WO2023246950A1 - 一种弹簧钢及其球化退火方法 - Google Patents

一种弹簧钢及其球化退火方法 Download PDF

Info

Publication number
WO2023246950A1
WO2023246950A1 PCT/CN2023/107783 CN2023107783W WO2023246950A1 WO 2023246950 A1 WO2023246950 A1 WO 2023246950A1 CN 2023107783 W CN2023107783 W CN 2023107783W WO 2023246950 A1 WO2023246950 A1 WO 2023246950A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring steel
furnace
cooling
temperature
zone
Prior art date
Application number
PCT/CN2023/107783
Other languages
English (en)
French (fr)
Inventor
杨攀
王晓军
徐政新
鲁强
史啸峰
Original Assignee
大冶特殊钢有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大冶特殊钢有限公司 filed Critical 大冶特殊钢有限公司
Publication of WO2023246950A1 publication Critical patent/WO2023246950A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of metal heat treatment, and specifically relates to a spring steel and a spheroidizing annealing method thereof.
  • Spring steel is the raw material for manufacturing various coil springs, leaf springs, torsion springs and other parts. It is widely used in national defense, industry and agriculture, and daily life in automobiles, instruments, aviation, aerospace, electrical appliances and other fields. It is inseparable from various machinery. Open the use of spring steel.
  • Spring steel must have good performance and quality to meet the needs of manufacturing springs, such as high elastic limit, tensile strength, hardness, plasticity, high fatigue limit and resistance to elasticity loss when working under alternating loads. .
  • Spring steel is generally produced by rolling, but the rolled material has problems such as uneven structure, large residual stress, high hardness, and poor plasticity, which is not conducive to subsequent processing, such as cold forming.
  • Cold forming technology is used to produce springs with high elastic limit and has strict requirements on the original structure, carbide spheroidization rate and hardness of spring steel.
  • the existing ordinary spheroidizing annealing process has a low spheroidization rate and cannot meet the requirements of cold forming.
  • the purpose of this application is to provide a spring steel and its spheroidizing annealing method.
  • the spring steel spheroidizing annealing method provided by this application has the characteristics of fast heating speed and short spheroidizing time. After spheroidizing annealing, the spring steel has good spheroidizing effect and high spheroidizing rate.
  • the first aspect of this application provides a spring steel spheroidizing annealing method, which includes the following steps:
  • Rapid heating stage The hot-rolled spring steel is loaded into the heat treatment furnace and rapidly heated to the two-phase zone temperature
  • Two-phase zone heat preservation stage the spring steel is kept at the temperature in the two-phase zone
  • the first cooling stage rapidly cool the spring steel to the first temperature
  • Isothermal spheroidizing performing isothermal spheroidizing on the spring steel at the first temperature
  • Second cooling stage The isothermal spheroidized spring steel is slowly cooled to the second temperature in the heat treatment furnace, and then comes out of the furnace for air cooling.
  • the heating stage rapid heating is used to heat the spring steel to the two-phase region.
  • the temperature reaches the two-phase region (between Ac1 and Ac3 temperatures)
  • the ferrite in the pearlite becomes austenitized first, and the carbon element in the groove is more easily dissolved into the austenite matrix due to its higher energy density.
  • the flake carbides gradually break and dissolve, leaving dispersed undissolved granular carbides.
  • the material is rapidly cooled to below the Ar1 temperature, and the dissolved carbides will non-spontaneously nucleate with undissolved granular carbides as the core to form a spherical carbide structure.
  • the components of the spring steel include: C: 0.56 ⁇ 0.64%, Si: 0.17 ⁇ 0.37%, Mn: 0.7 ⁇ 1.0%, P: ⁇ 0.025%, S: ⁇ 0.02% , Cr: 0.7 ⁇ 1.0%, Ni: ⁇ 0.35%, Cu ⁇ 0.25%, and the rest is matrix Fe and inevitable impurities.
  • the rapid heating has a heating rate of 120-160°C/h. Rapid heating is used to improve heating efficiency while reducing surface burning loss and decarburization layer depth.
  • the temperature of the two-phase zone is 740-760°C, and the holding time of the temperature of the two-phase zone is 96 minutes to 160 minutes.
  • Spring steel is close to eutectoid steel, and the two-phase zone is narrow. Control the temperature at 740-760°C and the holding time at 96-160min. You can get a good spheroidization effect in the follow-up. When it is lower than this temperature or the holding time, flakes will appear. If the amount of carbide dissolved is too small, part of the carbide will still exist in the form of flakes, reducing the spheroidization rate; when the temperature is higher than this or the holding time, the amount of carbide dissolved will be too large, resulting in fewer nucleation particles and lower spheroidization rate.
  • the heat treatment furnace is a continuous annealing furnace.
  • the continuous annealing furnace is composed of five parts: a heating zone, a heat preservation zone, a rapid cooling zone, an isothermal zone, and a slow cooling zone.
  • the heating zone, the The heat preservation zone, the rapid cooling zone, the isothermal zone, and the slow cooling zone sequentially perform the rapid heating stage, the two-phase zone heat preservation stage, the first cooling stage, and the isothermal stage on the spring steel. Spheroidization stage and the treatment of the second cooling stage.
  • the cooling rate of the first cooling stage is 20-30°C/h;
  • cooling at this cooling rate can retain undissolved granular carbides and promote spheroidization. If the cooling rate is too fast, the degree of subcooling will be increased, which is not conducive to spheroidization. If the cooling rate is too slow, undissolved granular carbides will be retained. Carbides will further dissolve, which is not conducive to spheroidization.
  • the first cooling stage is carried out in the rapid cooling zone of the continuous annealing furnace, and the cooling method is to turn on the fan for cooling.
  • the first temperature is 700-720°C
  • the isothermal time of the isothermal spheroidization is 216 minutes to 360 minutes.
  • the first temperature of isothermal spheroidization is controlled within this range, and the spheroidization effect is the best. If the temperature is too high or too low, the spheroidization rate of spring steel will be reduced. At the same time, it is necessary to reasonably control the isothermal time of isothermal spheroidization to avoid the spheroidization time being too short and poor spheroidization effect, and the spheroidization time being too long, causing carbides to aggregate and grow.
  • the second temperature is 525-595°C.
  • the second temperature is too high, and when it is air-cooled out of the furnace, the temperature difference between the inside and outside of the spring steel is large, and the stress is large, which can easily cause deformation and cracking.
