WO2021022542A1 - 轧制-等温球化退火处理制备GCr15轴承钢的方法 - Google Patents

轧制-等温球化退火处理制备GCr15轴承钢的方法 Download PDF

Info

Publication number
WO2021022542A1
WO2021022542A1 PCT/CN2019/099770 CN2019099770W WO2021022542A1 WO 2021022542 A1 WO2021022542 A1 WO 2021022542A1 CN 2019099770 W CN2019099770 W CN 2019099770W WO 2021022542 A1 WO2021022542 A1 WO 2021022542A1
Authority
WO
WIPO (PCT)
Prior art keywords
isothermal
warm
rolling
bearing steel
furnace
Prior art date
Application number
PCT/CN2019/099770
Other languages
English (en)
French (fr)
Inventor
韩东序
杜林秀
杜预
高秀华
吴红艳
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2021022542A1 publication Critical patent/WO2021022542A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention belongs to the technical field of heat treatment of metallurgical materials, and particularly relates to a method for preparing GCr15 bearing steel by rolling-isothermal spheroidizing annealing treatment.
  • Bearings as one of the basic mechanical parts, are known as the "heart of industry" and are widely used in various sectors of the national economy; the quality of the bearings directly affects the service performance, service life, accuracy and reliability of the equipment.
  • bearing steel As the main raw material for bearings, in addition to higher requirements for wear resistance and fatigue strength, bearing steel also needs to have good deformation resistance, rotation performance and dimensional stability; in order to ensure sufficient hardness and wear resistance,
  • the carbon and chromium content of commonly used GCr15 bearing steel is above 1%. The increase in carbon content makes GCr15 bearing steel form a mixed structure of flaky pearlite and network carbide after hot-rolled air-cooling treatment.
  • the mixed structure has high hardness and poor plasticity, so it is not suitable for cold processing; usually before machining, the hot-rolled structure will be spheroidized to reduce the hardness and improve the plastic toughness.
  • the structure obtained after spheroidization is Spherical pearlite structure; studies have shown that the coarse network carbides formed in the hot-rolled state cannot be completely eliminated in the subsequent spheroidizing annealing, quenching and tempering process, which will significantly increase the brittleness of the parts and increase the tendency of quenching cracking. How to reduce the isothermal time of spheroidizing annealing through the regulation of network carbide is one of the major issues facing domestic and foreign steel workers at this stage.
  • Isothermal spheroidizing annealing is one of the widely used bearing steel spheroidizing annealing methods in the current production process.
  • the specific spheroidizing annealing process is as follows: heat the steel to slightly higher than A c1 for a certain period of time, and then quickly cool to A r1
  • Isothermal transformation is carried out in a certain temperature range below (680 ⁇ 720°C). In the process of isothermal transformation, the austenite phase will transform into ferrite + carbide particles, and then it will be cooled to 650°C and air-cooled.
  • the isothermal spheroidizing annealing process requires a shorter time, but it still takes more than 10 hours; the previous research results on the rapid spheroidizing annealing process of bearing steel show that the heat treatment process Both the improvement and the adjustment of network carbides can shorten the time of isothermal spheroidization annealing; at this stage, there are two main methods for controlling the formation of network carbides: one is to influence the precipitation of carbides during the cooling process by controlling the composition of alloy elements , Thereby reducing the formation of network carbides; the other is to suppress the precipitation of network carbides by adjusting the cooling method after rolling; however, whether it is adding alloying elements or adding ultra-fast cooling equipment after rolling will improve the actual rolling The cost in the production process is not conducive to the wide promotion and application in enterprises.
  • the purpose of the present invention is to provide a method for preparing GCr15 bearing steel by rolling-isothermal spheroidizing annealing.
  • the reasonable selection of temperature and rolling process controls the precipitation of proeutectoid carbides in the rolling process through deformation induction, which effectively reduces the time required for isothermal spheroidizing annealing and improves energy efficiency.
  • the method of the present invention is carried out in the following steps:
  • the cast slab after isothermal treatment is subjected to a single pass hot rolling at 1000 ⁇ 5°C with a reduction rate of 25-30% to make a hot-rolled plate;
