to 100J/cm 2 and / or can be carried out with preheating or cooling in the range from 4°C to 200°C.
- the temperature range from 4°C to 200°C this refers to the surface temperature of the substrate or the layer to be tempered.
- the reactions between the silicon particles and the metal particles forced by the short-term tempering are non-equilibrium processes that can only be realized in the ms range and therefore require the use of a flash lamp or a laser.
- the heating ramps achieved in short-term tempering are in for the range of 10 4 - 10 7 K/s required in the process.
- Flash lamp annealing uses a spectrum in the visible wavelength range, whereas laser annealing uses discrete wavelengths in the infrared (IR) to ultraviolet (UV) spectrum.
- the aforementioned reaction is made possible by the defined energy input into one or more layers of particles by means of short-term annealing. There is a sufficient reaction between metal and silicon without the silicon reacting completely. Only insufficient active material remains. More metal means more reaction options but less active material. More energy means more adhesion but less active material. An optimal result depends on the materials used and particle sizes.
- Fig. 1 Example of structure and function of a lithium-ion cell during the discharging process
- FIG. 3 Schematic representation of the planar Si anode according to the invention
- Fig. 4 Schematic representation of the process for producing an adhesive layer made of silicon
- FIG. 5 Schematic representation of a method for producing a multilayer structure made of silicon and metal
- Fug. 7 Schematic representation of a multilayer structure, which is formed from a mixed system, according to a further variant of the Si electrode according to the invention.
- FIG. 9 Schematic representation of a method for producing a mixing system with gradients.
- Figure 2b shows the influence of the short-term annealing 13, in particular flash lamp annealing, on the silicid formation 12 at the contact point in a layer system made of copper 10 and silicon 11. Due to the very short lightning pulse in the range of 0.1 to 10 ms, the silicon 11 does not react completely with the copper 10 to form copper silicide 12. Through the flash lamp annealing 13, pure amorphous or nanocrystalline silicon 11 remains, which is available as an active material for lithium storage, while at the same time there are a sufficient number of inactive areas that ensure stability and good electrical conductivity.
- Figure 4 shows process steps for producing an adhesive layer 14 on the copper substrate 10 for the subsequent construction of the active layer 15 of the Si anode.
- a substrate 10 which also serves as a current collector in a LIB (lithium-ion battery), undergoes a pre-cleaning 17 under vacuum conditions in a plasma atmosphere. This cleaning is necessary because an oxidation layer 18 forms on the substrate 10 in air, which would prevent a reaction between a subsequently applied silicon layer 11 with the copper substrate 10 during flash lamp annealing 13 (FLA - flash lamp annealing) and the silicon layer 11 thus would not adhere to the Cu substrate 10.
- a first silicon layer 11 is then deposited, e.g. B. by sputtering.
- This first silicon layer 11 reacts with the Cu substrate 10 in a transition region to copper silicide 12, thereby increasing the roughness of the substrate 10, e.g. B. a Cu foil, is increased and the silicon layer reacted with the copper serves as a kind of adhesive layer for the further layer structure.
- the copper silicide layer 12 is completely inactive in a battery, so that in a following step a diffusion barrier 19, e.g. B. is applied from carbon.
- This diffusion barrier 19 is necessary in order to prevent the reaction of silicon 11 in copper 10 to form copper silicide 12 during further short-term tempering 13.
- Further Si layers 11, 31 can then be applied sequentially, the layers being able to be stabilized by flash lamp annealing 13 (FIG. 5).
- the advantage of repeated Si -Ab separation and subsequent flash lamp annealing 13 is that with each sequence a stable ("reacted") layer with a closed interface is formed, which acts as an intermediate layer (interface) for the subsequent layers.
- This is advantageous for the adhesion of the Si layer to copper foil, since copper silicide 12 is partially formed and active silicon 11 is still available.
- the method according to the invention described thus also causes a roughening of the surface, so that good adhesion is created for further layers.
- the growth of column structures is also promoted, so that better ion conductivity can be achieved and the copper content can be well controlled for subsequent processes.
- a protective layer 16 is applied to the multilayer structure 15.