  • the second temperature is too low, and the production effect is too low, affecting the roll speed and causing problems in continuous production.
  • the slow cooling is furnace cooling in the slow cooling zone.
  • the heat treatment furnace is protected by a nitrogen atmosphere, the height of the material entering the furnace is 120 mm to 180 mm, and the roller speed is 1.5 to 2.5 m/h.
  • this application adopts nitrogen atmosphere protection, which improves production safety.
  • This application adopts rapid heating in a continuous annealing furnace and isothermal spheroidizing annealing.
  • the total heating time is about 15 hours. It is a continuous production, which greatly shortens the annealing time and improves the annealing efficiency.
  • nitrogen protection is passed through, there is no obvious burning loss on the surface and no material loss.
  • the depth of the full decarburization layer and the total decarburization layer can be controlled within 0.3mm, which reduces the depth of the decarburization layer that needs to be polished.
  • this application controls the cooling process after isothermal spheroidization to avoid large cooling stress and improve cold working performance.
  • a second aspect of the present application provides a spring steel prepared by the above-mentioned spring steel spheroidizing annealing method.
  • the spring steel prepared by the above spring steel spheroidizing annealing method has a spheroidization rate ⁇ 80%, a hardness ⁇ 190 HBW, a grain size ⁇ 6, no obvious burning loss on the surface, no complete decarburization layer of the material, and no overall decarburization layer.
  • the depth of the decarburization layer can be controlled within 0.3mm.
  • This application uses a continuous annealing furnace for spheroidizing annealing of spring steel.
  • a continuous annealing furnace for spheroidizing annealing of spring steel.
  • the obtained spring steel has a spheroidization rate ⁇ 80%, a hardness ⁇ 190HBW, a grain size ⁇ 6 levels, and no surface.
  • the material does not have a complete decarburization layer, and the total decarburization layer depth can be controlled within 0.3mm, which reduces the depth of the decarburization layer that needs to be polished; the spring steel prepared in this application meets the raw material requirements for high elastic limit spring steel for cold forming .
  • Figure 1 is a spheroidized microstructure diagram of spring steel prepared in an embodiment of the present application
  • Figure 2 is a spheroidized microstructure diagram of the spring steel prepared in Comparative Example 1 of the present application.
  • the spring steel in the embodiment of the present application is in the form of a hot-rolled bar before spheroidizing annealing, with a diameter ranging from ⁇ 20 to ⁇ 80mm.
  • the structure of hot-rolled spring steel is mainly composed of flake pearlite and ferrite.
  • the present invention will be described in detail below through specific examples.
  • the grade of hot-rolled spring steel bar used in the examples is 60CrMn, which complies with the standard GB/T1222-2016.
  • the mass percentage of each element is shown in Table 1.
  • composition of the 60CrMn steel rod in this example is shown in Table 1.
  • the hot-rolled 60CrMn steel bar is loaded into a continuous annealing furnace, followed by heating, heat preservation, rapid cooling, isothermal, slow cooling, and discharge to obtain a spheroidized annealed bar, which specifically includes the following steps:
  • Distribution Place the hot-rolled spring steel bars on the transmission roller table of the continuous annealing furnace. The height is 150mm for distribution. After the distribution is completed, it is driven into the continuous annealing furnace at the set roller speed of 2m/h. Perform spheroidizing annealing.
  • Rapid heating rapidly heat the bar to a two-phase zone temperature of 750°C at a heating rate of 150°C/h, and keep the spring steel at this temperature for 120 minutes;
  • Rapid cooling Send the spring steel that has been insulated in the two-phase zone into the rapid cooling zone of the continuous annealing furnace, and turn on the fan to rapidly cool the bar from 750°C to 710°C at a cooling rate of 25°C/h;
  • Isothermal spheroidization perform isothermal spheroidization annealing on the spring steel at 710°C for an isothermal time of 300 minutes;
  • Table 2 shows the properties of 60CrMn produced by the continuous furnace spheroidizing annealing process designed according to this embodiment. It can be seen from Table 2 that the carbide spheroidization rate of 60CrMn spring steel is 85% ⁇ 92%, the hardness value is 172HBW ⁇ 181HBW, and the grain Degree 7-8, no obvious burning loss on the surface, no complete decarburization layer on the material, and the depth of the total decarburization layer can be controlled within 0.3mm, meeting the requirements.
  • Figure 1 is a spheroidization structure diagram of 60CrMn spring steel prepared using the spheroidization annealing process of the present application. The spheroidization effect is good.
  • composition of the 60CrMn steel rod in this embodiment is the same as that of the 60CrMn steel rod in Example 1.
  • the spring steel spheroidizing annealing method provided in this embodiment is basically the same as the spring steel spheroidizing annealing method in Embodiment 1. The difference is that the heating rate of rapid heating in step (2) is 120°C/h, which specifically includes the following steps :
  • Distribution Place the hot-rolled spring steel bars on the transmission roller table of the continuous annealing furnace. The height is 150mm for distribution. After the distribution is completed, it is driven into the continuous annealing furnace at the set roller speed of 2m/h. Perform spheroidizing annealing.
  • Rapid heating Rapidly heat the bar to a two-phase zone temperature of 750°C at a heating rate of 120°C/h, and keep the spring steel at this temperature for 120 minutes;
  • Rapid cooling Send the spring steel that has been insulated in the two-phase zone into the rapid cooling zone of the continuous annealing furnace, and turn on the fan to rapidly cool the bar from 750°C to 710°C at a cooling rate of 25°C/h;
  • Isothermal spheroidization perform isothermal spheroidization annealing on the spring steel at 710°C for an isothermal time of 300 minutes;
  • 60CrMn was produced according to the continuous furnace spheroidizing annealing process designed in this embodiment, with a specification of ⁇ 20mm. The performance of the 60CrMn produced in this embodiment was tested, and the results are shown in Table 3.
  • composition of the 60CrMn steel rod in this embodiment is the same as that of the 60CrMn steel rod in Example 1.
  • the spring steel spheroidizing annealing method provided in this embodiment is basically the same as the spring steel spheroidizing annealing method in Embodiment 1.
  • the difference is that the isothermal time in step (4) is 216 minutes, and specifically includes the following steps:
  • Distribution Place the hot-rolled spring steel bars on the transmission roller table of the continuous annealing furnace. The height is 150mm for distribution. After the distribution is completed, it is driven into the continuous annealing furnace at the set roller speed of 2m/h. Perform spheroidizing annealing.
  • Rapid heating rapidly heat the bar to a two-phase zone temperature of 750°C at a heating rate of 150°C/h, and keep the spring steel at this temperature for 120 minutes;
  • Rapid cooling Send the spring steel that has been insulated in the two-phase zone into the rapid cooling zone of the continuous annealing furnace, and turn on the fan to rapidly cool the bar from 750°C to 710°C at a cooling rate of 25°C/h;
  • Isothermal spheroidization perform isothermal spheroidization annealing on the spring steel at 710°C, with an isothermal time of 216 minutes;
  • 60CrMn was produced according to the continuous furnace spheroidizing annealing process designed in this embodiment, with a specification of ⁇ 60mm. The performance of the 60CrMn produced in this embodiment was tested, and the results are shown in Table 3.
  • composition, state before annealing, and size specifications of the 60CrMn steel bar are the same as in Example 1, and a common annealing process is used.
  • Distribution Place the hot-rolled spring steel bars on the transmission roller table of the continuous annealing furnace. The height is 150mm for distribution. After the distribution is completed, it is driven into the continuous annealing furnace at the set roller speed of 2m/h. Perform spheroidizing annealing.
  • Rapid heating Rapidly heat the bar to a two-phase zone temperature of 760°C at a heating rate of 150°C/h.
  • the spheroidization rate is only about 50%. As shown in Figure 2, some carbides are distributed in lamellar or short rod shapes, and the hardness is 210 ⁇ 230HBW, which cannot meet the usage requirements.
  • the composition of the 60CrMn steel bar in this comparative example is shown in Table 1.
  • the spring steel spheroidizing annealing method is basically the same as that in Example 1. The difference is that the rapid heating rate in step (2) is 60°C/h, which specifically includes Following steps:
  • Distribution Place the hot-rolled spring steel bars on the transmission roller table of the continuous annealing furnace. The height is 150mm for distribution. After the distribution is completed, the hot-rolled spring steel bars are driven into the continuous annealing furnace at the set roller speed of 2m/h. Perform spheroidizing annealing.
  • Rapid heating Rapidly heat the bar to a two-phase zone temperature of 750°C at a heating rate of 60°C/h, and keep the spring steel at this temperature for 120 minutes.
  • Rapid cooling Send the spring steel that has been insulated in the two-phase zone into the rapid cooling zone of the continuous annealing furnace, and turn on the fan to rapidly cool the bar from 750°C to 710°C at a cooling rate of 25°C/h.
  • Isothermal spheroidization Perform isothermal spheroidization annealing on spring steel at 710°C for an isothermal time of 300 minutes.
  • the continuous furnace spheroidizing annealing process designed according to this comparative example was used to produce 60CrMn with a specification of ⁇ 30mm.
  • the performance of the 60CrMn produced in this comparative example was tested.
  • the results are shown in Table 4. It can be seen from Table 4 that the depth of the decarburized layer is 0.38mm, which is significantly larger than the 60CrMn with a specification of ⁇ 30mm in Example 1, and cannot meet the usage requirements.
  • the composition of the 60CrMn steel bar in this comparative example is shown in Table 1.
  • the spring steel spheroidizing annealing method is basically the same as that in Example 1. The difference is that in step (3), it is rapidly cooled to 680°C, which specifically includes the following steps:
  • Distribution Place the hot-rolled spring steel bars on the transmission roller table of the continuous annealing furnace. The height is 150mm for distribution. After the distribution is completed, it is driven into the continuous annealing furnace at the set roller speed of 2m/h. Perform spheroidizing annealing.
  • Rapid heating rapidly heat the bar to a two-phase zone temperature of 750°C at a heating rate of 150°C/h, and keep the spring steel at this temperature for 120 minutes;
  • Rapid cooling Send the spring steel that has been insulated in the two-phase zone into the rapid cooling zone of the continuous annealing furnace, and turn on the fan to quickly cool the bar from 750°C to 680°C at a cooling rate of 25°C/h;
  • Isothermal spheroidization perform isothermal spheroidization annealing on the spring steel at 710°C for an isothermal time of 300 minutes;
  • the continuous furnace spheroidizing annealing process designed according to this comparative example was used to produce 60CrMn with a specification of ⁇ 30mm.
  • the performance of the 60CrMn produced in this comparative example was tested.
  • the results are shown in Table 4. It can be seen from Table 4 that the spheroidization rate is 68% and 62%, which is significantly lower than that of 60CrMn with a specification of ⁇ 30mm in Example 1, and the hardness is 195 and 197HBW, which is significantly higher than that of 60CrMn with a specification of ⁇ 30mm in Example 1. It cannot be meet usage requirements.
  • the composition of the 60CrMn steel bar in this comparative example is shown in Table 1.
  • the spring steel spheroidizing annealing method is basically the same as that in Example 1. The difference is that the cooling rate in step (3) is 110°C/h, which specifically includes the following step:
  • Distribution Place the hot-rolled spring steel bars on the transmission roller table of the continuous annealing furnace. The height is 150mm for distribution. After the distribution is completed, it is driven into the continuous annealing furnace at the set roller speed of 2m/h. Perform spheroidizing annealing.
  • Rapid heating Rapidly heat the bar to a two-phase zone temperature of 750°C at a heating rate of 150°C/h, and keep the spring steel at this temperature for 120 minutes.
  • Rapid cooling Send the spring steel that has been insulated in the two-phase zone into the rapid cooling zone of the continuous annealing furnace, and turn on the fan to rapidly cool the bar from 750°C to 710°C at a cooling rate of 110°C/h.
  • Isothermal spheroidization Perform isothermal spheroidization annealing on the spring steel at 710°C for an isothermal time of 300 minutes.
  • the continuous furnace spheroidizing annealing process designed according to this comparative example was used to produce 60CrMn with a specification of ⁇ 30mm.
  • the performance of the 60CrMn produced in this comparative example was tested.
  • the results are shown in Table 4. It can be seen from Table 4 that the spheroidization rate is 74% and 72%, which is significantly lower than that of 60CrMn with a specification of ⁇ 30mm in Example 1, and the hardness is 192 and 194HBW, which is significantly higher than that of 60CrMn with a specification of ⁇ 30mm in Example 1. It cannot be meet usage requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