  • the warm-rolled sheet is placed in a heat treatment furnace with a temperature of 760 ⁇ 5°C, and the warm-rolled sheet is cooled to room temperature along with the furnace to obtain a furnace-cold warm-rolled sheet;
  • the above-mentioned cast slab has a thickness of 20-30 mm.
  • the spheroidization grade of the aforementioned GCr15 bearing steel is level 1, and the surface microhardness is 190-200HV.
  • the proeutectoid carbides in the rolling process are controlled to be precipitated by deformation induction, and the slow cooling structure after hot rolling is a mixed structure of flake pearlite and granular deformation-induced carbides; and Compared with the mesh carbide after the traditional rolling slow cooling treatment, the granular deformation-induced carbide has a faster dissolution rate in the isothermal spheroidizing annealing, which is more conducive to the isothermal spheroidizing annealing; compared with the traditional rolling treatment Compared with the network carbide, the formed flaky pearlite structure can effectively reduce the time required for isothermal spheroidization annealing and improve energy efficiency.
  • the technical principle of the present invention is: by applying a rolling deformation treatment above the equilibrium precipitation temperature of carbides, Ar3 , the carbides can be induced to precipitate in the grain boundaries and grains of the original austenite, and the resulting granular carbides will be subsequently In the isothermal spheroidizing annealing process, it can be used as the nucleation point for the precipitation of new spherical carbides; compared with traditional network carbides, the granular deformation-induced carbides do not need to be dissolved and broken, and the size of the carbides formed after dissolution It is more uniform, which is more conducive to the progress of the diisoeutectoid transformation during the subsequent two isothermal treatments; it should be noted that the air cooling temperature, reduction rate and related parameters must be determined in the above manner to more effectively promote the deformation-induced carbide in The intragranular and grain boundaries are precipitated in granular form; otherwise, excessive deformation-induced carbides will gather in the pre-austenite grain boundaries in a
  • the off-line isothermal spheroidizing annealing method is adopted, and a relatively good spheroidizing structure can be formed by isothermal treatment for a short time; from the observation and analysis of the metallographic structure, the structure after spheroidizing annealing is fine ferrite and The fine and dispersed spherical carbide particles can reach the spheroidization grade with a hardness of 190 ⁇ 200HV, which meets the requirements of use;
  • Figure 1 is a micrograph of the metallographic structure of the furnace cold-warm rolled sheet of Example 1 of the present invention
  • Figure 2 is a micrograph of the metallographic structure of the GCr15 bearing steel in Example 1 of the present invention.
  • Figure 3 is a micrograph of the metallographic structure of the furnace cold-warm rolled sheet of Comparative Example 1 of the present invention.
  • Figure 5 is a micrograph of the metallographic structure of the furnace cold-warm rolled sheet in Comparative Example 2 of the present invention.
  • Figure 6 is a micrograph of the metallographic structure of the GCr15 bearing steel product of Comparative Example 2 of the present invention.
  • Figure 7 is a micrograph of the metallographic structure of the furnace cold-warm rolled sheet in Comparative Example 3 of the present invention.
  • Figure 8 is a micrograph of the metallographic structure of the GCr15 bearing steel product of Comparative Example 3 of the present invention.
  • Figure 9 is a micrograph of the metallographic structure of the furnace cold-warm rolled sheet in Comparative Example 4 of the present invention.
  • Figure 10 is a micrograph of the metallographic structure of the GCr15 bearing steel product of Comparative Example 4 of the present invention.
  • the example composition of GCr15 bearing steel in the embodiment of the present invention contains C 1%, Cr 1.51%, Si 0.22%, Mn 0.3%, Ni 0.18%, S 0.002%, P 0.002%, Cu 0.08%, Ti 0.005% by mass percentage. , Mo 0.04%, Al 0.02%, the balance is Fe and unavoidable impurities.
  • the rolling mill used in the hot rolling process is the 400 new asynchronous hot rolling experimental rolling mill of the State Key Laboratory of Rolling Technology and Continuous Rolling Automation (RAL) of Northeastern University.
  • RAL Continuous Rolling Automation