- the diffusion and silicide formation 30 can be controlled in a layer, so that a gradual course of silicide formation can be set perpendicular to the surface.
- Figure 9 shows the possibility of producing a layer gradient in a deposited multilayer structure made of partially reacted layers/layers 30.
- the gradual course of the silicide/silicon concentration 12, 11 in the multilayer structure 15 can be adjusted on the one hand by the selected process parameters of the short-time annealing process 13, and on the other hand by the thickness of the deposited metal layers or the ratio between Si 11 and metal 21 in a deposited layer 31.
- a small gradient means that the concentration of silicide in a layer 31 or in the active layer 15 of the anode gradually decreases from the side of the layer/active layer 31 facing the current collector 10 to the side of the layer/active layer facing away from the current collector.
- a high gradient means the silicide concentration decreases quickly.
- a high silicide concentration forms on the underside of the layer 31, which decreases rapidly, with only silicon 11 being present on the upper side, i.e. the side of the layer/active layer 31 facing away from the current collector 10.
- the pure silicon 11 is available for the storage of lithium, whereas the silicide formation 12 increases the electrical conductivity.
- the gradual progression e.g. B. the copper concentration in a silicon layer with a copper layer is adjusted by adjusting the pulse duration, the preheating or cooling of the layer structure and a layer thickness of the deposited layers, i.e. H. by adjusting the energy input (over time and temperature) and the thickness ratio of the silicon layer to the copper layer, whereby the average reaction depth e (diffusion length) should be smaller than the layer thickness of the silicon layer in order to provide enough unreacted silicon for the lithium incorporation.
- the overall structure of the silicon electrode according to the invention as an anode in a lithium-ion battery is as follows:
- the active layer was deposited in the multilayer structure 15 with various materials (metals and silicon) or as a mixed system 22 made of at least one metal and silicon and has a specific capacity of over 1500 mAh/g, preferably greater than 2000 mAh/g.
- a further layer of silicon or the mixing system and/or a protective layer or optionally a boundary layer up to a structure of a solid electrolyte is deposited, which has a planar surface.
- an active layer thickness of the active material of the anode of 10 pm is achieved, which enables a surface capacity of 4 mAh/cm 2 with a specific total capacity of 2000 mAh/g.
- This layer structure enables excellent lithium diffusion as well as high electrical conductivity and is suitable for battery operation without the active layer 15 pulverizing.
- the active layer 15 of the anode has an electrical conductivity that is up to 100 times higher than graphite of up to 5*10 4 S/cm due to the heterogeneous formation of a silicide framework. Due to the low resistance, less waste heat is generated during charging/discharging and a more compact design of the entire cell is possible with less cooling.
- planar surface limits the build-up of SEI to an absolute minimum and only the smallest amounts of additives are necessary for SEI control. This also results in low electrolyte consumption and a long service life for anodes constructed in this way.
- Lithium ion battery Collector on anode side SEI -Solid-Electrolyte- Interphase Electrolyte Separator Conductive intermediate phase Cathode, positive electrode Collector on cathode side Anode, negative electrode Copper substrate Silicon Copper silicide, metal silicide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022115234 | 2022-06-20 | ||
DE102022115234.0 | 2022-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023247074A1 true WO2023247074A1 (de) | 2023-12-28 |
Family
ID=85328850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/053091 WO2023247074A1 (de) | 2022-06-20 | 2023-02-08 | Planare silizium-anode auf einem kupfer-stromleiter für lithium-ionen-batterien |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202401876A (zh) |