一种弹簧钢及其球化退火方法,方法包括以下步骤:将热轧态弹簧钢装入热处理炉,并快速加热至两相区温度;将弹簧钢在两相区温度进行保温;将弹簧钢快速降温至第一温度;将弹簧钢在第一温度进行等温球化;将等温球化处理后的弹簧钢随热处理炉缓冷至第二温度,然后出炉空冷。

Description

一种弹簧钢及其球化退火方法 技术领域
本发明属于金属热处理技术领域,具体涉及一种弹簧钢及其球化退火方法。
背景技术
弹簧钢是制造各种螺旋弹簧、板簧、扭簧等零件的原料,它广泛应用于国防、工农业及日常生活中的汽车、仪表、航空、航天、电器等领域,各种机械都离不开弹簧钢的使用。
弹簧钢必须具有良好的性能和质量才能满足制造弹簧的需要,比如较高的弹性极限、抗拉强度、硬度、塑性,在交变载荷下工作时能具有较高的疲劳极限和抗弹性减退能力。
弹簧钢一般采取轧制生产,但轧制后的材料存在组织不均匀、残余应力大、硬度高、塑性差等问题,不利于后续的加工,比如冷成型。冷成型技术用于制作高弹性极限的弹簧,对弹簧钢原始组织、碳化物球化率及硬度要求严格。采取现有的普通的球化退火工艺,球化率较低,不能满足冷成型的要求。
发明内容
针对上述问题,本申请的目的在于提供一种弹簧钢及其球化退火方法。
本申请提供的弹簧钢球化退火方法,具有加热速度快、球化时间短的特点,球化退火后弹簧钢的球化效果好,球化率高。
为实现上述目的,本申请采用以下技术方案:
本申请第一方面提供一种弹簧钢球化退火方法,包括以下步骤:
快速加热阶段:将热轧态弹簧钢装入热处理炉,并快速加热至两相区温度;
两相区保温阶段:所述弹簧钢在所述两相区温度进行保温;
第一冷却阶段:将所述弹簧钢快速降温至第一温度;
等温球化:将所述弹簧钢在所述第一温度进行等温球化;
第二冷却阶段:将所述等温球化处理后的弹簧钢随所述热处理炉缓冷至第二温度,然后出炉空冷。
在升温阶段,采取快速加热的方法,将弹簧钢加热至两相区。当温度达到两相区(Ac1~Ac3温度之间)时,珠光体中的铁素体先奥氏体化,沟槽处的碳元素由于能量密度较高,更易溶解到奥氏体基体中,在两相区保温过程中,片状碳化物逐渐断裂、溶解,留下弥散分布的未溶解粒状碳化物。此时将材料快速冷却到Ar1温度以下,溶解的碳化物将以未溶解的粒状碳化物为核心进行非自发形核,形成球状碳化物组织。
在一些实施方案中,所述弹簧钢的成分以质量百分比计包括:C:0.56~0.64%,Si:0.17~0.37%,Mn:0.7~1.0%,P:≤0.025%,S:≤0.02%,Cr:0.7~1.0%,Ni:≤0.35%,Cu≤0.25%,其余为基体Fe和不可避免的杂质。
在一些实施方案中,所述快速加热的加热速度为120-160℃/h。采用快速加热,在提高加热效率的同时,减少表面烧损和脱碳层深度。
在一些实施方案中,所述两相区温度为740-760℃,所述两相区温度的保温时间为96min~160min。
弹簧钢接近共析钢,两相区较窄,将温度控制在740-760℃,保温时间控制在96-160min,后续可以获得良好的球化效果;低于该温度或者保温时间时,片状碳化物溶解量过少,部分碳化物仍以片状存在,降低球化率;高于此温度或者保温时间时,碳化物溶解量过大,形核质点减少、球化率降低。
在一些实施方案中,所述热处理炉为连续式退火炉,所述连续式退火炉由加热区、保温区、快冷区、等温区、缓冷区五部分组成,所述加热区、所述保温区、所述快冷区、所述等温区、所述缓冷区对所述弹簧钢依次进行所述快速加热阶段、所述两相区保温阶段、所述第一冷却阶段、所述等温球化阶段、所述第二冷却阶段的处理。
在一些实施方案中,所述第一冷却阶段的冷却速度为20-30℃/h;
第一冷却阶段按此冷速冷却,可保留好未溶解的粒状碳化物,促进球化;冷速过快会增大过冷度,不利于球化;冷速过慢,则未溶解的粒状碳化物会进一步溶解,不利于球化。
所述第一冷却阶段在所述连续式退火炉的所述快冷区进行,冷却方式为开启风机冷却。
在一些实施方案中,所述第一温度为700-720℃,所述等温球化的等温时间为216min~360min。
等温球化的第一温度控制在此范围,球化效果最好,温度过高或者过低均会降低弹簧钢的球化率。同时需合理控制等温球化的等温时间,以免球化时间太短球化效果差,球化时间过长,造成碳化物聚集长大。
在一些实施方案中,所述第二温度为525-595℃。
第二温度过高,出炉空冷时,弹簧钢内外温差大,应力较大,易造成变形开裂,第二温度过低时,生产效果过低,影响辊速,导致连续化生产出现问题。
在一些实施方案中,所述缓冷为在所述缓冷区随炉冷却。
在一些实施方案中,所述热处理炉内采取氮气气氛保护,进炉布料高度120mm~180mm,辊道速度1.5~2.5m/h。
与氢气气氛相比,本申请采取氮气气氛保护,提高了生产的安全性。