  • the resistance furnace adopts the RX-36-10 east and west through-type heat treatment furnace produced by Shenyang General Electric Furnace Factory or the HL07-22 high temperature box-type resistance furnace produced by Shanghai Huidian Furnace Co., Ltd.
  • the equipment for observing the metallographic structure in the embodiment of the present invention is an Olympus BX53MRF metallographic microscope.
  • the equipment used for the hardness performance test in the embodiment of the present invention is a microhardness tester produced by Japan FUTURE-TECH Company, and the load used is 50gf.
  • the evaluation of the spheroidization effect level in the embodiment of the present invention refers to the GB/T 18254-2002 standard, and the image used is the metallographic structure taken by the Olympus BX53MRF metallographic microscope.
  • the warm rolling is 3 to 5 passes.
  • the thickness of the GCr15 bearing steel in the embodiment of the present invention is 5.6-6.9 mm.
  • the cast slab after isothermal treatment is hot-rolled at 1000 ⁇ 5°C in a single pass to refine the austenite grains with a reduction rate of 28% to make a hot-rolled plate with a thickness of 18mm;
  • the total reduction rate is 67%
  • the pass pressure is 28%
  • the final rolling temperature is 760 ⁇ 5°C.
  • the warm-rolled sheet When the temperature of the warm-rolled sheet is 760 ⁇ 5°C, the warm-rolled sheet is placed in a heat treatment furnace at a temperature of 760 ⁇ 5°C, and the warm-rolled sheet is cooled to room temperature with the furnace to obtain a furnace-cold warm-rolled sheet;
  • the metallographic structure is shown in the figure As shown in 1, the structure is a mixed structure of flake pearlite and granular deformation-induced carbide;
  • the thickness of the cast slab is 30mm; the isothermal treatment of the cast slab is 40min;
  • the first isothermal treatment is 40min; the second isothermal treatment is 40min;
  • the spheroidization grade of GCr15 bearing steel is level 1, and the surface microhardness is 195HV.
  • the thickness of the slab is 20mm; the slab is isothermally treated for 50min;
  • the first isothermal treatment is 50min; the second isothermal treatment is 50min;
  • the spheroidization grade of GCr15 bearing steel is level 1, and the surface microhardness is 198HV.
  • the hot-rolled sheet is air-cooled to 750°C for warm rolling (the temperature decreases after air-cooling); the structure of the furnace-cold warm-rolled sheet is fine flaky pearlite and network-like deformation-induced carbides distributed along the grain boundaries of the original austenite;
  • the metallographic structure of the furnace cold and warm rolled sheet is shown in Figure 3, and the metallographic structure of the GCr15 bearing steel product is shown in Figure 4. Its spheroidization grade is level 2, and the microhardness is about 231HV.
  • the hot-rolled sheet is not air-cooled, but is directly warm-rolled; the structure of the furnace-cold warm-rolled sheet is fine flaky pearlite and networked secondary carbides distributed along the original austenite grain boundary;
  • the metallographic structure of the furnace cold-warm rolled sheet is shown in Figure 5, and the metallographic structure of the GCr15 bearing steel product is shown in Figure 6, its spheroidization grade is 3, and the microhardness is about 262HV.
  • the hot-rolled sheet is air-cooled to 900°C for warm rolling (the temperature rises after air-cooling); the structure of the furnace-cold warm-rolled sheet is flaky pearlite and networked secondary carbides distributed along the grain boundaries of the original austenite;
  • the metallographic structure of the furnace cold-warm rolled sheet is shown in Figure 7, and the metallographic structure of the GCr15 bearing steel product is shown in Figure 8. Its spheroidization grade is 3 and the microhardness is about 262HV.
  • the reduction rate is 67% (reducing the number of rolling passes);
  • the structure of the furnace-cold warm-rolled sheet is fine flaky pearlite and a net-like distribution along the grain boundaries of the original austenite Shape deformation induced carbide;
  • the metallographic structure of the furnace cold-warm rolled sheet is shown in Figure 9, and the metallographic structure of the GCr15 bearing steel product is shown in Figure 10. Its spheroidization grade is level 2, and the microhardness is about 227HV.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种轧制-等温球化退火处理制备GCr15轴承钢的方法,按以下步骤进行;(1)按GCr15轴承钢成分冶炼-浇铸,铸坯在1000±5℃等温处理;(2)在1000±5℃进行单道次热轧,;(3)热轧板空冷至780±5℃,然后进行多道次温轧,总压下率60~70%;(4)在温轧板760±5℃时,置于等温的热处理炉中,随炉冷却;(5)热处理炉升温至820±5℃,一次等温处理;再降温至720±5℃,二次等温处理;降温至600±5℃取出空冷。本发明的方法仅需要较短时间的等温处理即可形成较为良好的球化组织,工艺流程等温时间短,能耗低,生产效率高。