WO (1) | WO2023247074A1 (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112820847A (zh) * | 2020-12-31 | 2021-05-18 | 广东省科学院新材料研究所 | 硅基负极材料及其制备方法、锂离子电池以及电器 |
-
2023
- 2023-02-08 WO PCT/EP2023/053091 patent/WO2023247074A1/de unknown
- 2023-02-08 TW TW112104454A patent/TW202401876A/zh unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112820847A (zh) * | 2020-12-31 | 2021-05-18 | 广东省科学院新材料研究所 | 硅基负极材料及其制备方法、锂离子电池以及电器 |
Non-Patent Citations (3)
Title |
---|
POLAT B.D. ET AL: "Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery", THIN SOLID FILMS, vol. 596, 22 May 2015 (2015-05-22), AMSTERDAM, NL, pages 190 - 197, XP093048394, ISSN: 0040-6090, DOI: 10.1016/j.tsf.2015.09.085 * |
SALAH MOHAMMED ET AL: "Binary silicon-based thin-film anodes for lithium-ion batteries: A review", JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 520, 20 December 2021 (2021-12-20), XP086925301, ISSN: 0378-7753, [retrieved on 20211220], DOI: 10.1016/J.JPOWSOUR.2021.230871 * |
XU, J. ET AL.: "Preparation of TiSi Powders with Enhanced Lithium-Ion Storage via Chemical Oven Self-Propagating High-Temperature Synthesis.", NANOMATERIALS, vol. 11, 2021, pages 2279 |
Also Published As
Publication number | Publication date |
---|---|
TW202401876A (zh) | 2024-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112009001242B4 (de) | Verfahren zum Herstellen einer Interkalationselektrode | |
DE60209827T2 (de) | Dünnfilm für die Anode einer sekundären Lithiumbatterie und Herstellungsmethode | |
DE69507094T2 (de) | Verfahren zur Herstellung von einer negativ Elektrode für Lithiumsekundärbatterie | |
EP3479425B1 (de) | Verfahren zur herstellung einer elektrochemischen zelle sowie eine mit dem verfahren hergestellte elektrochemische zelle | |
EP2093825B1 (en) | Battery structure and lithium secondary battery using the same | |
EP3417498B1 (de) | Verfahren zur herstellung von auf silizium basierenden anoden für sekundärbatterien | |
WO2002103827A2 (de) | Bei normaltemperatur betreibbare, wiederaufladbare batteriezelle | |
WO2016198033A1 (de) | Verfahren zur herstellung nanostrukturierter schichten | |
EP3657575A1 (de) | Kompositelektrode mit homogenem abscheidungsverhalten | |
DE4235514C2 (de) | Poröse sauerstoffverzehrende Elektrode, Verfahren zu deren Herstellung und deren Verwendung | |
EP3758105B1 (de) | Verfahren zur lithiierung von elektroden von lithiumbasierten elektrischen energiespeicherelementen sowie mit dem verfahren hergestelltes elektrisches energiespeicherelement | |
WO2012032120A1 (de) | Stromleiter für elektrochemische zellen | |
DE102019211857B3 (de) | Lithium-sekundärbatterie, verwendung einer lithium-sekundärbatterie und verfahren zur herstellung einer lithium-sekundärbatterie | |
EP3573144B1 (de) | Lithium-ionen-zelle und verfahren zu deren herstellung | |
EP4385079A1 (de) | Verfahren zur erhöhung der haftfestigkeit von aktivschichten in lithium-batterien | |
WO2023247074A1 (de) | Planare silizium-anode auf einem kupfer-stromleiter für lithium-ionen-batterien | |
EP1235286A2 (de) | Galvanisches Element mit mindestens einer lithiuminterkalierenden Elektrode | |
WO2014121978A1 (de) | Elektrode für ein galvanisches element und verfahren zur herstellung der elektrode | |
EP3573141B1 (de) | Lithiumanode und verfahren zu deren herstellung | |
WO2020239512A1 (de) | Elektrochemische zelle und verfahren zu ihrer herstellung | |
DE102011053782A1 (de) | Lithium-Luft-Batterie | |
DE19620504C2 (de) | Elektrode für eine Schmelzkarbonatbrennstoffzelle und Verfahren zur Herstellung einer solchen sowie deren Verwendung | |
EP4385081A2 (de) | Verfahren zur herstellung von teilreagiertem silizium zur kontrolle der lithium-einlagerungsfähigkeit zur verwendung in lithium-batterien | |
WO2023247072A1 (de) | Verfahren zur herstellung von silizium-elektroden als anoden für lithium-ionen-batterien und eine damit hergestellte silizium-elektrode | |
EP4385080A1 (de) | Verfahren zur herstellung von silizium-elektroden als anoden für lithium-batterien |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23706702 Country of ref document: EP Kind code of ref document: A1 |