本申请采取连续退火炉快速加热、等温球化退火,总加热时间约15h,并为连续式生产,大大缩短了退火时间,提高了退火效率;通入氮气保护后表面无明显烧损、材料无全脱碳层、总脱碳层深度可控制在0.3mm以内,减少了需要打磨的脱碳层深度。同时,本申请对等温球化后的冷却过程进行控制,避免产生较大的冷却应力,以提高冷加工性能。
本申请第二方面提供一种由上述弹簧钢球化退火方法制备的弹簧钢。
在一些实施方案中,由上述弹簧钢球化退火方法制备的弹簧钢球化率≥80%,硬度≤190HBW,晶粒度≥6级,表面无明显烧损、材料无全脱碳层、总脱碳层深度可控制在0.3mm以内。
与现有技术相比,本申请的有益效果是:
1)本申请采用连续式退火炉进行弹簧钢球化退火,通过将弹簧钢快速加热到Ac1~Ac3温度,得到不均匀奥氏体及大量未溶解的粒状碳化物,然后快速冷却到Ar1温度以下,碳化物以未溶解质点非自发形核,离异共析形成球化碳化物,该技术具有加热速度快、球化时间短的特点。
2)本申请通过控制两相区的保温温度、保温时间,以及球化退火的等温温度及等温时间,所得弹簧钢球化率≥80%,硬度≤190HBW,晶粒度≥6级,表面无明显烧损、材料无全脱碳层、总脱碳层深度可控制在0.3mm以内,减少了需要打磨的脱碳层深度;本申请制备的弹簧钢满足冷成型用高弹性极限弹簧钢原料要求。
附图说明
图1为本申请一实施例制备的弹簧钢的球化显微组织图;
图2为本申请对比例1制备的弹簧钢的球化显微组织图。
具体实施方式
以下实施例对本申请的内容做进一步的详细说明,本申请的保护范围包含但不限于下述各实施例。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用药品或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
本申请实施例的弹簧钢在球化退火前的状态为热轧棒材,直径范围Φ20-Φ80mm。热轧态的弹簧钢组织主要由片状珠光体和铁素体组成。
以下通过具体实施例对本发明进行详细说明,实施例中所用热轧后的弹簧钢棒材牌号为60CrMn,执行标准GB/T1222-2016,各元素质量百分比如表1所示。
实施例1
该实施例中60CrMn钢棒材的成分如表1所示。
表160CrMn中各元素的质量百分比%(余量为Fe和不可避免的杂质)
将热轧后的60CrMn钢棒材装入连续退火炉,依次进行加热、保温、快冷、等温、缓冷、出炉,得到球化退火后的棒材,具体包括以下步骤:
(1)布料:将热轧后的弹簧钢棒材放置在连续退火炉的传动辊道上,高度按照150mm进行布料,布料完成后按照设定好的辊速2m/h传动进入连续式退火炉中进行球化退火。
(2)快速加热:以150℃/h的加热速度快速加热棒材至两相区温度750℃,并将弹簧钢在此温度保温120min;
(3)快速冷却:将在两相区保温结束的弹簧钢送入连续退火炉的快速冷却区,开启风机将棒材由750℃以25℃/h的冷却速度快速冷却至710℃;
(4)等温球化:将弹簧钢在710℃进行等温球化退火,等温时间300min;
(5)炉内缓冷:将等温球化结束的弹簧钢在炉内缓冷至560℃。
(6)出炉:将缓冷结束的弹簧钢棒材出炉。
按设计的连续炉球化退火工艺生产9批60CrMn,规格Φ20~Φ80mm,长度4-7m,球化率检测按SEP-1520 1998-09执行,硬度检测按GBT231.1-2018执行,晶粒度检测按ISO 643执行。
表2为按照该实施例设计的连续炉球化退火工艺生产的60CrMn的性能,由表2可知,60CrMn弹簧钢碳化物球化率为85%~92%,硬度值为172HBW~181HBW,晶粒度7-8级,表面无明显烧损、材料无全脱碳层、总脱碳层深度可控制在0.3mm以内,满足要求。
表2按照实施例1设计的连续炉球化退火工艺生产的60CrMn的性能
图1为采用本申请的球化退火工艺制备的60CrMn弹簧钢的球化组织图,球化效果良好。
实施例2
本实施例中60CrMn钢棒材的成分与实施例1中60CrMn钢棒材的成分相同。
本实施例提供的弹簧钢球化退火方法与实施例1中弹簧钢球化退火方法基本相同,不同之处在于,步骤(2)中快速加热的加热速度为120℃/h,具体包括以下步骤:
(1)布料:将热轧后的弹簧钢棒材放置在连续退火炉的传动辊道上,高度按照150mm进行布料,布料完成后按照设定好的辊速2m/h传动进入连续式退火炉中进行球化退火。
(2)快速加热:以120℃/h的加热速度快速加热棒材至两相区温度750℃,并将弹簧钢在此温度保温120min;
(3)快速冷却:将在两相区保温结束的弹簧钢送入连续退火炉的快速冷却区,开启风机将棒材由750℃以25℃/h的冷却速度快速冷却至710℃;
(4)等温球化:将弹簧钢在710℃进行等温球化退火,等温时间300min;
(5)炉内缓冷:将等温球化结束的弹簧钢在炉内缓冷至560℃。
(6)出炉:将缓冷结束的弹簧钢棒材出炉。