Description

轧制-等温球化退火处理制备GCr15轴承钢的方法 技术领域
本发明属于冶金材料热处理技术领域,特别涉及一种轧制-等温球化退火处理制备GCr15轴承钢的方法。
背景技术
轴承作为基础机械零件之一,素有“工业的心脏”之称,广泛应用于国民经济的各个部门;轴承质量的好坏直接影响装备的服役性能、使用寿命、精度及可靠性。作为轴承的主要原材料,轴承钢除了对耐磨性和抗疲劳强度有较高要求外,还需具有良好的抗变形强度、回转性能及尺寸稳定性等;为了保证足够的硬度和耐磨性,常用的GCr15轴承钢中碳、铬的含量均达到1%以上,含碳量的增加使得GCr15轴承钢在经过热轧空冷处理后会形成片状珠光体和网状碳化物的混合组织,这种混合组织硬度高、塑性差,并不适合进行冷加工处理;通常在机加工处理前,会对热轧态的组织进行球化处理来降低硬度,并提高塑韧性,球化处理后获得的组织为球状珠光体组织;研究表明,热轧状态下形成的粗大的网状碳化物在随后的球化退火、淬回火过程中不能完全消除,会明显增加零件的脆性,并增加淬火开裂的倾向,如何通过网状碳化物的调控降低球化退火的等温时间是现阶段国内外钢铁工作者面临的重大课题之一。
等温球化退火是现阶段工艺生产上广泛应用的轴承钢球化退火方法之一,其具体的球化退火工艺如下:将钢加热到略高于A c1保温一定时间,随后快冷至A r1以下某一温度范围内(680~720℃)进行等温转变,在等温转变的过程中,奥氏体相会转变为铁素体+碳化物颗粒,然后随炉冷却至650℃出炉空冷。与传统的低温球化退火和连续球化退火工艺相比,等温球化退火工艺所需时间较短,但耗时仍超过10h;以往关于轴承钢快速球化退火工艺的研究结果表明,热处理工艺的改善和网状碳化物的调控均可以缩短等温球化退火的时间;现阶段控制网状碳化物形成的方法主要有两种:一是通过合金元素成分的控制影响冷却过程中碳化物的析出,进而降低网状碳化物的形成;另一种是通过轧后的冷却方式 等调控来抑制网状碳化物的析出;然而无论是添加合金元素还是增加轧后的超快冷装备都会提升实际轧制过程中的成本,不利于在企业中广泛推广应用。
因此,开发一种新的轧制工艺,在传统等温球化退火的基础上,实现GCr15轴承钢的快速球化,将简易的操作工艺和缩短球化时间有机的结合起来,具有非常重要的科学意义和经济效益。
发明概述
技术问题
问题的解决方案
技术解决方案
针对现阶段GCr15轴承钢在等温球化处理过程中存在的球化时间过长等问题,本发明的目的在于提供一种轧制-等温球化退火处理制备GCr15轴承钢的方法,通过对轧制温度、轧制工艺的合理选取,控制轧制过程中的先共析碳化物通过形变诱导的方式析出,有效的降低等温球化退火所需的时间,提高能效。
本发明的方法按以下步骤进行;
1、按GCr15轴承钢成分冶炼钢水并浇铸制成铸坯,将铸坯在1000±5℃等温处理40~60min;
2、将等温处理后的铸坯在1000±5℃进行单道次热轧,压下率25~30%,制成热轧板;
3、将热轧板空冷至780±5℃,然后进行多道次温轧,总压下率60~70%,道次压下率15~44%,终轧温度760±5℃,制成温轧板;
4、在温轧板温度为760±5℃时,将温轧板置于温度为760±5℃的热处理炉中,使温轧板随炉冷却到室温,获得炉冷温轧板;
5、将放置有炉冷温轧板的热处理炉升温至820±5℃,进行一次等温处理40~60min;再将热处理炉降温至720±5℃,进行二次等温处理40~60min;最后将热处理炉降温至600±5℃,将炉冷温轧板取出空冷至常温,完成等温球化退火处理,获得GCr15轴承钢。
上述的铸坯厚度20~30mm。
上述的GCr15轴承钢的球化等级为1级,表面显微硬度为190~200HV。
本发明的方法中,控制轧制过程中的先共析碳化物通过形变诱导的方式析出,热轧处理后的缓冷组织为细片状珠光体和颗粒状形变诱导碳化物的混合组织;与传统轧制缓冷处理后的网状碳化物相比,颗粒状的形变诱导碳化物在等温球化退火中拥有更快的溶解速度,更有利于等温球化退火的进行;与传统轧制处理后形成的片状珠光体组织和网状碳化物相比,可以效的降低等温球化退火所需的时间,提高能效。
本发明的技术原理是:通过在碳化物的平衡析出温度A r3以上施加轧制变形处理,可以诱导碳化物以颗粒状在原奥氏体晶界和晶内析出,形成的颗粒状碳化物在随后的等温球化退火过程中可以作为新的球状碳化物析出的形核点;与传统的网状碳化物相比,颗粒状形变诱导碳化物无需溶解断开,且溶解后形成的碳化物颗粒尺寸更加均匀,更有利于后续两次等温处理过程中离异共析转变的进行;需要注意的是,必须按上述方式确定空冷温度和压下率以及相关参数,才能更有效的促使形变诱导碳化物在晶内和晶界以颗粒状析出;否则过多的形变诱导碳化物会在原奥氏体晶界除呈类网状集结,反而不利于等温球化退火过程的进行。
发明的有益效果
有益效果
本发明的优点及有益效果是:
1、采用的是离线等温球化退火的方法,仅需要较短时间的等温处理即可形成较为良好的球化组织;从金相组织观察分析,球化退火后的组织为细铁素体及细小弥散的球状碳化物颗粒,球化等级可以达到1级,硬度在190~200HV,达到使用要求;
2、与传统的等温球化退火工艺相比,等温时间短,能耗低,生产效率高;