按照本实施例设计的连续炉球化退火工艺生产60CrMn,规格为Φ20mm,对本实施例生产的60CrMn的性能进行检测,结果如表3所示。
实施例3
本实施例中60CrMn钢棒材的成分与实施例1中60CrMn钢棒材的成分相同。
本实施例提供的弹簧钢球化退火方法与实施例1中弹簧钢球化退火方法基本相同,不同之处在于,步骤(4)中等温时间为216min,具体包括以下步骤:
(1)布料:将热轧后的弹簧钢棒材放置在连续退火炉的传动辊道上,高度按照150mm进行布料,布料完成后按照设定好的辊速2m/h传动进入连续式退火炉中进行球化退火。
(2)快速加热:以150℃/h的加热速度快速加热棒材至两相区温度750℃,并将弹簧钢在此温度保温120min;
(3)快速冷却:将在两相区保温结束的弹簧钢送入连续退火炉的快速冷却区,开启风机将棒材由750℃以25℃/h的冷却速度快速冷却至710℃;
(4)等温球化:将弹簧钢在710℃进行等温球化退火,等温时间216min;
(5)炉内缓冷:将等温球化结束的弹簧钢在炉内缓冷至560℃。
(6)出炉:将缓冷结束的弹簧钢棒材出炉。
按照本实施例设计的连续炉球化退火工艺生产60CrMn,规格为Φ60mm,对本实施例生产的60CrMn的性能进行检测,结果如表3所示。
表3按照实施例2~3设计的连续炉球化退火工艺生产的60CrMn的性能
对比例1
60CrMn钢棒材的成分、退火前的状态、尺寸规格同实施例1,采用普通退火工艺。
普通退火工艺具体步骤及工艺参数如下:
(1)布料:将热轧后的弹簧钢棒材放置在连续退火炉的传动辊道上,高度按照150mm进行布料,布料完成后按照设定好的辊速2m/h传动进入连续式退火炉中进行球化退火。
(2)快速加热:以150℃/h的加热速度快速加热棒材至两相区温度760℃。
(3)保温:达到温度后,将弹簧钢在此温度保温650min。
(4)炉内缓冷:将等温球化结束的弹簧钢在炉内缓冷至560℃。
(5)出炉:将缓冷结束的弹簧钢棒材出炉。
采用普通退火工艺,球化率仅50%左右,如图2所示,部分碳化物呈层片状或短棒状分布,硬度在210~230HBW,不能满足使用要求。
对比例2
该对比例中60CrMn钢棒材的成分如表1所示,弹簧钢球化退火方法与实施例1基本相同,不同之处在于,步骤(2)中快速加热速度为60℃/h,具体包括以下步骤:
(1)布料:将热轧后的弹簧钢棒材放置在连续退火炉的传动辊道上,高度按照150mm进行布料,布料完成后按照设定好的辊速2m/h传动进入连续式退火炉中进行球化退火。
(2)快速加热:以60℃/h的加热速度快速加热棒材至两相区温度750℃,并将弹簧钢在此温度保温120min。
(3)快速冷却:将在两相区保温结束的弹簧钢送入连续退火炉的快速冷却区,开启风机将棒材由750℃以25℃/h的冷却速度快速冷却至710℃。
(4)等温球化:将弹簧钢在710℃进行等温球化退火,等温时间300min。
(5)炉内缓冷:将等温球化结束的弹簧钢在炉内缓冷至560℃。
(6)出炉:将缓冷结束的弹簧钢棒材出炉。
按照该对比例设计的连续炉球化退火工艺生产60CrMn,规格为Φ30mm,对该对比例生产的60CrMn的性能进行检测,结果如表4所示。由表4可知,脱碳层深度为0.38mm,显著地大于实施例1中规格为Φ30mm的60CrMn,不能满足使用要求。
对比例3
该对比例中60CrMn钢棒材的成分如表1所示,弹簧钢球化退火方法与实施例1基本相同,不同之处在于,步骤(3)中快速冷却至680℃,具体包括以下步骤:
(1)布料:将热轧后的弹簧钢棒材放置在连续退火炉的传动辊道上,高度按照150mm进行布料,布料完成后按照设定好的辊速2m/h传动进入连续式退火炉中进行球化退火。
(2)快速加热:以150℃/h的加热速度快速加热棒材至两相区温度750℃,并将弹簧钢在此温度保温120min;
(3)快速冷却:将在两相区保温结束的弹簧钢送入连续退火炉的快速冷却区,开启风机将棒材由750℃以25℃/h的冷却速度快速冷却至680℃;
(4)等温球化:将弹簧钢在710℃进行等温球化退火,等温时间300min;
(5)炉内缓冷:将等温球化结束的弹簧钢在炉内缓冷至560℃。
(6)出炉:将缓冷结束的弹簧钢棒材出炉。
按照该对比例设计的连续炉球化退火工艺生产60CrMn,规格为Φ30mm,对该对比例生产的60CrMn的性能进行检测,结果如表4所示。由表4可知,球化率为68%和62%,显著地低于实施例1中规格为Φ30mm的60CrMn,硬度为195和197HBW,显著地高于实施例1中规格为Φ30mm的60CrMn,不能满足使用要求。
对比例4
该对比例中60CrMn钢棒材的成分如表1所示,弹簧钢球化退火方法与实施例1基本相同,不同之处在于,步骤(3)中冷却速度为110℃/h,具体包括以下步骤:
(1)布料:将热轧后的弹簧钢棒材放置在连续退火炉的传动辊道上,高度按照150mm进行布料,布料完成后按照设定好的辊速2m/h传动进入连续式退火炉中进行球化退火。
(2)快速加热:以150℃/h的加热速度快速加热棒材至两相区温度750℃,并将弹簧钢在此温度保温120min。
(3)快速冷却:将在两相区保温结束的弹簧钢送入连续退火炉的快速冷却区,开启风机将棒材由750℃以110℃/h的冷却速度快速冷却至710℃。
(4)等温球化:将弹簧钢在710℃进行等温球化退火,等温时间300min。
(5)炉内缓冷:将等温球化结束的弹簧钢在炉内缓冷至560℃。
(6)出炉:将缓冷结束的弹簧钢棒材出炉。
按照该对比例设计的连续炉球化退火工艺生产60CrMn,规格为Φ30mm,对该对比例生产的60CrMn的性能进行检测,结果如表4所示。由表4可知,球化率为74%和72%,显著地低于实施例1中规格为Φ30mm的60CrMn,硬度为192和194HBW,显著地高于实施例1中规格为Φ30mm的60CrMn,不能满足使用要求。
表4按照对比例2~4设计的连续炉球化退火工艺生产的60CrMn的性能
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1.  一种弹簧钢球化退火方法,其特征在于,包括以下步骤:
    快速加热阶段:将热轧态弹簧钢装入热处理炉,并快速加热至两相区温度;
    两相区保温阶段:所述弹簧钢在所述两相区温度进行保温;
    第一冷却阶段:将所述弹簧钢快速降温至第一温度;
    等温球化:将所述弹簧钢在所述第一温度进行等温球化;
    第二冷却阶段:将所述等温球化处理后的弹簧钢随所述热处理炉缓冷至第二温度,然后出炉空冷,
    所述弹簧钢的成分以质量百分比计包括:C:0.56~0.64%,Si:0.17~0.37%,Mn:0.7~1.0%,P:≤0.025%,S:≤0.02%,Cr:0.7~1.0%,Ni:≤0.35%,Cu≤0.25%,其余为基体Fe和不可避免的杂质;
    所述快速加热的加热速度为120-160℃/h;
    所述两相区温度为740-760℃,所述两相区温度的保温时间为96min~160min;
    所述第一冷却阶段的冷却速度为20-30℃/h;
    所述第一温度为700-720℃,所述等温球化的等温时间为216min~360min;
    所述第二温度为525-595℃。
  2.  如权利要求1所述的弹簧钢球化退火方法,其特征在于,所述热处理炉为连续式退火炉,所述连续式退火炉由加热区、保温区、快冷区、等温区、缓冷区五部分组成;
    所述第一冷却阶段在所述连续式退火炉的快冷区进行,冷却方式为开启风机冷却。
  3.  如权利要求1所述的弹簧钢球化退火方法,其特征在于,所述缓冷为在所述缓冷区随炉冷却。
  4.  如权利要求1所述的弹簧钢球化退火方法,其特征在于,所述热处理炉内采取氮气气氛保护,进炉布料高度为120mm~180mm,辊道速度为1.5~2.5m/h。
  5.  如权利要求2所述的弹簧钢球化退火方法,其特征在于,所述热处理炉内采取氮气气氛保护,进炉布料高度为120mm~180mm,辊道速度为1.5~2.5m/h。
  6.  如权利要求3所述的弹簧钢球化退火方法,其特征在于,所述热处理炉内采取氮气气氛保护,进炉布料高度为120mm~180mm,辊道速度为1.5~2.5m/h。
  7.  一种由权利要求1所述的弹簧钢球化退火方法制备的弹簧钢。
  8.  一种由权利要求2所述的弹簧钢球化退火方法制备的弹簧钢。
  9.  一种由权利要求3所述的弹簧钢球化退火方法制备的弹簧钢。
  10.  一种由权利要求4所述的弹簧钢球化退火方法制备的弹簧钢。
  11. 如权利要求7所述的弹簧钢,其特征在于,所述弹簧钢球化率≥80%,硬度≤190HBW,晶粒度≥6级。
  12. 如权利要求8所述的弹簧钢,其特征在于,所述弹簧钢球化率≥80%,硬度≤190HBW,晶粒度≥6级。
  13. 如权利要求9所述的弹簧钢,其特征在于,所述弹簧钢球化率≥80%,硬度≤190HBW,晶粒度≥6级。
  14. 如权利要求10所述的弹簧钢,其特征在于,所述弹簧钢球化率≥80%,硬度≤190HBW,晶粒度≥6级。
PCT/CN2023/107783 2022-07-15 2023-07-17 一种弹簧钢及其球化退火方法 WO2023246950A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210836855.2 2022-07-15
CN202210836855.2A CN115341076B (zh) 2022-07-15 2022-07-15 一种弹簧钢及其球化退火方法