3、与双相区低温轧制相比,轧制温度较高,轧制抗力较小,具有重要的实际生产意义。
对附图的简要说明
附图说明
图1为本发明实施例1的炉冷温轧板的金相组织显微图;
图2为本发明实施例1的GCr15轴承钢的金相组织显微图;
图3为本发明对比例1的炉冷温轧板的金相组织显微图;
图4为本发明对比例1的GCr15轴承钢产品的金相组织显微图;
图5为本发明对比例2中炉冷温轧板的金相组织显微图;
图6为本发明对比例2的GCr15轴承钢产品的金相组织显微图;
图7为本发明对比例3中炉冷温轧板的金相组织显微图;
图8为本发明对比例3的GCr15轴承钢产品的金相组织显微图;
图9为本发明对比例4中炉冷温轧板的金相组织显微图;
图10为本发明对比例4的GCr15轴承钢产品的金相组织显微图。
发明实施例
本发明的实施方式
本发明实施例中GCr15轴承钢的示例成分按质量百分比含C 1%,Cr 1.51%,Si 0.22%,Mn 0.3%,Ni 0.18%,S 0.002%,P 0.002%,Cu 0.08%,Ti 0.005%,Mo 0.04%,Al 0.02%,余量为Fe和不可避免杂质。
本发明实施例中,热轧过程中采用的轧机为东北大学轧制技术及连轧自动化国家重点实验室(RAL)的400新型异步热轧实验轧机。
本发明实施例中,电阻炉采用沈阳通用电炉厂生产的RX-36-10东、西贯通式热处理炉或上海汇电炉有限公司生产的HL07-22高温箱式电阻炉。
本发明实施例中观测金相组织的设备为奥林巴斯BX53MRF型金相显微镜。
本发明实施例中硬度性能测试采用的设备为日本FUTURE-TECH公司生产的显微硬度计,采用的载荷为50gf。
本发明实施例中球化效果等级评定参照GB/T 18254-2002标准,采用的图像为奥林巴斯BX53MRF型金相显微镜拍摄的金相组织。
本发明实施例中温轧3~5道次。
本发明实施例中GCr15轴承钢的厚度5.6~6.9mm。
以下为本发明优选实施例。
实施例1
冶炼钢水并浇铸制成铸坯,铸坯厚度25mm;
将铸坯在1000±5℃等温处理60min;
将等温处理后的铸坯在1000±5℃进行单道次热轧以细化奥氏体晶粒,压下率28%,制成热轧板,厚度18mm;
将热轧板空冷至780±5℃,然后进行3道次温轧,总压下率67%,道次压分别为28%、31%和44%,终轧温度760±5℃,制成温轧板,厚度6mm;
在温轧板温度为760±5℃时,将温轧板置于温度为760±5℃的热处理炉中,使温轧板随炉冷却到室温,获得炉冷温轧板;金相组织如图1所示,组织为细片状珠光体和颗粒状形变诱导碳化物的混合组织;
将放置有炉冷温轧板的热处理炉升温至820±5℃,一次等温处理60min;再将热处理炉降温至720±5℃,二次等温处理60min;最后将热处理炉降温至600±5℃,将炉冷温轧板取出空冷至常温,完成等温球化退火处理,获得GCr15轴承钢;金相组织如图2所示,GCr15轴承钢的球化等级为1级,表面显微硬度为190HV。
实施例2
方法同实施例1,不同点在于;
(1)铸坯厚度30mm;铸坯等温处理40min;
(2)热轧的压下率25%,热轧板厚度22.5mm;
(3)进行5道次温轧,总压下率70%,道次压下率分别为20%、22%、21%、27%和15%,温轧板厚度6.9mm;
(4)一次等温处理40min;二次等温处理40min;
GCr15轴承钢的球化等级为1级,表面显微硬度为195HV。
实施例3
方法同实施例1,不同点在于;
(1)铸坯厚度20mm;铸坯等温处理50min;
(2)热轧的压下率30%,热轧板厚度14mm;
(3)进行4道次温轧,总压下率60%,道次压下率分别为21%、27%、15%和18%,温轧板厚度5.6mm;
(4)一次等温处理50min;二次等温处理50min;
GCr15轴承钢的球化等级为1级,表面显微硬度为198HV。
对比例1
方法同实施例1,不同点在于:
热轧板空冷至750℃进行温轧(空冷后温度降低);炉冷温轧板的组织为细片状珠光体和沿着原奥氏体晶界分布的类网状的形变诱导碳化物;
炉冷温轧板的金相组织如图3所示,GCr15轴承钢产品的金相组织如图4所示,其球化等级为2级,显微硬度约为231HV。
对比例2
方法同实施例1,不同点在于:
热轧板不进行空冷,直接进行温轧;炉冷温轧板的组织为细片状珠光体和沿着原奥氏体晶界分布的网状二次碳化物;
炉冷温轧板的金相组织如图5所示,GCr15轴承钢产品的金相组织如图6所示,其球化等级为3级,显微硬度约为262HV。
对比例3
方法同实施例1,不同点在于:
热轧板空冷至900℃进行温轧(空冷后温度升高);炉冷温轧板的的组织为细片状珠光体和沿着原奥氏体晶界分布的网状二次碳化物;
炉冷温轧板的金相组织如图7所示,GCr15轴承钢产品的金相组织如图8所示,其球化等级为3级,显微硬度约为262HV。
对比例4
方法同实施例1,不同点在于:
空冷至780℃进行单道次温轧,压下率为67%(减少轧制道次);炉冷温轧板的组织为细片状珠光体和沿着原奥氏体晶界分布的类网状形变诱导碳化物;
炉冷温轧板的金相组织如图9所示,GCr15轴承钢产品的金相组织如图10所示,其球化等级为2级,显微硬度约为227HV。

Claims (3)

  1. 一种轧制-等温球化退火处理制备GCr15轴承钢的方法,其特征在于按以下步骤进行;
    (1)按GCr15轴承钢成分冶炼钢水并浇铸制成铸坯,将铸坯在1000±5℃等温处理40~60min;
    (2)将等温处理后的铸坯在1000±5℃进行单道次热轧,压下率25~30%,制成热轧板;
    (3)将热轧板空冷至780±5℃,然后进行多道次温轧,总压下率60~70%,道次压下率15~44%,终轧温度760±5℃,制成温轧板;
    (4)在温轧板温度为760±5℃时,将温轧板置于温度为760±5℃的热处理炉中,使温轧板随炉冷却到室温,获得炉冷温轧板;
    (5)将放置有炉冷温轧板的热处理炉升温至820±5℃,进行一次等温处理40~60min;再将热处理炉降温至720±5℃,进行二次等温处理40~60min;最后将热处理炉降温至600±5℃,将炉冷温轧板取出空冷至常温,完成等温球化退火处理,获得GCr15轴承钢。
  2. 根据权利要求1所述的轧制-等温球化退火处理制备GCr15轴承钢的方法,其特征在于所述的铸坯厚度20~30mm。
  3. 根据权利要求1所述的轧制-等温球化退火处理制备GCr15轴承钢的方法,其特征在于所述的GCr15轴承钢的球化等级为1级,表面显微硬度为190~200HV。
PCT/CN2019/099770 2019-08-02 2019-08-08 轧制-等温球化退火处理制备GCr15轴承钢的方法 WO2021022542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910709590.8 2019-08-02
CN201910709590.8A CN110283975A (zh) 2019-08-02 2019-08-02 轧制-等温球化退火处理制备GCr15轴承钢的方法