Publications (1)

Publication Number Publication Date
WO2023246950A1 true WO2023246950A1 (zh) 2023-12-28

Family

ID=83950464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107783 WO2023246950A1 (zh) 2022-07-15 2023-07-17 一种弹簧钢及其球化退火方法

Country Status (2)

Country Link
CN (1) CN115341076B (zh)
WO (1) WO2023246950A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341076B (zh) * 2022-07-15 2023-08-18 大冶特殊钢有限公司 一种弹簧钢及其球化退火方法
CN117230378A (zh) * 2023-11-10 2023-12-15 江苏沙钢集团淮钢特钢股份有限公司 一种重载卡车变截面板簧用钢及其生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204540A (ja) * 1997-01-14 1998-08-04 Sumitomo Metal Ind Ltd 高炭素冷延鋼帯の製造方法
KR19980049282A (ko) * 1996-12-19 1998-09-15 김종진 냉간압연조성이 우수한 중탄소강 선재의 구상화 열처리방법
CN102876858A (zh) * 2012-09-20 2013-01-16 洛阳鼎辉特钢制品股份有限公司 一种基于强对流保护性气氛下的GCr15轴承钢球化退火工艺
CN110066909A (zh) * 2019-04-03 2019-07-30 西宁特殊钢股份有限公司 一种提高GCr15SiMn钢末端淬透性硬度的热处理工艺
CN111961814A (zh) * 2020-07-30 2020-11-20 佛山市高明基业冷轧钢板有限公司 一种高碳钢球化退火工艺
CN115341076A (zh) * 2022-07-15 2022-11-15 大冶特殊钢有限公司 一种弹簧钢及其球化退火方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564535B2 (ja) * 1987-03-18 1996-12-18 株式会社 吾嬬製鋼所 熱間圧延鋼線材の直接球状化処理方法
JP2852810B2 (ja) * 1990-11-29 1999-02-03 日新製鋼株式会社 加工性にすぐれた高炭素冷延鋼帯の製造方法
JP3266902B2 (ja) * 1997-01-14 2002-03-18 住友金属工業株式会社 高炭素冷延鋼帯の製造方法
JP3815095B2 (ja) * 1998-12-25 2006-08-30 Jfeスチール株式会社 低合金線材の直接球状化焼なまし方法
KR101445868B1 (ko) * 2007-06-05 2014-10-01 주식회사 포스코 피로수명이 우수한 고탄소 강판 및 그 제조 방법
TWI493052B (zh) * 2010-03-05 2015-07-21 China Steel Corp Eutectoid steel and its spheroidizing annealing method
KR101353553B1 (ko) * 2011-12-15 2014-01-23 주식회사 포스코 고탄소 열연강판, 냉연강판 및 그 제조방법
JP5972823B2 (ja) * 2013-04-08 2016-08-17 株式会社神戸製鋼所 冷間鍛造用鋼の製造方法
JP2014139346A (ja) * 2014-02-27 2014-07-31 Jfe Steel Corp 球状化処理性に優れる炭素鋼
JP2015172234A (ja) * 2014-03-12 2015-10-01 孝哉 長家 鋼材の徐冷処理方法
CN104057002B (zh) * 2014-05-26 2016-09-07 安徽红桥金属制造有限公司 一种压缩弹簧加工工艺
JP2018168473A (ja) * 2018-07-06 2018-11-01 株式会社神戸製鋼所 合金鋼の球状化熱処理方法
CN111944960B (zh) * 2020-07-15 2022-03-08 涟源钢铁集团有限公司 一种减少热轧中高碳钢球化退火脱碳的方法
CN112048678B (zh) * 2020-09-16 2021-07-13 成都先进金属材料产业技术研究院有限公司 低合金超高强度钢的退火软化方法
CN113151654A (zh) * 2021-04-26 2021-07-23 东南大学 一种中碳合金钢的加工方法
CN114717393A (zh) * 2022-04-22 2022-07-08 江苏永钢集团有限公司 一种42CrMoA钢棒的快速等温球化退火方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980049282A (ko) * 1996-12-19 1998-09-15 김종진 냉간압연조성이 우수한 중탄소강 선재의 구상화 열처리방법
JPH10204540A (ja) * 1997-01-14 1998-08-04 Sumitomo Metal Ind Ltd 高炭素冷延鋼帯の製造方法
CN102876858A (zh) * 2012-09-20 2013-01-16 洛阳鼎辉特钢制品股份有限公司 一种基于强对流保护性气氛下的GCr15轴承钢球化退火工艺
CN110066909A (zh) * 2019-04-03 2019-07-30 西宁特殊钢股份有限公司 一种提高GCr15SiMn钢末端淬透性硬度的热处理工艺
CN111961814A (zh) * 2020-07-30 2020-11-20 佛山市高明基业冷轧钢板有限公司 一种高碳钢球化退火工艺
CN115341076A (zh) * 2022-07-15 2022-11-15 大冶特殊钢有限公司 一种弹簧钢及其球化退火方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 30 June 2012, CENTRAL SOUTH UNIVERSITY, CN, article HU, JIDONG: "Research on Heat Treatment Process of 50CrV4 Medium Carbon High-strength Spring Steel", pages: 1 - 70, XP009551535 *

Also Published As

Publication number Publication date
CN115341076A (zh) 2022-11-15
CN115341076B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2023246950A1 (zh) 一种弹簧钢及其球化退火方法
CN110273095B (zh) 一种抗拉强度1.5GPa中熵合金的制备方法
CN103003461B (zh) 拉丝性优异的高强度弹簧用钢线材及其制造方法和高强度弹簧
CN103866095B (zh) 一种针对具有片状微观组织的Cr、Mo钢的球化退火方法
WO2021022542A1 (zh) 轧制-等温球化退火处理制备GCr15轴承钢的方法
CN104328259A (zh) 一种GCr15高碳铬轴承钢在线快速球化退火工艺
CN109136765A (zh) 一种热作模具钢及其制备方法
CN110468338A (zh) 1Cr11Ni2W2MoV耐热钢及其调质热处理工艺方法
KR100812051B1 (ko) 고장력 자동차강판의 상자소둔 열처리 방법
CN110760653A (zh) 一种防止轴承钢脱碳的控制方法
CN107299203B (zh) 一种锻件的热处理方法
Bao et al. Dynamic recrystallization by rapid heating followed by compression for a 17Ni–0.2 C martensite steel
CN111961814A (zh) 一种高碳钢球化退火工艺
JP5990428B2 (ja) 転動疲労特性に優れた軸受用鋼材およびその製造方法
CN114622064B (zh) 一种MnCr系列低碳齿轮钢的球化退火方法
TWI741884B (zh) 雙相鋼線材及其製造方法
CN105861804A (zh) 一种铁路车辆车轴预先完全退火的热处理方法
JPH0559527A (ja) 耐摩耗性及び転動疲労性に優れた鋼の製造法
JPH10204539A (ja) 高炭素冷延鋼帯の製造方法
JPH01104718A (ja) 冷間鍛造用棒線材の製造方法
CN114686655B (zh) 一种GCr15钢快速球化退火方法
CN115094208B (zh) 一种42CrMoA钢的快速等温球化退火方法
CN116987846B (zh) 一种热作模具钢退火组织冲击韧性的提升方法
JPH04329824A (ja) 冷間鍛造用マルテンサイト系ステンレス鋼の製造方法
CN109487052B (zh) 一种含b冷镦钢的球化退火方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826594

Country of ref document: EP

Kind code of ref document: A1