Publications (1)

Publication Number Publication Date
WO2021022542A1 true WO2021022542A1 (zh) 2021-02-11

Family

ID=68024780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099770 WO2021022542A1 (zh) 2019-08-02 2019-08-08 轧制-等温球化退火处理制备GCr15轴承钢的方法

Country Status (2)

Country Link
CN (1) CN110283975A (zh)
WO (1) WO2021022542A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029718A (zh) * 2021-03-08 2021-06-25 建龙北满特殊钢有限责任公司 一种用于水浸探伤的轴承钢试样棒的制备方法
CN113564317A (zh) * 2021-08-05 2021-10-29 沈阳工业大学 一种控制高温轴承钢组织与性能的热处理方法
CN114058829A (zh) * 2021-10-29 2022-02-18 上海柴孚机器人有限公司 轴承外圈的热处理工艺改进
CN114107626A (zh) * 2021-11-30 2022-03-01 联峰钢铁(张家港)有限公司 一种高碳铬轴承钢圆钢连续式球化退火方法
CN114317932A (zh) * 2021-12-27 2022-04-12 中航卓越锻造(无锡)有限公司 一种获取厚壁高筒环锻件平衡态组织的热处理方法
CN114480797A (zh) * 2022-01-27 2022-05-13 石狮市汇星机械有限公司 一种用GCr15钢生产针织机三角的热处理工艺方法
CN114686654A (zh) * 2022-04-07 2022-07-01 内蒙古科技大学 一种基于脉冲磁场的轴承钢球化退火方法及系统
CN114959202A (zh) * 2022-04-25 2022-08-30 中钢集团邢台机械轧辊有限公司 一种轧机支承辊的热处理方法
CN115323275A (zh) * 2022-09-05 2022-11-11 东北大学 一种高强高韧的稀土温轧低碳低锰trip钢及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337693B (zh) * 2021-06-28 2023-05-26 建龙北满特殊钢有限责任公司 一种降低大规格轴承钢网状碳化物级别的热处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196324A (ja) * 1986-02-22 1987-08-29 Nippon Steel Corp 焼入れ処理に適した高炭素含有マルテンサイト系ステンレス鋼の製造方法
CN103447299A (zh) * 2013-09-13 2013-12-18 湖州市银鑫轧辊有限公司 一种低碳钢的轧制工艺
CN107058692A (zh) * 2017-06-05 2017-08-18 东北大学 一种GCr15轴承钢热轧后在线快速球化退火方法
CN107746932A (zh) * 2017-12-06 2018-03-02 东北大学 一种GCr15轴承钢的制备方法
CN108277326A (zh) * 2018-04-11 2018-07-13 东北大学 一种GCr15轴承钢的快速球化退火工艺方法
CN108754090A (zh) * 2018-06-26 2018-11-06 东北大学 一种GCr15轴承钢的在线临界球化退火方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196324A (ja) * 1986-02-22 1987-08-29 Nippon Steel Corp 焼入れ処理に適した高炭素含有マルテンサイト系ステンレス鋼の製造方法
CN103447299A (zh) * 2013-09-13 2013-12-18 湖州市银鑫轧辊有限公司 一种低碳钢的轧制工艺
CN107058692A (zh) * 2017-06-05 2017-08-18 东北大学 一种GCr15轴承钢热轧后在线快速球化退火方法
CN107746932A (zh) * 2017-12-06 2018-03-02 东北大学 一种GCr15轴承钢的制备方法
CN108277326A (zh) * 2018-04-11 2018-07-13 东北大学 一种GCr15轴承钢的快速球化退火工艺方法
CN108754090A (zh) * 2018-06-26 2018-11-06 东北大学 一种GCr15轴承钢的在线临界球化退火方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029718A (zh) * 2021-03-08 2021-06-25 建龙北满特殊钢有限责任公司 一种用于水浸探伤的轴承钢试样棒的制备方法
CN113564317A (zh) * 2021-08-05 2021-10-29 沈阳工业大学 一种控制高温轴承钢组织与性能的热处理方法
CN113564317B (zh) * 2021-08-05 2023-05-30 沈阳工业大学 一种控制高温轴承钢组织与性能的热处理方法
CN114058829A (zh) * 2021-10-29 2022-02-18 上海柴孚机器人有限公司 轴承外圈的热处理工艺改进
CN114107626A (zh) * 2021-11-30 2022-03-01 联峰钢铁(张家港)有限公司 一种高碳铬轴承钢圆钢连续式球化退火方法
CN114317932A (zh) * 2021-12-27 2022-04-12 中航卓越锻造(无锡)有限公司 一种获取厚壁高筒环锻件平衡态组织的热处理方法
CN114480797A (zh) * 2022-01-27 2022-05-13 石狮市汇星机械有限公司 一种用GCr15钢生产针织机三角的热处理工艺方法
CN114686654A (zh) * 2022-04-07 2022-07-01 内蒙古科技大学 一种基于脉冲磁场的轴承钢球化退火方法及系统
CN114959202A (zh) * 2022-04-25 2022-08-30 中钢集团邢台机械轧辊有限公司 一种轧机支承辊的热处理方法
CN115323275A (zh) * 2022-09-05 2022-11-11 东北大学 一种高强高韧的稀土温轧低碳低锰trip钢及其制备方法

Also Published As

Publication number Publication date
CN110283975A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2021022542A1 (zh) 轧制-等温球化退火处理制备GCr15轴承钢的方法
CN105624550B (zh) 核岛设备用大厚度SA738GrB钢板及生产方法
CN102146547B (zh) 一种合金钢轧辊及其制造工艺
CN104388821B (zh) TiC粒子增强型复相组织高塑性耐磨钢板及制造方法
WO2021036271A1 (zh) 耐高温400hb耐磨钢板及其生产方法
CN109280849A (zh) 一种高性能热作模具钢及其制造工艺
CN109852880A (zh) 一种高热强性热作模具钢及其制造方法
CN110016541B (zh) 一种通过控轧控冷工艺缩短GCr15轴承钢球化退火时间的方法
CN104947005A (zh) 大厚度高性能临氢14Cr1MoR钢板及其生产方法
CN110791717B (zh) 一种高品质亚共析合金工具钢线材及其生产方法
CN109609848A (zh) 高强韧抗疲劳纳米析出物增强马-奥复相钢及其制备方法
CN108085591A (zh) 一种具有低焊接裂纹敏感性能的钢板htnm400及其生产方法
CN107287500A (zh) 一种压水堆核电站安注箱基板用钢及其制造方法
CN109609839B (zh) 高延伸性能的低合金高强耐磨钢nm450及其生产方法
CN108149156A (zh) 一种大规格高均匀性耐磨钢及其制造方法
CN104694823B (zh) 一种超低碳高强韧性抗hic管线钢板及其制备方法
CN108747084A (zh) 一种埋弧焊丝及其制备方法
CN105568113A (zh) 一种高强度Fe-Ni-Cr基高温耐蚀合金的复合强韧化工艺
CN104745965A (zh) 高碳中铬中锰多元合金钢球磨机衬板及热处理工艺
CN110358970A (zh) 屈服强度1100MPa级的焊接结构贝氏体高强钢及其制备方法
CN109694983A (zh) 一种高镜面耐腐蚀塑料模具钢及其制造方法
CN111979499A (zh) 一种低成本q460c厚规格钢板生产方法
CN114703431B (zh) 一种热作模具钢及退火组织均匀化的热处理工艺
WO2019153764A1 (zh) 一种热轧耐磨钢板及其制造方法
CN114134412B (zh) 热作模具钢的细化晶粒均匀组织的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940720

Country of ref document: EP

Kind code of ref document: A1